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Abstract: This systematic review aims to elucidate the economic value creation of Artificial Intelligence
(Al) in supporting the integration of Variable Renewable Energy (VRE) sources into power systems.
Addressing the economic dispatch challenges associated with integrated power system has become
paramount due to the increasing penetration of VRE. This paper reviews the role of Al in mitigating
costs related to balancing, profile, and grid with a focus on its applications for generation and demand
forecasting, market design, demand response, storage solutions, power quality enhancement, and
predictive maintenance. By analyzing the use cases across various renewable energy resources (RERs),
including wind, solar, geothermal, hydro, ocean, bioenergy, hydrogen, and hybrid systems, this study
highlights AI’s potential to enhance economic efficiency and operational reliability. This review spans
the literature from 2014 to 2024, offering insights into the advancements and limitations of Al-driven
approaches in the renewable energy sector. The findings underscore Al’s critical role in optimizing
VRE integration, ultimately facilitating a more resilient and economically sustainable energy landscape.

Keywords: artificial intelligence in energy systems; variable renewable energy integration; energy
strategy; Al in demand forecasting; policy strategies

1. Introduction

The global energy landscape is transforming significantly with the increasing penetration of
Variable Renewable Energy (VRE) sources such as wind, solar, geothermal, hydro, ocean, bioenergy,
hydrogen, and hybrid systems [1-3]. This shift towards Renewable Energy Resources (RERs) is
driven by the urgent need to reduce greenhouse gas emissions, combat climate change, and achieve
sustainable development goals [4-6]. However, integrating VRE into existing power systems presents
several economic and operational challenges, primarily due to these energy sources’ intermittent and
variable nature [7,8].

Artificial Intelligence (Al) has emerged as a powerful tool for addressing these challenges, offering
innovative solutions to optimize the integration of VRE into power systems [9]. Al technologies,
including machine learning, neural networks, and optimization algorithms, can potentially enhance
the economic efficiency and operational reliability of renewable energy systems [10,11]. By leveraging
Al, power systems can improve generation and demand forecasting [12,13], market design [14],
demand response [15,16], storage solutions [17,18], power quality [19], and predictive maintenance
[20,21].

Despite the growing body of literature on Al applications in RERs, there is a notable gap in
systematic reviews focusing on the economic aspects of VRE integration. This paper aims to bridge this
gap by conducting a comprehensive review of the role of Al in creating economic value in the context
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of VRE integration. The review spans literature from 2014 to 2024, providing insights into Al-driven
advancements, opportunities, and limitations in the renewable energy sector. The contributions of this
review are given as:

1. Identification and Evaluation of AI Use Cases

This paper systematically identifies and evaluates use cases where Al tools create economic value
in the electricity sector, specifically concerning VRE integration. By analyzing these use cases, we
aim to provide a comprehensive understanding of how Al can be exploited to enhance economic
efficiency in the integration process.

2. Economic Impact Analysis

This review assesses the estimated economic impact of various Al applications in VRE integration.
We explore the challenges in measuring the value created by Al in reducing integration costs,
providing a detailed analysis of the potential economic benefits and limitations.

3. Emphasis on Economic Value Creation

Unlike previous studies, primarily focused on performance metrics, this work emphasizes the
importance of economic value creation of Al tools. We highlight how Al contributes to cost
reduction, improved operational efficiency, and overall economic sustainability in the power
sector.

By addressing these contributions, this paper seeks to highlight AI’s critical role in VRE integration
optimization, ultimately facilitating a more resilient and economically sustainable energy landscape.
The findings of this review aim to inform policymakers, researchers, and industry stakeholders about
the potential of Al in transforming the renewable energy sector.

The remaining sections of this study are structured as follows: Section 2 is dedicated to scope and
methodology, Section 3 elaborates on the role of Al in renewable energy systems, Section 4 describes
the economic aspect of Al fostering the integration of VRE in power systems, Section 5 discusses the
future challenges and limitations of Al, and Section 6 presents the conclusion.

2. Scope and Methodology
2.1. Scope of the Review

This review paper aims to examine and clarify the potential economic value of Al in supporting
the integration of VRE sources. The study focuses on the economic aspects of VRE integration, an area
that has received limited attention in previous literature despite its importance for decarbonization
efforts. The review systematically analyzes how Al can effectively foster VRE integration, using an
economic model from existing literature. Identification and evaluation of use cases are done where Al
tools create economic value in the electricity sector, specifically concerning VRE integration. The scope
also includes an analysis of the estimated economic impact of these use cases and an exploration of
the challenges in measuring the value created by Al in reducing VRE integration costs. This study
emphasizes the economic value creation of Al tools, rather than merely improvements in performance
metrics. The literature considered spans from 2014 to 2024 and includes only English language sources.

2.2. Methodology
2.2.1. Literature Search Strategy

A systematic literature review approach has been employed by adapting the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. The web databases used
for literature search include Google Scholar, Science Direct, and IEEE Xplore and various keywords

"o "nn "nn

have been used for joint search such as "artificial intelligence," "machine learning," "electricity,” "value

"o "o

creation,” "renewable energy," "variable energy sources," and "integration cost." To ensure comprehen-
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sive coverage, we also reviewed relevant references from identified articles, as well as sectorial reports
and technology blogs.

2.2.2. Selection and Screening Process

The initial search yielded 827 articles after sorting the duplicates followed by an abstract screening,
which reduced the pool to 200 articles by excluding those not related to VRE integration costs in the
energy sector. A subsequent full-text review further narrowed the selection based on three key criteria:
focus on reducing VRE integration costs, alignment with our Al definition (presented in Section 1
of the paper), and inclusion of information about Al tool value creation. We excluded articles that
focused solely on improving performance metrics without relating to value creation. This rigorous
process resulted in a final selection of 41 references for in-depth analysis.

2.2.3. Data Analysis and Synthesis

The selected articles are categorized using a framework of integration costs, which is presented in
Section 3. The synthesis of findings addresses key questions regarding Al use cases, their economic
impact, and challenges in value measurement. To aid in presentation and analysis, key findings are
summarized in various tables that present the key references discussed throughout the article.

2.2.4. Limitations and Bias Considerations

We acknowledge potential selection biases in our review process. These include subjectivity
in determining whether tools align with our Al definition, as presented in Section 1 of the paper.
Moreover, the possibility of low representation of negative outcomes or value-destroying cases in
the published literature is also acknowledged. These limitations are considered in the analysis and
conclusions to ensure a balanced and critical review of the available evidence.

3. Al in Renewable Energy System

The application of Al in RERs is becoming very common for design, estimation, optimization,
distribution, management and policy. This section details the applications of Al for the most commonly
used RERs [21-25].

3.1. Al in Wind Energy

In pertinent literature, several reviews discuss the use of Al in wind energy [26-30]. In [26,27], a
brief overview of existing statistical, physical, correlation and neural network approaches for power
and wind speed estimation is presented. An overview of data mining methods used for the estimation
of wind power is provided in [28]. In this work, the extremely short, intermediate, medium, and
long-term wind power estimations are covered in four categories. Similarly, [30] examined data mining
techniques for forecasting short-term wind speed and power. Three categories of probabilistic models:
short, medium, and long term, for forecasting wind power are listed in [29].

