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Abstract: Interpreting diagnostic imaging and identifying relevant features in healthcare present
significant challenges. For novices, the risk of misdiagnosis can be overwhelming, particularly in the
absence of structured guidance and supervision. Furthermore, radiologists' expertise is not always
accessible to trainees when needed. Consequently, explicit, structured guidance is essential to help
novices interpret complex imaging data accurately and enhance their learning process. Therefore,
developing an approach to transfer expert knowledge to novices would be invaluable, bridging the
gap between theoretical understanding and practical skills in medical imaging. Eye-tracking has
surged in popularity in recent years for analyzing medical images. Incorporating experts' eye-gaze
patterns in an artificial intelligence (AI)- driven web tool offers an intuitive learning experience.
Highlighting the regions of interest (ROI) can facilitate feedback and accelerate students' learning
and clinical decision-making. Our multimodal approach integrates chest X-ray (CXR) images with
expert eye-tracking fixation maps as auxiliary data, explicitly highlighting radiologists' visual
attention during medical image assessment. We employ a unified core architecture to minimize the
influence of noisy fixation data and avoid treating the imaging and eye-tracking modalities as
independent contributors, thereby enhancing abnormality detection in CXRs. Gradient-weighted
Class Activation Mapping (Grad-CAM) validates our model interpretability and influences
radiologist decision-making, underscoring the framework's practical application in clinical contexts.
Finally, we conducted a comprehensive evaluation of our model using both qualitative and
quantitative analyses.

Keywords: eye-gaze tracking; deep learning; explanation; artificial intelligence in health

I. Introduction

Generally, eye-tracking reflects a person's attentional behaviour by measuring their eye
movements. This technology facilitates in-depth analysis of how people perceive and respond to
visual information through monitoring users' visual attention as they engage with stimuli. Over time,
this technology has consistently demonstrated reliability and accuracy in capturing how they allocate
their focus towards visual stimuli [1]. Eye-tracking systems have garnered increasing interest in
analysing learners' concentration in an educational environment [2]. On the other hand, Deep
learning (DL) network advancements have led to impressive results in medical image analysis over
the past decade, and many researchers have been starting to analyze eye-tracking data (with its
unique parameters, such as fixation, reflexive, and saccades) through these novel AI methodologies.
Eye data benefits these models by enabling them to prioritize ROI, leading to better abnormality
detection. This approach addresses a notable challenge in many medical imaging tasks, where the
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scarcity of large, annotated datasets limits the model’s ability to learn directly from extensive labeled
examples. For instance, analysis of gaze data indicates that radiologists allocate more significant
attention to specific areas indicative of abnormalities during verbal reporting of findings, as opposed
to silently scrutinizing the image [3]. Despite their success, DL models are often considered “black
boxes” due to their complex and unclear inference processes [4]. As the implementation of these
models expands, there is a growing need to understand how they function, their potential
applications, and their limitations in various contexts. Consequently, explainable artificial
intelligence (XAI) has been introduced to address such models' critical need for transparency and
interpretability [5]. Understanding how and why a model reaches a specific diagnosis fosters trust
among medical professionals and ensures that Al systems can be used effectively in clinical settings.
Traditional radiology education systems focus on expanding knowledge by relying on intense
practice and visual interpretation skills over time. Subsequently, gaining hands-on understanding
and conducting learning experiments takes years of training and practice to develop expertise [6].
Hence, incorporating experts’ eye-tracking data as a knowledge base and using an Al-based approach
can help junior radiologists identify critical regions and make more informed diagnostic decisions.
To address this challenge, we propose a novel Eye-Gaze Guided Framework designed to improve
radiology training. Our framework incorporates expert radiologists' gaze patterns to guide trainees,
highlighting crucial areas within diagnostic images. We used Grad-CAM explanation and expert
feedback to evaluate our model, relying on qualitative and quantitative evaluation of the explanation.
The overall model and the evaluation steps are illustrated in Figure 1.

