
Article Not peer-reviewed version

Eye Guided Multimodal Fusion: Toward

an Adaptive Learning Framework Using

Explainable Artificial Intelligence

Sahar Moradizeyveh * , Ambreen Hanif , Sidong Liu , Yuankai Qi , Amin Beheshti , Antonio Diieva

Posted Date: 20 May 2025

doi: 10.20944/preprints202505.1631.v1

Keywords: eye-gaze tracking; deep learning; explanation; artificial intelligence in health

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4438555
https://sciprofiles.com/profile/1537687
https://sciprofiles.com/profile/3710195
https://sciprofiles.com/profile/935523
https://sciprofiles.com/profile/2744046


 

 

Article 

Eye Guided Multimodal Fusion: Toward an Adaptive 

Learning Framework Using Explainable Artificial 

Intelligence 

Sahar Moradizeyveh 1,2,*, Ambreen Hanif 2 , Sidong Liu 1, Yuankai Qi 2, Amin Beheshti 2  

and Antonio Di Ieva 1,2 

1 Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and 

Human Sciences, Macquarie University, Sydney, Australia  

2 Centre for Applied Artificial Intelligence, School of Computing, Faculty of Science and Engineering, 

Macquarie University, Sydney, Australia  

* Correspondence: sahar.moradi@mq.edu.au 

Abstract: Interpreting diagnostic imaging and identifying relevant features in healthcare present 

significant challenges. For novices, the risk of misdiagnosis can be overwhelming, particularly in the 

absence of structured guidance and supervision. Furthermore, radiologists' expertise is not always 

accessible to trainees when needed. Consequently, explicit, structured guidance is essential to help 

novices interpret complex imaging data accurately and enhance their learning process. Therefore, 

developing an approach to transfer expert knowledge to novices would be invaluable, bridging the 

gap between theoretical understanding and practical skills in medical imaging. Eye-tracking has 

surged in popularity in recent years for analyzing medical images. Incorporating experts' eye-gaze 

patterns in an artificial intelligence (AI)- driven web tool offers an intuitive learning experience. 

Highlighting the regions of interest (ROI) can facilitate feedback and accelerate students' learning 

and clinical decision-making. Our multimodal approach integrates chest X-ray (CXR) images with 

expert eye-tracking fixation maps as auxiliary data, explicitly highlighting radiologists' visual 

attention during medical image assessment. We employ a unified core architecture to minimize the 

influence of noisy fixation data and avoid treating the imaging and eye-tracking modalities as 

independent contributors, thereby enhancing abnormality detection in CXRs. Gradient-weighted 

Class Activation Mapping (Grad-CAM) validates our model interpretability and influences 

radiologist decision-making, underscoring the framework's practical application in clinical contexts. 

Finally, we conducted a comprehensive evaluation of our model using both qualitative and 

quantitative analyses. 

Keywords: eye-gaze tracking; deep learning; explanation; artificial intelligence in health 

 

I. Introduction  

Generally, eye-tracking reflects a person's attentional behaviour by measuring their eye 

movements. This technology facilitates in-depth analysis of how people perceive and respond to 

visual information through monitoring users' visual attention as they engage with stimuli. Over time, 

this technology has consistently demonstrated reliability and accuracy in capturing how they allocate 

their focus towards visual stimuli [1]. Eye-tracking systems have garnered increasing interest in 

analysing learners' concentration in an educational environment [2]. On the other hand, Deep 

learning (DL) network advancements have led to impressive results in medical image analysis over 

the past decade, and many researchers have been starting to analyze eye-tracking data (with its 

unique parameters, such as fixation, reflexive, and saccades) through these novel AI methodologies. 

Eye data benefits these models by enabling them to prioritize ROI, leading to better abnormality 

detection. This approach addresses a notable challenge in many medical imaging tasks, where the 
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scarcity of large, annotated datasets limits the model’s ability to learn directly from extensive labeled 

examples. For instance, analysis of gaze data indicates that radiologists allocate more significant 

attention to specific areas indicative of abnormalities during verbal reporting of findings, as opposed 

to silently scrutinizing the image  [3]. Despite their success, DL models are often considered “black 

boxes” due to their complex and unclear inference processes [4]. As the implementation of these 

models expands, there is a growing need to understand how they function, their potential 

applications, and their limitations in various contexts. Consequently, explainable artificial 

intelligence (XAI) has been introduced to address such models' critical need for transparency and 

interpretability [5]. Understanding how and why a model reaches a specific diagnosis fosters trust 

among medical professionals and ensures that AI systems can be used effectively in clinical settings. 