Relevant research indicates three main categories of Al used in wind energy: neural, statistical,
and evolutionary learning. These categories are integrated to create hybrid Al methods [31-59].
Many studies focus on wind power and speed prediction using Al neural learning techniques [31-33].
Mabel et al. estimate wind output over three years from seven wind farms using a neural network
with feed-forward backpropagation (BPNN) [31]. The training and test data sets” Root Mean Square
Errors (RMSEs), for the BPNN, are 0.0070 and 0.0065, respectively, indicating excellent prediction
accuracy. Three different ANN approaches, Radial Basis Function Neural Network (RBFNN), BPNN,
and Adaptive Linear Element Network (ADALINE) have been used to estimate wind speed from the
two locations. There has also been a comparison of the three models” performances [32]. While the
effectiveness of ANN approaches varies depending on the location of wind farms, the RBF approach
yields the best results (minimum RMSE of 1.444) for a single site. The BPNN yields RMSE of 1.254 at
minimum for a single site. Through trial and error, Mabel et al. [33] improved the BPNN setup for
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wind power estimation. With relative humidity, generation hours and wind speed as inputs, a 3-5-1
ANN yields the optimal estimating results (Mean Square Error (MSE) of 7.6 x 103).

Since ANN techniques’ performances are inconsistent, certain changes have been recommended
to increase their efficiency [34]. In certain studies, additional methods have also been incorporated for
comparison [35-39]. Recurrent high-order neural networks, an advanced kind of ANN, were used for
wind power estimation by Karnataka’s et al. [34]. The ANN model’s performance is juxtaposed with
the Naive Bayes (NB) approach. The lowest RMSE of 4.2 is achieved by the ANN in comparison to
the NB. For the years 1993-1997, the Marmara’s wind speed was spatially forecasted using the BPNN
approach [35]. A comparison is made between the efficiency of the ANN model and the Trigonometric
Point Cumulative Semi Variogram (TPCSV) method. For the majority of months and sites, ANN
yields an increased coefficient of correlation between predicted and actual wind speed. For instance, in
January, for the Canakkale site, the correlation coefficients for ANN and TPCSV were 0.95 and 0.88,
respectively. According to Alexiadis et al.’s research [36], the BPNN approach significantly increases
wind speed and wind power estimation accuracy by 20 — 40% when compared to the persistent
forecasting model. To anticipate wind speed from the two wind farms, the Bayesian Combination (BC)
methodology, ADALINE, BPNN, and RBFENN techniques were used by Li et al. [37]. When compared
to ANN approaches, the BC method yields a more reliable and superior result estimation (RSME
of 1.5). The analysis of twelve estimating strategies, with the non-linear ANN methods of Neural
Logic Networks (NLN) and the Auto Regressive Moving Averages (ARMA) approaches, has been
reported [38]. The approaches applied wind speed data having hourly resolution. Compared to other
approaches, NLN demonstrates the best results (RMSE improvement of 4.9%). During two years, from
2004 to 2005, Cadenas et al. [39] employed BPNN to forecast wind speed with information gathered
from Mexico’s Chetumal wind farm in Quintana Roo. The ANN and Single Exponential Smoothing
(SES) methods” performances are compared. Compared to the SES approach (MAE of 0.5617), the
earlier approach works better (MAE of 0.5251).

Fuzzy logic [40] and its integration with ANN approaches were also investigated in various
papers [40-42] for wind power forecasting. Simoes et al. [40] designed a wind generation system of 3.5
kW using fuzzy logic. The designed system can be implemented in the field and performs well. The
combination of fuzzy logic with ANN, and RBFNN approaches was applied by Sideratos et al. [41]
for wind power estimation. Findings are useful for the operational planning of wind farms, one to
forty-eight hours in advance. Monfared et al. [42] have estimated the wind speed using the fuzzy and
BPNN techniques. The suggested methods perform better than the conventional ones (RMSE of 3.27
and 3.30 for two strategies, respectively, in one situation).

Several statistical techniques were covered in [43,44]. A probabilistic approach for estimating
short-term wind output was presented by Juban et al. [43]. The process yields a predictive probability
density function for estimation based on the kernel density function. The model’s reliability is within
the range of 2 to 4%, consistent with findings from related studies. Mohandes et al. [44] employed the
Support Vector Machines (SVM) approach to estimate wind speed utilizing at Madina, Saudi Arabia,
wind data. Additionally, a comparison is made between the Multilayer Perceptron (MLP) neural
networks and SVM performance. Compared to the ANN approach (MSE of 0.0078), SVM achieves
worse estimation accuracy (MSE of 0.009).

Several studies [45-48] have employed the Adaptive-Neuro-Fuzzy-Inference-System (ANFIS), a
combination of fuzzy and neural approaches, to enhance the performance of the ANN method. Potter
et al. [45] use the wind data from the Australian state of Tasmania along with ANFIS to predict wind
power on an extremely short basis. When wind data is examined from a session in a different year,
the MAE is consistently less than eight. Based on the speed of wind data at altitudes of 10, 20, 30,
and 40 meters, Mohandes et al. [46] computed wind speed up to a height of 100 meters using ANFIS.
Compared to the actual speed of wind at the same height, the ANFIS projected wind speed at 40 m has
a 3% Mean-Absolute Percentage Error (MAPE). Yang et al. [47] interpolate the information about the
lost wind calculated from China’s twelve wind farms using the ANFIS approach. The actual observed


https://doi.org/10.20944/preprints202501.0631.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 January 2025 d0i:10.20944/preprints202501.0631.v1

5of 42

wind speed and the ANFIS forecasted wind speed had an RMSE of 0.22. Maximum-power-point-
tracking (MPPT) has been designed by Meharrar et al. [48] using an ANFIS wind generator. As an
input, wind speed is used by the ANFIS to estimate the rotational speed of wind turbines. In training,
the ANFIS performs effectively with an error of 0.005.

In addition to ANFIS, ANN is also combined with other techniques to improve prediction
performance [30,49,51,52]. For example, Yang et al. [49] used BPNN along with Wavelet Analysis
(WT) to diagnose faults in the wind turbine gearbox, successfully identifying two typical situations,
three fault situations, one severe fault situation, and two light fault situations. To choose the input
parameters and variables of the ANN and the closest neighbor techniques used to estimate wind
power in the short-term and network traffic analysis, Jursa et al. [50] implemented two evolutionary
algorithms: Differential Evolution (DE) and Particle Swarm Optimisation (PSO). Prediction accuracy is
2.8% higher with the PSO-optimized ANN than with the manually structured ANN. An enhanced
version of the FNN and the Empirical Mode Decomposition (EMD) technique for wind speed estimate
has been created by Guo et al. [51]. The performance of the improved EMD&FNN is better (MSE of
0.1647) than that of the FNN (MSE of 0.1512) and EMD-FMM (MSE of 0.1295). Pourmousavi et al. [52]
have presented an ANN-Markov chain (MC) technique for short-term wind speed forecasting. For
larger margins, the ANN-MC has a lower error (94.83) than the ANN (96.04).