Model Training Explanation

CXR EyeTracking

A

iI Multi Modal Data

P

Evaluation

Figure 1. The visual abstract of the eye gaze-guided framework includes the inputs, model, explanation, and

evaluation phases.

A. Motivating Scenario

Relying on visual information is essential in medicine, from diagnostic reasoning in interpreting
medical stimuli to processing and responding to visual input during complex procedures. Trainees
have traditionally developed their skills and refined practice strategies through extensive experience
and present information [7]. The findings by [8] suggest that experienced physicians quickly form a
holistic impression of medical images and potential abnormalities, a level of insight trainees often
lack.
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Consequently, much research in medical education aims to enhance the visual learning
experience to better support novices. The shift towards online and blended learning environments
and incorporating online learning platforms and real-time feedback systems may help guide the
development of educational interventions. Eye tracking is typically used as a research tool, and recent
studies have leveraged this technology in education [9]. Eye tracking data in medical education
provides a valuable data source and presents potential by investigating visual characteristics of
experts’ eye movements, considering their eye movements as a proxy of higher cognitive function
related to their domain expertise [10]. Therefore, finding an approach to transfer knowledge between
experts and novices might help trainees tune up their gaze patterns and improve their clinical
decision-making ability.

B. Contributions

¢ Eye Guided Framework: The Multimodal Fusion Framework integrates attention mechanisms to capture
the most essential part of the stimuli. This model with a shared backbone prevents the impact of noisy
fixation data and separates the processing of modalities to improve the performance of automatic
abnormality detection in CXRs.

e Explanation Support for Transparency: We provide post-hoc feature attribution explanations to help
radiology trainees understand lesion classification in chest X-rays.

¢ Evaluation of the Approach. We evaluate our approach to maintain robust performance under noisy
conditions, which shows resilience to misaligned fixation maps. We further assess the interpretability of the
model utilizing Grad-CAM, ensuring that the generated visual explanations correspond to the expert-
annotated Rol. This alignment enhances the clinical reliability of the model's predictions.

II. Background and Related Work
A. Eye-Gaze Tracking in Radiology

Eye-tracking technology has been broadly explored to study human visual perception for over
a decade, developing numerous methods to track eye movement for various applications. Typically,
eye-tracking is applied in two main areas: interactive and diagnostic applications [11]. In an
interactive context, users' eye movement data is an input method, whereas in a diagnostic context, it
provides insights into their intentions and cognitive processes [1]. While Al advancements have
enabled medical deep learning to use this prior knowledge in diagnostic tools, early studies indicate
that eye-tracking technology can improve clinician interaction and Al systems [12,13]. Eye tracking
studies in stimulus analysis primarily involve exploring where and how medical professionals
examine different modalities of images. Eye movement parameters, such as fixation (the process
where the eye remains stationary on a specific point to gather and process visual information),
saccades (the rapid eye movements that shift the focus from one point to another quickly), and
scanpath (sequence of eye fixation and saccadic that an individual follows while observing a visual
scene), present valuable insights into diagnostic processes and expert-related decision-making for
new training [14]. Eye tracking data impacts image interpretation, analysis, and diagnosis. Many
studies have discussed utilizing eye-gaze data across diverse applications, including: i) Classification:
Replicating different search strategies and exploring the potential to improve model performance
and interpretability in different modalities [15-17]. ii) Data annotation: To highlight the expert's
search patterns while labelling medical data, including images, text, and genetic information [18,19].
i) Object detection and Segmentation: providing a unique supervision format for training DL/ML-
based approaches and the object's precise location within an image [20] .iv) Workload and Skill:
Focuses on understanding human factors in medical image interpretation and diagnosis, including
fatigue and skill level effects on diagnostic accuracy [21].
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B. Multimodal in Medical Data

