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Abstract: Emergency departments (EDs) are critical in urgent care, where accurate triage optimizes 

patient flow and resource allocation. Manual triage faces challenges due to increasing volume and 

complexity.  This  study  compares  logistic  regression,  gradient  boosting,  neural  network,  and 

random forest models in predicting Emergency Severity Index (ESI) triage levels for non‐traumatic 

patients at Lampang Hospital’s ED. Using data from January 1, 2023, to April 30, 2024, we analyzed 

45,246  complete  records.  The  gradient  boosting  model  achieved  the  highest  accuracy  (0.81), 

significantly outperforming  logistic  regression  (accuracy 0.64). Pain scale, sex, and mean arterial 

pressure were key predictors. This is the first comparison of these models for ESI triage in a Thai 

hospital, highlighting their potential to improve triage accuracy and efficiency. Implementing these 

models could enhance patient outcomes and resource management in ED. 

Keywords: emergency severity index; machine learning; gradient boosting; neural network; logistic 

regression; triage; emergency department 

 

1. Introduction 

When patients  come  in with different degrees  of medical  urgency,  emergency departments 

(EDs) are crucial for delivering the immediate care they need. Efficient triage systems are essential 

for prioritizing patients based on the severity of their conditions, ensuring timely and appropriate 

medical attention. The Emergency Severity Index (ESI) is a widely used triage tool that categorizes 

patients into five levels, from level 1 (most urgent) to level 5 (least urgent), based on their symptoms 

and resource needs [1]. Accurate ESI triage is crucial for optimizing patient flow, resource allocation, 

and overall ED efficiency [2]. 
The increasing volume of ED visits and the complexity of patient presentations pose significant 

challenges for manual triage, leading to potential inconsistencies and delays in patient care [3]. To 
tackle  these  issues, machine  learning  (ML) models have become valuable  tools  for accurately and 

consistently predicting triage levels [4]. These models can process large datasets and uncover patterns 

that might be missed by human  triage nurses, enhancing both  the reliability and efficiency of  the 

triage process  [5]. Several ML  techniques have been  investigated  for predicting ESI  triage  levels, 

including  logistic regression, decision  trees, random  forests, support vector machines, and neural 

networks.  [6]. Each  technique  offers unique  benefits  and  faces  certain  limitations,  influenced  by 

factors such as data quality, feature selection, and model complexity [7]. Comparative analyses of 

these models are essential for identifying the most effective approaches for specific ED settings and 

patient populations [8]. Recent studies have demonstrated the potential of ML models to enhance ESI 

triage prediction. For  instance, Raita and colleagues  (2019) used a gradient boosting algorithm  to 
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forecast ESI levels, demonstrating superior accuracy compared to traditional triage methods [8]. In 
A similar vein, Hong and colleagues (2020) evaluated various ML algorithms and discovered that 

ensemble models, which integrate the predictions of multiple base models, frequently deliver better 

performance in predicting triage levels [9]. Although the results are encouraging, implementing ML‐

based  triage  systems  in  emergency departments presents  several obstacles,  such  as data privacy 

issues,  the integration with current workflows, and the necessity for continuous model validation 

and updates [10,11]. Moreover, the variability in patient populations and ED practices necessitates 

the customization of ML models to ensure their applicability and effectiveness in different settings 

[12]. 

While  previous  studies  have  explored ML models  for  ESI  triage,  their  application  in  non‐

Western settings, particularly in Thailand, remains underexplored. In this study, we aim to conduct 

a comprehensive comparative analysis of various machine learning models for predicting ESI triage 

levels  in  Lampang Hospital’s  emergency  room  settings,  focusing  on  non‐traumatic  patients.  By 

evaluating the performance of different models, we seek to identify the most accurate and efficient 

approaches for improving triage accuracy and enhancing ED operations. 

2. Materials and Methods 

This study employs a retrospective observational design to evaluate the performance of various 

machine  learning models  in  predicting  Emergency  Severity  Index  (ESI)  triage  levels. Data were 

collected  from  the emergency department  (ED) of Lampang Hospital,  focusing on non‐traumatic 

patients. The data collection period spanned from January 1, 2023, to April 30, 2024. 

