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Abstract: Emergency departments (EDs) are critical in urgent care, where accurate triage optimizes
patient flow and resource allocation. Manual triage faces challenges due to increasing volume and
complexity. This study compares logistic regression, gradient boosting, neural network, and
random forest models in predicting Emergency Severity Index (ESI) triage levels for non-traumatic
patients at Lampang Hospital’s ED. Using data from January 1, 2023, to April 30, 2024, we analyzed
45,246 complete records. The gradient boosting model achieved the highest accuracy (0.81),
significantly outperforming logistic regression (accuracy 0.64). Pain scale, sex, and mean arterial
pressure were key predictors. This is the first comparison of these models for ESI triage in a Thai
hospital, highlighting their potential to improve triage accuracy and efficiency. Implementing these
models could enhance patient outcomes and resource management in ED.

Keywords: emergency severity index; machine learning; gradient boosting; neural network; logistic
regression; triage; emergency department

1. Introduction

When patients come in with different degrees of medical urgency, emergency departments
(EDs) are crucial for delivering the immediate care they need. Efficient triage systems are essential
for prioritizing patients based on the severity of their conditions, ensuring timely and appropriate
medical attention. The Emergency Severity Index (ESI) is a widely used triage tool that categorizes
patients into five levels, from level 1 (most urgent) to level 5 (least urgent), based on their symptoms
and resource needs [1]. Accurate ESI triage is crucial for optimizing patient flow, resource allocation,
and overall ED efficiency [2].

The increasing volume of ED visits and the complexity of patient presentations pose significant
challenges for manual triage, leading to potential inconsistencies and delays in patient care [3]. To
tackle these issues, machine learning (ML) models have become valuable tools for accurately and
consistently predicting triage levels [4]. These models can process large datasets and uncover patterns
that might be missed by human triage nurses, enhancing both the reliability and efficiency of the
triage process [5]. Several ML techniques have been investigated for predicting ESI triage levels,
including logistic regression, decision trees, random forests, support vector machines, and neural
networks. [6]. Each technique offers unique benefits and faces certain limitations, influenced by
factors such as data quality, feature selection, and model complexity [7]. Comparative analyses of
these models are essential for identifying the most effective approaches for specific ED settings and
patient populations [8]. Recent studies have demonstrated the potential of ML models to enhance ESI
triage prediction. For instance, Raita and colleagues (2019) used a gradient boosting algorithm to
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forecast ESI levels, demonstrating superior accuracy compared to traditional triage methods [8]. In
A similar vein, Hong and colleagues (2020) evaluated various ML algorithms and discovered that
ensemble models, which integrate the predictions of multiple base models, frequently deliver better
performance in predicting triage levels [9]. Although the results are encouraging, implementing ML-
based triage systems in emergency departments presents several obstacles, such as data privacy
issues, the integration with current workflows, and the necessity for continuous model validation
and updates [10,11]. Moreover, the variability in patient populations and ED practices necessitates
the customization of ML models to ensure their applicability and effectiveness in different settings
[12].

While previous studies have explored ML models for ESI triage, their application in non-
Western settings, particularly in Thailand, remains underexplored. In this study, we aim to conduct
a comprehensive comparative analysis of various machine learning models for predicting ESI triage
levels in Lampang Hospital's emergency room settings, focusing on non-traumatic patients. By
evaluating the performance of different models, we seek to identify the most accurate and efficient
approaches for improving triage accuracy and enhancing ED operations.

2. Materials and Methods

This study employs a retrospective observational design to evaluate the performance of various
machine learning models in predicting Emergency Severity Index (ESI) triage levels. Data were
collected from the emergency department (ED) of Lampang Hospital, focusing on non-traumatic
patients. The data collection period spanned from January 1, 2023, to April 30, 2024.