Traditional radiology education systems focus on expanding knowledge by relying on intense 

practice and visual interpretation skills over time. Subsequently, gaining hands-on understanding 

and conducting learning experiments takes years of training and practice to develop expertise [6]. 

Hence, incorporating experts’ eye-tracking data as a knowledge base and using an AI-based approach 

can help junior radiologists identify critical regions and make more informed diagnostic decisions. 

To address this challenge, we propose a novel Eye-Gaze Guided Framework designed to improve 

radiology training. Our framework incorporates expert radiologists' gaze patterns to guide trainees, 

highlighting crucial areas within diagnostic images. We used Grad-CAM explanation and expert 

feedback to evaluate our model, relying on qualitative and quantitative evaluation of the explanation. 

The overall model and the evaluation steps are illustrated in Figure 1. 

 

Figure 1. The visual abstract of the eye gaze-guided framework includes the inputs, model, explanation, and 

evaluation phases. 

A. Motivating Scenario 

Relying on visual information is essential in medicine, from diagnostic reasoning in interpreting 

medical stimuli to processing and responding to visual input during complex procedures. Trainees 

have traditionally developed their skills and refined practice strategies through extensive experience 

and present information [7]. The findings by [8] suggest that experienced physicians quickly form a 

holistic impression of medical images and potential abnormalities, a level of insight trainees often 

lack.   
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Consequently, much research in medical education aims to enhance the visual learning 

experience to better support novices. The shift towards online and blended learning environments 

and incorporating online learning platforms and real-time feedback systems may help guide the 

development of educational interventions. Eye tracking is typically used as a research tool, and recent 

studies have leveraged this technology in education [9]. Eye tracking data in medical education 

provides a valuable data source and presents potential by investigating visual characteristics of 

experts’ eye movements, considering their eye movements as a proxy of higher cognitive function 

related to their domain expertise [10]. Therefore, finding an approach to transfer knowledge between 

experts and novices might help trainees tune up their gaze patterns and improve their clinical 

decision-making ability.   

B. Contributions 

• Eye Guided Framework: The Multimodal Fusion Framework integrates attention mechanisms to capture 

the most essential part of the stimuli. This model with a shared backbone prevents the impact of noisy 

fixation data and separates the processing of modalities to improve the performance of automatic 

abnormality detection in CXRs. 

• Explanation Support for Transparency: We provide post-hoc feature attribution explanations to help 

radiology trainees understand lesion classification in chest X-rays. 

• Evaluation of the Approach. We evaluate our approach to maintain robust performance under noisy 

conditions, which shows resilience to misaligned fixation maps. We further assess the interpretability of the 

model utilizing Grad-CAM, ensuring that the generated visual explanations correspond to the expert-

annotated RoI. This alignment enhances the clinical reliability of the model's predictions. 

II. Background and Related Work 

A. Eye-Gaze Tracking in Radiology 

Eye-tracking technology has been broadly explored to study human visual perception for over 

a decade, developing numerous methods to track eye movement for various applications. Typically, 

eye-tracking is applied in two main areas: interactive and diagnostic applications [11].  In an 

interactive context, users' eye movement data is an input method, whereas in a diagnostic context, it 

provides insights into their intentions and cognitive processes [1]. While AI advancements have 

enabled medical deep learning to use this prior knowledge in diagnostic tools, early studies indicate 

that eye-tracking technology can improve clinician interaction and AI systems [12,13]. Eye tracking 

studies in stimulus analysis primarily involve exploring where and how medical professionals 

examine different modalities of images. Eye movement parameters, such as fixation (the process 

where the eye remains stationary on a specific point to gather and process visual information), 

saccades (the rapid eye movements that shift the focus from one point to another quickly), and 

scanpath (sequence of eye fixation and saccadic that an individual follows while observing a visual 

scene), present valuable insights into diagnostic processes and expert-related decision-making for 

new training [14]. Eye tracking data impacts image interpretation, analysis, and diagnosis. Many 

studies have discussed utilizing eye-gaze data across diverse applications, including: i) Classification: 

