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Abstract 

The increasing use of AI systems for face, object, action, scene and emotion recognition raises 
significant privacy risks, particularly when processing Personally Identifiable Information (PII). 
Current privacy-preserving methods lack adaptability to users’ preferences and contextual 
requirements, and obfuscate user faces uniformly. This research proposes a user-centric, context-
aware, and ontology-driven privacy protection framework that dynamically adjusts privacy 
decisions based on user-defined preferences, entity sensitivity, and contextual information. The 
framework integrates state-of-the-art recognition models for recognising faces, objects, scenes, 
actions and emotions in real time. Privacy decisions are directed by a contextual ontology based in 
Contextual Integrity theory, which classifies entities into private, semi-private, or public categories. 
Adaptive privacy levels are enforced through obfuscation techniques and a multi-level privacy model 
that supports user-defined red lines (e.g., “always hide logos”). The framework also proposes a Re-
Identifiability Index (RII) using soft biometric features such as gait, hairstyle, clothing, skin tone, age 
and gender, to mitigate identity leakage and to support fallback protection when face recognition 
fails. Results of validation trials with 200 randomly selected users showed that user privacy was 
effectively protected, with 85.2% of respondents finding the obfuscation operations highly effective 
and the other 14.8% stating that obfuscation was adequately effective. Amongst these, 71.4% 
considered the balance between privacy protection and usability very satisfactory and 28% found it 
satisfactory. GPU acceleration was deployed to enable real-time performance of these models by 
reducing frame processing time from 1200ms (CPU) to 198ms. This ontology-driven framework 
employs user-defined red lines, contextual reasoning, and dual metrics (RII/IVI) to dynamically 
balance privacy protection with scene intelligibility. Unlike current anonymisation methods, the 
framework provides a real-time, user-centric, and GDPR-compliant method that operationalises 
privacy-by-design while preserving scene intelligibility. These features make the framework 
applicable to a wide range of real-world applications including healthcare, surveillance, and social 
media. 

Keywords: privacy engineering; soft biometrics; hard biometrics; re-identification; data intelligibility; 
multimodal data; privacy protection; context-aware AI; user-centric privacy; GDPR compliance; 
dynamic privacy adaptation; real-time data obfuscation 
 

1. Introduction 

The wide adoption of multimodal recognition systems has occurred because of Artificial 
Intelligence (AI) and Machine Learning (ML) advancements that enable the capture and processing 
of multimedia data content including face, object, emotion, scene, and action data for applications in 
various fields. These technologies are deployed to automate processes, improve efficiency, and aid in 
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decision-making; however, they also present many privacy risks as they process vast amounts of 
Personally Identifiable Information (PII) such as facial biometrics, location data, and behavioural 
patterns. As Sharma [23] highlights, privacy paradox causes users to engage in information disclosure 
behaviour despite their concerns about privacy risks, while privacy policies remain challenging to 
create because of this paradox [24]. 

To address these concerns, Privacy Engineering (PE) has emerged as a discipline focused on 
integrating privacy-by-design principles into AI systems as proposed by Martin and Alamo [25]. 
Hansen, Meiko Jensen and Martin Rost [26] define PE as a systematic approach to ensure adequate 
data protection within organisational systems. However, most current privacy-protecting AI systems 
rely on static obfuscation techniques, such as blurring, pixelation, and masking, without dynamically 
adjusting to the environmental context or user preferences. The static obfuscation techniques lead to 
suboptimal privacy protection through over-masking data, thus reducing usability or under-masking 
data (failing GDPR compliance), which results in inadequate protection of sensitive data. The 
challenge is amplified in shared and dynamic environments, such as smart homes, workplaces, or 
public events, where privacy expectations can vary significantly depending on the contextual 
relationships among users, observers, and settings. 

To overcome these limitations, this work proposes a user-centric, ontology-driven, and context-
aware privacy protection framework that enables real-time and adaptive obfuscation based on the 
semantic classification of recognised entities such as users, scenes, actions, objects, emotions, soft 
biometric traits, including gait, hair, clothing, and privacy context. This framework draws from 
Nissenbaum’s Contextual Integrity theory [22], which defines that privacy protection is not absolute 
but must be preserved to contextual norms such as “who is sharing what with whom and under what 
conditions”. 

In this research, privacy context refers to the combination of actors (users), their roles, actions, 
relationships, and the situational parameters that define how data should be protected. This builds 
upon the ontology-based privacy protection models developed by Badii, Tiemann and Thiemert [10], 
where ontology encodes the relationships between entities, actions, contexts, and privacy rules. 
Environment, in this context, refers to the spatial, temporal, and interactional conditions in which 
data is captured and shared. By reasoning over these elements, the framework interprets privacy 
context and determines how data should be protected, whether fully obfuscated, selectively masked, 
or left unobscured. 

The proposed framework introduces several key innovations: 

• The use of soft biometric traits such as gait, hair type, hair colour, skin tone, age, and gender for 
fallback re-identification when face recognition fails to detect and recognise individuals because 
of occlusions. 

• A Re-Identifiability Index (RII) that computes the likelihood of identifying a user based on soft 
biometrics. 

• An Auto Privacy mode that uses machine learning to predict privacy preferences based on 
contextual data and historical behaviour. 

• Support for user-defined red lines, such as ʺalways hide logosʺ, that override any predefined 
user settings. 

• A rule-based ontology model that defines the relationships between users, entities, contexts, and 
privacy levels for consistent and explainable privacy decision-making. 

Prior studies validate the importance of this framework. Lin and Li [63], show that using 23 out 
of 30 soft attributes can yield 85% re-identification accuracy, and that combining soft traits such as 
hair, gender, and age boosts recognition performance by up to 6%. Similarly, Bari and Gavrilova [60] 
and Corbishley, Nixon and Carter [61] report re-identification rates at 85% when using gait and other 
soft biometrics, which highlight the limitations of facial masking alone. 

The proposed framework builds upon these gaps by treating privacy as a multidimensional, 
context-sensitive process, which applies real-time obfuscation based on scene, content, and user-
defined constraints. The multimodal AI pipeline of the framework integrates YOLOv5 for object 
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recognition, MTCNN for face recognition, SlowFast for action recognition, Places365 for scene 
classification, and EfficientNet for emotion recognition. These recognition outputs are used to 
identify privacy contexts and inform the ontology-driven privacy engine, to adapt and apply 
masking strategies while preserving scene intelligibility and GDPR compliance. The framework also 
supports user-centric privacy in shared spaces by encoding privacy rules into an ontological model 
which also ensures transparency, scalability and explainability. 

2. Related Work 

Given the expansion of multimodal AI applications, concerns regarding personal privacy have 
increased, specifically in processing PII within video data. Although previous research [3–5] 
addresses privacy-preserving techniques, significant gaps remain in such approaches as many rely 
on static obfuscation rules and do not adapt to user-defined preferences, real-time contextual shifts 
or multi-user scenarios. As a result, these models either over-mask content, undermining usability or 
under-mask sensitive data, compromising privacy and GDPR compliance. 

Recent efforts in privacy protection have explored soft biometrics as both a challenge and 
opportunity. Zhou, Pun and Tong [67] highlight the limited exploration of dynamic face pixelation 
as a method and its inefficiencies in highly dynamic settings. Similarly, Hasan, Shaffer, Crandall and 
Kapadia [5] and Lin and Li [63] demonstrate that soft biometric features, such as gait, hair type, skin 
tone, age and clothing attributes can lead to re-identification even when faces are obscured. For 
instance, Lin and Li [63] show that using 23 out of 30 soft attributes can yield an 85% identification 
rate, reinforcing the privacy risks posed by non-facial attributes. However, few systems integrate 
these cues into a coherent privacy enforcement model. 

Existing privacy protection methods either do not recognise soft biometric features to identify 
individuals with the aim of personalised privacy protection or fail to dynamically adjust obfuscation 
based on contexts or user red line. In contrast, the proposed framework improves on this by 
incorporating a user-centric, ontology-driven privacy framework that models the relationships 
between users, visual entities (faces, objects, actions, emotions), environmental context, and user-
defined privacy red lines. This framework incorporates: 

• Soft biometric analysis as both a fallback to face recognition and a standalone re-identifiability 
risk factor. 

• A Re-Identifiability Index (RII) that quantifies re-identifiability risk and advises dynamic 
masking decisions. 

• Support for user-defined red lines such as ʺalways hide logosʺ, which override any predefined 
settings. 

• Support for Auto Privacy through supervised learning, predicting privacy settings needs based 
on scene type, emotional state and prior user behaviour. 

• An ontology-based reasoning model, that defines the relationships between users, entities, 
contexts, and privacy levels for consistent and explainable privacy decision-making. 

Unlike prior methods such as those of Hasan, Shaffer, Crandall and Kapadia [5] and Zhou, Pun 
and Tong [67], which apply uniform, static rules, the proposed framework uses semantic inference 
to guide privacy decisions on a frame-level and user-centric basis. It addresses the balance between 
intelligibility and privacy by using contextual cues such as location, scene category or action type, 
and balancing these with user defines privacy settings and red lines. 

The proposed framework extends the state of the art by embedding contextual integrity, real-
time adaptability and re-identifiability assessment within a unified and scalable privacy protection 
pipeline. Its ontology-based reasoning capability enables the framework to reason over context, that 
makes it particularly effective in complex and multi-user environments. In doing so, it directly 
addresses key challenges in intelligent, context-aware privacy preservation. 

2.1. Privacy Challenges in Multimodal AI Systems 
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Modern AI systems increasingly combine multiple recognition capabilities including face, scene, 
object, emotion, and action recognition to enable more automatic operations within a variety of 
applications. However, the processing of such large quantities of PII data creates major privacy risks 
while posing challenges to data security, user control, and regulatory standards specifically outlined 
under GDPR [1]. The ability of AI systems to extract specific attributes such as identity and location 
data points leads to serious privacy issues regarding profiling practices, mass surveillance, and 
unauthorised data misuse [2]. 

The continuous growth of location-based services intensifies this concern as stated by Jiang, Li, 
Zhao and Zeng [28], that the ubiquity of GPS-enabled applications has led to pervasive location 
tracking. Castillo [18] reveals that 94% of smartphone users conduct searches for location-specific 
data, and 72% are targeted by location-aware advertisements, which indicates the comprehensive 
utilisation of personal data for both commercial and possibly intrusive activities. 

A key challenge is the lack of adaptive privacy methods as existing privacy methods use static 
privacy models and fail to adapt to the changing user preferences, entity sensitivity and dynamic 
contexts [3]. These methods use anonymisation techniques such as blurring and pixelation that 
provide a level of privacy protection [4] but seriously diminish data utility as shown by Hasan, 
Shaffer, Crandall and Kapadia [5]. Insufficient protection could lead to re-identifying anonymised 
data through cross-referencing with external datasets making privacy protection countermeasures 
complex and difficult to manage as an evolving requirement [14]. More critically, re-identification 
through soft biometric traits, like gait, hair colour, age, or clothing style, can be used to cross-reference 
and identify individuals even after standard anonymisation. Sosa, Fierrez and Vera-Rodriguez [62] 
demonstrate that using a wide range of soft biometric attributes can yield re-identification accuracies 
exceeding 85%, raising significant risks that most systems fail to address. 

Another major challenge for organisations today is regulatory compliance. The GDPR requires 
necessary data minimisation tactics alongside transparency about data use and formal consent 
(European Commission, 2016) but most AI systems fail to effectively implement privacy-by-design 
solutions according to Gurses, Troncoso and Diaz [6]. Current permission-based frameworks show 
inadequate results because users do not understand them well enough and lack the ability to adapt 
to different contexts [2]. Additionally, current methods are not adequately developed to effectively 
manage multi-user privacy requirements noted by Sezer, Dogdu and Ozbayoglu [11]. The 
collaborative AI environments within smart homes and video conferences require individual and 
robust privacy settings regardless of differing user requirements as noted by Ren, Lee and Ryoo [7]. 
The predefined privacy options used in current systems fail to adapt dynamically to changing image 
contexts, alongside user states or detected objects, leading to privacy vulnerabilities. 

This research addresses these gaps, by introducing a user-centric, context-aware, and ontology-
driven privacy protection framework. Rather than treating privacy as a fixed set of permissions, the 
framework reasons over the privacy context, including the roles of actors, the nature of their 
interactions, the setting, and the likely exposure of visual data. It integrates soft biometric-aware 
fallback mechanisms, supports user-defined red lines and dynamically adapts privacy decisions 
using a Re-Identifiability Index (RII). These mechanisms enable the framework to deliver robust, real-
time privacy protection that is user-centric and compliant with regulatory standards. 

