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Abstract 

To  address  the  inconsistency  between  network  traffic  classification  performance  in  controlled 

experiments and its generalizability to real‐world scenarios, this study introduces a multimodal deep 

learning  framework  for  traffic  classification.  Traditional  single‐modality  approaches  often  suffer 

from  limited  adaptability when  confronted with  heterogeneous,  encrypted,  or  obfuscated  traffic 

patterns.  In contrast, our proposed method  leverages  the complementary nature of multiple data 

modalities‐such as statistical features, time‐series flows, and packet‐level payload representations‐to 

learn a more robust and discriminative traffic representation. By eliminating redundant features and 

aligning  cross‐modal  information,  the model  captures  richer  semantic and  temporal dynamics of 

network behavior. Specifically, convolutional neural networks  (CNNs) are used  to extract  spatial 

features from individual modalities, while long short‐term memory (LSTM) networks are employed 

to model  temporal  dependencies  and  cross‐modal  interactions.  This  dual‐pathway  architecture 

enables  the system  to  learn both  intra‐modal patterns and  inter‐modal correlations, resulting  in a 

more holistic understanding of traffic characteristics. Experimental evaluations demonstrate that the 

proposed  multimodal  model  significantly  outperforms  baseline  single‐modality  methods, 

particularly  in  environments  with  dynamic  traffic  types,  varying  encryption  levels,  and  high 

background  noise.  The  framework  thus  provides  a  scalable  and  effective  solution  for  real‐time 

network  monitoring  and  intelligent  intrusion  detection  in  complex  and  evolving  network 

infrastructures. 

Keywords: traffic identification; traffic classification; deep learning; multimodal fusion 

 

1. Introduction 

Traffic  classification  plays  a  vital  role  in  network  traffic  anomaly  detection  and  intrusion 

detection systems. It is also a fundamental component of network management, particularly in the 

domain  of  cybersecurity. The  process  of  associating  network  traffic with  specific  applications  is 

referred  to as  traffic classification  (TC). As a key  function,  traffic classification underpins various 

network activities‐from traffic shaping and policy enforcement to security mechanisms like filtering, 

intrusion prevention, and anomaly detection. Accurate classification not only facilitates quality‐of‐

service (QoS) optimization but also supports forensic analysis and threat intelligence in enterprise 

and critical infrastructure networks. 

Given  the  increasing  complexity  and  heterogeneity  of  modern  internet  traffic,  alongside 

growing demands for extracting meaningful insights from user data, traffic classification has become 

both more necessary and more challenging. The rapid evolution of application‐layer protocols, the 

prevalence  of  mobile  and  IoT  devices,  and  the  emergence  of  adaptive  or  obfuscation‐based 

communication methods all contribute to making traffic patterns more variable and less predictable. 

Furthermore, the widespread adoption of encryption protocols such as TLS 1.3 and QUIC presents 

significant obstacles for traditional traffic classification methods by concealing payload contents and 

rendering payload inspection techniques largely ineffective. 

A wide range of techniques has been developed for traffic classification [1], including port‐based 

matching, deep packet inspection (DPI), statistical feature analysis, behavioral analysis, and machine 
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learning  (ML)‐based approaches. However,  the effectiveness of port‐based methods has declined 

sharply  due  to  the  prevalence  of  dynamic,  multiplexed,  or  obfuscated  port  assignments.  DPI 

approaches, while once dominant, are increasingly constrained by legal limitations, computational 

overhead,  and  encryption. While  traditional ML  methods  offer  improvements  over  rule‐based 

systems‐particularly  in  their  ability  to  handle  encrypted  traffic  and  reduce  reliance  on  payload 

content‐they often depend heavily on manual feature engineering and exhibit limited adaptability to 

dynamic or previously unseen network behaviors. 

To overcome these limitations, recent studies have applied deep learning to traffic classification. 

Deep  learning models can automatically extract structured feature representations from raw data, 

enabling  end‐to‐end  training  and  improved  generalization  to  new  or  evolving  traffic  patterns. 