Replicating different search strategies and exploring the potential to improve model performance 

and interpretability in different modalities [15–17]. ii) Data annotation: To highlight the expert's 

search patterns while labelling medical data, including images, text, and genetic information [18,19]. 

iii) Object detection and Segmentation: providing a unique supervision format for training DL/ML-

based approaches and the object's precise location within an image [20] .iv) Workload and Skill: 

Focuses on understanding human factors in medical image interpretation and diagnosis, including 

fatigue and skill level effects on diagnostic accuracy [21]. 
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B. Multimodal in Medical Data 

Multimodal learning in medical applications accelerated in the mid-2010s when integrating 

various clinical data with various types of radiological imaging, e.g., CT scans and MRI, was shown 

to improve diagnostic precision. Early studies by Li et al. [22] exemplified this paradigm shift, 

utilizing multiple data sources to provide a more comprehensive analysis. More recently, different 

scenarios of medical imaging applications have been proposed to integrate eye-gaze tracking data 

into stimulus analysis. With increasing focus on multimodal deep learning models, the incorporation 

of eye-gaze tracking allows for a deeper understanding of human search patterns, enhancing the 

models' ability to analyze visual information effectively [23]. Drew [24] noted that experts rapidly 

identify potential lesions, utilize a wider functional field of vision, and draw on more conceptual 

knowledge than novices when detecting abnormalities. Ma et al. [25] used the radiologists' visual 

attention maps to enforce the model to concentrate on task-related objects or features rather than 

harmful shortcuts. 

Furthermore, Wang et al. [26] indicates that radiologists' gaze patterns are strongly linked to 

diagnostic accuracy in mammogram lesion detection by proposing an attention-aware augmentation 

method that consistently improves the focusing contrast and highlighting the importance of where 

they focus and reducing errors in the evaluation phase. 

Hsieh et al. [27] present a parallel framework that processes chest X-ray images and expert 

fixation masks through Convolutional Neural Network (CNN) models. This multimodal approach 

predicts abnormality classes, refines bounding boxes, and optionally generates binary masks for 

more precise lesion localization. Although analyzing the CXR images and heat map overlay causes 

noise in the model, we discuss in the method section that our approach can prevent it. 

C. Explainable Artificial Intelligence 

Several studies have discussed the details of the available Explainable Artificial Intelligence 

(XAI) approaches and have presented the genetic frameworks for XAI [28–32]. This section will 

discuss the studies on developing XAI methods with multimodal data containing eye-tracking 

information. At present, only a limited number of studies in multimodalities have focused on 

developing explainable systems despite the recognized significance of XAI systems. In medical 

imaging, various explanation approaches are visual-based explanations [33]. The core idea of these 

approaches is to present the information maintained through the model to analyze which part leads 

to the model prediction. Generally, these methods present attribution maps, which can be used to 

diagnose a supportive and transparent system. These saliency-based explanations can be categorized 

into perturbation-based, activation-based, and backpropagation-based techniques [34]. 

Perturbation-Based Techniques: These methods assess the importance of each input by modifying 

the image and observing the effect on the model’s output. Perturbation techniques can be applied 

broadly to classification and regression tasks if the distance between model outputs can be computed. 

These methods focus on understanding how changes to input features affect the neural activity and 

predictions of the model. 

Activation-Based Techniques: These techniques leverage the feature maps generated in the last 

layer of a CNN network to explain the model’s predictions. By weighting each feature map and 

summing them, these methods create class activation maps (CAMs), highlighting areas of the image 

corresponding to a predicted class. The final activation map is upscaled to the size of the original 

image, often leading to a coarse resolution. CAMs help localize regions of interest by detecting 

neuronal activity associated with specific classes. Shallow CAMs capture finer details, while deeper 

CAMs identify broader object regions.  