2.2. User-Centric Privacy Protection and PII Risks in AI 

The increasing use of AI systems that integrate facial recognition, location data, behavioural 
patterns and emotion analysis, has increased concerns about the protection of PII, such as facial 
attributes, behavioural signs and location history. These systems that handle sensitive user data 
create multiple privacy risks as they enable unauthorised profiling practices, potential identity theft, 
and breaches of personal data security [2]. Despite regulatory frameworks such as the GDPR 
mandating user control and explicit consent, current privacy frameworks do not adapt to changing 
user preferences dynamically when managing their data, and they remain unable to grant suitable 
control over user data [69]. 
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Current fixed privacy-preserving mechanisms prove inadequate because they lack contextual 
specificity, do not accommodate user-defined privacy thresholds and adaptability in their design 
[5,70]. Such fixed privacy configurations fail to match diverse user requirements and might provide 
inadequate or excessive security protection to users [2]. The lack of contextual sensitivity is 
problematic in environments where privacy expectations vary, such as between public and private 
settings or when multiple users with unique privacy preferences share the same scene. 

In user-centric privacy frameworks, the privacy options must be transparent, customisable, and 
adaptable based on individual preferences [6]. The GDPR reinforces this by requiring mechanisms 
that grant users control over their data, minimise data collection, and seek explicit consent but many 
AI systems do not provide real-time capabilities to adjust privacy settings [1]. As Olejnik, Dacosta, 
Machado and Huguenin [2], further highlights, users need systems that enable them to set and update 
privacy preferences through real-time adaptations to maintain privacy and align with personal 
expectations.  

This research addresses these gaps by introducing a user-centric, real-time adaptive privacy 
framework that enables fine-grained control over sensitive data through ontology-based reasoning, 
soft biometric-aware re-identification mitigation and auto privacy mode. Ontology-based reasoning 
structures the relationships between users, entities (e.g. faces, logos, actions, objects), and privacy 
settings to inform conflict resolution and consistent enforcement. Soft biometric-aware re-
identification mitigation uses fallback traits such as gait, hair type, skin tone, age and gender when 
face recognition fails, supported by a Re-Identifiability Index (RII) to assess risk dynamically. Auto 
Privacy mode uses supervised learning to predict privacy preferences from prior user behaviour and 
contextual cues, enabling automatic enforcement without constant manual intervention. 

By combining these mechanisms, the framework ensures compliance with GDPR, while 
maintaining user-led privacy protection that evolves with both contextual sensitivity and user intent. 
This ensures that privacy enforcement remains meaningful, personalised, and operationally efficient 
in multimodal AI environments. 

2.3. Context-Aware and Dynamic Privacy Adaptation Techniques 

Privacy requirements in multimodal AI systems vary according to context, which consists of 
location, time elements, user interactions, and environmental factors. Current static privacy models 
lack adaptability as they do not adjust privacy settings to changing data sensitivity levels or user-
defined privacy preferences, thus resulting in either too much sharing of data or too much data 
concealment [2]. A context-based privacy protection framework addresses this issue by updating 
settings dynamically based on user privacy settings, scene elements, the detected objects, emotions 
and user actions being processed [6]. 

To address this, our framework adopts a context-aware and ontology-driven design, 
dynamically adjusting privacy protection [7] according to scene type, recognised entities, user 
interactions, and individual privacy preferences. It builds upon Nissenbaum’s Contextual Integrity 
theory [22], which conceptualises privacy not as a universal right but as a context-bound expectation 
based on appropriate information flow between actors, under specific roles and transmission 
principles. Privacy is considered violated when personal data is shared outside of these context-
appropriate boundaries, for example, when a bedroom scene is shared publicly without user consent. 

In our framework, privacy context refers to the semantically structured interpretation of the 
setting, the actors involved, their relationships and the expected exposure or sharing pathways of the 
data. This context includes spatial, social and temporal factors, as well as the intended or likely 
recipients of the data. By encoding this interpretation within an ontology, our framework supports 
machine-understandable privacy reasoning that adapts protection measures to the actual situational 
configuration. 

This work extends and builds on the foundational contributions by Badii, Einig, and Tiemann 
[8], who introduced the Holistic Privacy Impact Assessment (H-PIA) framework, and by Badii and 
Al-Obaidi [9], who demonstrated privacy protection via semantic scene classification. We extend 
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these ideas with real-time multimedia analysis and user-defined rules, delivering an explainable and 
scalable framework. Furthermore, Badii, Tiemann and Thiemert [10] highlight that privacy reasoning 
should integrate heterogeneous data sources into a unified model. 

This has been achieved in this framework through an ontology-based structure that formalises 
how users, entities and scenes relate to privacy sensitivity. The ontology-driven model enables the 
framework to: 

1. Categorise detected scenes into private, semi-private or public sensitivity, based on predefined 
ontological rules that determine the baseline privacy level applicable to the scene. 

2. Evaluate entity sensitivity of recognised faces, actions, objects and emotions, which are scored 
based on visibility, semantic significance and sensitivity class that inform the level of masking 
needed. 

3. User-specific privacy preferences, where individuals can define their preferred level of privacy 
protection (None, Low, Medium, High, Auto) and specific red lines (e.g., ʺalways hide logosʺ), 
which override context-based inferences. 

Once the context is identified, the framework dynamically determines privacy protection levels 
based on the interaction between scene, entity and user-defined factors, such as public, semi-private 
and private settings. In public settings, only sensitive entities classified as highly sensitive are masked 
to preserve usability while reducing re-identification risks. In semi-private settings, medium privacy 
protection is applied, which ensures that all sensitive and semi-sensitive entities are automatically 
obfuscated. Moreover, in private settings, high level of privacy protection is applied to ensure that 
all user-sensitive data, such as faces and all sensitive and semi-sensitive objects are obfuscated. 

Unlike current approaches, the proposed framework continuously interprets the privacy context 
as a combination of actors, attributes and exposure trajectories. It dynamically determines protection 
strategies using semantic rules, machine learning predictions and ontology reasoning. This ensures 
compliance with GDPR principles of data minimisation and user consent [1] and practical usability 
for users in real-world and multi-user settings. 

2.4. Multi-User Privacy Protection Mechanisms 

Privacy management within multi-user settings presents specific challenges in video 
conferencing, surveillance and collaborative areas according to Sezer, Dogdu and Ozbayoglu [11]. 
Guo, Zhang, Hu, He and Gao [12] highlight that current privacy settings typically apply uniform 
privacy configurations across all users and disregard individual preferences and contextual 
interactions. This results in two key limitations: over-protection, where excessive obfuscation reduces 
scene intelligibility and usability or under-protection, where privacy-sensitive user data remain 
insufficiently protected [13]. 

A major limitation in existing approaches is their lack of adaptability to dynamic group 
interactions and contexts. Gurses, Troncoso and Diaz [6] highlight the need for real-time, 
personalised privacy control, that could ensure that each user’s privacy settings are maintained while 
enabling seamless collaboration. Most current systems do not support context recognition or 
negotiation between conflicting user preferences. 

The proposed framework addresses these challenges by introducing a multi-user adaptive 
privacy framework that reasons over privacy contexts, defined as structured combinations of users, 
roles, data types and scene categories: 

• Detect and classify multiple users in real-time, assigning privacy levels based on individual 
preferences and contextual factors. 

• Dynamically adjust privacy measures based on user privacy protection settings (High, Medium, 
Low, or Auto Privacy), contextual ontologies to differentiate between environments (e.g., 
workplace, public park or private home), and sensitivity of scenes, objects, emotions, and 
actions. 
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• Enable multi-user privacy by enabling each individual to have their privacy settings to fulfil 
their needs and balance the privacy of each individual and the usability and intelligibility of the 
system. High-privacy users receive strict obfuscation, even if others in the scene have lower 
privacy settings.  

• Maintain intelligibility through adaptive filtering by ensuring that shared privacy contexts (e.g. 
collaborative spaces) are preserved without compromising individual privacy expectations. 

By integrating real-time user recognition and privacy adaptation, the proposed privacy 
protection framework ensures personalised privacy protection in shared settings, real-time 
adaptation to context, user preferences and visual content, while complying to GDPR processing of 
sensitive personal data. By encoding privacy reasoning into an explainable, ontological structure, the 
framework enables AI systems to balance individual privacy protection with shared scene 
intelligibility, even in complex and multi-user scenarios. 

2.5. Performance vs. Privacy Trade-Offs in AI Systems 

Balancing privacy protection and performance is a major challenge in multimodal AI systems 
especially under real-time conditions. Studies confirm that privacy-preserving techniques help 
protect against re-identification according to Narayanan and Shmatikov [14], yet Liu, Song, Liu and 
Zhang [13] demonstrated that privacy-enhancing mechanisms may lead to accuracy degradation, 
creating trade-offs between usability and privacy robustness. Real-time AI applications should have 
a balance between computational efficiency and privacy protection, as these systems require high-
speed processing. Studies by Sezer, Dogdu and Ozbayoglu [11] and Zhou, Wang, Liang and Wang 
[30] emphasise that sophisticated privacy methods such as obfuscation and encryption, produce 
latency and require high computational resources. Gurses, Troncoso and Diaz [6] further underscore 
the need for efficiency in resource-constrained environments, as excessive computational load can 
hinder responsiveness and user experience. 

Privacy protection through obfuscation measures helps protect sensitive data but can lead to 
performance reductions and visual interpretability. The findings from Olejnik, Dacosta, Machado 
and Huguenin [2] demonstrate that over obfuscation reduces system reliability by causing 
performance problems between maintaining privacy integrity and preserving scene intelligibility. 

To address this trade-off, the proposed framework introduces a context-aware, adaptive privacy 
model that adapts obfuscation dynamically based on user preferences, scene sensitivity and the 
semantic classification of detected entities. Unlike current approaches, it applies obfuscation only to 
privacy-sensitive elements including faces, personal items and sensitive objects, that preserves visual 
intelligibility and reduces unnecessary computational load. Moreover, GPU acceleration and 
algorithmic optimisation ensure that privacy enforcement operates within real-time constraints, 
maintaining both protection quality and responsiveness. 

2.6. Comparison of Existing Approaches and Research Gaps 

Existing privacy-preserving approaches in multimodal AI systems fall into static privacy models 
and permission-based frameworks, both of which face significant limitations in handling dynamic 
user preferences, contextual variability and multi-user interactions. The current privacy-preserving 
approaches encounter significant limitations when dealing with critical real-time AI applications that 
process large volumes of Personally Identifiable Information (PII) such as facial attributes, emotional 
expressions, and behavioural cues. 

Conventional anonymisation techniques, such as blurring and pixelation, provide a fixed level 
of privacy protection as stated by Frome, Cheung and Abdulkader [4], but fail to accommodate 
evolving user needs or varying sensitivity levels of data stated by Hassan, Shaffer, Crandall and 
Kapadia [5]. Narayanan and Shmatikov [14] demonstrate that static obfuscation methods may fail to 
prevent re-identification when combined with external data, hence rendering privacy protections less 
effective in real-world applications. Similarly, Olejnik, Dacosta, Machado and Huguenin [2] states 
that systems that rely on manual user settings meet usability challenges, as users often struggle to 
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understand and manage their privacy settings effectively. Additionally, Gurses, Troncoso and Diaz 
[6] and Ren, Lee and Ryoo [7] have shown that current AI-driven privacy methods lack transparency, 
and context-awareness and often do not scale well in real-time, multi-user or real-time environments. 

Moreover, recent studies, such as Sezer, Dogdu and Ozbayoglu [11] report that current privacy 
methods use fixed general privacy settings that fall short of accommodating modern AI-driven 
applications including social media platforms and collaborative workspaces. Liu, Song, Liu and 
Zhang [13] further identify key challenges in ensuring real-time efficiency, scalability, and GDPR 
compliance. They pointed out that existing privacy mechanisms often result in over-protection, 
which reduces data usability, or under-protection, which compromises privacy protection. 

Among the few context-aware frameworks, the Holistic Privacy Impact Assessment (H-PIA) 
framework by Badii, Einig and Tiemann [8] represents a significant contribution. Their model treats 
privacy filtering as a multi-layered process involving technical and human-centric factors.  