Multimodal learning in medical applications accelerated in the mid-2010s when integrating
various clinical data with various types of radiological imaging, e.g., CT scans and MRI, was shown
to improve diagnostic precision. Early studies by Li et al. [22] exemplified this paradigm shift,
utilizing multiple data sources to provide a more comprehensive analysis. More recently, different
scenarios of medical imaging applications have been proposed to integrate eye-gaze tracking data
into stimulus analysis. With increasing focus on multimodal deep learning models, the incorporation
of eye-gaze tracking allows for a deeper understanding of human search patterns, enhancing the
models' ability to analyze visual information effectively [23]. Drew [24] noted that experts rapidly
identify potential lesions, utilize a wider functional field of vision, and draw on more conceptual
knowledge than novices when detecting abnormalities. Ma et al. [25] used the radiologists' visual
attention maps to enforce the model to concentrate on task-related objects or features rather than
harmful shortcuts.

Furthermore, Wang et al. [26] indicates that radiologists' gaze patterns are strongly linked to
diagnostic accuracy in mammogram lesion detection by proposing an attention-aware augmentation
method that consistently improves the focusing contrast and highlighting the importance of where
they focus and reducing errors in the evaluation phase.

Hsieh et al. [27] present a parallel framework that processes chest X-ray images and expert
fixation masks through Convolutional Neural Network (CNN) models. This multimodal approach
predicts abnormality classes, refines bounding boxes, and optionally generates binary masks for
more precise lesion localization. Although analyzing the CXR images and heat map overlay causes
noise in the model, we discuss in the method section that our approach can prevent it.

C. Explainable Artificial Intelligence

Several studies have discussed the details of the available Explainable Artificial Intelligence
(XAI) approaches and have presented the genetic frameworks for XAI [28-32]. This section will
discuss the studies on developing XAI methods with multimodal data containing eye-tracking
information. At present, only a limited number of studies in multimodalities have focused on
developing explainable systems despite the recognized significance of XAI systems. In medical
imaging, various explanation approaches are visual-based explanations [33]. The core idea of these
approaches is to present the information maintained through the model to analyze which part leads
to the model prediction. Generally, these methods present attribution maps, which can be used to
diagnose a supportive and transparent system. These saliency-based explanations can be categorized
into perturbation-based, activation-based, and backpropagation-based techniques [34].

Perturbation-Based Techniques: These methods assess the importance of each input by modifying
the image and observing the effect on the model’s output. Perturbation techniques can be applied
broadly to classification and regression tasks if the distance between model outputs can be computed.
These methods focus on understanding how changes to input features affect the neural activity and
predictions of the model.

Activation-Based Techniques: These techniques leverage the feature maps generated in the last
layer of a CNN network to explain the model’s predictions. By weighting each feature map and
summing them, these methods create class activation maps (CAMs), highlighting areas of the image
corresponding to a predicted class. The final activation map is upscaled to the size of the original
image, often leading to a coarse resolution. CAMs help localize regions of interest by detecting
neuronal activity associated with specific classes. Shallow CAMs capture finer details, while deeper
CAMs identify broader object regions.

Backpropagation-Based Techniques: These methods propagate the output gradients back to the
input image, creating a high-resolution saliency map highlighting which pixels most influence the
model’s prediction. Gradients indicate how much each pixel affects the final decision, increasing or
decreasing the predicted class score. These techniques focus on the impact of individual pixels and
how changes affect neuron activity.
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III. The Proposed Model

This work introduces an eye-guided multimodal fusion with shared parameters to facilitate
interactive exploration and visualization techniques. Our system enables us to use the collected
knowledge base on the expert's fixation map to quickly navigate to reading stimuli while receiving
feedback. As shown in Figure 2, the framework of our proposed method consists of three main
components. Firstly, after preprocessing raw CXR and the expert's fixation heatmap, the fusion of
feature maps from both modalities enables the model to learn correlations between the eye-tracking
heatmaps' spatial patterns and the X-ray images' visual features. Secondly, this framework has a
unified core between CXR and fixation map to prevent the impact of noisy fixation data and to stop
separate processing of modalities that assume both sources contribute independently to improved
abnormality detection in CXRs. Finally, we evaluate the validation of the model's explanation
interpretability through Grad-CAM,, its usability, and its impact on radiologist decision-making.