Hybrid Al techniques are described in detail [53-59]. Fuzzy techniques based on the two GA
models (real-coded GA and binary-coded GA) were developed by Damousis et al. [53] for wind
power and speed prediction. When the statistics about wind energy from a remote site were analyzed
by applying wireless modems, the fuzzy approach produced higher accuracy than the persistent
technique for the next hour and longer, respectively, by 29.7% and 39.8%. The SVM and EEMD
approaches are combined by Hu et al. [54] to construct and evaluate a hybrid forecasting method.
Using the suggested hybrid method, the monthly average wind speed measured at three different
locations in China was determined. When EEMD is placed against two conventional time series
approaches; Seasonal Autoregressive Integrated Moving Average (SARIMA) and Autoregressive
Integrated Moving Average (ARIMA); EMD-SVM and SVM yield an MAE of 0.12. Cadenas et al. [55]
created a novel hybrid model that combined BPNN and ARIMA techniques to forecast wind speed at
three distinct locations in Mexico. In comparison to the ARIMA (MSE of 4.1) and ANN (MSE of 5.65),
the hybrid approach has an MSE of 0.49. For short-term wind speed prediction, a hybridized ANN
approach with the fifth-generation Mesoscale Model (MMS5) has been proposed by Salcedo-Sanz et al.
[56]. By using the MMS5 output, the ANN technique yields higher accuracy in estimating, with MAE
ranging from 1.45 — 2.2ms! for varying hidden layer neuron counts (9-5) and wind turbine sites. Liu
et al.’s [57] proposed a hybrid Al method with WT, GA, SVM, and deep quantitative analysis. The
GA is applied for the modification of SVM parameters. The WT, SVM, GA model fared improved
(MAE of 0.6168) than the persevering method (MAE of 0.8355) and SVM-GA (MAE of 0.7844). Kong
et al. [58] developed a novel hybrid model for forecasting wind speed using PSO and PCA for SVM
parameter optimization, and a refined form of SVR called Reduced Support Vector Machine (RSVM).
Effective estimating accuracy is demonstrated by the RSVM. In Rahmani et al.’s [59] proposed hybrid
intelligence technology, PSO and Ant Colony Optimisation (ACO), for the hourly wind power forecast
for 43 data using temperature and wind speed as external variables. The hybrid approach produces the
best MAPE of 3.50% when compared to PSO (MAPE of 10.50%) and ACO (MAPE of 5.8%). Pousinho et
al. [60] have developed a hybrid approach for risk optimization in trading wind energy that combines
WT, PSO, and ANFIS. Portugal uses this hybrid approach to analyze data from wind farms. The
predicted profit was accurately projected to be between 18719 and 18487 euros for various levels of
risk values between 1 and 0. An outline of the studies discussed above is shown in Table 1.
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Table 1. Summary of Al techniques and their applications in wind energy
Category Purpose Method Results References
Neural Wind power  BPNN, 5181517181: RMSE (Training: [26-39]
learning and speed RBFNN, Testing: 0.0065), RBFNN: Best
techniques prediction ADALINE for a single site (RMSE of 1.444)
ANN Increasing Recurrent RMSE of 4.2 for [34,35]
performance ANN High Order ANN compared
improvement efficiency NN, Naive Bayes to Naive Bayes
Comparative Comparing  TPCSV, Bayesian Increased accuracy: e.g., [35-39]
ANN
studies with other Combination (BC), BPNN vs TPCSV (0.95 vs 0.88
correlation
methods ARIMA, SES coefficient), BC: RMSE of 1.5
Fuzzy Enhancing Fuzzy Logic, Enhanced operational planning  [40—42]
wind
logic power esti- ANN, RBENN for wind farms (RMSE of 3.27
. and 3.30)
mation
Statistical Short-term Probabilistic =~ Ap- Reliability within 2-4% [43,44]
proach,
techniques wind output  Kernel Density SVM (MSE 0.009) vs
estimation Estimation MLP (MSE of 0.0078)
ANFIS Enhancing ANFIS, Better short-term estimation, [45-48]
ANN ANN wind speed computation, e.g.,
erformance  SES ANFIS: MAE < 8, MAPE 3%,
P RMSE of 0.22
ANN Improving Wavelet Analysis Higher prediction accuracy, [49-52]
combined prediction (WT), DE, fault dlagngs1s: €&
with PSO-optimized
. ANN 2.8% better, EMD&FNN
techniques performance PSO, EMD, MC (MSE of 0.1647)
Hybrid Enhancing GA,SVM, EEMD,  Improved accuracy: e.g., [53-60]
Al wind estima- ARIMA, MM5, EEIL/H%_SVM (MAE 0.12),
tion PCA, ybrt
techniques accuracy RSVM, PSO, ACO ANN-MM5 (MAE of 1.45-2.2),

RSVM
high accuracy, Hybrid
ANN-MC lower error

3.2. Al in Solar Energy

There has been much discussion in the literature about the significance of Al in solar energy

applications [61,62]. The specific uses of ANN techniques in solar energy, including building heating

load calculations and solar system design and modeling, are described in [61]. Mellita et al. evaluated

the use of Al in weather data modeling and on and off-grid PV system size [62,63] in addition to

discussing its applications in PV system modeling, simulation, and control. In particular, [61] provides

a summary of the specific uses of ANN approaches in design and modeling, building heating load,

etc. A brief overview of the research conducted by Mellita et al. on applying Al to meteorological

data modeling, PV system sizing, control and simulation is provided in [62]. The application of Al

approaches to the dimensions of standalone and grid-connected photovoltaic systems has also been

reviewed by Mellita et al. [63]. A compilation of building energy consumption estimation techniques

utilizing Al and statistics are found in [63]. Dounis et al. [61] gave an overview of the use of agent-

based intelligent automation systems for building energy management. Al is being applied in both

single and hybrid approaches to solar energy research [64-102]. The most popular approach in solar
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energy research is ANN. It is utilized in PV connected to the grid to anticipate solar irradiance [64-75].
It is possible to attain a correlation in comparison with the actual and expected solar radiations of
98-99% and 94-96% on sunny days and gloomy days, respectively. Using temperature and humidity as
inputs, the BPNN forecasts Global Solar Radiation (GSR) for the years 1998-2002 [64]. The RMSE value
between the actual and BPNN forecasted GSR was 2.823 x 10~%. Kalogirou et al. [65] employ BPNN
to estimate the performance of heating systems based on solar water. The improved performance
of BPNN is confirmed by the higher coefficient of determination values (R? of 0.9808 and 0.9914 for
the maximum temperature rise and extracted energy, respectively). Using the BPNN, beam solar
irradiance was calculated by examining data from eleven distinct stations. The radiation model’s
projected values and actual values had an RMSE of 2.69 to 2.79% [66]. The daily ambient temperature
is estimated with a BPNN of 3 x 6 x 1, with an RMSE of 1.96 [67]. The BPNN was used to estimate the
daily sun irradiation with an RMSE of 5.5-7.5% [68]. With an RMSE of 3.29%, a High Concentration
Photovoltaic (HCPV) system with the maximum power was estimated using the BPNN [69]. The
BPNN was used to estimate the average monthly solar radiation around the globe, and the relation
between the predicted and real solar irradiation was 0.97 [70]. Using the BPNN, hot water quantity
and solar energy production were calculated and the results showed R? values of 0.9973 and 0.9978,
respectively [71].

Several studies in research [72-75] compare the effectiveness of the BPNN model to various
methods. Tasaddugq et al. [72] utilize BPNN to estimate the ambient temperature 24 hours in advance,
and they compare the effectiveness of BPNN with batch-learning ANN. Using BPNN for three years,
the Mean Percentage Deviation (MPD) values attained were 3.16, 4.17, and 2.13. Alam et al. [73]
forecast diffuse solar radiation, both hourly and daily, with an RMSE of 4.5% using the BPNN, in
contrast to 37.4% for alternative empirical techniques. Tymvios et al. [74] predicted worldwide solar
radiation using Angstrém'’s linear techniques and BPNN. Angstrom’s linear technique and the BPNN
method perform similarly (RMSE of 5.67-6.57%). The eight Chinese cities’ GSR estimates from 1995
to 2004 were estimated using the BPNN approach, and the results were compared to those obtained
using empirical regression techniques. With a minimum RMSE of 0.867, the BPNN outperforms
empirical regression techniques [75]. For solar energy analysis, a few more techniques were employed
in addition to ANN [76-78]. The SVM approach, for example, is compared to the AR and RBFNN in
terms of performance when used to predict short-term solar power [76]. The SVM approach (MAE
of 33.72 Wm™2) outperforms the AR (MAE 62 Wm~2) and RBF (MAE of 43 Wm~2) approaches. Li
et al. [77] examined the performance of SVR and ANN for estimating solar PV energy production.
The two approaches’ RMSEs were nearly identical. When estimating solar electricity generation, the
RBF-SVM method performs better than the two forecasting techniques currently in use, PPF and
Cloudy. Compared to the other two methods, SVM shows a 27% greater estimation accuracy [78].