The dataset consists of various clinical and demographic features relevant to the triage process, 

including but not limited to age, sex, vital signs (blood pressure, pulse rate, respiratory rate, oxygen 

saturation, and  temperature), Glasgow Coma Scale  (GCS) score, chief complaints, pain scale, and 

transport method. Chief complaints were categorized using Criteria Based Dispatch (CBD) into 25 

groups [13]. Each record represents an ED visit, with the corresponding ESI triage level assigned by 

trained  triage  nurses.  Data  preprocessing  steps  included  handling  missing  values  and  outlier 

detection. Only records with complete data for all relevant features were included in the analysis. 

Records with any missing values were excluded to ensure the integrity and consistency of the dataset. 

Criteria Based Dispatch (CBD)10 according to the criteria for sorting and prioritizing emergency 

patient care as established by the Thai Emergency Medicine Foundation in 2013: 

Code 1: Abdominal/Back/Pelvic and Groin Pain 

Code 2: Anaphylaxis/Allergic Reactions 

Code 3: Animal Bites 

Code 4: Bleeding (non‐traumatic) 

Code 5: Breathing Difficulties 

Code 6: Cardiac Arrest 

Code 7: Chest Pain/Cardiac Pain 

Code 8: Chocking 
Code 9: Diabètes 

Code 10: Environmental Hazard 

Code 11: Unassigned 

Code 12: Headache/Neck Pain 

Code 13: Psychiatric/Behavioral Issues 

Code 14: Drug Overdose/Poisoning 

Code 15: Obstetric/Gynecological Emergencies 

Code 16: Seizures 

Code 17: General Illness/Weakness (Non‐specific)/Others 

Code 18: Weak Limbs/Difficulty Speaking/Facial Droop (Stroke) 

Code 19: Unconscious/Unresponsive/Transient Loss of Consciousness 

Code 20: Pediatric/Emergency Pediatric Care 

Code 21: Assault/Injury 
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Code 22: Burns ‐ Thermal/Electrical/Chemical 

Code 23: Drowning/Water‐Related Injuries 

Code 24: Falling 

Code 25: Motor Vehicle Accidents 

All  features  in  the  dataset  were  considered  for  model  training,  including  demographic 

information,  clinical  parameters,  and  transport  details.  Feature  importance was  assessed  using 

various  techniques,  such  as  correlation  analysis  and  feature  importance  scores  from  ensemble 

models. 

Four popular machine learning models were selected for comparison based on their reported 

performance  in previous  studies  and  their  suitability  for  classification  tasks: Logistic Regression, 

Gradient Boosting, Neural Network, Random Forest 

The dataset was divided into training and testing sets using stratified cross‐validation with k=10 

folds to ensure balanced representation of ESI levels in both sets. Model performance was evaluated 

using precision‐recall  graphs,  accuracy, precision,  recall,  F1  score,  confusion matrix,  and  feature 

importance. 

Data analysis and model training were conducted using Python programming language with 

relevant libraries such as pandas, scikit‐learn, TensorFlow, and XGBoost. Statistical analyses and data 

visualization were performed using seaborn and matplotlib libraries. 

Ethical Considerations 

This study was conducted in accordance with ethical guidelines and received approval from the 

institutional  review board  (IRB) of Lampang Hospital. Data were  anonymized  to protect patient 

privacy, and all analyses were performed on de‐identified datasets. 

3. Results 

The  initial  dataset  comprised  72,389  records  of  non‐traumatic  patients  who  visited  the 

emergency department of Lampang Hospital. After performing data cleaning and removing records 

with missing values, 45,245 complete records remained for analysis. 

The study population consisted of 52.6% females and 47.4% males, with an overall mean age of 

52.3 years (SD ±22.2). The distribution of vital signs and other clinical parameters varied across ESI 

levels,  with  higher  acuity  levels  (ESI‐1  and  ESI‐2)  generally  showing  more  severe  clinical 

presentations were shown in Table 1. 

Table 1. Baseline characteristics. 

Characteristics 

(N = 45,245) 

ESI‐1 

(n=4,784) 

ESI‐2 

(n=25,200) 

ESI‐3 

(n=10,739) 

ESI‐4 

(n=3,593) 

ESI‐5 

(n=929) 

Female (n=23,775)  2,148 

(44.9%) 

12,882 

(51.1%) 

6,017 (56%)  2,173 

(60.5%) 

555 

(59.4%) 

Male (n=21,470) 2,636 

(55.1%) 

12,318 

(48.9%) 

4,722 (44%)  1,420 

(39.5%) 

374 

(40.3%) 

Age (years), Mean±SD  64.6±17.8  52.3±22.2  52.2±21.3  38.5±20.2  33.5±16.5 

Systolic Blood Pressure (mmHg) 