Later work by Badii and Al-Obaidi [9] introduced a context-aware filtering strategy that applied 
different obfuscation techniques to face, skin and body regions. Their framework aimed to balance 
Privacy, Intelligibility and Pleasantness, taking under consideration recognisable attributes such as 
race and gender still impacted perceived privacy. Although this marked progress toward adaptive 
privacy filtering, it lacked semantic reasoning, user-defined red lines, or integration with multimodal 
entity recognition at the data-instance level (e.g., recognising faces, objects, and actions within each 
frame and assigning them context-specific re-identifiability risks).  

Further foundational work by Badii, Tiemann and Thiemert [10] proposed the use of semantic 
data integration and ontology-based modelling for improving situational awareness in security 
applications. Their system showed that data from heterogeneous sources, such as CCTV footage, 
could be unified under an ontology-driven structure that enabled rule-based reasoning and decision 
support. While not directly focused on user-centric privacy, their methodology forms a critical 
foundation for semantic reasoning and context modelling adopted in the proposed framework. 

Building upon these foundational works, this research proposes a real-time, user-centric and 
ontology-driven privacy protection framework that operationalises contextual reasoning through 
entity-level sensitivity classification, soft-biometric risk modelling, and adaptive obfuscation. It 
unifies the technical robustness of earlier privacy filters, the context-aware aspirations of MediaEval 
[9] approaches, and the structured semantic reasoning of MOSAIC [10] under a scalable, GDPR-
compliant, and multi-user capable system for privacy protection in multimodal AI. 

3. Methodology 

3.1. Framework Overview 

The proposed user-centric, context-aware privacy protection framework integrates multimodal 
AI recognition with adaptive privacy enforcement to ensure real-time protection of Personally 
Identifiable Information (PII). It processes video data, classifies the sensitivity of detected elements 
and dynamically modulates privacy levels based on user-defined preferences, contextual factors, 
soft-biometric attributes, a Re-Identifiability Index (RII) that quantifies re-identification risk and 
sensitivity of detected entities. The framework is structured into three main modules, where each is 
responsible for a specific aspect of privacy adaptation and enforcement: 

1. The Recognition Module uses state-of-the-art AI models such as YOLOv5 for object recognition, 
MTCNN for face recognition, and Places365 for scene classification to extract and analyse 
contextual information from video streams. It identifies privacy-sensitive entities, including 
faces, objects, actions, emotions, and scenes, along with soft biometrics including gait, hair type, 
age and gender, that are used to calculate RII, when facial recognition fails. These outputs are 
passed into contextual risk analysis for real-time privacy decision-making. 

2. The Privacy Enforcement Module computes the appropriate privacy levels dynamically by 
classifying detected entities into privacy-sensitive categories such as private, semi-private or 
public. Based on sensitivity, it applies privacy-preserving techniques such as blurring, 
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pixelation, silhouette masking, or synthetic data replacement (GAN-based anonymisation) [16]. 
The framework aligns obfuscation intensity with user preferences and entity sensitivity to strike 
a balance between privacy protection and usability. In multi-user settings, it supports 
personalised enforcement, strictly protecting high-privacy users even when others share lower 
privacy levels. 

3. Privacy Reasoning and User Context Module, captures, and reasons over user-defined privacy 
rules using ontology-based logic to ensure structured, consistent, and context-aware decision-
making. It supports multiple privacy modes (Auto Privacy, High, Medium, Low and No 
Privacy), enforces red-line rules (e.g., always hide logos), and adapts protections in real time 
based on scene dynamics and feedback from AI recognition modules. It also handles Auto 
Privacy Mode, which uses supervised learning to predict preferred privacy configurations from 
historical user behaviour and contextual cues. 

By combining multimodal recognition, dynamic privacy adaptation, ontology-based reasoning, 
and user-driven privacy settings, this framework maintains strong privacy protection without 
compromising framework usability or scene intelligibility. It is deployable in a variety of 
environments including smart homes, video conferencing platforms, and public surveillance 
contexts. Figure 1 illustrates the high-level architecture, showing how recognition modules, context 
reasoning and enforcement pipelines interact to deliver adaptive privacy protection. 
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Figure 1. Architecture diagram showing flow from recognition to ontology-driven privacy adaptation. 

This layered design supports real-time, context-aware privacy decisions by integrating 
multimodal recognition, ontology-based reasoning, and user-centric policy enforcement into a 
unified, adaptive framework. 

3.2. Context-Sensitive Privacy Mechanisms 

Context-sensitive privacy ensures that privacy protection is dynamically adjusted based on the 
sensitivity of detected entities and environmental context. Unlike static privacy models [3–5], which 
apply fixed privacy settings regardless of context, our framework follows Nissenbaum’s Contextual 
Integrity Theory [22] which asserts that privacy norms depend on the interplay between actors, 
information types, and contextual setting. To operationalise this, the framework combines ontology-
driven knowledge representation with real-time AI inference. The ontology captures privacy 
preferences alongside contextual semantics such as scene type, emotional expression, action, and soft 
biometric traits. It enables reasoning over privacy decisions by evaluating what is shown, to whom, 
in what context and under what user-defined constraints. We define two types of contexts that shape 
privacy decisions: 

1. Frame context, that defines what is happening on the scene (e.g. people, objects, activities). 
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2. Exposure, where and to whom the context will be visible (e.g. social media, shared in public, 
private message). 

These contexts influence both the user’s expressed privacy preferences and adaptive privacy 
reasoning of the framework. For instance, being at home with friends (private frame context) may 
trigger different masking behaviour than being in a public park (public frame context), especially if 
the intended exposure is social media. Such differences are modelled by the ontology to balance 
privacy risks and intelligibility across platforms. Table 1 outlines the core entities within the 
ontology-driven framework. 

Table 1. Ontology-Based Context-Aware Privacy Representation. 

Entity Description Key attributes 
User A person detected in the frame. User_ID, Privacy_Level, Location 

Privacy Settings User-defined privacy preference affecting 
obfuscation. 

No Privacy, Low Privacy, Medium Privacy, High 
Privacy, Auto Privacy 

Scene The environmental setting where detection 
occurs. 

Scene_Type, Sensitivity_Level (Private, Semi-
Private or Public) 

Object Detected entities in the scene (e.g., laptop, 
book). 

Object_Type, Sensitivity_Level (Sensitive, Semi-
Sensitive or Non-Sensitive) 

Action Detected subject’s movement/activity. Action_Name, Sensitivity_Level (Sensitive, Semi-
Sensitive or Non-Sensitive) 

Emotion Detected emotional expressions. Emotion_Type, Sensitivity_Level (Sensitive, Semi-
Sensitive or Non-Sensitive) 

Re-identification 
features 

Soft biometric features used for user 
tracking across frames. 

Gait Recognition, Hair Type, Hair colour, Skin 
Tone, Age and Gender 

Context Combination of scene, objects, emotions, 
actions, and user settings. 

Derived_Privacy_Level 

Previous studies show that soft biometric features offer significant potential for user re-
identification. Bari and Gavrilova [60] state that users can be identified using gait biometrics with an 
98.08% accuracy. Corbishley, Nixon and Carter [61] identified that combining soft biometric features 
can increase the re-identification accuracy up to 88.1%, depending on the soft biometric features and 
the combinations used. Moctezuma, Conde, Diego and Cabello [66] introduce a person identification 
method using only three soft biometrics features such as clothing, complexion and height to reach 
85% identification rate. Additionally, the study explores how a recognition system using soft 
biometric features such as gender, backpack, jeans, and short hair achieves 53%-75% accuracy. This 
aligns with the findings by Sosa, Fierrez and Vera-Rodriguez [62], who demonstrate that using a 
broader set of 73 soft biometrics can further improve re-identification accuracy, reaching 85.54%. 
Expanding on this, Corbishley, Nixon and Carter [61], identified that when combining key features 
such as gender, height, skin tone, hair colour, hair type, age and so on, can result in re-identification 
of individuals and quantification of soft features (see Table 2). For this work only the soft features 
with the highest-weighted are selected to improve the re-identifiability. 

Table 2. Soft Biometric Features and Re-Identifiability Weights. 

Feature Weight (± Variance) Source 
Gait 0.8 – 0.98 accuracy  Bari and Gavrilova [60] 

Hair Colour 3.1 ± 0.7 Corbishley, Nixon and Carter [61] 
Gender 2.1 ± 0.6 Corbishley, Nixon and Carter [61] 

Hair Type 2.0 ± 0.6 Corbishley, Nixon and Carter [61] 
Skin Colour 1.6 ± 0.4 Corbishley, Nixon and Carter [61] 

Age 0.5 ± 0.8 Corbishley, Nixon and Carter [61] 
Clothing Style Contextual Moctezuma, Conde, Diego and Cabello [66] 
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To support re-identification when face recognition is inconclusive, these soft biometric traits are 
analysed, to compute a Re-Identifiability Index (RII). If the RII score exceeds a defined threshold, the 
framework associates user with previously stored privacy settings or if the score is not high enough 
for accurate identification but it is high enough to risk re-identification the privacy settings are 
automatically increased to obfuscate high risk soft biometric traits and protect against potential re-
identification. This adaptive mechanism aligns with Contextual Integrity by updating privacy to 
contextual norms rather than static rules, ensuring that privacy decisions are context-aware, 
personalised, and explainable. Accordingly, privacy enforcement dynamically reflects both frame 
context (scene, user activity, companions) and exposure context (where and to whom the content is 
visible). Table 3 defines the key relationships within this ontology framework that enable explainable 
and context-sensitive privacy decisions. 

Table 3. Key Relationships in the Ontology. 

Relationship Description 
User has Privacy Level Users can choose privacy settings that influence protection mechanisms. 

Scene has Sensitivity Level Scenes are categorised (Public, Private, or Semi-Private). 
Object has Sensitivity Level Objects are categorised (Public, Private, or Semi-Private). 

Action occurs in Context Actions are evaluated contextually and categorised (Public, Private, or 
Semi-Private). 

Emotion detected in Scene Emotional expressions are evaluated contextually and categorised 
(Public, Private, or Semi-Private). 

User has Soft Biometric 
Features 

Users have attributes such as gait, hair type, hair colour, age, gender, skin 
tone that can contribute to re-identification. 

User can be Re-identified 
using Soft Biometrics 

If face recognition fails, soft features are used to identify and apply 
privacy. 

Ontology-driven privacy enforcement rules follow a hierarchical sensitivity model, where the 
highest-sensitivity element detected (e.g., scene, object, action, emotion) in a frame determines the 
final privacy level applied. Additionally, user-defined red lines such as specific features, objects, 
logos, or individuals that must always be masked, are enforced independently of contextual 
sensitivity, ensuring that user-specified constraints override general framework predictions when 
necessary. When users choose to be on Auto Privacy mode, it uses prior user privacy configurations 
and contextual cues to train a supervised learning model (Random Forest), which dynamically 
predicts and applies optimal privacy settings in future frames. The resulting privacy enforcement 
mechanism combines hierarchical sensitivity reasoning with the absolute enforcement of user-
defined red lines, ensuring both adaptive flexibility and strict user control. Table 4 summarises the 
privacy actions applied under different user settings and contextual conditions. 

Table 4. Privacy Enforcement Rules Based on Ontology and User-Defined Red Lines. 

User Privacy 
Setting 

Scene 
Sensitivi

ty 

Object 
Sensitivit

y 

Action 
Sensitivity 

Emotion 
Sensitivity 

Re-
identificat

ion 
Features 

Resulting 
Privacy 
Level 

Enforcement Action 

No Privacy Non-
sensitive 

Non-
sensitive 

Non-
sensitive 

Non-
sensitive 

Any No 
Privacy 

No obfuscation 

Low Privacy Sensitive Sensitive Sensitive Sensitive Any  Low 
Privacy 

Obfuscate sensitive elements 
only (scene, object, action, 

emotion) 
Medium 
Privacy 

Semi-
sensitive 

or 
Sensitive 

Semi-
sensitive 

or 
Sensitive 

Semi-
sensitive 

or 
Sensitive 

Semi-
sensitive or 

Sensitive 

Any Medium 
Privacy 

Obfuscate all semi-sensitive 
and sensitive entities 
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User Privacy 
Setting 

Scene 
Sensitivi

ty 

Object 
Sensitivit

y 

Action 
Sensitivity 

Emotion 
Sensitivity 

Re-
identificat

ion 
Features 

Resulting 
Privacy 
Level 

Enforcement Action 

High Privacy Any Any Any Any Any High 
Privacy 

Full obfuscation, including 
faces, soft biometrics, actions, 

objects 
Auto Privacy Any Any Any Any Any Predicted 

Privacy 
Level 

Adaptive obfuscation based on 
historical patterns, context, and 

RII score 
User-defined 

red lines 
(objects, logos, 

users) 

Any Any Any Any Any User-
Specified 
(typically 

High 
Privacy) 

Always obfuscate specified 
features, objects, or individuals 

regardless of context or 
predicted privacy. 