1x1 Conv ReLU 1x1 Conv Sigmoid FC Sigmoid

N A e DE H

Attention head Output lesions Classification

Grad-CAM hook

i Yol
Radiologist

Figure 2. An eye-guided architecture for multimodal learning to enhance abnormality detection in chest X-rays
by incorporating radiologists' eye-tracking data as additional input. The framework fuses raw chest X-rays and
heatmap overlays derived from eye fixation data, creating a multimodal input processed through an attention
head to guide the model's focus. The unified backbone processes this guided input, followed by a fully connected
layer and a sigmoid activation for multi-label lesion classification. The Explainable Al module (using Grad-

CAM) provides post-hoc visualization to highlight critical regions influencing the model's predictions.

A. Multimodal Input Data

The input image used in this framework consists of the CXR images. After collecting the raw
eye gaze, we generate a related expert's fixation heatmap using the coordinated points. The eye-
tracking heatmap data captures the CXR regions that received the most attention from the radiologist.
Then, we applied pre-processing, such as resizing, cropping, and augmentation, including Gaussian
Blur to provide a slight blur to avoid overfitting and colour jitter as a brightness and contrast
augmentation.

Input data represented as:

Iexe € RWVXH

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.1631.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 May 2025 d0i:10.20944/preprints202505.1631.v1

6 of 13

HEye € RWXH

where W and H represent the width and height of the image, the single channel corresponds to the
grayscale chest X-ray data, and the three channels correspond to the RGB in heatmap overlay data.

B. Mode

Multi modal Data Processing: The model initially constructs a multichannel input by stacking
the chest X-ray images and eye-tracking data along the channel dimension. This early fusion of
feature maps from both modalities enables the model to capture and learn correlations between the
eye-tracking heatmaps' spatial patterns and the X-ray images' visual features. This fusion allows the
model to process both data types simultaneously.

Iyuiei = Concat(Igxg, Hye) € RV

Attention Heads: The attention mechanism helps the model focus on the most relevant regions of
the input, acting like a filter and aligning the network with human decision-making, potentially
improving performance. It processes the input, applies attention scores, and outputs the weighted
feature maps. The attention head consists of two 1x1 convolutional layers. The first convolution
reduces the feature map dimensions, applying ReLU for non-linearity, and the second convolution
computes attention scores, followed by a sigmoid activation to normalize the attention weights to the
[0,1] range, and finally, consider adding a dropout layer after attention-scores, as this can help
prevent overfitting. The output is element-wise multiplied by the input to generate attended features.
The attention head applies the following operations:

Fconvl = ReLU(Wl * Finput + bl)

where W1 and b1 are the weights and biases of the first convolutional layer, and * denotes convolution.
The second layer computes attention scores, followed by a sigmoid activation to constrain the
attention weights to the range [0,1]:

Aweights = G(WZ * Feonvi + bz)

W: and b: are the weights and biases of the second convolutional layer, representing the sigmoid
function. Finally, the attended features are computed by element-wise multiplying the input feature
maps with the attention weights. The attention weights A (weights) are element-wise multiplied by
the original input feature map F (input) to produce the attended feature map:

Fattended = Finput O Aweights

Unified Backbone: We use a convolutional neural network model as a shared backbone network.
The shared backbone module processes the attended features extracted from the attention head and
outputs deep, high-level feature maps. These feature maps are then passed to the fully connected
layer, which predicts six labels in the classification task. Since each image can have multiple labels,
the fully connected (FC) layer produces independent predictions for each of the six labels. The
attended input Fjyention from the attention head is passed through the ResNet-50 backbone, which
produces the high-level feature representation, denoted as:

Frackbone = BackboneModel(Fyttention)