Notable achievements  include  the use of convolutional neural networks  (CNNs)  for unencrypted 

traffic classification, with performance metrics such as accuracy, recall, and F1‐score all exceeding 89% 

[3]. Other research [5] has demonstrated that combining long short‐term memory (LSTM) networks 

with 2D‐CNN architectures can further enhance performance, achieving up to 96.32% accuracy and 

95.74% F1‐score. Hybrid models  that  integrate multiple neural architectures, as well as multitask 

learning  systems  that  simultaneously  optimize  for  different  traffic‐related  tasks,  have  also  been 

proposed to improve robustness and scalability [6–8]. 

Despite these advances, most existing deep learning models rely on a single data modality‐such 

as packet sequences or flow‐level statistics‐and fail to fully utilize the heterogeneity inherent in traffic 

data. This shortcoming limits their ability to model cross‐modal dependencies and often reduces their 

generalizability and precision in complex, real‐world environments. To address this, we propose a 

multimodal  traffic  classification  framework  that  integrates diverse modalities‐such  as  time  series 

features, statistical summaries, and protocol metadata‐into a unified deep learning model. By fusing 

complementary information sources, the proposed approach aims to improve feature representation 

quality, capture richer semantic structures, and enhance overall classification performance, especially 

in dynamic and encrypted traffic scenarios. 

2. Related Work 

Recent progress  in deep  learning has significantly enhanced  traffic classification, particularly 

when  addressing  encrypted  and  heterogeneous  traffic  data.  Contextual  sequence  modeling 

frameworks have  shown promise using hybrid architectures  such  as BERT‐BiLSTM  for  semantic 

interpretation and classification tasks [9]. General‐purpose multi‐task learning models have further 

improved task adaptability and instruction coordination in diverse domains [10]. 

Multivariate time series classification via graph neural networks and Transformer architectures 

has  demonstrated  effective  learning  from  temporal  dependencies‐strategies  relevant  to  network 

traffic data structured as packet sequences [11]. Reinforcement learning, particularly through Double 

DQN, has been applied to optimize scheduling tasks dynamically, offering insights into policy‐based 

adaptation mechanisms suitable for real‐time traffic analysis [12]. 

The integration of multimodal features has become central to enhancing classification precision. 

Approaches that fuse CNN and Transformer‐based representations for image‐text data have shown 

the  power  of  cross‐modal  learning  [13],  while  attention  mechanisms  and  multi‐scale  fusion 

techniques in Transformer models have proven effective in extracting hierarchical features [14]. 

Generative deep learning methods such as diffusion models have been explored for automated 

UI  generation,  demonstrating  the  capacity  to  model  structured  semantics  and  improve 

personalization in data synthesis tasks [15]. In distributed systems, scheduling algorithms for data 

stream  computing  and  spatial  voice  interaction  highlight  dynamic  adaptability  and  efficiency 

optimization for real‐time environments [16,17]. 

Intelligent data acquisition systems have benefited from context‐aware adaptive sampling using 

DQN, facilitating efficient and relevant information capture under limited bandwidth scenarios [18]. 

Low‐rank adaptation techniques have also been revisited to enhance model scalability and reduce 
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training overhead, which is critical for deployment in high‐throughput traffic classification systems 

[19]. 

Temporal‐spatial deep  learning  frameworks have been developed  for resource  forecasting  in 

cloud‐based environments, emphasizing structural modeling of time‐variant system behavior [20]. 

Deep  probabilistic  models  based  on  mixture  density  networks  further  contribute  to  anomaly 

detection by modeling uncertainty and behavior distribution [21]. 

For  structured  sequence  classification  tasks,  hybrid models  using  BiLSTM‐CRF  and  social 

contextual  integration have proven effective  in boundary detection and segmentation  [22]. Lastly, 

semantic modeling of multi‐hop relationships  in heterogeneous networks has shown potential  for 

improving  relational  reasoning, which  aligns with  the  hierarchical  and  interconnected  nature  of 

network traffic features [23]. 

