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Abstract

To address the inconsistency between network traffic classification performance in controlled
experiments and its generalizability to real-world scenarios, this study introduces a multimodal deep
learning framework for traffic classification. Traditional single-modality approaches often suffer
from limited adaptability when confronted with heterogeneous, encrypted, or obfuscated traffic
patterns. In contrast, our proposed method leverages the complementary nature of multiple data
modalities-such as statistical features, time-series flows, and packet-level payload representations-to
learn a more robust and discriminative traffic representation. By eliminating redundant features and
aligning cross-modal information, the model captures richer semantic and temporal dynamics of
network behavior. Specifically, convolutional neural networks (CNNs) are used to extract spatial
features from individual modalities, while long short-term memory (LSTM) networks are employed
to model temporal dependencies and cross-modal interactions. This dual-pathway architecture
enables the system to learn both intra-modal patterns and inter-modal correlations, resulting in a
more holistic understanding of traffic characteristics. Experimental evaluations demonstrate that the
proposed multimodal model significantly outperforms baseline single-modality methods,
particularly in environments with dynamic traffic types, varying encryption levels, and high
background noise. The framework thus provides a scalable and effective solution for real-time
network monitoring and intelligent intrusion detection in complex and evolving network
infrastructures.

Keywords: traffic identification; traffic classification; deep learning; multimodal fusion

1. Introduction

Traffic classification plays a vital role in network traffic anomaly detection and intrusion
detection systems. It is also a fundamental component of network management, particularly in the
domain of cybersecurity. The process of associating network traffic with specific applications is
referred to as traffic classification (TC). As a key function, traffic classification underpins various
network activities-from traffic shaping and policy enforcement to security mechanisms like filtering,
intrusion prevention, and anomaly detection. Accurate classification not only facilitates quality-of-
service (QoS) optimization but also supports forensic analysis and threat intelligence in enterprise
and critical infrastructure networks.

Given the increasing complexity and heterogeneity of modern internet traffic, alongside
growing demands for extracting meaningful insights from user data, traffic classification has become
both more necessary and more challenging. The rapid evolution of application-layer protocols, the
prevalence of mobile and IoT devices, and the emergence of adaptive or obfuscation-based
communication methods all contribute to making traffic patterns more variable and less predictable.
Furthermore, the widespread adoption of encryption protocols such as TLS 1.3 and QUIC presents
significant obstacles for traditional traffic classification methods by concealing payload contents and
rendering payload inspection techniques largely ineffective.

A wide range of techniques has been developed for traffic classification [1], including port-based
matching, deep packet inspection (DPI), statistical feature analysis, behavioral analysis, and machine
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learning (ML)-based approaches. However, the effectiveness of port-based methods has declined
sharply due to the prevalence of dynamic, multiplexed, or obfuscated port assignments. DPI
approaches, while once dominant, are increasingly constrained by legal limitations, computational
overhead, and encryption. While traditional ML methods offer improvements over rule-based
systems-particularly in their ability to handle encrypted traffic and reduce reliance on payload
content-they often depend heavily on manual feature engineering and exhibit limited adaptability to
dynamic or previously unseen network behaviors.

To overcome these limitations, recent studies have applied deep learning to traffic classification.
Deep learning models can automatically extract structured feature representations from raw data,
enabling end-to-end training and improved generalization to new or evolving traffic patterns.
Notable achievements include the use of convolutional neural networks (CNNs) for unencrypted
traffic classification, with performance metrics such as accuracy, recall, and F1-score all exceeding 89%
[3]. Other research [5] has demonstrated that combining long short-term memory (LSTM) networks
with 2D-CNN architectures can further enhance performance, achieving up to 96.32% accuracy and
95.74% F1-score. Hybrid models that integrate multiple neural architectures, as well as multitask
learning systems that simultaneously optimize for different traffic-related tasks, have also been
proposed to improve robustness and scalability [6-8].

Despite these advances, most existing deep learning models rely on a single data modality-such
as packet sequences or flow-level statistics-and fail to fully utilize the heterogeneity inherent in traffic
data. This shortcoming limits their ability to model cross-modal dependencies and often reduces their
generalizability and precision in complex, real-world environments. To address this, we propose a
multimodal traffic classification framework that integrates diverse modalities-such as time series
features, statistical summaries, and protocol metadata-into a unified deep learning model. By fusing
complementary information sources, the proposed approach aims to improve feature representation
quality, capture richer semantic structures, and enhance overall classification performance, especially
in dynamic and encrypted traffic scenarios.