Backpropagation-Based Techniques: These methods propagate the output gradients back to the 

input image, creating a high-resolution saliency map highlighting which pixels most influence the 

model’s prediction. Gradients indicate how much each pixel affects the final decision, increasing or 

decreasing the predicted class score. These techniques focus on the impact of individual pixels and 

how changes affect neuron activity. 
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III. The Proposed Model 

This work introduces an eye-guided multimodal fusion with shared parameters to facilitate 

interactive exploration and visualization techniques. Our system enables us to use the collected 

knowledge base on the expert's fixation map to quickly navigate to reading stimuli while receiving 

feedback. As shown in Figure 2, the framework of our proposed method consists of three main 

components. Firstly, after preprocessing raw CXR and the expert's fixation heatmap, the fusion of 

feature maps from both modalities enables the model to learn correlations between the eye-tracking 

heatmaps' spatial patterns and the X-ray images' visual features. Secondly, this framework has a 

unified core between CXR and fixation map to prevent the impact of noisy fixation data and to stop 

separate processing of modalities that assume both sources contribute independently to improved 

abnormality detection in CXRs. Finally, we evaluate the validation of the model's explanation 

interpretability through Grad-CAM, its usability, and its impact on radiologist decision-making. 

 

Figure 2. An eye-guided architecture for multimodal learning to enhance abnormality detection in chest X-rays 

by incorporating radiologists' eye-tracking data as additional input. The framework fuses raw chest X-rays and 

heatmap overlays derived from eye fixation data, creating a multimodal input processed through an attention 

head to guide the model's focus. The unified backbone processes this guided input, followed by a fully connected 

layer and a sigmoid activation for multi-label lesion classification. The Explainable AI module (using Grad-

CAM) provides post-hoc visualization to highlight critical regions influencing the model's predictions. 

A. Multimodal Input Data 

The input image used in this framework consists of the CXR  images. After collecting the raw 

eye gaze, we generate a related expert's fixation heatmap using the coordinated points. The eye-

tracking heatmap data captures the CXR regions that received the most attention from the radiologist. 

Then, we applied pre-processing, such as resizing, cropping, and augmentation, including Gaussian 

Blur to provide a slight blur to avoid overfitting and colour jitter as a brightness and contrast 

augmentation.  

Input data represented as: 

ICXR  ∈  RW × H  
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𝐻𝐸𝑦𝑒 ∈ 𝑅𝑊×𝐻 

where W and H represent the width and height of the image, the single channel corresponds to the 

grayscale chest X-ray data, and the three channels correspond to the RGB in heatmap overlay data. 

B. Mode 

Multi modal Data Processing: The model initially constructs a multichannel input by stacking 

the chest X-ray images and eye-tracking data along the channel dimension. This early fusion of 

feature maps from both modalities enables the model to capture and learn correlations between the 

eye-tracking heatmaps' spatial patterns and the X-ray images' visual features. This fusion allows the 

model to process both data types simultaneously. 

𝐼𝑀𝑢𝑙𝑡𝑖 = Concat(𝐼𝐶𝑋𝑅, 𝐻𝐸𝑦𝑒) ∈ 𝑅𝑊×𝐻 

Attention Heads: The attention mechanism helps the model focus on the most relevant regions of 

the input, acting like a filter and aligning the network with human decision-making, potentially 

improving performance. It processes the input, applies attention scores, and outputs the weighted 

feature maps. The attention head consists of two 1x1 convolutional layers. The first convolution 

reduces the feature map dimensions, applying ReLU for non-linearity, and the second convolution 

computes attention scores, followed by a sigmoid activation to normalize the attention weights to the 

[0,1] range, and finally, consider adding a dropout layer after attention-scores, as this can help 

prevent overfitting. The output is element-wise multiplied by the input to generate attended features. 

The attention head applies the following operations: 

𝐹conv1 = ReLU(𝑊1 ∗ 𝐹input + 𝑏1) 

where W1 and b1 are the weights and biases of the first convolutional layer, and * denotes convolution. 

The second layer computes attention scores, followed by a sigmoid activation to constrain the 

attention weights to the range [0,1]: 

𝐴weights = σ(𝑊2 ∗ 𝐹conv1 + 𝑏2) 

W2 and b2 are the weights and biases of the second convolutional layer, representing the sigmoid 

function. Finally, the attended features are computed by element-wise multiplying the input feature 

maps with the attention weights. The attention weights A (weights) are element-wise multiplied by 

the original input feature map F (input) to produce the attended feature map: 

𝐹attended = 𝐹input ⊙ 𝐴weights 

Unified Backbone: We use a convolutional neural network model as a shared backbone network. 