Applications for solar energy have also made use of several evolutionary Al techniques [79-81].
Mashohor et al. [79] proposed GA in solar tracking to enhance PV system performance. The optimal
GA-solar system is produced by a GA with an initial population size of 100, 50 epochs, and probabilities
of crossover and mutation of 0.7 and 0.001, respectively. The generating gain’s low standard deviation
(1.55), which indicates higher system efficiency, further supports this claim. The best possible design
for a solar water heating system takes advantage of GA. In particular, the GA is used to optimize the
plate collector area to 63 m?, which yields a solar fraction value of 98% [80]. Tracking PV arrays’ MPPT
coupled to batteries was implemented by Kumar et al. [81] using GA. The conventional Perturb and
Observe (PO) algorithm’s performance is compared with the GA. The 400-line voltage is attained by
the boost converter.

It has also been observed that combining Al techniques improves prediction efficiency [82-88].
The ANN and TRNSYS are combined to forecast the performance of an Integrated Collector Storage
(ICS) solar water heater, with an R? value of 0.9392 [82]. GA was used by Monteiro et al. [83] to
optimize the parameters of the Historical Similar Mining (HISIMI) model, which is used to estimate
PV system power. The performance of the modal of GA-HISIMI (RMSE of 283.89) is compared with
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that of the classical persistence (RMSE of 445.48) and BPNN (RMSE of 286.11) approaches. In Algeria,
the optimization of PV system size is achieved using the amalgamation of limitless impulsive response
(IIR) filter and RBFNN [84]. The RBF-IIR approach was used to estimate the optimal sizing coefficients,
and its performance was compared with the MLP-IIR approach, BPNN, RBFNN, and classical models.
Using the RBF-IIR approach, the sizing coefficients were computed with high accuracy (correlation
of 98%). For the forecasting of solar radiation levels, WT and BPNN were combined [85]. WT-BPNN
outperformed the traditional approaches (ARMA, AR, MTM), recurrent, BPNN and RBFNN methods
in terms of accuracy (97%) and performance. Without using exogenous inputs, GA-optimized BPNN
is used to anticipate solar power output [86]. GA-BPNN's performance is compared with that of the
k-nearest neighbor (KNN), ARIMA, BPNN, and persistent model techniques. The minimal RMSE of
72.86 kW is obtained using the GA-BPNN. To estimate PV system power, Mandal et al. [87] combined
WT and RBENN and evaluated the results against, RBF, BPNN and WT-BPNN. The minimum RMSE
for the WI-RBF is 0.23. The economic benefits of solar energy are optimized by the application of
NN and GA in the group method of data handling (GMDH) [88]. The ideal solution increases life
cycle savings by 3.1-4.9%. Multiple studies [89-94] have employed the ANFIS method. These include
modeling a PV power supply system with an accuracy rate of 98% [89], satellite image data for the
prediction of hourly global radiation [90], average temperature and length of sunshine to predict solar
radiation [91], simulating a PS power supply [92], and forecasting a solar chimney power plant’s
performance [93].

A variety of hybrid Al approaches have also been employed by solar energy systems [94-98]. The
following are a few of these: ARMA and Time Delay Neural Network (TDNN) are used to predict solar
radiation [96], For GSR prediction, a hybrid of the SVM and Firefly algorithm (FFA) is created, and its
effectiveness is compared with that of the BPNN and Genetic Programming (GP) approaches (RMSE
of 1.8661 for SVM-FFA), and PV connected to the grid power prediction is achieved through a hybrid
of SVM and SARIMA methods [97]. Table 2, provides an overview of the results of Al approaches,
discussed above, for solar energy systems. Figure 1 illustrates the application of Al for solar and wind
energy resources.
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Table 2. Summary of Al techniques and their applications in solar energy
Category Purpose Method Results References
ANN Solar irradi- BPNN, High correlation with actual [61-78]
ance solar
. .. radiation, RMSE of
techniques E:lzd}ll(;zi);g RBFNN 2.823 x 10~ for GSR, R?
load caleula- SVR of 0.9808 for heating system
tion performance
Comparative Comparing  Angstrém, SVM outperforms AR and RBF  [64-75]
studies ANNwith  ARIMA, EKD, BPINN shows better
performance
other meth- SVM, GP in multiple studies
ods
Evolutionary =~ Enhancing GA, GA-Solar system optimization  [79-81]
PV
Al ?ystem per- PO improved system efficiency
ormance
. . optimal design for solar water
techniques an'd ~ opti heating
mization
Combining  Improving GA-HISIMI, WT- Higher accuracy and [82-88]
Al prediction BPNN, GA-BPNN  better performance, minimal
techniques efficiency WT-RBENN, RMSE for combined techniques
GMDH
ANFIS Modelling,  ANFIS, High accuracy in PV power 159 g5
supply modeling,
method prediction, satellite data, h'ourly fad1at10n prediction,
simulating
and simula- sunshine length PS supply, SCPP performance
tion forecasting
Hybrid Solar radia- ARMA-TDNN,  Liective estimationand [94-98]
tion prediction,
RMSE of 1.8661 for SVM-FFA,
Al and power SVM-FFA high
techniques prediction SVM-SARIMA accuracy in GSR and PV power

prediction
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Figure 1. Al's role in solar and wind energy: improved forecasting, performance optimization, and driving

renewable innovation

3.3. Al in Geothermal Energy

Studies [99-103] provide an overview of the use of Al approaches in geothermal applications.
The authors in [99] have given a brief overview of the potential applications of Al approaches with
sensors and robots in geothermal well drilling design, control, optimization, computer modelling,
and simulation of geothermal reservoir and its impact on the advancement of geothermal energy.
Additional evaluations [100] examine numerical models for geothermal reservoirs and enhanced
geothermal systems by O’Sullivan et al. [101,102]. Study [103] also provides a synopsis of the
development of numerical modeling for geothermal reservoirs. Table 3 outlines the use of Al in
geothermal energy-related applications, both in standalone and hybrid forms [104-123]. To forecast the
performance of Vertical Ground Coupled Heat pump (VGCHP) systems, Esen et al. [104] employed
BPNN with the Levenberg-Marguardt (LM), Pola-Ribiere Conjugate Gradient (PRCG), and Scaled
Conjugate Gradient (SCG) algorithms. Better prediction efficiency is achieved with the eight neurons
in the hidden layer of the LM-based BPNN (RMS of 0.0432). To predict the geothermal well’s Static
Formation Temperature (SFT), LM-based BPNN was used by Bassam et al. [105]. With five neurons in
the buried layer of the BPNN, the prediction error is less than £5%. The best operating conditions
for a geothermal well are determined using BPNN (with LM, CGP, and SCG) in [106]. Using the
temperature and vapor fraction of geothermal water with the ammonia fraction as inputs, the best-
predicted values of generated and circulatory pump power are obtained by the seven-neuron BPNN
hidden layer (RMSE of 1.5289). The ANN and BPNN (with CGP, LM, and SCG) are utilized for power
cycle optimization, similar to ORC-Binary [107]. For generating and needed pump circulation power,
with 14-16 neurons in a hidden layer, the LM-based BPNN produced the greatest results (RMSE of
0.0001 for the s1 and s; cycles). The cycle s; input variable is comparable to the one outlined in [106],
but the cycle s, analysis includes an extra input variable called outlet pressure. Using the real values
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for the 96.5% of data points, BPNN is utilized to generate a geothermal map at various depths with
less than a 5% variance [108]. In the Afyonkarahisar Geothermal District Heating System (AGDHS),
thermal performance and energy destructions are predicted using the LM-based BPNN with good
accuracy (RMSE of 0.0053) [109]. Using eight distinct input parameters, the geothermal well’s Void
Percent (VF) data were forecasted using BPNN, which has a foundation with the LM training approach.
With an RMSE of 0.0966, six neurons in the hidden layer of BPNN produce the best forecast accuracy
[110]. The VF-ANN is used for predicting the stormwater treated by geothermal energy’s Biochemical
Demand for Oxygen (BOD), nitrate-nitrogen, ortho-phosphate-phosphorus, ammonia and nitrogen.
The QN-based BPNN yields the best accuracy for predicting ammonia and nitrogen [111]. The AGDHS
PID controller, which increases energy efficiency by 13%, is tested using BPNN [112]. Greater accuracy
in ORC-Binary geothermal plant modeling is achieved by using BPNN with LM for the 0, and 03
cycles (20 and 22 neurons in the hidden layer, respectively) and for the b3 type cycle [113]. The site
placements planning model [114] makes use of geographic information data with the BPNN, which
depends on the LM and SCG algorithms. With BPNN, conductivity maps of the ground can be created
more accurately (83% of projected data have deviations of less than 10%) [115]. With the use of the
wellbore production database, BPNN, which is based on the LM algorithm, showed improved pressure
drop prediction efficiency in geothermal wells [116].