Mean±SD 

125.9±35.9  135.1±26.6  133.2±22.4  127.5±18.7  123.8±16.3 

Diastolic Blood Pressure (mmHg) 

Mean±SD 

73.9±22.7  79.6±16.3  78.1±13.8  78.2±12.7  77.2±11.5 

Mean arterial pressure (mmHg), 

Mean±SD 

91.2±25.7  98.1±18.1  96.4±14.9  94.5±13.3  92.6±11.9 

Respiratory rate, Mean±SD  26.6±7.9  20.6±3.1  19.2±1.1  19.0±1.2  18.9±1.1 

Pulse rate, Mean±SD  99.8±26.7  95.3±20.9  81.9±12.4  84.0±11.8  84.3±10.7 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 August 2024                   doi:10.20944/preprints202408.0428.v1

https://doi.org/10.20944/preprints202408.0428.v1


  4 

 

SpO2, Mean±SD  94.3±8.3  97.6±2.0  98.1±1.4  98.3±1.3  98.2±1.2 

Temperature, Mean±SD  37.1±1.1  36.9±1.0  36.6±0.7  36.6±0.7  36.6±0.6 

GCS Median [Min, Max]  15 [3,15]  15 [9,15]  15 [15,15]  15 [15,15]  15 [15,15] 

Pain Scale Mean±SD 0 [0,0]  0 [0,5]  0 [0,5]  0 [0,4]  0 [0,2] 

Shift           

Morning  2,118 

(44.3%) 

9,181(36.4%)  2,961 

(27.6%) 

752(20.9%)  266(28.6) 

Evening  1,899(39.7%

) 

12,279(48.7%

) 

5,949 

(55.4%) 

2,222 

(61.8%) 

584 

(62.9%) 

Night  767(16.0%)  3,740(14.8%)  1,829(17.0%

) 

619(17.2%)  79(8.5%) 

Carrier           

Refer  1,311(27.4%

) 

4,773(18.9%)  976(9.1%)  6(0.02%)  0(0%) 

Relative  1,996(41.7%

) 

14,174(56.3%

) 

7,499(69.8%

) 

2,140(59.6%

) 

367(39.5%

) 

ALS  490(10.2%)  529(2.1%)  39(0.4%)  2(0.1%)  3(0.3% 

BLS  686(14.3%)  2,343(9.3%)  665(6.2%)  77(2.1%)  3(0.3%) 

Citizen  0(0%)  11(0.04%)  2(0.02%)  1(0.03%)  0(0%) 

FR  63(1.3%)  261(1.0%)  53(0.5%)  13(0.4%)  0(0%) 

Friend  29(0.6%)  508(2.0%)  210(1.9%)  113(3.2%)  29(3.1%) 

Other  75(1.6%)  179(0.7%)  42(0.4%)  8(0.2%)  5(0.5%) 

By yourself  134(2%)  2,422(9.6%)  1,253(11.7%

) 

1,233(34.3%

) 

522(56.2%

) 

Transfer           

Stretcher  4,420(92.4%

) 

17,882(70.9%

) 

6,417(59.8%

) 

677(18.8%)  15(1.6%) 

Carry  7(0.2%)  55(0.2%)  17(0.2%)  6(0.2%)  0(0%) 

Walk  126(2.6%)  4,714(18.7%)  2,715(25.3%

) 

2,618(72.9%

) 

892(96.1%

) 

Wheelchair  231(4.8%)  2,549(10.1%)  1,590(14.8%

) 

292(8.1%)  22(2.4%) 

CBD           

1. Abdominal/Back/Pelvic and Groin 

Pain 

369 (7.7%)  5878 (23.3%)  3915 

(36.5%) 

957 (26.6%)  60 (6.5%) 

2. Anaphylaxis/Allergic Reactions  19 (0.4%)  398 (1.6%)  226 (2.1%)  101 (2.8%)  13 (1.4%) 

3. Animal Bites  2 (0.04%)  10 (0.04%)  3 (0.03%)  17 (0.5%)  7 (0.8%) 

4. Bleeding (non‐traumatic)  96 (2%)  553 (2.2%)  245 (2.3%)  24 (0.7%)  0 (0.0%) 

5. Breathing Difficulties  1972 

(41.2%) 

2525 (10%)  115 (1.1%)  28 (0.8%)  4 (0.4%) 