The shared backbone module processes the attended features extracted from the attention head and 

outputs deep, high-level feature maps. These feature maps are then passed to the fully connected 

layer, which predicts six labels in the classification task. Since each image can have multiple labels, 

the fully connected (FC) layer produces independent predictions for each of the six labels. The 

attended input  𝐹attention from the attention head is passed through the ResNet-50 backbone, which 

produces the high-level feature representation, denoted as: 

𝐹backbone = BackboneModel(𝐹attention) 

where 𝐹attention ∈ 𝑅𝑊×𝐻×4 is the multimodal input (combining the X-ray and eye-tracking heatmap) 

and the backbone output, 𝐹backbone ∈ 𝑅2048, which contains the high-level features. 

Fully Connected Layer: The final fully connected layer (FC) of the CNN backbone maps the high-dimensional 

feature vector𝐹backbone into six output logits for multilabel classification: 

ypred = Wf ⋅ Fbackbone + bfc 

where 𝜎(⋅)is the sigmoid function, producing probabilities for each class. The network then assigns 

a label to each class based on a predefined threshold (e.g., 0.5). For each of the six labels in multi-label 

classification, converted into probabilities using the sigmoid activation function: 
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σ(𝑥) =
1

1 + 𝑒−𝑥
 

where 

𝑃 𝑐𝑙𝑎𝑠𝑠 = σ(𝑦pred) 

C. Explanation 

In the first step, the heatmap generation process involves capturing activations and gradients 

from the convolutional layer of the backbone model (here, we used the fourth layer). A forward hook 

is registered on the target layer to store the output activations and gradients. During the backward 

pass, gradients are accumulated concerning a specific target class, enabling a focused visualization. 

The captured gradients 
∂𝑦𝑐

∂𝐴𝑖𝑗
𝑘  are pooled across spatial dimensions by averaging: 

α𝑘
𝑐 =

1

𝑍
∑ ∑

∂𝑦𝑐

∂𝐴𝑖𝑗
𝑘

𝑗𝑖

 

Here, 𝑦𝑐 is the score for the target class c, A𝑖𝑗
𝑘  refers to the activation at spatial location (𝑖, 𝑗) for 

the 𝑘 − 𝑡ℎ feature map, and Z is the total number of spatial locations (𝑖. 𝑒. , 𝑖 × 𝑗). These pooled 

gradients α𝑘
𝑐  are used to weight the corresponding activations. 

The weighted activations are averaged across channels to generate the initial heatmap: 

𝐿Grad-CAM
𝑐 = ReLU (∑ α𝑘

𝑐 𝐴𝑘

𝑘

) 

A ReLU operation ensures that only positive values are retained to highlight the relevant areas. 

In the next step, we normalized and flipped vertically to correct orientation issues and match the 

original image dimensions to build consistent scaling for the heatmaps. Finally, we converted it to an 

RGB format using a colormap for visual clarity and generated an interpretable visual output. 

 

IV. Experiments and Discussion 

In this section, we discuss the experimental phase of our research and provide an overview of 

the key components that contribute to the study. We conclude with a comprehensive discussion that 

synthesizes our findings and offers a detailed interpretation of the results, aiming to provide a 

nuanced understanding of our research outcomes. 

A. Dataset 

Our experimental validation utilized the REFLaCX dataset (Reports and Eye-tracking Data for 

Localization of Abnormalities in CXR) [35], which is derived from the MIMIC-CXR dataset [36]. Eye-

tracking data in REFLaCX was collected using an Eyelink 1000 Plus system (SR Research, Canada) at 

a 1,000 Hz resolution. The system tracked the radiologists’ pupil positions, and the fixation data were 

synchronized with timestamps from the dictations. Five radiologists provided manual labels for 

abnormalities and drew ellipses around localized findings over three phases. In the initial testing 

phase, radiologists reviewed a shared set of 59 CXRs. In the refinement phase, instructions were 

provided to standardize the labeling process, improving clarity and reliability. It also sets the stage 

for larger-scale data collection. Eventually, in the primary data collection phase, each radiologist 

independently reviewed around 500 CXRs. The final dataset was created, which contained eye-

tracking data, transcription data, and manual annotations. 