In certain investigations, the study of the geothermal system also used fuzzy logic and EA
[117-120]. For VGSHP, Sayyaadi et al. [117] used multi-objective optimizations with the EA and
single-objective thermodynamic and Thermos Economic (TE) optimizations. Six EAs (two DE, GA,
PSO Monte-Carlo random search) were used in another study [118] to determine the ideal location
of Borehole Heat Exchangers (BHEs). In Recirculation Aquaculture Systems (RAS), for geothermal
heat [119] and to control water temperature for maximum RAS output [120], it has been possible to
create a fuzzy logic controlled (FLC) system. Some analytical studies on geothermal energy [121-123]
used ANFIS and hybrid Al approaches. For example, VGSHP performance is assessed using ANFIS,
and the results are compared with BPNN techniques (SCG, LM, and CGP algorithms). In this instance,
ANFIS is more effective than BPNN techniques [121]. ANFIS is also used to assess the AGDHS system
(forecast of energy and energy rates) and compare it with BPNN techniques [122]. In geothermal
reservoir temperature prediction, GMDHNN based on GA and Singular Value Decomposition (SVD)
is used and the results reveal that ANFIS outperforms BPNN approaches [123].

Table 3. Summary of Al techniques and their applications in geothermal energy

Category Purpose Method Results References
ANN Performance BPNN, LM, Eﬁ%‘gredm“‘m accuracy, €8 1104-116]
forecasting,
techniques temperature  CGP, SCG of 0.0432(,) prediction error less
L than + 5%
prediction
RMSE of 1.5289 for pump
power prediction
Fuzzy Logic = Optimization EA, FLC, Improv.efi system performance [117-120]
and efficiency,
and EA and DE. GA e.g., multi-objective
T optimizations,
techniques control Monte-Carlo search  optimal BHE location
ANFISand  Performance ANFIS, gﬁlﬁgﬁe“weﬂe“ compared 151 _oq)
hybrid Al assessment.  GMDHNN e.g., ANFIS better performance,
’ ! improved

energy
geothermal reservoir

approaches  rate forecast- GA, SVD femperature prediction

ing
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3.4. Al In Hydro Energy

Different studies discussed the application of Al approaches in the hydro energy sector. Kishor et
al. [124] focused on the planning and management of hydropower facilities using both conventional
techniques and contemporary Al methodologies such as GA, ANN, Fuzzy, ANFIS, etc. Nourani et al.
discussed the importance and use of hybrid Al techniques based on wavelet pre-processors in hydro-
climatology [125], particularly in the assessment of the importance of hydrologic cycle operations.
In hydro energy applications, Table 4 summarises the utilization of both the single and hybrid Al
approaches [126-140].

In Taiwan, eight reservoirs are utilized to optimally schedule hydropower plant operations using
the BPNN technique [126]. Compared to Differential Dynamic Programming (DDP) and K-Nearest
Neighbor (KNN), the BPNN is more economical. For linear and non-linear reservoirs, the discharge
peak and peak time must be estimated. Smith et al. [127] employed the BPNN technique in their
modeling of the rainfall-runoff process. When predicting peak discharge for non-linear reservoirs
and time to peak for linear reservoirs, BPNN achieves higher accuracy. For seventeen years, the San
Juan River basin’s steam flow has been accurately predicted using the BPNN model in two distinct
seasons [128]. The most important components in the generation of hydroelectric power are the
potential head and flow of water. Moreover, Kisi et al. [129] investigated river flow modeling with the
BPNN and gradient descent (GD) and compared the results with the autoregressive (AR) approach.
Approximations using BPNN are more precise than those using AR. Estoperez et al. [130] estimate
the monthly power outage in advance (RMSE of 0.061) and used BPNN for micro-hydro power plant
scheduling. In the research of hydro energy, the GA [131-133] and fuzzy [134] methodologies have
also been employed. To plan a hydrothermal power system in Brazil, for instance, Carneiro et al. [135]
employed GA, and they compared the outcomes with those of a traditional non-linear programming
(NP) optimization technique. For the years 1971-1973, the GA’s operating costs (726,742.2 MW) are
lower than the NP’s (745,020 MW). For a comparable application, Gil et al. [132] created a new GA
(with the help of a group of skilled operators) and assessed how well it performed in comparison to
other GA implementations. A new kind of GA known as Chaotic Hybrid (CH)-GA has been created
by Yuan et al. [133] to solve the issue of the short-term hydrogenation schedule being hampered by
the water delay time. When compared to the conventional S-GA and NP, the CHGA yields a higher
profit. Adhikary et al. [134] examine the use of a fuzzy logic-based method to determine which of the
four penstock materials, asbestos cement, steel, and GRP, is best for hydro turbines. The best material
with the highest degree of index was determined to be GRP.

ANFIS and hybrid Al techniques’ role in the production of hydropower has also been covered in a
few research [135-140]. In Taiwan, the Shihmen reservoir is controlled by the ANFIS approach, which
predicts the release of water. The M-5 rule curves are also used to compare the method’s performance
[135]. The ANFIS performs better (there is less water scarcity) than the M-5 rule curves. Firat et al.
[136] estimated the Menderes River’s flow effectively using the ANFIS model. Multiple Regressions
(MR) and ANN are used to compare ANFIS’s performance (the minimum relative error for ANFIS is
0.073). An ANN is integrated with an expert system through the use of Learning Vector Quantization
(LVQ) and ART-MAP for hydropower plant predictive maintenance (PM) and Acoustic Prediction
(AP) [137]. The AP and PM come up with more accurate projections. GA and PSO-adjusted FLC have
been developed by Sinha et al. [138] regarding Automated Generation Control (AGC) in hydroelectric
systems. In terms of settling time and peak overshoot, the GA-FLC and PSO-FLC outperform the
conventional FLC. An Al hybrid approach for estimating river flow known as case-based reasoning
(CBR) has been created making use of Elman ANN, modular ANN, Fourier Frequency Transform (FFT)
and Hierarchical Clustering (HC) [139]. The models’ performances are compared with CBR (minimum
MAE of 17. 11 for CRB). The hydraulic energy production in Turkey is predicted by BPNN using the
Artificial Bee colony (ABC) model (ABC is used to optimize BPNN) with a relative error of 0.23 [140].
Figure 2 depicts Al applications for geothermal and hydro energy resources.
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Table 4. Summary of Al techniques and their applications in hydro energy
Category Purpose Method Results References
ANN Optimization, BPNN, High accuracy in operation scheduling ~ [126-130]
techniques prediction, GD, peak discharge prediction, RMSE
and scheduling AR of 0.061 for power outage estimation
Fuzzy logic Optimization, GA, Fuzzy, ImP T‘oved system performance and [131-134]
efficiency, e.g.,
and EA material , CH-GA, GA lowers operating costs, fuzzy
techniques selection NP fuzzy logic selects best material for
turbines
ANFIS Water release  ANFIS, LVQ, Higher effectiveness compared to [134-140]
L traditional methods,
prediction,
and hybrid flow estimation, ~ART-MAP, GA-FLC, ifr"'lﬁ‘sNFIS outperforms M-5 rule
Al approaches PM, AGC PSO-FLC, CBR GA-FLC and PSO-FLC improve AGC