The dataset consists of various clinical and demographic features relevant to the triage process,
including but not limited to age, sex, vital signs (blood pressure, pulse rate, respiratory rate, oxygen
saturation, and temperature), Glasgow Coma Scale (GCS) score, chief complaints, pain scale, and
transport method. Chief complaints were categorized using Criteria Based Dispatch (CBD) into 25
groups [13]. Each record represents an ED visit, with the corresponding ESI triage level assigned by
trained triage nurses. Data preprocessing steps included handling missing values and outlier
detection. Only records with complete data for all relevant features were included in the analysis.
Records with any missing values were excluded to ensure the integrity and consistency of the dataset.

Criteria Based Dispatch (CBD)'" according to the criteria for sorting and prioritizing emergency
patient care as established by the Thai Emergency Medicine Foundation in 2013:

Code 1: Abdominal/Back/Pelvic and Groin Pain

Code 2: Anaphylaxis/Allergic Reactions

Code 3: Animal Bites

Code 4: Bleeding (non-traumatic)

Code 5: Breathing Difficulties

Code 6: Cardiac Arrest

Code 7: Chest Pain/Cardiac Pain

Code 8: Chocking

Code 9: Diabetes

Code 10: Environmental Hazard

Code 11: Unassigned

Code 12: Headache/Neck Pain

Code 13: Psychiatric/Behavioral Issues

Code 14: Drug Overdose/Poisoning

Code 15: Obstetric/Gynecological Emergencies

Code 16: Seizures

Code 17: General Illness/Weakness (Non-specific)/Others
Code 18: Weak Limbs/Difficulty Speaking/Facial Droop (Stroke)
Code 19: Unconscious/Unresponsive/Transient Loss of Consciousness
Code 20: Pediatric/Emergency Pediatric Care

Code 21: Assault/Injury
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Code 22: Burns - Thermal/Electrical/Chemical
Code 23: Drowning/Water-Related Injuries
Code 24: Falling

Code 25: Motor Vehicle Accidents

All features in the dataset were considered for model training, including demographic
information, clinical parameters, and transport details. Feature importance was assessed using
various techniques, such as correlation analysis and feature importance scores from ensemble
models.

Four popular machine learning models were selected for comparison based on their reported
performance in previous studies and their suitability for classification tasks: Logistic Regression,
Gradient Boosting, Neural Network, Random Forest

The dataset was divided into training and testing sets using stratified cross-validation with k=10
folds to ensure balanced representation of ESI levels in both sets. Model performance was evaluated
using precision-recall graphs, accuracy, precision, recall, F1 score, confusion matrix, and feature
importance.

Data analysis and model training were conducted using Python programming language with
relevant libraries such as pandas, scikit-learn, TensorFlow, and XGBoost. Statistical analyses and data
visualization were performed using seaborn and matplotlib libraries.

Ethical Considerations

This study was conducted in accordance with ethical guidelines and received approval from the
institutional review board (IRB) of Lampang Hospital. Data were anonymized to protect patient
privacy, and all analyses were performed on de-identified datasets.

3. Results

The initial dataset comprised 72,389 records of non-traumatic patients who visited the
emergency department of Lampang Hospital. After performing data cleaning and removing records
with missing values, 45,245 complete records remained for analysis.

The study population consisted of 52.6% females and 47.4% males, with an overall mean age of
52.3 years (SD +22.2). The distribution of vital signs and other clinical parameters varied across ESI
levels, with higher acuity levels (ESI-1 and ESI-2) generally showing more severe clinical
presentations were shown in Table 1.

Table 1. Baseline characteristics.