3. Multimodal Deep Learning‐Based Method for Traffic Detection and 

Classification 

A. Multimodal Traffic Data Analysis 

Multimodal  fusion  technology  (MFT)  in deep  learning refers  to the process of analyzing and 

recognizing  tasks  by  utilizing  inputs  from  multiple  heterogeneous  data  types.  By  integrating 

different data modalities‐such as raw payloads, protocol headers, temporal features, and statistical 

patterns‐MFT  mitigates  inter‐modal  heterogeneity  and  provides  a  richer,  more  comprehensive 

understanding  of  the  underlying  data.  This  integrative  process  enhances  the  decision‐making 

accuracy  of deep  learning models,  particularly  in  complex  classification  scenarios where  single‐

modality  inputs may  lack  sufficient discriminative power. Consequently, MFT has  emerged as a 

prominent and rapidly advancing research direction in the field of deep learning and intelligent data 

analysis. 

In  this  section, we  begin  by  analyzing  the  fundamental  input  units  typically  employed  in 

conventional  traffic  classifiers. These  classifiers  often  operate  on  segmented units  of  traffic‐most 

commonly packet flows‐that serve as the basic granularity for feature extraction and model training. 

We then discuss the various types of data that can be extracted from a single traffic unit, including 

payload content, header metadata, temporal packet characteristics, and statistical aggregates. In the 

proposed framework, each modality (i.e., distinct input types derived from the same traffic flow unit) 

is processed through a dedicated neural network branch. These independently processed features 

are then fused through a joint representation layer, enabling synergistic learning that improves the 

overall classification performance. This architecture facilitates robust multimodal analysis and allows 

for more effective recognition of complex traffic patterns in diverse network conditions. 

Traffic segmentation is a critical preprocessing step that divides continuous raw traffic data into 

discrete and analyzable  flow units suitable  for  input  to classification models. As defined  in  [3], a 

“flow” is typically described using a five‐tuple: source IP address, source port, destination IP address, 

destination  port,  and  transport‐layer  protocol.  To  capture  the  bidirectional  nature  of  real‐world 

communication, the concept of a “biflow” is often employed‐this includes both forward and reverse 

packet streams associated with the same five‐tuple. The study in [3] empirically demonstrated that 

biflows offer more contextual  information and achieve higher classification accuracy compared  to 

unidirectional flows, particularly for application‐layer inference. 

Contemporary deep learning‐based traffic classification models have adopted various strategies 

for structuring input data. One common approach involves extracting a fixed‐length byte segment 

from each flow‐for instance, [3] extracts the first 784 bytes from each flow’s payload, encompassing 

data from application‐layer (L7) or full‐stack protocol layers. Another approach, introduced in [5], 

selects protocol  field‐level  features  from  the  first  20 packets  in  a biflow  and  constructs  a matrix 

representation. This matrix  comprises  six  key  features per  packet:  source  and destination ports, 

payload size, TCP window size, inter‐arrival time, and packet direction, forming a structured 20×6 

matrix that captures both temporal and contextual traffic characteristics. 
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Although network traffic data inherently consists of multiple complementary modalities, many 

existing classification models are  limited  to a single modality‐often  focusing exclusively on either 

payload or protocol header fields. This narrow perspective restricts the model’s ability to fully exploit 

the wealth of  information  embedded  in network  flows,  especially when dealing with  encrypted, 

obfuscated, or multiplexed traffic. To address these limitations, the next section introduces a novel 

multimodal deep  learning classification model. This model is designed to automatically  learn and 

integrate heterogeneous traffic representations across modalities. By explicitly modeling both intra‐

modal patterns (within each feature type) and inter‐modal relationships (across different types), the 

framework  is capable of capturing  richer  traffic semantics and achieving greater  robustness. This 

approach enables the classifier to better generalize across diverse network environments, ultimately 

overcoming the representational limitations of conventional single‐modality models 

B. Spatiotemporal Feature Extraction from Traffic Data 

Convolutional Neural Networks  (CNNs)  are widely used  in  applications  such  as  computer 

vision, recommendation systems, and natural language processing. As shown in [2], CNNs are well‐

suited for processing traffic data as locally correlated sequences. 