-
: 1. Energy forecasting
2. Temperature prediction
3. Optimization and predictive
maintenance

Gecccccccccdeccccccccce

1. Energy forecasting
2. Water flow estimation
3. Materials selection
4. Optimization and predictive
maintenance

Figure 2. Al application for hydro and geothermal energy resources: improved resource management and
efficiency, and fostering sustainable energy solutions

3.5. Al in Ocean Energy

The studies [141-144] provide a summary of how various Al approaches are being used for ocean
energy. Essentially, [141] discusses Al's involvement in generating energy from oceans, while Aartrijk
et al. [142] provide an overview of Al’s role in ocean energy. According to Jain et al., [143], there are
numerous ocean engineering applications of ANN. The availability of renewable energy resources has
been extensively covered by Iglesias et al. Authors of [144] have discussed the potential of wave farms
producing energy located in the Canary Islands, which will eventually be one of the first islands to run
exclusively on renewable energy.

The studies [145-153] discuss the involvement of several single and mixed Al techniques for
ocean energy and the Table 5 summarizes the key findings. The sea level variation along Western
Australia’s coast is forecasted using a three-layer BPNN approach (correlation coefficient of 0.7-0.9)
[145]. The BPNN algorithm with six different options for number of neurons in the layer has been
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used by Londhe et al. [146] to estimate ocean wave conditions for one day with decent precision (for
lead times of 12 hours, there is a 67% correlation between the predicted wave height). Three architects
analyzed data obtained from Tasmania between 1985 and 1993 (R? of 0.92) to forecast wave parameters
using the BPNN approach, which takes the coastal environment factors as input [147]. Using sixty
datasets and thirty US rivers, the longitudinal dispersal coefficient in streams was predicted. A study
by Toprak et al. [148] employed the RBFNN, BPNN, and Generalized Regression Neural Network
(GRNN). The FLC has been created by Chen et al. [149] to lessen the effects of external wave force
in the ocean and the proposed method demonstrates good stability. Ghorbani et al. [150] predict sea
level using the GP and ANN. The GP prediction accuracy (MSE of 22.5-28.2) outperformed the LM
algorithm-based BPNN.

To increase the prediction accuracy, mixed Al methods [152,153] and ANFIS [154] approaches have
also been employed. Karimi et al.’s investigation [153] highlights the effectiveness of eleven different
ARMA model variants, BPNN (LM), BPNN (CG), BPNN (GD), and ANFIS (five variations, each with
a unique membership function) in sea level prediction. Results from ANFIS and ANN approaches are
nearly identical, however they outperform ARMA techniques. For wave hindcasting, a hybrid method
combining the Numerical Wave Model (NWM) and BPNN is employed [151]. In comparison to the
BPNN and NWM methods, the hybrid strategy performs better. The authors in [152] have developed a
hybrid intelligence system that utilizes SVR and case-based reasoning to improve CO; flux prediction
and investigate the understanding of how air and ocean interact. Different applications of Al in ocean
energy are demonstrated in Figure 3

Table 5. Summary of Al techniques and their applications in ocean energy

Category Purpose Method Results References
ANN Sea level BPNN, High accuracy in sea level [145-148]
prediction

techniques variation, RBFNN, (correlation coefficient 0.7-0.9),

wave

. i o
conditions GRNN wave hglght prediction (67%
. . correlation)

estimation

Fuzzy logic ~ Reducingim- FLC, ftable control under wave [149,150]]
orces,

pact of

and GP wave forces, GP, better sea level prediction
accuracy
sea
. (MSE of 22.5-28.2) compared

approaches lgvel predic- ANN to BPNN

tion
ANFISand  Improving  ANFIS, g&rﬁparable performance with )5y 5,

prediction g
hybrid AI accuracy for NWM, SVR, better than ARMA, improved

sea CO» flux
approaches level and CVR prediction, better wave

waves

hindcasting performance
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Figure 3. The role of Al in Ocean energy: Enhanced wave hindcasting and wave energy forecasting

3.6. Al in Bioenergy

Shabani et al. [154] provide a succinct overview of predictable and stochastic mathematical
models for foresting biomass energy, optimization and the ideal supply chain architecture in renewable
energy generation. Several studies [155-167] describe the usage of both standalone and combined Al
systems for analysis of bioenergy, which is summarized in Table 6. Studies [155-160] about bioenergy
use ANN architectures. Yang et al. [155] forecasts the density and fuel’s cetane number for diesel using
BPNN, RBFNN, GRNN, and Recurrent Neural Network (RNN) to detect the fatty acid composition
(BPNN performs best in this case). To measure the amount of methane in biomass from bioreactors by
using temperature, alkalinity, conductivity, pH, sulfate, BOD, and chloride as input parameters, ten
different kinds of BPNN are analyzed in [156-159](RMSE ranges from 0.00263-0.00250). The RBFNN
trained with inputs of pressure, blend, load, compression ratio, and injection time (accuracy range
69-96%) for the performance of biodiesel engines (engine emissions, exhaust temperature, and thermal
efficiency /energy consumption of the break) is examined in [160]. To estimate the density, viscosity,
water and methanol content, and other properties of biodiesel, the polynomial and Spline Partial Least
Squares Regression (SPLS), Principal Component Regression (PCR), Multiple Linear Regression (MLR)
are studied and compared with the BPNN (the BPNN performed better than the other approaches)
[159]. Apart from SVM and KNN [161], PSO [162], and GP [163], ANN has also been applied in
bioenergy analysis work. Based on Near-Infrared (NIR) data, Balabin et al. [161] classified biodiesel
into ten categories (based on origin) using regularized discriminant evaluation, KNN, SPLS, and
SVM algorithms. The SVM produces an accuracy for classification that is superior to the other three
approaches. To optimize the biomass supply chain (flows from the producing sources), an improved
version of PSO is used [162]. A comparison is made between the performance of the current Higher
Heating Value (HHV) models and biomass fuels estimated HHV utilized by GP and BPNN [163]. The
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GP and BPNN forecasted accuracy is superior to that of the traditional models (RMSE of 0.942 and
0.987, respectively).

Hybrid Al techniques are also applied in the investigation of bioenergy [164-167]. For the years
1964-2006, Koutroumanidis et al. [164] estimated fuelwood costs in Greece using ARIMA, ANN, and a
hybrid of ANN-ARIMA. Compared to the ANN and ARIMA approaches separately, the ANN-ARIMA
model predicts better estimation (MAPE of 14%). A hybrid system that maximizes heat transfer and
enhances biomass boiler cleaning using fuzzy logic and ANN saves 12-gigawatt hours annually [165].
Methane may be produced from waste digesters using a hybrid Al method based on BPNN and GA
[166]. The hybrid approach produces 6.9% more methane when the settings are optimized. Similar
hybrid technology is applied in a different study [167] to optimize the production of biogas from cow
manure, banana stems, rice bran, paper waste, and sawdust which resulted in produciton of 10.280 dm?>
of biogas. Various fields of bioenergy resources in which Al can play an active role are demonstrated

in Figure 4.
Table 6. Summary of Al techniques and their applications in Bioenergy
Category Purpose Method Results References
ANN Fuel properties BPNN, High accuracy in fuel properties estimation [155-160]
. . . methane measurement (RMSE of

techniques if:t?;rt:n/ GRNN, RBENN 0.00263-0.00250)

production RNN biodiesel engine performance analysis
Other Classification, SVM, Improved accuracy in biodiesel classification, [161-163]
Al optimization GP optimized biomass supply chain, higher
techniques heating value estimation (RMSE of 0.942-0.987)
Hybrid Bioenergy Fuzzy Logic-ANN, ifot/fjr fuelwood cost estimation (MAPE of [164-167]
Al roduction opti-  ANN-ARIMA improved biomass boiler efficiency (saves 12

fniza om P ’ GWh annually),
techniques efficiency BPNN-GA increased methane production (6.9% more

methane)

Bioenergy generation

optimization optimization

ho!