Characteristics ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

(N = 45,245) (n=4,784) (n=25,200) (n=10,739) (n=3,593) (n=929)

Female (n=23,775) 2,148 12,882 6,017 (56%) 2,173 555
(44.9%) (51.1%) (60.5%) (59.4%)

Male (n=21,470) 2,636 12,318 4,722 (44%) 1,420 374
(55.1%) (48.9%) (39.5%) (40.3%)

Age (years), Mean+SD 64.6+17.8 52.3+22.2 52.2+21.3 38.5+20.2 33.5+16.5

Systolic Blood Pressure (mmHg) 125.9+35.9 135.1+26.6 133.2422.4 127.5+18.7 123.8+16.3

Mean+SD

Diastolic Blood Pressure (mmHg) 73.9+22.7 79.6+16.3 78.1+13.8 78.2+12.7 77.2+11.5

Mean+SD

Mean arterial pressure (mmHg), 91.2425.7 98.1£18.1 96.4+14.9 94.5+13.3 92.6+11.9

Mean+SD

Respiratory rate, Mean+SD 26.6+7.9 20.6+3.1 19.2+1.1 19.0+1.2 18.9+1.1

Pulse rate, Mean=SD 99.8+26.7 95.3+20.9 81.9+12.4 84.0+11.8 84.3+10.7
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Sp0O2, Mean+SD 94.3+8.3 97.6+2.0 98.1+1.4 98.3+1.3 98.2+1.2
Temperature, Mean+SD 37.1£1.1 36.9+1.0 36.6+0.7 36.6+0.7 36.6+0.6
GCS Median [Min, Max] 15 [3,15] 15[9,15] 15 [15,15] 15 [15,15] 15 [15,15]
Pain Scale Mean+SD 0[0,0] 0[0,5] 0[0,5] 0[04] 01[0,2]
Shift
Morning 2,118 9,181(36.4%) 2,961 752(20.9%) 266(28.6)
(44.3%) (27.6%)
Evening 1,899(39.7% 12,279(48.7% 5,949 2,222 584
) ) (55.4%) (61.8%) (62.9%)
Night 767(16.0%) 3,740(14.8%) 1,829(17.0% 619(17.2%) 79(8.5%)
)
Carrier
Refer 1,311(27.4% 4,773(18.9%) 976(9.1%) 6(0.02%) 0(0%)
)
Relative 1,996(41.7% 14,174(56.3% 7,499(69.8% 2,140(59.6% 367(39.5%
) ) ) ) )
ALS 490(10.2%) 529(2.1%) 39(0.4%) 2(0.1%) 3(0.3%
BLS 686(14.3%) 2,343(9.3%) 665(6.2%) 77(2.1%) 3(0.3%)
Citizen 0(0%) 11(0.04%) 2(0.02%) 1(0.03%) 0(0%)
FR 63(1.3%) 261(1.0%) 53(0.5%) 13(0.4%) 0(0%)
Friend 29(0.6%) 508(2.0%) 210(1.9%) 113(3.2%) 29(3.1%)
Other 75(1.6%) 179(0.7%) 42(0.4%) 8(0.2%) 5(0.5%)
By yourself 134(2%) 2,422(9.6%) 1,253(11.7% 1,233(34.3% 522(56.2%
) ) )
Transfer
Stretcher 4,420(92.4% 17,882(70.9% 6,417(59.8% 677(18.8%) 15(1.6%)
) ) )
Carry 7(0.2%) 55(0.2%) 17(0.2%) 6(0.2%) 0(0%)
Walk 126(2.6%) 4,714(18.7%) 2,715(25.3% 2,618(72.9% 892(96.1%
) ) )
Wheelchair 231(4.8%) 2,549(10.1%) 1,590(14.8% 292(8.1%) 22(2.4%)
)
CBD
1. Abdominal/Back/Pelvic and Groin 369 (7.7%) 5878 (23.3%) 3915 957 (26.6%) 60 (6.5%)
Pain (36.5%)
2. Anaphylaxis/Allergic Reactions 19 (0.4%) 398 (1.6%) 226 (2.1%) 101 (2.8%) 13 (1.4%)
3. Animal Bites 2 (0.04%) 10 (0.04%) 3(0.03%) 17 (0.5%) 7 (0.8%)
4. Bleeding (non-traumatic) 96 (2%) 553 (2.2%) 245 (2.3%) 24 (0.7%) 0 (0.0%)
5. Breathing Difficulties 1972 2525 (10%) 115 (1.1%) 28 (0.8%) 4 (0.4%)
(41.2%)
6. Cardiac Arrest 51 (0.7%) 0 (0%) 0 (0%) 0 (0.0%) 0 (0%)
7. Chest Pain/Cardiac Pain 291 (6.1%) 2192 (8.7%) 275 (2.6%) 24 (0.7%) 1(0.1%)
8. Chocking 11 (0.2%) 20 (0.1%) 10 (0.1%) 3(0.1%) 0(0.0%)
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9. Diabetes 17 (0.4%) 132 (0.5%) 10 (0.1%) 0 (0.0%) 1(0.1%)
10. Environmental Hazard 3 (0.1%) 17 (0.1%) 30 (0.3%) 22 (0.6%) 7 (0.8%)
12.Headache/Neck Pain 39 (0.8%) 1071 (4.3%) 1044 (9.7%) 439 (12.2%) 75 (8.1%)
13. Psychiatric/Behavioral Issues 6 (0.1%) 291 (1.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
14. Drug Overdose/Poisoning 2 (0.04%) 40 (0.2%) 0(0.0%) 0(0.0%) 0(0.0%)
15. Obstetric/Gynecological 9 (0.2%) 153 (0.6%) 80 (0.7%) 7 (0.2%) 0 (0.0%)
Emergencies
16. Seizures 136 (2.8%) 651 (2.6%) 0(0.0%) 0 (0.0%) 0(0.0%)
17. General Illness/Weakness 1475 8593 (34.1%) 4471 1810 715 (77%)
(Non-specific)/Others (30.8%) (41.6%) (50.4%)
18. Weak Limbs/Difficulty 142 (3%) 1607 (6.4%) 0(0.0%) 0 (0.0%) 0(0.0%)
Speaking/FacialDroop (Stroke)
19.Unconscious/Unresponsive/Transie 133 (2.8%) 357 (1.4%) 0(0.0%) (0.0%) 0(0.0%)
nt Loss of Consciousness
20. Pediatric/Emergency Pediatric 38 (0.9%) 620 (2.7%) 207 (2.7%) 110 (4%) 34 (4.2%)
Care