Any Any Any Any Any RII 
exceeds 

threshold 

Soft 
feature 

obfuscatio
n 

Obfuscate high-risk soft 
features (e.g. hair, clothing, 

gait) selectively based on RII 

This adaptive and explainable model enables privacy enforcement that is both personalised and 
scalable. It addresses long-standing gaps in privacy mechanisms, as noted by Halvatzaras and 
Williams [15] and Laak, Litjens and Ciompi [69], who emphasise the importance of adaptable privacy 
models that respond to changing user and environmental contexts. It also addresses concerns raised 
by Olejnik, Dacosta, Machado and Huguenin [2] regarding the lack of effective privacy mechanisms 
in AI systems. 

In addition to adaptive privacy levels, the framework supports user-defined red lines, elements 
that must be obfuscated in all contexts, regardless of privacy level, scene sensitivity, or intelligibility 
trade-offs. These may include highly personal or identifying traits such as certain objects, clothing 
styles, hats, bags or logos on clothing. During registration or privacy configuration, users are 
prompted to mark such features, which are stored in their user profile and always masked whenever 
detected. This ensures that the framework never compromises on non-negotiable privacy protections, 
even when balancing against intelligibility requirements or low privacy settings. These red lines are 
enforced at the final stage of the privacy pipeline, overriding all other contextual decisions. Also, 
when the Re-Identifiability Index (RII) exceeds a predefined threshold, the framework triggers 
obfuscation of soft biometric features, even if facial recognition is unavailable or the base privacy 
level is lower. 

By integrating user-defined preferences, contextual cues, and soft biometric risk scores, the 
framework balances intelligibility and privacy, delivering a robust and GDPR-compliant framework 
for real-time privacy protection. 

3.3. Multi-User Privacy Protection 

Current privacy models produce ineffective results by neglecting dynamic privacy requirements 
between multiple users who share video streams, use smart homes, and in public surveillance 
systems, where multiple individuals may have diverse privacy preferences. Research by Ren, Lee 
and Ryoo [7] highlights that current privacy systems enforce static privacy configurations, for all 
users without considering individual privacy requirements. Similarly, Olejnik, Dacosta, Machado 
and Huguenin [2], and Sezer, Dogdu and Ozbayoglu [11], identified a lack of adaptive mechanisms 
that prioritise privacy-sensitive users, contextual sensitivity, and usability considerations, while 
preserving framework usability. 

To address these gaps, the proposed framework integrates real-time multi-user privacy 
enforcement that dynamically adjusts privacy settings for each detected user. It evaluates three 
primary factors: user-defined privacy preferences (e.g., Auto Privacy, High Privacy, Medium Privacy, 
Low Privacy, or No Privacy), contextual sensitivity of the detected entities (objects, actions and 
emotions), the presence of soft biometric traits that may lead to re-identification. When multiple users 
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appear on the same frame, framework prioritises the highest privacy level for shared scene elements, 
while still applying individualised obfuscation to each person. For example, if User A opts for High 
Privacy while User B selects No Privacy, shared sensitive objects will all be obfuscated, but User B’s 
face will remain unobscured, which ensures a balance between collective protection and personal 
choice. 

The ontology-driven rule engine resolves conflicts between users using a hierarchical model and 
user-specific red lines, such as “always hide logos” or “always hide certain objects”, that override 
contextual conflicts. Additionally, when a user is not directly recognised (e.g., face is occluded), the 
framework applies fallback privacy prediction based on soft biometric features and the Re-
Identifiability Index (RII). In Auto Privacy mode, privacy settings are predicted using a supervised 
model trained on user historical data and contextual cues, that ensures users remain protected even 
when identity is ambiguous. 

This detailed and user-centric framework is important for maintaining privacy protection across 
frames, that supports adaptive privacy in complex, multi-user scenarios and ensures compliance with 
user-defined privacy constraints, exposure contexts, and GDPR principles. 

3.4. Person Re-Identification 

In scenarios where facial recognition is not possible, due to occlusion, low resolution or user-
defined masking, soft biometric traits are used as an alternative means for user re-identification and 
RII calculation. These traits include gait, hair type, skin tone, age, gender, and clothing/accessory 
cues, all of which provide varying degrees of identifiability. As Dantcheva, Elia and Ross [64] 
highlights, a single soft biometric trait would not be unique enough to identify a subject, but their 
combination can significantly increase the probability of identity inference [65,66]. Dantcheva, Elia 
and Ross [64] further discuss that every soft feature can carry information about different soft 
biometric trains, for instance hair type may implicitly indicate ethnicity or gender. To systematically 
evaluate the risk of re-identification, Dantcheva, Velardo and Dugelay [65] proposes categorising 
each soft biometric feature into a distinctiveness level of Low, Medium or High and assign values 0.1 
– 0.3, 0.4 – 0.7 and 0.8 – 1.0 respectively. These scores form the basis for quantifying the identifiability 
of a feature. 

To address re-identifiability risks when using soft features, the proposed framework integrates 
two key components: 

• Re-Identifiability Index (RII) score that quantifies the cumulative re-identification risk of a user 
based on identified soft biometric features. 

• Intelligibility Value Index (IVI) measures the balance between obfuscation and the 
interpretability or information value of a given trait within the current frame and context. 

IVI is not yet a formally standardised metric in existing literature, however it draws inspirations 
from several foundational works. Moctezuma, Conde, Diego and Cabello [66] introduce a numbering 
points system for the list of features to calculate feature weights, while Bari and Gavrilova [60] and 
Corbishley, Nixon and Carter [61] quantified main soft biometric features based on their contribution 
to re-identification likelihood. Building upon these models, the proposed framework introduces the 
Intelligibility Value Index (IVI), which measures the proportion of scene interpretability retained 
after obfuscation of high-RII features. Each soft biometric feature is assigned an interpretability 
weight reflecting its contribution to overall scene understanding. After obfuscation, the retained 
weights are summed and normalised by the total interpretability weight, that results in an IVI score 
between 0 and 1.  

IVI Score = Retained Interpretability Weight / Total Interpretability Weight  (1) 
A higher IVI indicates that obfuscation has minimally impacted the ability to interpret the scene, 

whereas a lower IVI signals substantial loss of semantic content. Importantly, IVI is evaluative and 
does not drive obfuscation decisions directly but provides a quantitative measure of the framework 
effectiveness in preserving scene intelligibility while enforcing privacy. 
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Table 5. IVI evaluation for a single frame with retained interpretability after obfuscation of high-RII features. 

Feature RII (Re-
identifiability) 

Interpretability 
Weight 

Obfuscated? IVI Contribution 

Face 0.95 0.45 Yes 0.0 
Gait 0.8 0.3 Yes 0.0 

Hair Type 0.02 0.03 No 0.03 
Hair Colour 0.03 0.02 No 0.02 

Age 0.08 0.05 No 0.05 
Gender 0.03 0.25 No 0.25 

Bag  0.01 0.1 No 0.1 
Bag colour 0.012 0.03 No 0.03 
Bag logo 0.022 0.02 No 0.02 

Dress 0.1 0.15 No 0.15 
Dress colour 0.015 0.05 No 0.05 
Dress logo 0.023 0.03 No 0.03 

Hat 0.1 0.2 No 0.2 
Hat colour 0.014 0.03 No 0.03 
Hat logo 0.02 0.02 No 0.02 

Jacket 0.1 0.15 No 0.15 
Jacket colour 0.015 0.03 No 0.03 
Jacket logo 0.024 0.02 No 0.02 

Pants 0.11 0.3 No 0.3 
Pants colour 0.02 0.03 No 0.03 
Pants logo 0.03 0.02 No 0.02 

Shirt 0.01 0.1 No 0.1 
Shirt colour 0.015 0.03 No 0.03 
Shirt logo 0.023 0.02 No 0.02 

Shoes 0.02 0.1 No 0.1 
Shoes colour 0.01 0.03 No 0.03 
Shoes logo 0.02 0.02 No 0.02 

Shorts 0.1 0.1 No 0.1 
Shorts colour 0.015 0.03 No 0.03 
Shorts logo 0.02 0.02 No 0.02 
Skin tone 0.02 0.02 No 0.02 

Skirt 0.1 0.1 No 0.1 
Skirt colour 0.015 0.03 No 0.03 
Skirt logo 0.02 0.02 No 0.02 

Sunglasses 0.012 0.1 No 0.1 
COCO Object Types (e.g., person, 

vehicle, furniture, electronics) 
0.01 0.1–0.5 No 0.1–0.5 

Combined Soft Biometrics (Face + 
Hair + Jacket) 

0.91 normalised 0.63 Yes (only 
jacket) 

0.76 

When face recognition fails, the framework activates fallback matching using soft biometric 
embeddings (gait, body shape, hair, clothing). If a user profile is identified, their privacy settings and 
red lines are used for obfuscation. If no match exists, RII scores are used to identify potential re-
identification risk and enforce protective masking as needed. 

This layered framework supports privacy continuity in real-time applications by combining 
deterministic rules, such as “always hide logos”, when a predefined threshold has been reached (e.g., 
RII > 0.3). By evaluating intelligibility against re-identifiability dynamically, the framework aligns 
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with Nissenbaum’s Contextual Integrity theory, which ensures that exposure decisions respect user-
defined preferences and context-dependent privacy risk. 

3.5. Privacy Risks and Mitigation 

The increasing accuracy of soft biometric-based re-identification presents significant privacy 
challenges in multi-user, real-time video processing systems. As demonstrated in prior research 
[60,62], soft features such as gait, skin tone, hair type and clothing can be used to identify individuals 
even when facial data is obscured. This raises concerns in shared settings, where individuals may not 
directly interact with the system but their data is collected without consent. 

Soft biometric features, including gait patterns (with an accuracy up to 98.08% [60]) or a 
combination of gender, hair type, skin tone, clothes and others (with an accuracy up to 88.1% [61]), 
could enable re-identification of individuals. In scenarios where face recognition fails these features 
may still facilitate tracking, which violate user anonymity. This risk is increased in social media 
sharing or surveillance contexts, where exposure is less controlled. 

To mitigate these risks, the proposed framework applies context-sensitive privacy masking 
mechanisms that dynamically adapt to predefined user privacy settings, the sensitivity of the context 
and the potential for re-identification. These include: 

• High-Risk Features such as soft biometric traits (e.g., gait, hair colour) are obfuscated in cases 
when the Re-Identifiability Index (RII) exceeds a defined threshold. 

• Hierarchical sensitivity enforcement to prioritise the most sensitive element in the frame, scene, 
object, action, or emotion and applies the strictest corresponding privacy level. 

• Independently of the context or prediction, user-defined red lines (e.g., tattoos, logos, or specific 
clothing items) are always obfuscated. 

• In shared settings, the proposed framework uses multi-user conflict resolution to identify the 
highest applicable privacy preference across users, which ensures that no individual’s privacy 
is compromised due to the lower preference of others. 

The proposed framework complies with GDPR principles of data minimisation, privacy-by-
design by default and security of processing. To comply with data minimisation, only essential data 
is collected, and sensitive elements are masked by default in high-risk contexts. To comply to privacy 
by design, it automatically applies privacy settings based on user preferences and contextual 
sensitivity without requiring manual intervention. Lastly, for security of processing, framework uses 
adaptive masking to ensure that even indirect identifiers (e.g., gait) are protected when re-
identification risks are detected. 

By combining contextual reasoning, soft biometric risk scoring and user-centric privacy settings 
and red lines, the proposed framework provides robust protection against re-identification, even in 
complex or multi-user scenarios. This ensures that the privacy of individuals is protected not only 
through face masking, but also by mitigating less obvious but equally important identification 
features. 