]

Fuel properties estimation
and classification

|
|
|
|
|
|
|
Supply gain :
|
|
|
|
|
|
|
Figure 4. Al application for Bioenergy resources: improved bioenergy forecasting and supply chain optimization
with fuels properties estimation

3.7. Al 'in Hydrogen Energy

Petrone et al. [168] summarized model-based machine learning methods for proton exchange
membranes fuel cell system (PEMFC) diagnosis. Similarly, for a related topic, three sorts of non-modal-
based methods, including statistics, signal processing, and Al techniques, are described in [169]. A
summary of scientific approaches consisting of Al techniques in hydrogen energy is provided in Table
7 and is documented in multiple studies [40,170-194]. The ANN is a commonly used technique in
the hydrogen energy industry [40,170-178]. Three Al techniques, namely BPNN, MGGP, and SVR
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are employed to forecast the output voltage of Microbial Fuel cells (MFCs), with MGGP yielding the
highest accuracy [170]. The CO, hydrogenation activity is predicted by BPNN [171]. BPNN with eleven
training approaches are used to forecast the impact of hydrogen vehicle engine operating parameters
on CO,, carbon monoxide, NOy, and hydrocarbon emissions [172] and record 100% accuracy in the
carbon emission prediction. The PEM fuel cell’s stability and fault detection are observed using the
Bayesian method and LM with BPNN [173]. The cathode temperature and voltage of the fuel cell
with a Polymeric Electrolyte Membrane (PEMFC) are predicted with good precision [174]. Using two
inputs, throttle position and engine speed, the parameters of hydrogen engines (mass airflow (MAF))
are forecasted with the twelve distinct training techniques of BPNN [195]. Moreover, BPNN is used in
other studies [175-178] to forecast the Solid Oxide Fuel Cell (SOFC) stack voltage [177], parameters,
emissions of the hydrogen engine [175] (RMSE of + 4%), the MFC power density (RMSE of 4.89 x 1074
for a single configuration), and the hydrogen-functionalized graphene tensile strength prediction [176].

Hydrogen energy analysis has also been carried out using fuzzy logic methods [179-181] and
EU techniques [182-184]. Fuel Cell Hybrid Vehicles (FCHV) employ a parameter-based fuzzy logic
controller optimized with GA to regulate the amount of hydrogen consumed [181]. The SOFC’s current
density properties are modeled by a recurrent fuzzy system [180], and the ignition time of a hydrogen
automobile is predicted using a fuzzy logic technique utilizing three distinct kinds of membership
functions [179]. The PSO is used in addition to fuzzy logic and GA for FCHV energy optimization [182].
Nath et al. [183] reviewed the use of GA, PCA, and BPNN in modelling of hydrogen generation. The
Bird Mating Optimization (BMO) method for modeling the PEMFC system is proposed by Askarzadeh
etal. [184].

Studies [185-194] described the ANFIS and other hybrid Al methods. ANFIS is utilized in
the forecast of various safety parameters of hydrogen (such as hydrogen pressure, flow rate and
explosive limit), applied with ten input requirements [186]. Based on various training procedures,
the effectiveness of ANFIS is compared with different types of eleven BPNN (RMS of 1.4 in the
ANFIS-powered hydrogen pressure forecast). The parameters of Stack Current and Voltage (SOFC) are
predicted using ANFIS and the results are compared with the ANN approach (RMSE of less than 2 for
ANFIS forecast). Emissions (CO, CO,, HC and NOy) from the hydrogen automobile were forecasted
using ANFIS and BPNN-LM. The BPNN performs better than ANFIS in this regard (HC emission
RMSE of 1.58% using the BPNN) [187]. The performance of the PEM electrolyzer (H; flow rate, system,
and stack efficiencies) is predicted using ANFIS (the predicted inaccuracy of hydrogen flow rate is
1.06%) [188]. Effective PEMFC cell voltage prediction is possible using ANFIS [189]. A hybrid Al
method based on full logic and wavelet technique has been applied to decrease HEV energy usage
(0.06962 kMol H;), and the findings are compared with RBFNN and BPNN [190]. High precision
temperature forecasting of the hydrogen reactor is achieved by using a hybrid technique based on
SVR and PSO, and its performance is compared with that of SVR and BPNN [190]. When compared to
PSO and GA, the hybrid ABC algorithm outperforms other approaches in terms of minimizing the
Sum of Squared Errors (SSEs) for parameteric prediction of PEMFC [194]. Combining GA and BPNN
results in a 54 ml/g increase in biohydrogen output [193]. A similar set of techniques is applied in
different research [192] to maximize the SOFC cell characteristics (1.705% standard error of prediction
achieved).
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Table 7. Summary of Al techniques and their applications in hydrogen energy
Category Purpose Method Key findings References
ANN Voltage pre- BPNN, High accuracy in voltage prediction,  [40,170-
diction, 178]
techniques emissions MGGP, CO emission prediction (100%
o accuracy),
prediction,
o .
performance  SVR RMSE +4% for hydrogen engine
C parameters
optimization
Stability Monitoring  Bayesian Effective PEM fuel [173]
and fault stability, Method, cell stability and
detection detecting LM fault detection
faults
Parameter Hydrogen BPNN, Accurate prediction of [175-
177,195]
prediction ngine param- PSO parameters like mass air flow,
eters,
PEMFC pa- engine temperature, fuel pulse width
rameters
Fuzzy Optimization fuzzy Optimized hydrogen consumption, [179-181]
logic and Logic, GA modeled current density properties,
techniques control PSO ignition time prediction
Evolutionary ~Modeling GA, Efficient optimization for PEMFC [182-184]
algorithms and BMO and hydrogen generation modelling
ANFIS Safety pa- ANFIS High accuracy in forecasting safety [185-188]
parameters,
rameters
techniques forecasting, , hydrogen pressure, flow rate,
PEM
and PEM electrolyzer efficiency
electrolyzer L
prediction
performance
Hybrid Al  Improving  SVR, Improved HEV energy usage [190-194]
. reduction,
prediction a
Al accuracy, re- PSO, ABC, high precision temperature
. forecasting,
ducing
approaches  energy usage RBFNN minimized sum of squared errors for

PEMEC

3.8. Al in Hybrid Renewable Energy
In [196-198], a brief discussion about the application of Al techniques in the hybrids RERs is

presented. An overview of the methods developed for ideal sizing has been provided by Luna Rubio
etal. [196]. Zhau et al. [197] presented the design techniques for the solar-wind hybrid system, and
[198] provides an overview of the various EA approaches used in optimization. Table 8 compiles a
few hybrid RER applications using both the single and hybrid Al techniques [199-210]. For a hybrid
RER system based on a water power source, BPNN is utilized to predict generator state (on/off) and
power [199]. FLC has been employed by Chavez-Ramirez et al. [200] for energy management, while
the BPNN technique was used for hybrid RE power prediction. A different study [201] used PSO
in conjunction with the FLC and Cuckoo Search (CS) algorithms to investigate the energy control of
a hybrid renewable energy system (with the CS and a levelized energy cost of 2.01$). Hakimi et al.
[202] use PSO to optimize the hybrid RER system’s size in an attempt to cut expenses. The hybrid
RER system’s operation is optimized using an improved GA, which outperforms the conventional GA
approach [203]. The hybrid RER system’s performance parameters (energy cost, net current cost, and
generating cost) are optimized using the bee algorithm [204]. GA has been used by Khatib et al. [205]
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to maximize the storage capability, size of PV array, and windmill size of hybrid wind-photovoltaic
system. In hybrid energy (photo voltaic, fuel cell, windmill) systems, the optimization of size and
distribution is carried out using a multi-objective ABC method [206], which produces a high voltage
stability index. The hybrid wind-PV-diesel system’s size optimization is done by Markov-based GA
[207].