The performance of logistic regression, gradient boosting, and neural network models was
compared based on precision, recall, F1 score, and accuracy. The gradient boosting model
demonstrated the highest overall performance with an accuracy of 0.81, precision of 0.81, recall of
0.81, and F1 score of 0.81. The neural network model also performed well, with all metrics at 0.78.
Logistic regression showed the lowest performance among the three models, with an accuracy of 0.64
and an F1 score of 0.60 were shown in Table 2.

Table 2. Comparative the overall performance of different models.

Model Accuracy Precision Recall F1 Score
Logistic Regression 0.70 0.69 0.64 0.68
Random Forest 0.80 0.80 0.80 0.80
Gradient Boosting 0.81 0.81 0.81 0.81
Neural Network 0.79 0.79 0.79 0.79

Precision-recall curves were generated for each model to evaluate their performance across
different ESI levels. The gradient boosting model showed the highest precision and recall values
across most ESI levels, followed by the neural network model. Logistic regression lagged, particularly
in precision for lower acuity levels (ESI levels 4 and 5) were shown in Figure 1.
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Figure 1. Comparison between models of the precision recall curves by triage level .

Confusion matrices for each model illustrated the distribution of true positive, false positive,
true negative, and false negative predictions across the five ESI levels. The gradient boosting and
neural network models performed better in correctly classifying higher acuity levels (ESI levels 1 and
2), while logistic regression had more difficulty distinguishing between mid-level acuities (ESI levels
3 and 4) were shown in Figure 2.
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Figure 2. Compare confusion Matrix of different models.

Feature importance analysis identified the most significant predictors for each model.
Common important features included pain scale, sex, and mean arterial pressure (MAP). Pain
scale emerged as the most critical feature across all models, highlighting its importance in
predicting ESI triage levels accurately were shown in Figure 3.
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Figure 3. Compare the feature importances of different models.