2. Related Work

Recent progress in deep learning has significantly enhanced traffic classification, particularly
when addressing encrypted and heterogeneous traffic data. Contextual sequence modeling
frameworks have shown promise using hybrid architectures such as BERT-BiLSTM for semantic
interpretation and classification tasks [9]. General-purpose multi-task learning models have further
improved task adaptability and instruction coordination in diverse domains [10].

Multivariate time series classification via graph neural networks and Transformer architectures
has demonstrated effective learning from temporal dependencies-strategies relevant to network
traffic data structured as packet sequences [11]. Reinforcement learning, particularly through Double
DQN, has been applied to optimize scheduling tasks dynamically, offering insights into policy-based
adaptation mechanisms suitable for real-time traffic analysis [12].

The integration of multimodal features has become central to enhancing classification precision.
Approaches that fuse CNN and Transformer-based representations for image-text data have shown
the power of cross-modal learning [13], while attention mechanisms and multi-scale fusion
techniques in Transformer models have proven effective in extracting hierarchical features [14].

Generative deep learning methods such as diffusion models have been explored for automated
Ul generation, demonstrating the capacity to model structured semantics and improve
personalization in data synthesis tasks [15]. In distributed systems, scheduling algorithms for data
stream computing and spatial voice interaction highlight dynamic adaptability and efficiency
optimization for real-time environments [16,17].

Intelligent data acquisition systems have benefited from context-aware adaptive sampling using
DOQN, facilitating efficient and relevant information capture under limited bandwidth scenarios [18].
Low-rank adaptation techniques have also been revisited to enhance model scalability and reduce
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training overhead, which is critical for deployment in high-throughput traffic classification systems
[19].

Temporal-spatial deep learning frameworks have been developed for resource forecasting in
cloud-based environments, emphasizing structural modeling of time-variant system behavior [20].
Deep probabilistic models based on mixture density networks further contribute to anomaly
detection by modeling uncertainty and behavior distribution [21].

For structured sequence classification tasks, hybrid models using BiLSTM-CRF and social
contextual integration have proven effective in boundary detection and segmentation [22]. Lastly,
semantic modeling of multi-hop relationships in heterogeneous networks has shown potential for
improving relational reasoning, which aligns with the hierarchical and interconnected nature of
network traffic features [23].

3. Multimodal Deep Learning-Based Method for Traffic Detection and
Classification

A. Multimodal Traffic Data Analysis

Multimodal fusion technology (MFT) in deep learning refers to the process of analyzing and
recognizing tasks by utilizing inputs from multiple heterogeneous data types. By integrating
different data modalities-such as raw payloads, protocol headers, temporal features, and statistical
patterns-MFT mitigates inter-modal heterogeneity and provides a richer, more comprehensive
understanding of the underlying data. This integrative process enhances the decision-making
accuracy of deep learning models, particularly in complex classification scenarios where single-
modality inputs may lack sufficient discriminative power. Consequently, MFT has emerged as a
prominent and rapidly advancing research direction in the field of deep learning and intelligent data
analysis.

In this section, we begin by analyzing the fundamental input units typically employed in
conventional traffic classifiers. These classifiers often operate on segmented units of traffic-most
commonly packet flows-that serve as the basic granularity for feature extraction and model training.
We then discuss the various types of data that can be extracted from a single traffic unit, including
payload content, header metadata, temporal packet characteristics, and statistical aggregates. In the
proposed framework, each modality (i.e., distinct input types derived from the same traffic flow unit)
is processed through a dedicated neural network branch. These independently processed features
are then fused through a joint representation layer, enabling synergistic learning that improves the
overall classification performance. This architecture facilitates robust multimodal analysis and allows
for more effective recognition of complex traffic patterns in diverse network conditions.

Traffic segmentation is a critical preprocessing step that divides continuous raw traffic data into
discrete and analyzable flow units suitable for input to classification models. As defined in [3], a
“flow” is typically described using a five-tuple: source IP address, source port, destination IP address,
destination port, and transport-layer protocol. To capture the bidirectional nature of real-world
communication, the concept of a “biflow” is often employed-this includes both forward and reverse
packet streams associated with the same five-tuple. The study in [3] empirically demonstrated that
biflows offer more contextual information and achieve higher classification accuracy compared to
unidirectional flows, particularly for application-layer inference.