3.6. Implementation Details 

The proposed framework incorporates a modular architecture and ontology-driven reasoning 
to achieve dynamic, real-time, user-centric privacy protection across multimodal recognition tasks. It 
integrates state-of-the-art deep learning models for face, object, scene, action and emotion 
recognition, operating in parallel to extract semantic features from continuous video streams. These 
features are fed into a unified reasoning engine that evaluates user-defined red lines, contextual 
sensitivity and re-identifiability risk to determine the appropriate level of privacy protection per 
frame. The framework is optimised for GPU-accelerated processing and is designed to prioritise real-
time performance, GDPR compliance and intelligibility preservation. 

The framework begins by identifying users and their associated privacy settings, a crucial step 
for enabling personalised privacy enforcement. Multiple face recognition models were evaluated 
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based on accuracy and computational efficiency to ensure robust and real-time performance. Among 
the evaluated models, listed in Appendix A Table A.1, MTCNN was selected for its balance between 
processing speed of 16–99 FPS, recognition accuracy of 94.4% and its ability to run on the GPU. 

Once user privacy settings are identified, scene classification is processed to assess scene 
sensitivity, such as private, semi-private or public. Comparative evaluation of CNN-based and 
region-based CNN models, as detailed under Appendix A Table A.2, showed that AlexNet achieved 
the best balance between classification accuracy of approximately 85% and computational efficiency 
of up to 205 FPS, which making AlexNet model ideal for real-time data processing. 

In considering the choice of most appropriate model for object recognition, speed and scalability 
were key. Two-stage detectors offered higher detection accuracy, but their latency proved excessive 
for real-time deployment. Based on model evaluation, detailed under Appendix A Table A.3, 
YOLOv5 was selected based on recognition speed of approximately 140 FPS and sufficient accuracy, 
which enables effective object recognition in real time. 

The action recognition module is responsible for identifying sensitive behaviours (e.g., brushing 
teeth) that may require stricter privacy enforcement.  Of the architectures compared (Appendix 
Table A.4), SlowFast Networks were selected for their ability to distinguish both subtle and fast-
paced actions at high frame rates (approximately 30–60 FPS) while maintaining strong recognition 
performance. 

To adapt to emotional sensitivity, the emotion recognition component analyses user facial 
expressions and informs dynamic privacy settings. The EfficientNet model was chosen for its high 
processing speed of up to 155 FPS and competitive accuracy of 84.6%, as summarised in Appendix A 
Table A.5. 

Across all modules, model selection prioritised a balance between recognition precision and 
computational speed, ensuring real-time operation using GPU-accelerated hardware. Additional 
model performance metrics and evaluation criteria are detailed in Appendix A (Tables A.1-A.5). 

Privacy enforcement mechanisms automatically classify recognised entities using established 
privacy categories such as private, semi-private, and public. Sensitivity classification enables the 
framework to dynamically adjust privacy settings based on user defined privacy settings and 
contextual sensitivity. This framework ensures that the highest level of privacy settings is applied to 
each frame, maximising the protection of sensitive objects. To balance privacy protection with 
usability, the framework dynamically adjusts privacy settings based on the user predefined privacy 
setting, contextual classification of detected entities and user predefined red lines. In the cases where 
users are on Auto Privacy, the framework uses a machine learning model to continuously refine 
privacy recommendations based on past user interactions, scene attributes, and sensitivity levels. 
Additionally, after the extraction of multimodal features including scene, object, action, and emotion 
information, the framework evaluates soft biometric traits such as gait, clothing types and colours, 
clothing logos, hair type and colour, skin tone, gender and age. A Re-Identifiability Index (RII) is 
computed for each user based on these traits (as described in Section 3.4), guiding dynamic soft 
feature obfuscation decisions to further enhance user privacy where needed. 

Users have full control and can define and update their privacy preferences by way of the system 
interface. Machine learning models are then used to refine privacy recommendations by utilising past 
activities between the recognised entities to optimise settings for each recognised individual and 
scene. To support this process, the framework uses a dedicated database that stores recognised 
entities including face encodings, objects, scenes, actions, emotions and their corresponding 
sensitivity levels. This structured database functions as an important reference point for the 
recognition modules, enabling real-time, context-driven privacy adjustments based on live feedback. 

To ensure best performance, the framework is implemented using PyTorch and TensorFlow 
with CUDA optimisation, enabling deployment on devices with limited resources. The framework is 
designed to scale effectively across various real-world applications to maintain high privacy 
protection without hindering usability. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 September 2025 doi:10.20944/preprints202508.2085.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at  Sensors 2025, 25, 6105; doi:https://doi.org/10.3390/s25196105

https://doi.org/10.20944/preprints202508.2085.v2
http://creativecommons.org/licenses/by/4.0/
https://doi.org/https://doi.org/10.3390/s25196105


 18 of 35 

 

A detailed comparison between the proposed framework and prior static, semi-dynamic and 
context-aware methods (including Atta [8–10]) is provided in Table 10 under Section 4. This 
demonstrates the significant improvements achieved in adaptability, contextual reasoning, soft 
biometric protection and real-time performance. 

The reasoning ability of the proposed framework is demonstrated through its capacity to balance 
privacy protection with scene intelligibility using an adaptive model based on IVI and RII scores. 
These metrics control real-time obfuscation decisions by considering user-defined red lines and 
contextual relevance of visual elements. Unlike prior works that rely on static rules, proposed 
framework dynamically adapts at runtime through a unified, ontology-driven reasoning engine that 
integrates multimodal recognition, including soft biometric recognition, re-identifiability analysis, 
and context classification. At each stage, the framework integrates predefined user red lines, such as 
“always hide logos” or “always hide item x”, which override other user predefined settings and RII 
scoring. This ensures GDPR-aligned, user-centric enforcement even in ambiguous contexts. 

3.7. Experimental Setup and Evaluation Metrics 

A series of tests were performed on the proposed privacy protection framework by utilising 
suitable datasets for each module (faces, objects, scenes, emotions, and actions) and each class label 
was categorised into privacy-sensitive categories. The framework processed real-time multimedia 
streams to evaluate its ability to adapt to different conditions such as different user requirements and 
privacy preferences. 

The experimental setup included a NVIDIA RTX GPU, Intel i7 CPU and 32GB RAM, which 
ensured sufficient computational power for real-time processing. The framework was developed 
using Python, PyTorch, TensorFlow, and OpenCV, using their GPU-accelerated capabilities and 
optimised execution pipelines to ensure efficient real-time processing for face, object, scene, action 
and emotion recognition.  

To ensure clarity of our experiments, the proposed framework parameters and model 
configurations are reported in Table 6. These parameters govern the recognition modules, privacy 
thresholds, and obfuscation methods used during evaluation. 

Table 6. Framework parameters and thresholds for recognition modules, privacy decision-making, and 
obfuscation methods used in the experimental evaluation. 

Component Model / Method Parameters Used 
Face Recognition MTCNN Confidence threshold: 0.7 

Object Recognition YOLOv5s Confidence threshold: 0.25 
Scene Recognition AlexNet Input resolution: 224 × 224 
Action Recognition SlowFast R50 Temporal stride: 4, clip length: 32 frames 

Emotion Recognition EfficientNet Input resolution: 224 × 224, confidence threshold: 0.6 
Privacy Thresholds RII / IVI RII obfuscation triggered at >0.1 and IVI maintained >0.4 

Obfuscation Methods Pixelation Pixelation block: 10px 
Auto Privacy Random Forest Trained on historical interactions and contextual features 

As shown in Table 6, each component was tuned to balance accuracy and computational 
efficiency for real-time performance. Thresholds for RII and IVI were selected to maintain strong 
privacy protection while at the same time preserving scene intelligibility, and ensuring the 
framework operates effectively under diverse conditions. 

To evaluate the adaptability of the privacy protection mechanisms, the framework was 
evaluated under various scenarios, including single-user and multi-user settings and variations in 
sensitivity, and different privacy levels, such as No Privacy, Low, Medium, High or Auto Privacy. 

To analyse the balance between intelligibility and privacy protection, Table 7, summarises the 
trade-offs between information value and re-identifiability risk across various features. 
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Table 7. Information Value vs Privacy Sensitivity Table. 

Feature Information 
Value (Usability) 

Privacy Sensitivity (Re-
Identifiability Risk) 

Comment 

Face High Very High Critical for identification 
Gait Medium High Useful for action recognition but highly 

unique 
Hair Type Low-Medium Medium Somewhat distinctive, minor contribution 

to scene understanding 
Hair Colour Low Medium Minor scene value, moderate privacy risk 

Clothing Style High Medium Could reveal user profile 
Object Carried 

(e.g., Bag) 
Medium Low Provides some scene context, minimal risk 

unless branded 
Emotion (Face 

Expression) 
Medium High Important for interaction value but reveals 

sensitive emotional states 
Background Scene 

(Park, Home) 
High Low High usability for context, low risk unless 

containing private info 

As shown in Table 7, achieving a good balance between information value and privacy 
sensitivity is critical. To evaluate how well the proposed framework manages this balance in real-
time conditions, quantitative and qualitative evaluation methods were used. Quantitatively, the Re-
Identifiability Index (RII) was used to assess privacy risks associated with identified soft biometric 
traits, while computational latency and obfuscation effectiveness were measured to ensure real-time 
feasibility. Qualitative evaluation involved structured user studies to assess participantʹs perceived 
privacy protection, scene intelligibility of how understandable the scene is after obfuscation and 
overall usability. 

Following prior work by Hasan, Shaffer, Crandall and Kapadia [5], re-identification rates were 
adopted as a comparative benchmark to assess how well the framework prevents unintended 
identification. To ensure that privacy enforcement does not compromise usability, system 
performance was measured before and after privacy-preserving transformations were applied. 
Additionally, the evaluation included measuring the processing latency of the recognised entities, 
privacy settings, and necessary obfuscations for each frame to guarantee that privacy control remains 
effective and scalable in real-time. 

The experimental setup provides a complete assessment of privacy enforcement techniques by 
maintaining a balance between privacy protection, recognition accuracy, computational 
performance, and user experience. The experimental findings highlight the trade-offs involved in 
dynamic, context-aware privacy adaptation and whether in fact, these trade-offs could apply to real-
world multimodal AI systems. 

Finally, a structured user study was conducted to assess perceived usability and privacy 
satisfaction. Participants rated their experience based on the ease of use, perceived privacy protection 
and overall responsiveness. The findings from this evaluation are presented and discussed in detail 
under Section 4. 

3.8. Ethical Considerations 

The proposed framework complies with ethical principles as it prioritises user privacy, 
transparency, fairness and regulatory frameworks such as GDPR. Ensuring that privacy protection 
mechanisms align with legal and ethical standards is critical for responsible AI [27] deployment. A 
key ethical consideration is user consent and control so that individuals can exercise their decision-
making power regarding privacy preferences. Individuals are provided with granular control over 
their privacy settings, enabling them to adjust their privacy configurations at any time based on 
personal comfort and identified contexts. This user-centric framework aligns GDPR standards of 
empowering users and gaining their consent which helps create better user trust. Also, the framework 
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enforces data minimisation by limiting data handling to privacy protection needs while avoiding the 
collection and storage of unnecessary personal information. 

The Re-identification process uses soft biometric features, such as gait, hair type, clothing, skin 
tone, etc., to compute a Re-Identifiability Index (RII) score. Ethically, this raises concerns around 
transparency, profiling and potential discrimination, and to address these users are informed about 
such data processing and can opt for their soft biometrics not to be used. The RII is used to calculate 
the re-identifiability risk and if necessary, authenticate users when face recognition fails and its use 
follows strict data minimisation principles. All these mechanisms are designed in compliance with 
GDPR to promote fairness, explainability and user control. Ethical rules are also encoded within the 
framework ontology-driven reasoning engine, which dynamically enforces user red lines and 
exposure-aware constraints to ensure that privacy decisions respect both legal standards and 
individual moral boundaries. 

Addressing fairness and bias mitigation is essential in multimodal AI privacy systems. 
Recognition models used to detect faces, objects, scenes, actions and emotion information along with 
datasets they are trained on, are evaluated to identify potential demographic bias. The training data 
is carefully selected and when necessary is updated to ensure a balanced representation across 
demographic groups, reduce bias in privacy protection mechanisms and operate equitably across all 
types of user groups.  

Ethical design is a main principle of the proposed framework as it ensures a balanced integration 
of privacy protection, fairness, trust and regulatory compliance. To protect sensitive data captured 
from video streams, the framework uses encryption protocols that encrypt raw data and stores it in 
encrypted format. Access to the encrypted data is restricted to authorised users only or government 
representatives. Moreover, data stored on the database is restricted through strict access control 
mechanisms, where each user has access only to their personal data. This framework prevents 
unauthorised use or data exposure and is aligned with the GDPR data protection requirements. By 
integrating these ethical enforcements into its architecture, the framework represents a responsible, 
secure and user-centric model to develop multimodal AI privacy protection. 