To qualify the approach, we focus on this dataset's most frequently occurring lesions, including 

pleural abnormality, consolidation, pulmonary edema, enlarged cardiac silhouette, atelectasis, and 

X-rays showing no specific disease findings. The pleural abnormality represents an abnormal 

condition of the pleura, the thin tissue that lines the chest cavity and surrounds the lungs. Pulmonary 
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edema is a condition caused by excess fluid in the lungs. The fluid accumulates in the air sacs, making 

it difficult to breathe. An enlarged cardiac silhouette is evident when the heart appears more 

prominent than usual on imaging tests, such as a chest X-ray. Atelectasis is a partial or complete 

collapse of the lung, which can lead to shortness of breath and difficulty breathing. Finally, 

consolidation is filling alveolar airspaces with fluid (exudate, transudate, or blood), inflammatory 

cells, tissue, or other materials. Figure 3 represents CXRs for selected pulmonary conditions analyzed 

in our research, and Figure 4 shows the distribution of these selected lesion cases across different 

lung conditions.  

 

Figure 3. Representative Chest X-ray Images for Different Pulmonary Conditions. 

 

Figure 4. Distribution of the selected most frequently occurring lesion cases across different lung conditions. 

B. Implementation Details 

In this study, we tuned our model for 20 epochs. This value was selected based on an analysis 

of the training and validation loss curves, which showed that after 20 epochs, the model began to 

overfit, as indicated by a divergence between training loss (continuing to decrease) and validation 

loss (starting to increase). We employed an initial learning rate of 5e-5 and a weight decay of 1e-3. 

The Adam optimizer was utilized with a batch size of 32 for optimization. The images were cropped 

and resized to 224×224 pixels, aligning with the input requirements of the ResNet-50 architecture. 

The experiments leveraged open-source model weights pre-trained on ImageNet before fine-tuning 

on the REFLaCX datasets. The experimental setup involved computational resources from a local 

environment, where we trained and tested the model using the PyTorch framework. The training 

was conducted on an internal server with an NVIDIA RTX 6000 GPU and an Intel(R) Xeon(R) w7-

3465X CPU. Initially, we divided the dataset into training, validation, and test sets using an 80/10/10 
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split, consistent with our division strategy. A random seed of 42 was used to guarantee 

reproducibility of the results. 

C. Evaluation  

In this section, we will describe the various evaluations we have conducted and the results 

obtained. We carried out two-phase evaluations of the Eye-Gaze Guided Fusion System, assessed the 

model's efficacy, and evaluated the explanations provided by Grad-CAM. A review conducted by 

clinical experts followed these evaluations. 

Multimodal Fusion Performance: The effectiveness of the Eye-guided Fusion system was evaluated 

by comparing its performance across two configurations: (1) using only CXR images, and (2) 

combining CXR images with fixation maps as input. The comparison focused on the system's ability 

to detect abnormalities, measured using key metrics such as accuracy, AUC, precision, recall, and F1-

score. To assess the system's practical reliability, robustness evaluations were conducted under 

varying conditions by introducing artificial noise into the fixation data, simulating potential 

misalignments or noise typical in real-world applications. This analysis aimed to determine the 

system’s capacity to maintain performance despite noisy or degraded inputs, reflecting its robustness 

for clinical deployment. 

Ablation Study on Modality Contribution: The system's performance integrating CXR and 

fixation map modalities was assessed through an ablation study. This study compared the 

effectiveness of various input combinations. The results, summarized in Table I indicate that utilizing 

both modalities in Eye Fusion improved accuracy, AUC, and other important metrics. In this table, 

we used the average accuracy scores across all classes and metrics. 

Table I. Ablation study on efficacy comparison of different modalities. 

 

As shown in the confusion matrices in Figure 5, for most categories, such as Pulmonary Edema, 

Atelectasis, Consolidation, and Pleural Abnormality, the number of true positives is substantially 

higher than false positives and false negatives. Additionally, categories like Pulmonary Edema and 

Enlarged Cardiac Silhouette exhibit few false positives, indicating the model's precision and ability 

to avoid overpredictions. Furthermore, the low false negative rate in these categories reflects that the 

model captures true positives effectively. 