CNNs learn features via multiple convolutional layers. Each layer includes translation‐invariant 

filters  that extract  local patterns. Depending on  the data, CNNs may adopt one‐dimensional  (1D‐

CNN) or two‐dimensional (2D‐CNN) convolution. Prior studies [4] indicate that 1D‐CNNs are more 

effective  for sequential data. Therefore,  this study employs 1D‐CNNs  to extract  features  from  the 

payload modality (i.e., the first Nb bytes of the application layer). To reduce overfitting, dropout and 

early stopping techniques are applied after pooling layers to provide regularization. 

The Long  Short‐Term Memory  (LSTM) network  is  a  variant  of Recurrent Neural Networks 

(RNNs) designed  to mitigate the vanishing gradient problem. LSTM  introduces three gates‐input, 

forget, and output‐as well as memory cells to retain long‐term dependencies. The LSTM architecture 

is illustrated in Figure 1. 

 

Figure 1. Neural network model of LSTM. 

At time step t, with input Xt and previous hidden state Ht‐1, the gates are computed as: 

It = σ(XtWi + Ht‐1Ui + bi)  (1)

Ft = σ(XtWf + Ht‐1Uf + bf)  (2)

  Ot = σ(XtWo + Ht‐1Uo + bo)  (3)

The memory cell Ct is updated as: 

Ĉt = tanh(XtWc + Ht‐1Uc + bc)  (4)

Ct = Ft ⊙ Ct‐1 + It ⊙ Ĉt  (5)

Ht = Ot ⊙ tanh(Ct)  (6)
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Compared with standard RNNs, LSTM is better suited for learning long‐range dependencies in 

sequential data. In this study, the LSTM model is used to extract protocol‐related features from the 

first Np packets of a traffic unit. 

C. Multimodal Input‐Based Classification Framework 

The proposed classification framework utilizes two distinct input modalities: 

Modality I: The first Nb bytes of the application‐layer payload, normalized to [0,1]. 

Modality II: Protocol‐level features from the first Np packets of a biflow, including payload size, 

TCP window  size  (zeroed  for  UDP),  packet  inter‐arrival  time,  and  direction  (binary  encoded). 

Notably, port information is excluded to avoid classification bias. 

Figure  2  illustrates  the  multimodal  classification  framework.  For  Channel  I,  the  payload 

modality is processed using two 1D convolutional layers with 16 and 32 filters (kernel size = 25, stride 

= 1),  followed by 1D max pooling  (stride and window = 3), and a  fully connected  layer with 256 

neurons. This architecture extracts spatially invariant features from payload data. 

 

Figure 2. Traffic data classification framework based on multimodal input. 

Channel II processes the protocol field modality using an LSTM network followed by a fully 

connected layer with 256 units. LSTM is selected for its ability to capture long‐term dependencies in 

the initial sequence of the biflow. 

The  outputs  of  both  channels  are  concatenated,  followed  by  a  shared  fully  connected 

representation layer (128 neurons) before feeding into the final softmax classification layer. All layers 

use ReLU activations. 

For training, let the m‐th traffic unit in the dataset be denoted as x(m), and its label y(m). Each single‐

modality branch is pretrained individually using cross‐entropy loss: 

 
(7)

      (7) 

where θp is the model parameter for modality p (p = 1, 2), and ω(m) is the sample weight to mitigate 

class imbalance. 

In the fine‐tuning phase, pre‐trained softmax layers are discarded, and the parameters of both 

branches and the shared layer are jointly trained: 

  (8)
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4. Experiments and Result Analysis 

A. Description of the Simulated Dataset 

This study adopts the ISCX VPN‐nonVPN traffic dataset used in [24], which contains both flow 

features and raw packet captures (PCAP format). The dataset includes 12 traffic categories: 6 classes 

of  regular encrypted  traffic and 6 classes of VPN‐encapsulated  traffic. There are 20,173 non‐VPN 

samples and 12,264 VPN samples, totaling 32,437 flow units. 

Table 1. presents a detailed breakdown of the dataset categories. 