6. Cardiac Arrest  51 (0.7%)  0 (0%)  0 (0%)  0 (0.0%)  0 (0%) 

7. Chest Pain/Cardiac Pain  291 (6.1%)  2192 (8.7%)  275 (2.6%)  24 (0.7%)  1 (0.1%) 

8. Chocking  11 (0.2%)  20 (0.1%)  10 (0.1%)  3 (0.1%)  0 (0.0%) 
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9. Diabètes  17 (0.4%)  132 (0.5%)  10 (0.1%)  0 (0.0%)  1 (0.1%) 

10. Environmental Hazard  3 (0.1%)  17 (0.1%)  30 (0.3%)  22 (0.6%)  7 (0.8%) 

12.Headache/Neck Pain  39 (0.8%)  1071 (4.3%)  1044 (9.7%)  439 (12.2%)  75 (8.1%) 

13. Psychiatric/Behavioral Issues  6 (0.1%)  291 (1.2%)  0 (0.0%)  0 (0.0%)  0 (0.0%) 

14. Drug Overdose/Poisoning  2 (0.04%)  40 (0.2%)  0 (0.0%)  0 (0.0%)  0 (0.0%) 

15. Obstetric/Gynecological 

Emergencies 

9 (0.2%)  153 (0.6%)  80 (0.7%)  7 (0.2%)  0 (0.0%) 

16. Seizures  136 (2.8%)  651 (2.6%)  0 (0.0%)  0 (0.0%)  0 (0.0%) 

17. General Illness/Weakness 

(Non‐specific)/Others 

1475 

(30.8%) 

8593 (34.1%)  4471 

(41.6%) 

1810 

(50.4%) 

715 (77%) 

18. Weak Limbs/Difficulty           

Speaking/FacialDroop (Stroke) 

142 (3%)  1607 (6.4%)  0 (0.0%)  0 (0.0%)  0 (0.0%) 

19.Unconscious/Unresponsive/Transie

nt Loss of Consciousness 

133 (2.8%)  357 (1.4%)  0 (0.0%)    (0.0%)  0 (0.0%) 

20. Pediatric/Emergency Pediatric 

Care 

38 (0.9%)  620 (2.7%)  207 (2.7%)  110 (4%)  34 (4.2%) 

The  performance  of  logistic  regression,  gradient  boosting,  and  neural  network models was 

compared  based  on  precision,  recall,  F1  score,  and  accuracy.  The  gradient  boosting  model 

demonstrated the highest overall performance with an accuracy of 0.81, precision of 0.81, recall of 

0.81, and F1 score of 0.81. The neural network model also performed well, with all metrics at 0.78. 

Logistic regression showed the lowest performance among the three models, with an accuracy of 0.64 

and an F1 score of 0.60 were shown in Table 2. 

Table 2. Comparative the overall performance of different models. 

Model  Accuracy  Precision  Recall  F1 Score 

Logistic Regression  0.70  0.69  0.64  0.68 

Random Forest  0.80  0.80  0.80  0.80 

Gradient Boosting  0.81  0.81  0.81  0.81 

Neural Network  0.79  0.79  0.79  0.79 

Precision‐recall  curves were  generated  for  each model  to  evaluate  their performance  across 

different ESI  levels. The gradient boosting model  showed  the highest precision and  recall values 

across most ESI levels, followed by the neural network model. Logistic regression lagged, particularly 

in precision for lower acuity levels (ESI levels 4 and 5) were shown in Figure 1. 
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Figure 1. Comparison between models of the precision recall curves by triage level . 

Confusion matrices  for each model  illustrated  the distribution of true positive,  false positive, 

true negative, and  false negative predictions across  the  five ESI  levels. The gradient boosting and 

neural network models performed better in correctly classifying higher acuity levels (ESI levels 1 and 

2), while logistic regression had more difficulty distinguishing between mid‐level acuities (ESI levels 

3 and 4) were shown in Figure 2. 

   
Confusion Matrix of Gradient Boosting  Confusion Matrix of Neural Network 
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Confusion Matrix of Logistic Regression  Confusion Matrix of Random Forest 

Figure 2. Compare confusion Matrix of different models. 

Feature importance analysis identified the most significant predictors for each model. 

Common important features included pain scale, sex, and mean arterial pressure (MAP). Pain 

scale emerged as the most critical feature across all models, highlighting its importance in 

predicting ESI triage levels accurately were shown in Figure 3. 

   
Feature Importance of Gradient Boosting  Feature Importance of Neural Network 

  
Feature Importance of Logistic Regression  Feature Importance of Random Forest 

Figure 3. Compare the feature importances of different models. 