 

Figure 5. Confusion matrices for multi-label classification across the medical conditions. 
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Noise Robustness: Artificial noise was introduced into both models to measure how well the 

system and the explanation component handle noisy or misaligned data. In real-world settings, eye-

tracking devices may not perfectly align with the displayed content or the target region of interest 

(e.g., an X-ray). Minor calibration errors, head movements, or device drift can cause slight shifts in 

fixation points. In practical applications, eye-tracking data often encounters challenges such as slight 

misalignment due to device calibration errors, minor head movements, or sensor drift. In this context, 

we used striped line noise, with 10% and 50%. A sample of this alignment is shown in Figure 6. This 

alignment helped test the model's robustness to minor misalignments that may occur in practice. As 

shown in Table II, the Eye-guided explanation system demonstrated better noise tolerance results 

than models without shared parameters, maintaining AUC values at increasing noise levels during 

testing. 

 

Figure 6. Effect of Striped Noise on Fixation Map with Varying Noise Levels and Stripe Thickness. 

2)  Grad-CAM Explanation Evaluation: In this section, we will present the Intersection Over 

Union (IoU) performance evaluation of the explanation generated using the Grad-CAM. 

Table II. Noise robustness of the gaze-guided system. 

 

Explanation Quality: The Grad-CAM heatmaps were compared to expert-labelled ROI and 

fixation maps. The overlap between the Grad-CAM activations and experts’ ROIs was measured in 

multiple classes using the mean Intersection over Union (mIoU) metric, which is defined as: 

mIoU =
1

𝑁
∑ IoU𝑖

𝑁

𝑖=1

 

where N is the total number of classes, and  IoU𝑖  is the Intersection over Union for class i . The results are 

illustrated in Table III. 

Table III. Grad-cam explanation quality (IoU with expert ROI). 
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A radiologist with over 12 years of experience understanding radiological imaging evaluates the 

interpretability and clinical relevance of the Grad-CAM explanations. Evaluations were conducted 

using a 5-point Likert scale, focusing on clarity, clinical applicability, and diagnostic utility. The 

radiologist's repeated assessments across various imaging tasks provide quantitative ratings and in-

depth qualitative feedback, highlighting the system's strengths and limitations in real-world settings. 

As the radiologist's familiarity with the Eye-guided system increased, there was a marked 

enhancement in workflow efficiency, evidenced by improvements in diagnostic speed, accuracy, and 

confidence. Notably, the analysis revealed a progressive alignment between the radiologist's 

preferred regions of interest and those identified by the system, further validating its clinical utility. 

The results of this evaluation are summarized in Table IV. 

Table IV. Expert review of the Grad-CAM explanation. 

 

V. Conclusion  

In this work, we highlight the influential role of radiologists’ eye-gaze data and propose an Eye-

Gaze Guided Fusion framework. We quantitatively and qualitatively evaluate the capabilities of our 

model. Additionally, we show that incorporating eye-gaze data during model training can enhance 

the model’s reliability. We also explain that integrating experts' visual attention can effectively guide 

the model to focus on regions of interest (ROIs) within medical images. 

A. Potential Impacts 

Although the REFLaCX dataset, one of the most valuable resources, used five different 

radiologists for data preparation, each radiologist examined approximately 20% of the CXRs based 

on their strategy. However, there is still no public dataset where many experts work on the same 

images. This issue becomes prominent when different radiologists employ varying search strategies, 

particularly for images with no significant findings. As we realized, this could introduce bias in these 

cases. 

B. Future Work 

In the future, we will continue to optimize this proposed system by exploring multimodal 

approaches, mainly by integrating clinical reports alongside image and gaze data. This could further 

improve the model's understanding and interpretation of its predictions. Generating human-like 

explanations by simulating how an expert might describe their focus while analyzing an image could 

also help in potentially correcting biases. Meanwhile, developing a visual dashboard by showcasing 

a real-time interactive system will illustrate how radiologists can leverage the fusion of eye-tracking 

and X-ray data to improve diagnosis. 
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