WXHX4
where F, attention ER

is the multimodal input (combining the X-ray and eye-tracking heatmap)
and the backbone output, F,amone € R?%*8, which contains the high-level features.
Fully Connected Layer: The final fully connected layer (FC) of the CNN backbone maps the high-dimensional

feature vectorF,,wone INtO Six output logits for multilabel classification:

Ypred = Wt - Fhackbone T bfc

where o(+)is the sigmoid function, producing probabilities for each class. The network then assigns
a label to each class based on a predefined threshold (e.g., 0.5). For each of the six labels in multi-label
classification, converted into probabilities using the sigmoid activation function:
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o(x) = 1+e™*

where
P class = G(ypred)

C. Explanation

In the first step, the heatmap generation process involves capturing activations and gradients
from the convolutional layer of the backbone model (here, we used the fourth layer). A forward hook
is registered on the target layer to store the output activations and gradients. During the backward
pass, gradients are accumulated concerning a specific target class, enabling a focused visualization.

. ay°¢ . . . .
The captured gradients S are pooled across spatial dimensions by averaging:

ij
= N>
ZLaLioAf,

¢ is the score for the target class c, A’i‘j refers to the activation at spatial location (i,j) for

Here, y
the k — th feature map, and Z is the total number of spatial locations (i.e.,i X j). These pooled
gradients af, are used to weight the corresponding activations.

The weighted activations are averaged across channels to generate the initial heatmap:

LGrag-cam = ReLU (Z O‘iAk>

k

A ReLU operation ensures that only positive values are retained to highlight the relevant areas.
In the next step, we normalized and flipped vertically to correct orientation issues and match the
original image dimensions to build consistent scaling for the heatmaps. Finally, we converted it to an
RGB format using a colormap for visual clarity and generated an interpretable visual output.

IV. Experiments and Discussion

In this section, we discuss the experimental phase of our research and provide an overview of
the key components that contribute to the study. We conclude with a comprehensive discussion that
synthesizes our findings and offers a detailed interpretation of the results, aiming to provide a
nuanced understanding of our research outcomes.

A. Dataset

Our experimental validation utilized the REFLaCX dataset (Reports and Eye-tracking Data for
Localization of Abnormalities in CXR) [35], which is derived from the MIMIC-CXR dataset [36]. Eye-
tracking data in REFLaCX was collected using an Eyelink 1000 Plus system (SR Research, Canada) at
a 1,000 Hz resolution. The system tracked the radiologists’ pupil positions, and the fixation data were
synchronized with timestamps from the dictations. Five radiologists provided manual labels for
abnormalities and drew ellipses around localized findings over three phases. In the initial testing
phase, radiologists reviewed a shared set of 59 CXRs. In the refinement phase, instructions were
provided to standardize the labeling process, improving clarity and reliability. It also sets the stage
for larger-scale data collection. Eventually, in the primary data collection phase, each radiologist
independently reviewed around 500 CXRs. The final dataset was created, which contained eye-
tracking data, transcription data, and manual annotations.

To qualify the approach, we focus on this dataset's most frequently occurring lesions, including
pleural abnormality, consolidation, pulmonary edema, enlarged cardiac silhouette, atelectasis, and
X-rays showing no specific disease findings. The pleural abnormality represents an abnormal
condition of the pleura, the thin tissue that lines the chest cavity and surrounds the lungs. Pulmonary
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edema is a condition caused by excess fluid in the lungs. The fluid accumulates in the air sacs, making
it difficult to breathe. An enlarged cardiac silhouette is evident when the heart appears more
prominent than usual on imaging tests, such as a chest X-ray. Atelectasis is a partial or complete
collapse of the lung, which can lead to shortness of breath and difficulty breathing. Finally,
consolidation is filling alveolar airspaces with fluid (exudate, transudate, or blood), inflammatory
cells, tissue, or other materials. Figure 3 represents CXRs for selected pulmonary conditions analyzed
in our research, and Figure 4 shows the distribution of these selected lesion cases across different
lung conditions.