4. Results and Analysis 

This section presents a comprehensive evaluation of the proposed ontology-driven, user-centric 
privacy protection framework. The analysis draws on both quantitative and qualitative methods to 
assess its effectiveness across multiple dimensions, including privacy protection strength, visual 
intelligibility, computational performance and user satisfaction. Each subsection examines key 
outcomes from experiments and user studies conducted in diverse, real-world and simulated 
environments involving varying user types, scene contexts, and data sensitivities. 

The evaluation framework is designed to test how well it balances privacy preservation with 
usability, particularly under dynamic and multi-user conditions. Central to this assessment are two 
core metrics developed in this work: the Re-Identifiability Index (RII), which estimates the risk of 
identifying individuals based on soft biometric traits, and the Intelligibility Value Index (IVI), which 
approximates how much semantic clarity is retained post-obfuscation. These metrics, alongside 
recognition accuracy, responsiveness and subjective user feedback, form the basis for determining 
the real-world applicability of the proposed framework. 

4.1. Intelligibility vs. Re-Identifiability 

Balancing intelligibility with privacy is a central challenge in privacy-preserving multimedia 
systems. The proposed framework addresses this challenge through the use of the Re-Identifiability 
Index (RII) and the Intelligibility Value Index (IVI), which quantify, respectively, the likelihood of a 
user being re-identified and the interpretability of visual content. These metrics are used to drive 
adaptive privacy decisions that respond to both contextual risk and usability needs. The evaluation 
demonstrates that while increased obfuscation improves privacy, it may compromise intelligibility, 
highlighting the necessity for intelligent trade-offs. 
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The IVI is approximated through a hybrid method that considers the number of semantic 
elements which are not obfuscated (e.g., objects, actions, body cues), object recognition confidence, 
and visual clarity post-obfuscation. While RII escalates privacy based on identifiability risk, IVI acts 
as a feedback mechanism to ensure that intelligibility is not unnecessarily degraded. This dynamic 
scoring enables fine-grained control over which elements are obfuscated, when, and why. 

The evaluation confirms that feature-level privacy directives (e.g., ʺalways hide hairʺ or ʺalways 
hide logosʺ) are consistently enforced, regardless of context. This reflects the strength of the ontology-
based reasoning engine and user-defined red line policies, which override contextual inference to 
ensure that personal privacy boundaries are respected, even in low-risk or high-clarity environments. 

To empirically illustrate the privacy–intelligibility trade-off, Table 8 presents example scenarios 
with varying Re-Identifiability Index (RII) and Intelligibility Value Index (IVI) scores, system-inferred 
privacy levels, and their corresponding obfuscation strategies. The Intelligibility Score represents the 
approximate proportion of semantic content preserved after obfuscation. It is computed using a 
weighted combination of IVI, the presence and visibility of key visual features (e.g., faces, actions, 
objects), and their semantic weights, outlined in Table 5. These scores reflect each the contribution of 
each feature to scene comprehension and viewer interpretation. The final score accounts for both 
what is obfuscated and how it is obfuscated (e.g., fully masked vs. semi-visible), enabling a 
meaningful estimation of retained intelligibility under varying privacy conditions. 

Table 8. Intelligibility Score based on RII and IVI. 

Frame Context RII IVI Final Privacy Level Obfuscation Applied Intelligibility Score 
Public Park – Social Media 0.7 0.4 High Face and gait masked 60% 
Office  0.2 0.8 Low Only sensitive object masked 85% 
Home – Family Gathering 0.5 0.6 Medium Face, soft features, sensitive objects 70% 
Classroom – Multi-user 0.4 0.6 Medium Faces, selective objects, logo masking 72% 
Public Square – Unknown user 0.8 0.3 High Face + clothing + gait obfuscated 55% 

In cases where an unregistered individual is captured in a public setting, the framework detects 
soft features and calculates a RII score. If the RII score passes the threshold, the framework 
automatically applies obfuscation to the individual’s face and associated soft features, even in the 
absence of predefined privacy preferences or user-defined red lines. This scenario highlights the 
GDPR-aligned default protection strategy and ensures that individuals without explicit consent or 
registration are still protected against potential re-identification risks. 

In another scenario involving a registered user, a red line was set to “never show jacket”. The 
framework enforced selective obfuscation, masking only the user’s jacket while keeping the rest of 
the face and body visible. Although the RII was moderate (0.4), this user-defined rule took precedence 
over contextual inference, validating the ability of the framework to enforce user autonomy through 
red lines. 

Compared to prior efforts, such as Hasan, Shaffer, Crandall and Kapadia [5], who achieved only 
5% object masking accuracy using cartoonisation and reported a 95% identifiability rate among users, 
proposed ontology-driven framework demonstrates a significant performance advantage. Across 
7,410 evaluated frames, proposed framework achieved 77.8% privacy protection accuracy in real-
time video streams. Although 22.2% of users were still able to recognise at least one individual, this 
identifiability was mainly attributed to low-resolution constraints (224×224 pixels) used for real-time 
processing efficiency. 

Furthermore, unlike static masking techniques that apply uniform filters across content, the 
proposed ontology-driven framework dynamically adjusts privacy enforcement based on entity 
sensitivity, user-defined privacy settings and red lines, soft biometric recognition and RII and IVI 
trade-off scoring. This enables detailed, transparent and explainable privacy protection aligned with 
the principles of Contextual Integrity, as well as the accountability and data minimisation 
requirements of the GDPR. This ensures a more explainable, user-centric and effective privacy 
framework. 
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In conclusion, balancing intelligibility and re-identifiability requires more than just masking, it 
requires adaptive, context-aware enforcement that accounts for human perception, risk levels and 
ethical protection. By combining RII–IVI analytics, ontology-based privacy reasoning and user-
driven preferences, the proposed framework offers a flexible, adaptive method to privacy in real-
world multimedia settings. 

4.2. Privacy Protection Effectiveness 

The evaluations of proposed privacy-preserving methods included both user studies and 
quantitative evaluations to measure their effectiveness on data protection, alongside user 
convenience and framework transparency. The ontology-driven privacy protection, supported by 
user-defined red lines, ensures that personal preferences are always respected, regardless of 
contextual inference or predicted privacy level (see Table 4). These red lines, such as “always hide 
hair” or “always hide logos”, override framework decisions and are enforced consistently across all 
frames. Results indicate that 77.8% of participants, were unable to recognise any individuals within 
obfuscated videos, while 22.2% of participants identified at least one user at any point in time on the 
obfuscated video as a result of the false negatives from the face recognition module. This 
demonstrates strong anonymisation capabilities of the framework, highlighting potential 
improvements in recognition reliability at the frame level, for entities such as objects, faces, clothing, 
and accessories that carry re-identifiability risk. The obfuscation techniques were rated highly 
effective, with 85.2% of participants describing them very effective and 14.8% rating them as 
somewhat effective. Regarding overall privacy protection, the framework received excellent results 
with 74.1% of participants displaying strong agreement, and 22.2% expressing agreement that the 
framework offered sufficient privacy protection, which further validates the robustness of privacy 
enforcement mechanisms. 

A key challenge in privacy-preserving AI systems is balancing privacy protection with usability. 
Nevertheless, users evaluated the proposed framework positively with results revealing that 71.4% 
of participants rated it positively balanced and 28.6% rated it as somewhat balanced in terms of 
privacy protection versus intelligibility. Notably, 34% of participants who observed the framework 
stated that the video clarity suffered a reduction, particularly at higher levels of privacy or when 
subjects appeared close-up as illustrated in Figure 2. These results reinforce the need to optimise 
privacy-preserving techniques to maintain intelligibility while ensuring robust privacy protection. 

Furthermore, user confidence in the data protection protocols was also high, where participants 
indicated “Very Confident” feelings in 53.6% of cases and “Confident” in 39.3% of cases when asked 
to rate data protection capabilities. Overall, user feedback confirms that the privacy protection control 
mechanisms, security protocols, and user-centric design of the framework are well received by users. 
To contextualise the effectiveness of the proposed method, Table 10 compares its performance with 
state-of-the-art privacy-preserving techniques. 

Table 9. Comparison of Privacy Protection Methods. 

Method Privacy Mechanism Anonymisation 
Accuracy 

Intelligibility 
Retained 

Re-identification 
Risk 

Real-time 
Capable 

Hasan, Shaffer, Crandall 
and Kapadia [5] 

Cartoonisation 5% (Object masking) High High No 

Zhou, Pun and Tong [67] Face pixelation 60% (Face only) Medium Moderate Partially 
Proposed Framework Ontology + RII + 

Obfuscation 
77.8% Medium–High 

(60–85%) 
Low (RII-based 

masking) 
Yes 

In real-world evaluations, the framework demonstrated its adaptability across multi-user 
scenarios, including users with and without predefined privacy preferences. In one scenario, an 
unregistered user was detected in a video frame. Since no privacy level was assigned, the framework 
computed the Re-Identifiability Index (RII) using visual soft features such as hair colour, clothing and 
gait. As the RII exceeded the risk threshold, the framework automatically applied obfuscation to the 
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userʹs face and soft biometric features, without any manual configuration. This validates the capacity 
of the framework to protect unidentified users in accordance with the GDPR principle of data 
protection by default. 

In contrast, for registered users who specified red lines (e.g., “never show jacket”), the 
framework applied selective obfuscation only to the specified feature, in this case, the jacket, while 
leaving the rest of the frame unobscured. This showcases the detailed, user-respecting nature of the 
framework and its ability to distinguish between general privacy logic and user-enforced exceptions. 
This selective obfuscation results in minimal visual disruption, preserving full intelligibility of the 
user’s face and actions while respecting specific privacy directives. 

 
Figure 2. Dynamic and user-centric obfuscation, taking into consideration user preferences such as not wanting 
any general privacy but wanting to always hide jacket. 

This comparison highlights the robustness of the proposed framework, and its ability to 
dynamically adapt privacy protection levels based on context, user-defined constraints and re-
identifiability risk. Unlike current static or face-only approaches, our framework protects multiple 
dimensions of identity, while maintaining reasonable intelligibility in most conditions.   

To further demonstrate the robustness of the proposed framework, Table 10 provides a 
comparative evaluation against current state-of-the-art privacy protection frameworks. This 
highlights the significant improvements introduced by our ontology-driven framework, in 
adaptability, contextual reasoning, and handling of soft biometric re-identification risk. 

Table 10. Comparative Evaluation of current Data Protection Methods and the Proposed Ontology-Driven 
Framework. 

Feature/Aspect Static data 
protection 

[4,5,7,67,68] 

Partially dynamic 
protection [3] 

Context-Aware Privacy  
Filters [8–10]  

Proposed Ontology-Driven 
Privacy Framework 

Context-Awareness No Partial (fixed 
rules) 

Medium (scene 
elements)  

Full (scene, exposure, user 
settings) 

Adaptability to User 
Preferences 

No Limited (static 
settings) 

No High (dynamic + user-
defined red lines) 

Privacy Adaptation 
(Sensitivity) 

Low Medium Medium (face, skin and 
body)  

High (hierarchical, context-
driven) 

Intelligibility 
Preservation 

Poor Medium High (pleasantness and 
intelligibility)  

High (selective obfuscation) 
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Soft Biometric Risk 
Handling 

No No No Yes (Gait, Hair, Clothing, 
etc.) 

Auto Privacy 
Prediction 

No No No Yes (Random Forest 
prediction) 

GDPR Compliance 
Alignment 

No Partial Not explicitly addressed Strong (adaptive + user 
control) 

Real-time 
Performance 

Limited (still 
images) 

Moderate (basic 
rule engines) 

Partial (MediaEval real-
time filters)  

High (GPU-accelerated, 
real-time video) 

Overall User 
Satisfaction  

N/A N/A Subjective evaluation on 
pleasantness only  

88% positive, 85% 
acceptable clarity 

In summary, the proposed framework advances current privacy-preserving methods by 
enabling real-time, context-aware, and user-specific privacy protection, validated through both 
quantitative results and comparative evaluation. Unlike earlier works such as Badii [8–10], which 
focused on static or semi-dynamic privacy filters with limited user control and no soft biometric 
modelling, the proposed ontology-driven framework introduces dynamic adaptation, red line 
enforcement, soft biometric risk handling and explainable reasoning. These enhancements address 
critical gaps in prior methods and demonstrate strong potential for GDPR-compliant, ethically 
aligned deployment in real-world AI systems. 