4. Discussion

Our study compared the performance of logistic regression, gradient boosting, neural network,
and random forest models in predicting ESI triage levels for non-traumatic patients in the emergency
department of Lampang Hospital. The results demonstrated that gradient boosting and neural
network models outperformed logistic regression in terms of accuracy, precision, recall, and F1 score,
corroborating findings from previous research (8,9). The superior performance of gradient boosting
and neural networks can be attributed to their ability to capture complex nonlinear relationships in
the data [7,10].
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Precision-recall analysis further highlighted the effectiveness of gradient boosting analysis
further highlighted the effectiveness of gradient boosting and neural network models, particularly in
correctly identifying true positive cases while minimizing false positives across various ESI levels
[11,12]. This is crucial in ED settings where timely and accurate triage decisions can significantly
impact patient outcomes and resource allocation.

The confusion matrices revealed that gradient boosting and neural networks were more effective
in accurately classifying higher acuity levels (ESIlevels 1 and 2) compared to logistic regression [8,13].
This suggests that these models are better suited for identifying patients requiring immediate medical
attention, thereby potentially improving ED efficiency and patient care.

Feature importance analysis identified pain scale, sex, and mean arterial pressure (MAP) as key
predictors for ESI triage levels across all models [14,15]. These findings align with existing literature
emphasizing the value of integrating both objective clinical parameters and subjective patient-
reported metrics in predictive modeling [16]. The significance of the pain scale as a predictor
highlights its critical role in triage assessments and supports its continued use in ED settings [17].

Despite the promising results, the implementation of ML-based triage systems in EDs faces
several challenges. Data privacy concerns, integration with existing ED workflows, and the need for
ongoing model validation and updates are significant hurdles that must be addressed [18,19].
Additionally, the variability in patient populations and ED practices necessitates the customization
of ML models to ensure their applicability and effectiveness in different settings [20].

Future research should focus on developing strategies to seamlessly incorporate these models
into existing triage systems and evaluating their long-term impact on patient outcomes and ED
efficiency [21,22]. Moreover, exploring the potential of combining multiple ML models into an
ensemble approach could further enhance triage accuracy and reliability. Continuous model training
with updated data and real-time validation will be essential to maintain the efficacy of these systems
over time [23].

5. Conclusions

This study demonstrates the potential of advanced machine learning models, specifically
gradient boosting and neural networks, in improving the accuracy and consistency of Emergency
Severity Index (ESI) triage predictions in emergency department settings. By comparing these models
with traditional logistic regression, it was evident that gradient boosting and neural networks
outperformed logistic regression in terms of accuracy, precision, recall, and F1 score.

The precision-recall analysis highlighted the superior performance of gradient boosting and
neural network models in correctly identifying true positive cases while minimizing false positives
across various ESI levels. The confusion matrices further confirmed the efficacy of these models,
particularly in accurately classifying higher acuity levels (ESI levels 1 and 2), which are crucial for
timely medical interventions.

Feature importance analysis underscored the significance of pain scale, sex, and mean arterial
pressure (MAP) as key predictors for ESI triage levels. These findings align with existing literature
emphasizing the value of integrating both objective clinical parameters and subjective patient-
reported metrics in predictive modeling.

The implementation of these advanced machine learning models could significantly enhance the
triage process’s efficiency and accuracy, ultimately improving patient care and resource management
in emergency departments. However, practical integration into clinical workflows will require
addressing challenges such as data privacy, continuous model updates, and customization for
specific ED settings.

Future research should focus on developing strategies to seamlessly incorporate these models
into existing triage systems and evaluating their long-term impact on patient outcomes and
emergency department efficiency. This study adds to the growing body of evidence supporting the
adoption of machine learning in healthcare, paving the way for more reliable and efficient triage
processes in emergency settings.
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