'I

:

No Finding Pulmonary Edema Atelectasis

Pleural Abnormality Consolidation Enlarged Cardiac Silhouette

Figure 3. Representative Chest X-ray Images for Different Pulmonary Conditions.
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Figure 4. Distribution of the selected most frequently occurring lesion cases across different lung conditions.

B. Implementation Details

In this study, we tuned our model for 20 epochs. This value was selected based on an analysis
of the training and validation loss curves, which showed that after 20 epochs, the model began to
overfit, as indicated by a divergence between training loss (continuing to decrease) and validation
loss (starting to increase). We employed an initial learning rate of 5e-5 and a weight decay of 1e-3.
The Adam optimizer was utilized with a batch size of 32 for optimization. The images were cropped
and resized to 224x224 pixels, aligning with the input requirements of the ResNet-50 architecture.
The experiments leveraged open-source model weights pre-trained on ImageNet before fine-tuning
on the REFLaCX datasets. The experimental setup involved computational resources from a local
environment, where we trained and tested the model using the PyTorch framework. The training
was conducted on an internal server with an NVIDIA RTX 6000 GPU and an Intel(R) Xeon(R) w7-
3465X CPU. Initially, we divided the dataset into training, validation, and test sets using an 80/10/10
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split, consistent with our division strategy. A random seed of 42 was used to guarantee
reproducibility of the results.

C. Evaluation

In this section, we will describe the various evaluations we have conducted and the results
obtained. We carried out two-phase evaluations of the Eye-Gaze Guided Fusion System, assessed the
model's efficacy, and evaluated the explanations provided by Grad-CAM. A review conducted by
clinical experts followed these evaluations.

Multimodal Fusion Performance: The effectiveness of the Eye-guided Fusion system was evaluated
by comparing its performance across two configurations: (1) using only CXR images, and (2)
combining CXR images with fixation maps as input. The comparison focused on the system's ability
to detect abnormalities, measured using key metrics such as accuracy, AUC, precision, recall, and F1-
score. To assess the system's practical reliability, robustness evaluations were conducted under
varying conditions by introducing artificial noise into the fixation data, simulating potential
misalignments or noise typical in real-world applications. This analysis aimed to determine the
system’s capacity to maintain performance despite noisy or degraded inputs, reflecting its robustness
for clinical deployment.

Ablation Study on Modality Contribution: The system's performance integrating CXR and
fixation map modalities was assessed through an ablation study. This study compared the
effectiveness of various input combinations. The results, summarized in Table I indicate that utilizing
both modalities in Eye Fusion improved accuracy, AUC, and other important metrics. In this table,
we used the average accuracy scores across all classes and metrics.

Table I. Ablation study on efficacy comparison of different modalities.

Modality ‘ Accuracy (%) AUC  Precision Recall F1-Score
CXR Only 80.08 0.814 0.55 0.542 0.535
CXR + Fixation Map 82.43 0.833 0.62 0.606 0.613

As shown in the confusion matrices in Figure 5, for most categories, such as Pulmonary Edema,
Atelectasis, Consolidation, and Pleural Abnormality, the number of true positives is substantially
higher than false positives and false negatives. Additionally, categories like Pulmonary Edema and
Enlarged Cardiac Silhouette exhibit few false positives, indicating the model's precision and ability
to avoid overpredictions. Furthermore, the low false negative rate in these categories reflects that the
model captures true positives effectively.

Confusion Matrix for Atelectasis Confusion Matrix for Consolidation Confusion Matrix for Enlarged cardiac silhouette

g

0 1 ° 1 °
Predicted Predicted Predicted

Confusion Matrix for Pleural abnormality Confusion Matrix for Pulmonary edema Confusion Matrix for no_finding

° i ° i °
fredicted Predicted Predicted

Figure 5. Confusion matrices for multi-label classification across the medical conditions.
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Noise Robustness: Artificial noise was introduced into both models to measure how well the
system and the explanation component handle noisy or misaligned data. In real-world settings, eye-
tracking devices may not perfectly align with the displayed content or the target region of interest
(e.g., an X-ray). Minor calibration errors, head movements, or device drift can cause slight shifts in
fixation points. In practical applications, eye-tracking data often encounters challenges such as slight
misalignment due to device calibration errors, minor head movements, or sensor drift. In this context,
we used striped line noise, with 10% and 50%. A sample of this alignment is shown in Figure 6. This
alignment helped test the model's robustness to minor misalignments that may occur in practice. As
shown in Table II, the Eye-guided explanation system demonstrated better noise tolerance results
than models without shared parameters, maintaining AUC values at increasing noise levels during
testing.