Contemporary deep learning-based traffic classification models have adopted various strategies
for structuring input data. One common approach involves extracting a fixed-length byte segment
from each flow-for instance, [3] extracts the first 784 bytes from each flow’s payload, encompassing
data from application-layer (L7) or full-stack protocol layers. Another approach, introduced in [5],
selects protocol field-level features from the first 20 packets in a biflow and constructs a matrix
representation. This matrix comprises six key features per packet: source and destination ports,
payload size, TCP window size, inter-arrival time, and packet direction, forming a structured 20x6
matrix that captures both temporal and contextual traffic characteristics.
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Although network traffic data inherently consists of multiple complementary modalities, many
existing classification models are limited to a single modality-often focusing exclusively on either
payload or protocol header fields. This narrow perspective restricts the model’s ability to fully exploit
the wealth of information embedded in network flows, especially when dealing with encrypted,
obfuscated, or multiplexed traffic. To address these limitations, the next section introduces a novel
multimodal deep learning classification model. This model is designed to automatically learn and
integrate heterogeneous traffic representations across modalities. By explicitly modeling both intra-
modal patterns (within each feature type) and inter-modal relationships (across different types), the
framework is capable of capturing richer traffic semantics and achieving greater robustness. This
approach enables the classifier to better generalize across diverse network environments, ultimately
overcoming the representational limitations of conventional single-modality models

B. Spatiotemporal Feature Extraction from Traffic Data

Convolutional Neural Networks (CNNs) are widely used in applications such as computer
vision, recommendation systems, and natural language processing. As shown in [2], CNNs are well-
suited for processing traffic data as locally correlated sequences.

CNNs learn features via multiple convolutional layers. Each layer includes translation-invariant
filters that extract local patterns. Depending on the data, CNNs may adopt one-dimensional (1D-
CNN) or two-dimensional (2D-CNN) convolution. Prior studies [4] indicate that 1D-CNNs are more
effective for sequential data. Therefore, this study employs 1D-CNNs to extract features from the
payload modality (i.e., the first Nb bytes of the application layer). To reduce overfitting, dropout and
early stopping techniques are applied after pooling layers to provide regularization.

The Long Short-Term Memory (LSTM) network is a variant of Recurrent Neural Networks
(RNNSs) designed to mitigate the vanishing gradient problem. LSTM introduces three gates-input,
forget, and output-as well as memory cells to retain long-term dependencies. The LSTM architecture
is illustrated in Figure 1.
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Figure 1. Neural network model of LSTM.

At time step ¢, with input Xt and previous hidden state Ht-1, the gates are computed as:

It = o(XtWi + Ht-1Ui + bi) (1)
Ft = o(XtWf + Ht-1Uf + bf) )
Ot = o(XtWo + Ht-1Uo + bo) (3)
The memory cell Ct is updated as:
Ct = tanh(XtWc + Ht-1Uc + bc) (4)
Ct=FtQ Ct-1+1t © Ct (5)
Ht= Ot © tanh(Ct) (6)
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Compared with standard RNNs, LSTM is better suited for learning long-range dependencies in
sequential data. In this study, the LSTM model is used to extract protocol-related features from the
first Np packets of a traffic unit.

C. Multimodal Input-Based Classification Framework

The proposed classification framework utilizes two distinct input modalities:

Modality I: The first Nb bytes of the application-layer payload, normalized to [0,1].

Modality II: Protocol-level features from the first Np packets of a biflow, including payload size,
TCP window size (zeroed for UDP), packet inter-arrival time, and direction (binary encoded).
Notably, port information is excluded to avoid classification bias.

Figure 2 illustrates the multimodal classification framework. For Channel I, the payload
modality is processed using two 1D convolutional layers with 16 and 32 filters (kernel size = 25, stride
= 1), followed by 1D max pooling (stride and window = 3), and a fully connected layer with 256
neurons. This architecture extracts spatially invariant features from payload data.
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Figure 2. Traffic data classification framework based on multimodal input.

Channel II processes the protocol field modality using an LSTM network followed by a fully
connected layer with 256 units. LSTM is selected for its ability to capture long-term dependencies in
the initial sequence of the biflow.

The outputs of both channels are concatenated, followed by a shared fully connected
representation layer (128 neurons) before feeding into the final softmax classification layer. All layers
use ReLU activations.