4.3. Computational Performance 

The computational efficiency of the proposed framework was evaluated in terms of processing 
speed, inference time, and scalability across different privacy levels.  Real-time performance testing 
was carried out through evaluation of running times on CPU and GPU-accelerated setup under 
different privacy setting conditions. The framework delivers real-time execution at 163ms per frame 
under the Low Privacy setting. However, the use of stricter privacy settings, where multiple faces, 
objects, emotions and actions need to be identified and obfuscated, increased the execution time to 
735ms per frame. However, the use of GPU-accelerated computing makes processing operations 
more efficient because it minimises latency regardless of scene complexity.  

The analysis demonstrates that the impact of GPU processing was evident across different 
recognition modules. For example, face recognition processing time was reduced from 440ms on the 
CPU to 92.73ms per frame on the GPU. Similarly, action recognition processing improved from 
15,880ms on the CPU to 193ms on the GPU, enabling real-time recognition capabilities. Table 11 
illustrates how different recognition modules are optimised to reduce execution time and enable real-
time privacy protection by offloading and executing specific model components to the GPU. 

Table 111. Optimisation of recognition models to enable real-time privacy protection. 

Model Baseline Execution 
Time (CPU, ms) 

Optimised Execution 
Time (GPU, ms) 

Improvement 
(%) 

YOLOv5 (Object Recognition) 150ms 17.62ms 88.3% Faster 
MTCNN (Face Recognition) 440ms 92.73ms 78.9% Faster 

SlowFast R50 (Action 
Recognition) 

15,880ms 193ms 98.8% Faster 

AlexNet (Scene Recognition) 250ms 5.82ms 97.7% Faster 
Emotion Recognition 19ms 8.31ms 56.3% Faster 

Compared to current methods reported by Frome, Cheung and Abdulkader [4], which 
highlights processing times of 7-10 seconds per image, indicating severe limits in applicability for 
real-time video processing. In comparison the proposed framework shows significant advantage in 
achieving low-latency, frame-level privacy protection suitable for real-time applications. 
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In addition to recognition speed, the evaluation considered the privacy reasoning time, the 
duration required by the ontology-driven reasoning engine to compute an obfuscation decision based 
on detected entities, user-defined red lines, scene context and calculated RII. Obfuscation execution 
time was also measured, covering the application of pixelation, blurring and GAN-based 
anonymisation. 

Table 12. Privacy Engine Decision and Obfuscation Latency. 

Step Description Average Time 
(ms) 

RII computation Compute Re-Identifiability Index from soft 
biometrics 

1.0 - 3.0ms 

Scene sensitivity 
classification 

Determine highest scene privacy level 0.02 - 0.2ms 

Highest privacy 
aggregation 

Combine privacy levels from users, scene, 
emotion, action 

0.02 - 0.1ms 

Soft feature obfuscation Pixelate features (logo, clothes, gait, hair, 
accessory) 

0.3 - 2.5ms 

Total decision + obfuscation 
latency 

Privacy engine reasoning + obfuscation 
application 

1.4 - 5.8ms 

These results show that even under high-privacy configurations with multiple obfuscation 
layers applied, the privacy reasoning and enforcement process introduces a negligible delay relative 
to total frame processing time. The main computational overhead remains in deep learning inference 
for recognition modules, which is effectively mitigated by GPU acceleration. 

Obfuscation method benchmarks confirmed that pixelation is the most efficient, averaging 
3.06ms per frame, while blurring required 540.73ms and GAN-based anonymisation took 2,138.65ms. 
This illustrates the trade-off between privacy strength and computational cost, with GANs offering 
the strongest anonymisation at the highest processing expense. The framework scalability was tested 
through different parallelisation strategies. Significant delays occurred when using multiprocessing, 
taking on average 74,436.24ms per frame due to process management overhead, while threading 
minimised execution time to 23,860.48ms per frame but it remained above real-time acceptable limits. 
Instead, the framework implements a module-on-demand strategy, executing each recognition 
module individually on the GPU only when required. This design functions at the highest efficiency 
by avoiding unnecessary data processing and executing modules only when needed. For example, if 
no faces are detected, the face authentication and face obfuscation tasks are not used and preserve 
resources.  

Overall, the evaluation confirms that GPU acceleration, ontology-driven reasoning, and context-
aware module execution are crucial for achieving real-time privacy protection without sacrificing 
accuracy. The framework maintains a balance between performance, adaptability and privacy 
robustness, and at the same time it remains scalable and efficient across a variety of contexts. 

4.4. User Satisfaction and Usability 

The evaluation of the framework usability was based on user surveys and direct interaction tests 
that measured usability, privacy assurance and responsiveness. Feedback was collected through 
these methods, focusing on the balance between intelligibility and privacy, protection of user-specific 
preferences and transparency of the framework.  

According to 85.7% of participants, adaptable privacy controls improved the ability to control 
their data. Also, 88% of participants reported that privacy protection applied was sufficiently 
maintained while keeping content intelligibility at understandable levels. To enforce this, 85% 
affirmed the framework remained responsive, even under multi-user and dynamic privacy 
adaptations. In terms of privacy effectiveness, 92.9% of participants showed trust in how well the 
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framework protects confidential data. However, 34% of participants stated that extensive obfuscation 
effected scene intelligibility under high privacy settings or when users were too close up. While 
stronger privacy protection ensures confidentiality, it proved that it can also reduce video 
intelligibility.  

This reflects the central RII–IVI trade-off: as the Re-Identifiability Index (RII) increases, 
prompting stronger obfuscation, the Intelligibility Value Index (IVI) tends to decrease. This is 
particularly evident in multi-user or high-risk settings where full masking is applied to faces and soft 
biometric features. Nevertheless, the framework attempts to preserve intelligibility wherever 
possible by using targeted obfuscation and preserving unmasked content when privacy risks are low. 
Importantly, user defined red lines, such as ̋ always hide hairʺ or ̋ always hide jacketʺ (Figure 2), were 
honoured in many different scenarios. This enforcement of user-defined red lines, regardless of 
context, improved trust and demonstrated the fidelity of the ontology-based privacy engine. Users 
reported satisfaction with the ability to set preferences that persist across frames and scenarios. Figure 
3 shows obfuscation techniques without impactful effects on video quality while preserving video 
quality. 

 

Figure 3. Sample image from the COCO dataset [72] with many individuals present which demonstrates that 
the proposed obfuscation method effectively protects sensitive features without substantially degrading the 
overall video quality or scene intelligibility. 

Figure 4, by contrast, illustrates a case in which heavy obfuscation (under High Privacy settings) 
leads to notable reductions in scene clarity when multiple users are present in close proximity. 

 

Figure 4. Example from the COCO dataset [72] illustrating how the obfuscation technique can reduce scene 
quality in complex multi-user scenarios. 
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Transparency was another critical factor in user trust, where 71.4% of users agreed that the 
framework offered a good balance between privacy and usability and the 28.6% found the balance 
“somewhat” acceptable, pointing to a need for clearer explainability mechanisms. Users expressed 
interest in better explainability into how and why some privacy decisions are made, particularly 
when red lines or contextual obfuscations intersect. This could be addressed by including examples 
of visual feedback or ontology logic tracing. 

4.5. Error Analysis and Framework Limitations 

While the proposed framework effectively enforces privacy protection, certain challenges and 
limitations were identified during the evaluation. One key limitation arises when face and object 
recogniser systems fail to identify targets specifically in low-light conditions when objects are 
partially obscured or in low-resolution video frames. In some instances, incorrect identification 
resulted in incomplete obfuscations, leading to potential risks. For example, face recognition failures 
occurred when users were partially visible due to occlusions or when image processing steps (e.g., 
resolution downscaling for efficiency), caused faces within a frame-level data-instance to become too 
small for reliable recognition of PII features. A clear deficiency occurred when human faces appeared 
in non-frontal orientations, which led to failure from face detection module and as a result, missed 
obfuscations of faces, as shown in Figure 5. 

 

Figure 5. Example from the COCO dataset [72] showing a failure case in the face recognition module, where 
non-frontal face orientations were not detected, resulting in missed obfuscation. 

In addition to facial recognition issues, limitations were observed in soft biometric recognition 
and RII-based privacy enforcement. In certain frame-level data-instances, soft features such as hair 
colour, skin tone or clothing logos were misclassified due to lighting variations or partial occlusion. 
This occasionally led to inflated RII scores and unnecessary obfuscation, reducing intelligibility 
without increasing actual privacy protection. Conversely, in other cases, weak recognition of soft 
features caused underestimated RII values, resulting in insufficient protection for potentially 
identifiable individuals. These findings suggest that confidence-aware soft biometric recognition and 
threshold calibration could improve both accuracy and interpretability in RII-driven privacy 
decisions. 

Another limitation is the misclassifying entity sensitivity such as classifying semi-private 
environment as public areas, producing incorrect overall privacy settings. This issue was identified 
in indoor environments, such as an office area, where distinguishing between private and public 
contexts proved difficult and misleading. To improving such scene classification, the proposed 
framework integrates ontology rules and context interpretation that improve consistency. 

Real-time performance was impacted as privacy settings increased, introducing higher 
computational overheads. While Low Privacy settings maintain an average processing time of 163ms 
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per frame, the use of High Privacy settings in densely populated scenes increased processing time to 
735ms per frame. This demonstrates the trade-off between privacy protection and framework 
performance when operating on hardware-limited devices. 

Overall, while the proposed framework shows strong privacy protection capabilities, further 
improvements are needed in soft biometric handling, improved recognition accuracy, context 
misclassification, and hardware optimisation. Addressing these areas will further improve the 
adaptability and effectiveness of the proposed framework in real-world and privacy-sensitive 
environments. 

4.6. Summary of Key Findings 

The evaluation of the proposed privacy protection framework confirms its effectiveness in 
balancing privacy, usability and computational efficiency. The adaptive framework combines 
ontology-driven reasoning, user-defined red lines and contextual sensitivity analysis, to dynamically 
adjust privacy levels while at the same time retaining semantic clarity. Key innovations, such as the 
Re-Identifiability Index (RII) and user defined red lines such as “always hide logos” or “never show 
jacket”, enabled detailed, persistent privacy control, even across changing scenes and user contexts. 
These features proved critical in multi-user environments and when handling unregistered users, 
where privacy levels were inferred using soft biometrics and contextual risk.   

Quantitative results demonstrated that privacy protection techniques, including pixelation, 
blurring and GAN-based anonymisation, reduce the risk of subject re-identification. In 77.8% of cases, 
participants were unable to recognise individuals in obfuscated videos. Privacy enforcement was 
rated “highly effective” by 85.2% of participants, and 92.9% reported confidence in the ability of the 
framework to protect private information. Despite a 34% drop in perceived clarity under High 
Privacy settings, 71.4% of participants viewed the framework as achieving a “good balance”, between 
privacy protection and scene intelligibility. These findings highlight the effectiveness of the proposed 
framework over current methods. 

Compared to prior static methods [4,5,7,29,67,68], which offered static privacy enforcement with 
limited adaptability, the proposed framework achieves a 96.3% protection success rate while 
dynamically adapting to user-centric requirements, context-awareness, and real-time video 
processing. As shown in Table 9, the proposed framework outperforms current methods across 
multiple privacy protection dimensions, including context awareness, soft biometric handling and 
intelligibility preservation, thereby confirming its practical viability. The framework also complies 
with GDPR principles through data minimisation, opt-out mechanisms for soft biometrics and 
transparent user controls. These compliance requirements are legal obligations and also guide the 
design of the proposed framework in ensuring efficient and real-time processing without effecting 
privacy.  

Performance evaluations confirmed that GPU acceleration enabled real-time processing, with 
acceptable execution times of 163ms per frame under Low Privacy and 735ms under High Privacy 
settings. Recognition module optimisations delivered up to 98.8% improvement in inference speed, 
making the framework scalable and suitable for real-time deployment. 

Overall, findings establish that the proposed framework meets scalability and usability while 
being compliant with GDPR, demonstrating its potential for deployment in a variety of AI 
applications including social media, surveillance, and smart environments. Limitations remain for 
low-resolution frame-level scenarios and complex scene classifications, which offer promising 
directions for future enhancement, including improving recognition reliability of PII features, 
expanding explainability, and intelligibility-privacy trade-off refinement, especially in low-
resolution or high-risk scenarios. 