Traffic Type  Contents 

Email  Gmail (SMTP, POP3, IMAP) 

VPN‐Email  Encrypted email via VPN 

Chat 
ICQ, AIM, Skype, Facebook, 

Hangouts 

VPN‐Chat  Encrypted chat via VPN 

Streaming 
Vimeo, YouTube, Netflix, 

Spotify 

VPN‐Streaming 
Encrypted streaming via 

VPN 

File Transfer 
Skype file transfer, FTPS, 

SFTP 

VPN‐FileTransfer 
Encrypted file transfer via 

VPN 

VoIP 
Facebook call, Skype, 

Hangouts, VoIPBuster 

VPN‐VoIP  Encrypted VoIP via VPN 

P2P  uTorrent, BitTorrent 

VPN‐P2P  Encrypted P2P via VPN 

B. Sample Preprocessing 

The  choice  of  flow  segmentation  granularity  significantly  impacts  the  quality  of  traffic 

classification. In this study, biflows are adopted as the basic unit. The transformation from raw traffic 

data to biflow units is carried out as follows: 

Raw Traffic Packets: All packets form a collection P={p1,p2,...,pn}, where each packet pi=(f,l,t), with 

f representing the five‐tuple (source IP, source port, destination IP, destination port, and transport 

protocol), l the packet length in bytes, and t the timestamp of transmission. 

Conversion to Biflows: The packet set P is partitioned  into subsets R={r1,r2,...,rN}, where each 

biflow  ri  contains  packets with matching  five‐tuples  (regardless  of  direction)  and  is  ordered  by 

timestamp. Each biflow is represented as Ri=(f,L,T,t0) , where L is the size of all packets, T the duration, 

and t₀ the starting time of the first packet. 

For each biflow, two different input modalities are used: 

Modality I: ʺL7‐Nbʺ, which consists of the first Nb bytes of the application‐layer (L7) payload 

[5]. 

Modality  II:  ʺMAT‐Np‐[5]ʺ,  referring  to  the  first  Np  packets  of  each  biflow.  Each  packet 

contributes four protocol‐related features—payload size, TCP window size, inter‐arrival time, and 
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packet direction—forming an Np×4 matrix. Unlike [5], port numbers are omitted to reduce potential 

bias. 

To  simplify  feature  selection  while  maintaining  classification  fidelity,  the  study  uses  the 

application payload from biflow packets. Based on empirical analysis, we select Nb = 576 bytes for 

Modality I and Np = 12 packets for Modality II. 

B. Simulation and Performance Evaluation 

To evaluate performance, the dataset is randomly divided—90% of samples are used for training 

and 10% for testing. The model is trained on the training set and evaluated on the test set. To ensure 

robustness and minimize random variance, multiple trials are conducted, and the final results are 

averaged. 

Table  2  summarizes  the  classification  performance.  The  proposed  multimodal  approach 

achieves  an  accuracy  of  85.5%, with  precision  and  F1‐score  both  exceeding  80%,  demonstrating 

superior performance over the baseline LSTM model. This validates the effectiveness of the proposed 

architecture in handling heterogeneous and multimodal traffic data. 

Table 2. Classification results (%). 

Method  Accuracy  Precision  F1‐score 

Proposed Model  85.5  81.4  83.8 

LSTM  82.3  78.9  78.5 

5. Conclusions 

This  study  proposes  a  traffic  classification  method  based  on  multimodal  deep  learning, 

integrating convolutional neural networks (CNNs) and long short‐term memory (LSTM) networks. 

The approach effectively leverages the heterogeneous and multimodal characteristics of traffic data. 

By  separately  processing  different  modalities—specifically,  payload  bytes  and  protocol‐level 

features—from the same traffic unit and then fusing the learned representations, the method achieves 

more accurate classification outcomes.         Compared with existing deep learning‐based classifiers 

that  rely  solely  on  single‐modality  inputs,  the  proposed  framework  significantly  improves 

adaptability and precision, addressing the limitations of traditional models in dynamic and complex 

network environments. 
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