Original Image (0% Noise) 10% Noise 50% Noise

NN N

Figure 6. Effect of Striped Noise on Fixation Map with Varying Noise Levels and Stripe Thickness.

2) Grad-CAM Explanation Evaluation: In this section, we will present the Intersection Over
Union (IoU) performance evaluation of the explanation generated using the Grad-CAM.

Table II. Noise robustness of the gaze-guided system.

Noise Level (%) | CXR AUC CXR+Fixation Map AUC (No Shared Params)

0 81.41 833
10 80.28 81.08
50 74.61 75.86

Explanation Quality: The Grad-CAM heatmaps were compared to expert-labelled ROI and
fixation maps. The overlap between the Grad-CAM activations and experts” ROIs was measured in
multiple classes using the mean Intersection over Union (mlIoU) metric, which is defined as:

1 N
mloU = Nz [oU;
i=1

where N is the total number of classes, and IoU; is the Intersection over Union for class i . The results are
illustrated in Table I1I.

Table III. Grad-cam explanation quality (IoU with expert ROI).

Model | ToU Score (Mean + Std. Dev.)
CXR Only 0.56 % 0.16
CXR + Fixation Map 0.61 £ 0.05
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A radiologist with over 12 years of experience understanding radiological imaging evaluates the
interpretability and clinical relevance of the Grad-CAM explanations. Evaluations were conducted
using a 5-point Likert scale, focusing on clarity, clinical applicability, and diagnostic utility. The
radiologist's repeated assessments across various imaging tasks provide quantitative ratings and in-
depth qualitative feedback, highlighting the system's strengths and limitations in real-world settings.
As the radiologist's familiarity with the Eye-guided system increased, there was a marked
enhancement in workflow efficiency, evidenced by improvements in diagnostic speed, accuracy, and
confidence. Notably, the analysis revealed a progressive alignment between the radiologist's
preferred regions of interest and those identified by the system, further validating its clinical utility.
The results of this evaluation are summarized in Table IV.

Table IV. Expert review of the Grad-CAM explanation.

Criteria Average Rating (1 to 5)
Interpretability 4.25
Clinical Relevance 4.0

V. Conclusion

In this work, we highlight the influential role of radiologists’ eye-gaze data and propose an Eye-
Gaze Guided Fusion framework. We quantitatively and qualitatively evaluate the capabilities of our
model. Additionally, we show that incorporating eye-gaze data during model training can enhance
the model’s reliability. We also explain that integrating experts' visual attention can effectively guide
the model to focus on regions of interest (ROIs) within medical images.

A. Potential Impacts

Although the REFLaCX dataset, one of the most valuable resources, used five different
radiologists for data preparation, each radiologist examined approximately 20% of the CXRs based
on their strategy. However, there is still no public dataset where many experts work on the same
images. This issue becomes prominent when different radiologists employ varying search strategies,
particularly for images with no significant findings. As we realized, this could introduce bias in these
cases.

B. Future Work

In the future, we will continue to optimize this proposed system by exploring multimodal
approaches, mainly by integrating clinical reports alongside image and gaze data. This could further
improve the model's understanding and interpretation of its predictions. Generating human-like
explanations by simulating how an expert might describe their focus while analyzing an image could
also help in potentially correcting biases. Meanwhile, developing a visual dashboard by showcasing
a real-time interactive system will illustrate how radiologists can leverage the fusion of eye-tracking
and X-ray data to improve diagnosis.
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