For training, let the m-th traffic unit in the dataset be denoted as x™, and its label y¢. Each single-
modality branch is pretrained individually using cross-entropy loss:

Ly(0p,wp) = zif:l wlm . CE(y(m), Qém);epa wy) (7)

@)
where 0, is the model parameter for modality p (p =1, 2), and w®™ is the sample weight to mitigate
class imbalance.

In the fine-tuning phase, pre-trained softmax layers are discarded, and the parameters of both
branches and the shared layer are jointly trained:

Lioint(01,62,0,) = X, 0™ - CE@™, §™;61,62,6,) 8)
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4. Experiments and Result Analysis

A. Description of the Simulated Dataset

This study adopts the ISCX VPN-nonVPN traffic dataset used in [24], which contains both flow
features and raw packet captures (PCAP format). The dataset includes 12 traffic categories: 6 classes
of regular encrypted traffic and 6 classes of VPN-encapsulated traffic. There are 20,173 non-VPN
samples and 12,264 VPN samples, totaling 32,437 flow units.

Table 1. presents a detailed breakdown of the dataset categories.

Traffic Type Contents
Email Gmail (SMTP, POP3, IMAP)
VPN-Email Encrypted email via VPN
ICQ, AIM, Skype, Facebook,
Chat
Hangouts
VPN-Chat Encrypted chat via VPN
Vimeo, YouTube, Netflix,
Streaming

Spotify

Encrypted streaming via

VPN-Streaming
VPN

Skype file transfer, FTPS,
SFTP

File Transfer

Encrypted file transfer via
VPN-FileTransfer

VPN
VoIP Facebook call, Skype,
Hangouts, VolPBuster
VPN-VoIP Encrypted VoIP via VPN
P2P uTorrent, BitTorrent
VPN-P2P Encrypted P2P via VPN

B. Sample Preprocessing

The choice of flow segmentation granularity significantly impacts the quality of traffic
classification. In this study, biflows are adopted as the basic unit. The transformation from raw traffic
data to biflow units is carried out as follows:

Raw Traffic Packets: All packets form a collection P={p',p?,...,p"}, where each packet p=(f,],t), with
f representing the five-tuple (source IP, source port, destination IP, destination port, and transport
protocol), I the packet length in bytes, and f the timestamp of transmission.

Conversion to Biflows: The packet set P is partitioned into subsets R={r,2,...,/”N}, where each
biflow 7 contains packets with matching five-tuples (regardless of direction) and is ordered by
timestamp. Each biflow is represented as R=(f,L,T,to) , where L is the size of all packets, T the duration,
and t, the starting time of the first packet.

For each biflow, two different input modalities are used:

Modality I: "L7-Nb", which consists of the first Nb bytes of the application-layer (L7) payload
[5].

Modality II: "MAT-Np-[5]", referring to the first Np packets of each biflow. Each packet
contributes four protocol-related features—payload size, TCP window size, inter-arrival time, and
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packet direction—forming an Nyx4 matrix. Unlike [5], port numbers are omitted to reduce potential
bias.

To simplify feature selection while maintaining classification fidelity, the study uses the
application payload from biflow packets. Based on empirical analysis, we select Nb = 576 bytes for
Modality I and Np = 12 packets for Modality II.

B. Simulation and Performance Evaluation

To evaluate performance, the dataset is randomly divided —90% of samples are used for training
and 10% for testing. The model is trained on the training set and evaluated on the test set. To ensure
robustness and minimize random variance, multiple trials are conducted, and the final results are
averaged.

Table 2 summarizes the classification performance. The proposed multimodal approach
achieves an accuracy of 85.5%, with precision and Fl-score both exceeding 80%, demonstrating
superior performance over the baseline LSTM model. This validates the effectiveness of the proposed
architecture in handling heterogeneous and multimodal traffic data.

Table 2. Classification results (%).

Method Accuracy Precision Fl-score

Proposed Model 85.5 81.4 83.8
LSTM 82.3 78.9 78.5

5. Conclusions

This study proposes a traffic classification method based on multimodal deep learning,
integrating convolutional neural networks (CNNs) and long short-term memory (LSTM) networks.
The approach effectively leverages the heterogeneous and multimodal characteristics of traffic data.
By separately processing different modalities—specifically, payload bytes and protocol-level
features—from the same traffic unit and then fusing the learned representations, the method achieves
more accurate classification outcomes. Compared with existing deep learning-based classifiers
that rely solely on single-modality inputs, the proposed framework significantly improves
adaptability and precision, addressing the limitations of traditional models in dynamic and complex
network environments.
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