5. Discussion 

Current privacy-preserving AI models use fixed anonymisation rules that apply uniform 
privacy settings that do not take into consideration individual privacy preferences or contextual 
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factors. These static anonymity techniques lead to primary issues such as overprotection that reduces 
intelligibility or under-protection, providing inadequate protection of sensitive information. As 
noted by Shu, Zheng and Hui [3], current systems employ either manual intervention or predefined 
rules for privacy protection. Additionally, previous multimodal AI architectures, although 
combining multiple recognition functionalities, have been criticised by Rivadeneira, Silva and 
Colomo-Palacios [17] for the absence of user control and transparency of the decision-making 
process. Similarly, Badii and Al-Obaidi [8,9] and Badii, Tiemann and Thiemert [10] highlighted the 
importance of context-driven decision making in privacy protection AI. They also state that current 
models fail to account for situational variations in privacy sensitivity and the need for empowering 
users to define rules that reflect complex information needs.  

In contrast, the proposed framework addresses the above limitations by introducing an 
ontology-driven and user-centric method that dynamically updates privacy settings based on user-
defined privacy rules, the sensitivity of detected entities, contextual analysis, and real-time privacy 
level predictions. Unlike current methods [3–5,7,67,68], it integrates multimodal recognition (faces, 
objects, scenes, actions, emotions, and soft biometrics) with an ontology-based reasoning engine to 
deliver context-sensitive and user-specific privacy enforcement. Other important advantages include 
the enforcement of user-defined red lines (e.g., “always hide jacket”), the use of dual metrics 
including RII and IVI that balance privacy and intelligibility, and GPU-accelerated execution for real-
time deployment. These design choices collectively ensure adaptive, explainable, and GDPR-
compliant privacy protection, and improve user trust and system scalability.  

Experimental results demonstrate framework privacy protection success rate of 96.3%, 
outperforming current methods such as that of Shan, Wenger, Zhang and Li [29], which achieved 
80% accuracy on static images, and with no user-centric adaptation or contextual awareness. 
Participants reported high levels of satisfaction, with 85.2% rating privacy protection as “highly 
effective”. Also, 71.4% stated that the framework achieved a good balance between privacy protection 
and scene intelligibility, and 28.6% stated that the balance was adequate. This shows that the 
proposed framework maintained a strong balance between privacy protection and scene 
intelligibility, highlighting the need for context-aware and personalised privacy controls in 
environments. 

GPU acceleration proved essential in delivering real-time processing, reducing processing 
delays across recognition tasks (e.g., face recognition improved from 440ms to 92.73ms and scene 
recognition from 250ms to 5.82ms). Such performance optimisations make the framework suitable 
for deployment in resource-constrained environments, and also address key limitations stated by 
Sezer, Dogdu and Ozbayoglu [11], Wang and Deng [19] and Abadi, Chu and Goodfellow [20].   

Nonetheless, the framework has limitations. Recognition accuracy degrades under low-light, 
occlusion or low-resolution conditions, which leads to occasional missed obfuscations. Similarly, 
scene misclassification in complex environments can result in incorrect privacy level predictions. 
Additionally, some obfuscation methods, such as GAN-based anonymisation, provide better scene 
intelligibility but introduce delays, by processing frames at 2,138.65ms. The use of lighter weight 
alternatives such as pixelation, showed improvements by processing frames at 3.06ms, hence 
enabling real-time privacy protection. 

Moreover, while 96.3% of participants reported effective privacy adaptation, 34% stated 
difficulty understanding how their data was processed. This highlights the need for improved 
transparency and user feedback mechanisms. Future enhancements should prioritise explainability 
features and better visualisation of privacy decisions. 

In scenarios where intelligibility is critical, such as in collaborative workspaces, privacy 
protection must account for both the Re-Identifiability Index (RII) and the Information Value Index 
(IVI) of visual elements. Formalising these dual indicators, and integrating rule-based reasoning with 
machine learning, could support more intelligent obfuscation decisions that protect privacy without 
compromising scene intelligibility. 
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Overall, results show that the proposed framework enhances adaptive privacy protection by 
combining user-centric privacy settings, ontology-driven reasoning and multimodal recognition to 
achieve a better balance between privacy protection and intelligibility. The integration of user-
defined rules, contextual sensitivity, and the Re-Identifiability Index enables adaptive, GDPR-
compliant privacy protection that is scalable and explainable. These results highlight that effective 
privacy protection requires stringer user-centric and dynamic rules that can adapt in different 
contexts and application domains such as surveillance, social media, or smart environments. 

6. Conclusions and Future Work 

The proposed framework introduces a user-centric, ontology-driven privacy protection 
architecture that adaptively changes privacy settings responsive to the user preferences, privacy-
context sensitivity and multimodal recognition of entities in the data instances. It applies real-time 
recognition capabilities, such as face, object, scene, emotion and action recognition with an ontology-
based reasoning engine that considers user preferences and contextual privacy sensitivity, to 
optimise the balance of privacy protection and content intelligibility in live videos. In contrast to 
current static models, the proposed framework provides detailed, real-time and entity-specific 
obfuscation guided by the Re-Identifiability Index (RII), and user-defined red lines, enabling a 
transparent, explainable and GDPR-compliant privacy adaptation.  

Experimental evaluation demonstrated a 96.3% privacy protection success rate and maintained 
an optimal balance between privacy and intelligibility, with 85.2% of participants rating privacy 
protection as “highly effective” and 71.4% rating the balance as “good” or better. GPU acceleration 
and optimised execution pipelines reduced inference times significantly (e.g., face recognition from 
440ms to 92.73ms, scene recognition from 250ms to 5.82ms) and kept privacy engine decision-making 
and obfuscation latency within real-time thresholds, even under complex multi-user scenarios. These 
results highlight the advantages of the framework over current methods by combining real-time 
performance, contextual adaptability, multimodal integration, and user-centric enforcement. 

Nonetheless, challenges remain. Recognition accuracy degrades under low-light, occlusion, or 
low-resolution conditions, leading to occasional misclassifications and excessive fallback protections. 
GAN-based anonymisation, though effective, introduces prohibitive latency (2,138.65ms per frame), 
limiting its suitability for real-time use. Addressing these challenges is necessary for improving 
robustness in complex environments.  

Future research should focus on improving recognition accuracy in challenging conditions to 
reduce misclassifications of entities in the data frames and the fine-tuning of the context-aware 
classification ontology. Privacy oriented, light-weight gait and soft feature recognition, and detailed 
testing with larger and more diverse datasets will contribute to better robustness and generalisability. 
Additionally, integrating Explainable AI (XAI) [21] mechanisms into multimodal AI frameworks will 
enable users to have a better understanding of the scene contexts for the context-specific privacy 
safeguards implemented within this architecture, hence increasing transparency and user trust.  

In conclusion, the proposed framework advances the field of privacy-preserving AI by 
combining ontology-driven reasoning with multimodal recognition to deliver dynamic, context-
aware privacy protection. Unlike current methods, it adapts dynamically to user preferences, 
contextual sensitivity, and re-identification risks, which ensure that privacy safeguards are effective 
and explainable. By integrating transparency, usability, and strong privacy guarantees, this research 
provides a foundation for next generation AI systems that are required to operate responsibly and 
transparently in real-world environments. 

Appendix A 

Table A1. Comparison of Face Recognition Models. 

Face Recognition Model Accuracy (%) Speed frames per second 
(fps) 
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FaceNet [32] 99.63% 20-30 fps 
DeepFace [33] 97.35% 20-25 fps 
ResNet [34] 99.60% 20-30 fps 
VGGFace [35] 98.95% 15-20 fps 
ArcFace [36] 99.83% 20-30 fps 
The Histogram of Oriented Gradients (HOG) 
detector [37] 

85-90% 30-60 fps 

Multi-task Cascaded Convolutional Networks 
(MTCNN) [38] 

94.4% 16-99 fps 

Table A2. Comparison of Scene Recognition models. 

Architecture Model Accuracy Speed (fps) 
Convolutional 
Neural Networks 
(CNNs) 

ResNet-50 [39] 76% accuracy on ImageNet Approximately 100 fps 
ResNet-101 [39] Around 77% accuracy on ImageNet Approximately 60 fps 
ResNet-152 [39] Around 78% accuracy on ImageNet Approximately 40 fps 
VGG16 [40] Around 71.5% accuracy on ImageNet Approximately 40 fps 
VGG19 [40] Around 71.9% accuracy on ImageNet Approximately 30 fps 
AlexNet [31] Around 85% accuracy on ImageNet Approximately 205 fps [315] 

Region-Based 
Convolutional 
Neural Networks 
(R-CNNs) 

Faster R-CNN [41] Around 73.2% accuracy on specific 
recognition tasks 

Approximately 5 fps on an 
NVIDIA V100 GPU 

Mask R-CNN [42] Similar to Faster R-CNN for scene 
recognition tasks, around 75-80% 

Approximately 2-5 fps on an 
NVIDIA V100 GPU 

Long-Short Term 
Memory (LSTM) [43] 

Better accuracy than most models, at 
85% 

It comes with overheads as it 
uses recurrent networks and 
can process around 15 fps 

Table A3. Comparison of Object Recognition models. 

Architecture Model Accuracy Speed Frames Per Second (FPS) 
Single-stage 
detectors 

You Only Look Once (YOLO) [37] 63.4% Approximately 45 FPS 
You Only Look Once (YOLOv5) 50% Approximately 140 FPS  
You Only Look Once (YOLOv8 / YOLOv10) 50% 30-60 FPS on a high-end GPU 
Single Shot Multibox Detector (SSD) [44] 76.9% Achieves around 22 FPS  
RetinaNet [45] 39.6% Approximately 8 FPS 
CenterNet [46] 47% 270ms per frame or 3.7 FPS 
EfficientDet [47] 52.2% Approximately 4 FPS 

Two-Stage 
Detectors 

Convolutional Neural Networks (CNN) [41], 
AlexNet[73] 

62-83% Approximately 1 FPS 

R-CNN [39]  53.7% At best 0.5 FPS 
Fast R-CNN [40,48] 68.8% Achieves 6.67 FPS 
Faster R-CNN [41,44] 73.2% 5-10 FPS on high-end GPUs 
Spatial Pyramid Pooling Network (SPP-Net) [34] 59.2% Achieves 2 FPS 
Region-based Fully Convolutional Network (R-
FCN) [49] 

76.6% Achieves 5.88 FPS 

Mask R-CNN [42] 36.7% Achieves 5.13 FPS 

Table A4. Comparison of Action Recognition models. 

Model Accuracy Speed (FPS) 
Convolutional Neural Networks (CNNs) 

[50,51] 
Approximately 97% on 
datasets like UCF101. 

Approximately 10-15 FPS. 

Recurrent Neural Networks (RNNs) [52] Achieves around 90% on 
datasets like HMDB51. 

Approximately 5-8 FPS, slower due to 
the sequential nature. 
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Two-Stream Convolutional Networks 
(Two-Stream CNNs) [52] 

Around 85% on datasets like 
UCF101. 

Approximately 7-10 FPS. 

Long-Short Term Memory (LSTM) [53] Approximately 75-80% on 
datasets like UCF101. 

10-15 FPS depending on the 
complexity and length of the video 

sequences. 
Temporal Segment Networks (TSN) [54] Approximately 94% on 

datasets like UCF101. 
Approximately 20-25 FPS. 

Inflated 3D ConvNets (I3D) [55] Approximately 95% on 
datasets like Kinetics. 

Approximately 10-15 FPS. 

SlowFast Networks [56] Approximately 96% on 
datasets like Kinetics. 

Approximately 30-60 FPS. 

Table A5. Comparison of Emotion Recognition models. 

Model Accuracy Training Time Computational Resources 

AlexNet [31]  84.7% Moderate Moderate (Approximately 30 FPS on CPU or 
Approximately 300 FPS on GPU) 

VGGNet [40] 92% Long High 
ResNet (Residual 

Networks) [34] 
96.43% Long Very High (110, 1202 layers) 

RNNs [57,58] 84.8% Long Moderate 
Faster R-CNN [41] 78.8% Long High 
EfficientNet [40,59] 84.6% Moderate Moderate (faster than other models around 155FPS) 
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