4. Discussion 

Our study compared the performance of logistic regression, gradient boosting, neural network, 

and random forest models in predicting ESI triage levels for non‐traumatic patients in the emergency 

department  of  Lampang Hospital.  The  results  demonstrated  that  gradient  boosting  and  neural 

network models outperformed logistic regression in terms of accuracy, precision, recall, and F1 score, 

corroborating findings from previous research (8,9). The superior performance of gradient boosting 

and neural networks can be attributed to their ability to capture complex nonlinear relationships in 

the data [7,10]. 
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Precision‐recall  analysis  further  highlighted  the  effectiveness  of  gradient  boosting  analysis 

further highlighted the effectiveness of gradient boosting and neural network models, particularly in 

correctly  identifying  true positive cases while minimizing  false positives across various ESI  levels 

[11,12]. This  is crucial  in ED settings where  timely and accurate  triage decisions can significantly 

impact patient outcomes and resource allocation. 

The confusion matrices revealed that gradient boosting and neural networks were more effective 

in accurately classifying higher acuity levels (ESI levels 1 and 2) compared to logistic regression [8,13]. 

This suggests that these models are better suited for identifying patients requiring immediate medical 

attention, thereby potentially improving ED efficiency and patient care. 

Feature importance analysis identified pain scale, sex, and mean arterial pressure (MAP) as key 

predictors for ESI triage levels across all models [14,15]. These findings align with existing literature 

emphasizing  the  value  of  integrating  both  objective  clinical  parameters  and  subjective  patient‐

reported metrics  in  predictive modeling  [16].  The  significance  of  the  pain  scale  as  a  predictor 

highlights its critical role in triage assessments and supports its continued use in ED settings [17]. 

Despite  the promising  results,  the  implementation of ML‐based  triage  systems  in EDs  faces 

several challenges. Data privacy concerns, integration with existing ED workflows, and the need for 

ongoing model  validation  and  updates  are  significant  hurdles  that must  be  addressed  [18,19]. 

Additionally, the variability in patient populations and ED practices necessitates the customization 

of ML models to ensure their applicability and effectiveness in different settings [20]. 

Future research should focus on developing strategies to seamlessly incorporate these models 

into  existing  triage  systems  and  evaluating  their  long‐term  impact  on patient  outcomes  and ED 

efficiency  [21,22]. Moreover,  exploring  the  potential  of  combining multiple ML models  into  an 

ensemble approach could further enhance triage accuracy and reliability. Continuous model training 

with updated data and real‐time validation will be essential to maintain the efficacy of these systems 

over time [23]. 

5. Conclusions 

This  study  demonstrates  the  potential  of  advanced  machine  learning  models,  specifically 

gradient boosting and neural networks,  in  improving  the accuracy and consistency of Emergency 

Severity Index (ESI) triage predictions in emergency department settings. By comparing these models 

with  traditional  logistic  regression,  it was  evident  that  gradient  boosting  and  neural  networks 

outperformed logistic regression in terms of accuracy, precision, recall, and F1 score. 

The precision‐recall  analysis highlighted  the  superior performance of gradient boosting and 

neural network models in correctly identifying true positive cases while minimizing false positives 

across various ESI  levels. The  confusion matrices  further  confirmed  the efficacy of  these models, 

particularly in accurately classifying higher acuity levels (ESI levels 1 and 2), which are crucial for 

timely medical interventions. 

Feature importance analysis underscored the significance of pain scale, sex, and mean arterial 

pressure (MAP) as key predictors for ESI triage levels. These findings align with existing literature 

emphasizing  the  value  of  integrating  both  objective  clinical  parameters  and  subjective  patient‐

reported metrics in predictive modeling. 

The implementation of these advanced machine learning models could significantly enhance the 

triage process’s efficiency and accuracy, ultimately improving patient care and resource management 

in  emergency  departments. However,  practical  integration  into  clinical  workflows  will  require 

addressing  challenges  such  as  data  privacy,  continuous model  updates,  and  customization  for 

specific ED settings. 

Future research should focus on developing strategies to seamlessly incorporate these models 

into  existing  triage  systems  and  evaluating  their  long‐term  impact  on  patient  outcomes  and 

emergency department efficiency. This study adds to the growing body of evidence supporting the 

adoption of machine  learning  in healthcare, paving  the way  for more  reliable and efficient  triage 

processes in emergency settings. 
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