According to [208], four methods, PSO, Simulated Annealing (SA), Tabu Search (TS) and Harmony
Search (HS), perform better concerning wind-PV-battery and wind-PV-FC system size optimization.
The PSO performs better than the other three techniques. In hybrid Al approaches, the wind-PV-
battery system size is optimized using ANFIS to minimize production costs. Additionally, the hybrid
optimization (HO)-GA and the hybrid renewable energy optimization model for electric power are
compared with ANFIS’s performance [209]. Fuzzy logic-based and ANN controllers are devised as
hybrid AI technology to manage power flow between energy and storage units of hybrid RER systems
and to generate high storage of charge [210].

The ANFIS is also used for estimating wind power [211], biodiesel modeling [212], and radiation
of solar [213]. The ARIMA-SVR is used for tidal energy real-time estimation in [214]. For solar radiation
forecast, empirical decomposition, wavelet decomposition, ANN, and autoregressive approaches are
used [215]. In PV system load estimation, enhanced and hybrid ANN are used [216]. Several recent
studies [217-221,221,222] have also covered the specific applications of AI methods, including solar
PV system power tracking [218], estimation of wind and solar energy [218,219], decision systems in
RER [221], PV solar systems controllers [223], and energy management [222].

Table 8. Summary of Al techniques and their applications in hybrid renewable energy

Category Purpose Method Results References
ANN Predicting gen- BPNN High accuracy in predicting [199,200]
erator
techniques state,  power generator state (97%), effective
use,
power prediction for hybrid RE
energy manage-
systems
ment
Fuzzy logic Energy manage- FLC, PSO, Improy ed. energy management and [201-208]
ment, optimization,
and EA optimization, GA, CS, e.g., PSO-FLC for energy control,
techniques sizing Bee algorithm GA for storage optimization
ANFIS and Minimizing ANFIS, Effective cost minimization, accurate [209-217,224]
hybrid AI production ARIMA-SVR, power estimation, hybrid Al
costs,
approaches estimating Empirical Decomposi- methods outperform traditional
. approaches
power tion
Enhanced Specific Hybrid A, improved per formance in solar PV [218-223]
system tracking,
Al applications in (e.g.,, HO-GA, HOMER), wind and solar energy estimation,
techniques RE systems Data mining decision systems, and energy

management

4. Al Fostering the Integration of VRE in Power Systems: Economic Aspect

Table 9 lists the primary strategies that have previously been examined and have the potential to
affect the three categories of integration expenses described in the preceding section. As previously
stated, every action can have a complex impact on the electrical system and may directly or indirectly
impact several integration cost components. For instance, as demonstrated by models based on various
situations, numerous steps can yield significant cost reductions by enhancing overall power system
adaptability [225,226]. To keep things simple, this study associates each metric with the component
of integration cost that has the greatest potential for value generation, as the literature has discussed.
Next, it discusses these steps and gives an example of an Al system that can facilitate them. The
applications of Al that are covered here highlight Al’s ability to provide value to costs associated
with VRE integration, although they are by no means exhaustive as that would be impracticable.
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The present work provides the potential efficiency improvements from certain Al applications, these
metrics can vary in the literature and are often difficult to identify and organize. Table 9 provides a
synopsis of the covered use cases.

4.1. Mitigating Balancing Costs

In the energy system, supply and demand must always be equal, however, short-term uncer-
tainties surrounding VRE generation lead to deviations from contracted positions. This will result
in unintentional changes within a day of traditional power plants with increasing system costs
[237,288-290]. Improved prediction or more effective market operations can reduce balancing costs by
increasing liquidity and enabling traders to adjust their places in the market before unbalancing of the
system. Nowadays, demand forecasting [291-293], VRE generation forecasting [294-296], and markets
balancing strategies [297-299] are all supported by AL

4.1.1. Generation Forecasting

Scholars have primarily used model-based simulations to forecast solar and wind power that
may provide values to companies [227-229]. To demonstrate the forecasting of day-ahead solar power
generation and its value creation, the authors performed a simulation on the ISO New England system
operator in the US [227]. This was done under different situations with varying saturation levels and
advances in solar power prediction. Solar power prediction were demonstrated to increase consistently
for different prediction levels up to perfect prediction (i.e., 100% consistent improvement). A 25%
improvement in forecasting led to cost reductions of USD 0.33/MWh and USD 0.5/MWh for the
production of solar electricity at penetration levels of 9% and 18%, respectively. A 50% improvement
in forecasting resulted in cost reductions of USD 0.95/MWh and USD 0.62/MWh for solar power
generation at penetration levels of 9% and 18%, respectively. Overall, it has been elaborated that cost
savings increase with forecasting accuracy and solar power generation penetration level, however, the
marginal benefit of an improvement in prediction accuracy of more than 50% has decreased.

Several meteorological models have also been combined using machine learning to increase
the precision of forecasts for solar and wind power generation using the data from the US National
Renewable Energy Laboratory (NREL) and IBM’s Thomas ]. Watson Research Centre [228]. These
results were verified over a longer time frame at various US locations. The meteorological condition
categorization characteristics (column integrated cloud water content, solar zenith angle, etc.) are
included in their model because the forecast bias error of a single physical model is "localized," or
dependent on these parameters. The machine learning based model blending technique was frequently
demonstrated to lessen the "localized" inaccuracy of individual models when compared to predictions
based on the most accurate specific meteorological model, resulting in an accuracy gain of over 30%
for solar power forecasts. Al has also been used by the UK’s National Grid Electricity System Operator
[229] to enhance VRE generation predictions. In collaboration with the Alan Turing Institute, it has
produced a system that improved solar power predictions by 33% using 80 input factors.

Even though wind generation forecasting is more sophisticated than solar power forecasting, Al
can still improve it since wind generation forecasting employs techniques comparable to meteorological
forecasting, which has grown significantly in recent decades [300]. For instance, machine learning
algorithms were employed by DeepMind and Google [234] to predict the capacity of wind power 700
MW in the USA. Their models have increased the value of wind energy by almost 20% when compared
to a baseline situation, forecasting wind power output for 36 hours before the actual generating time.

4.1.2. Demand Forecasting

Demand forecasting is just as important to maintaining grid balance as generation forecasting.
The availability of data on power usage has greatly expanded, primarily as a result of the widespread
installation of smart meters [235], which has improved demand prediction. Hernandez et al. [233]
examined earlier research and compared several techniques with general linear versus non-linear
energy demand prediction models. With 2.04% of the average error for linear models, 3.20% for
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ANN-based models and 3.14% for ANN-based hybrid models, in a national or regional geographic
setting, it has been shown that linear models perform better than non-linear ones [233]. On the other
hand, linear models appear to be comparatively less reliable at the smart grid level in smart cities
(average error for hybrids based on ANNS is 2.28%, whereas for linear it is 4.71%). Previous work
[233] only employed non-linear models (average error of 4.82%) to forecast energy usage in smart
buildings and microgrids, as distributed generation introduces additional complexity and uncertainty,
particularly when VRE generation is involved. These findings also point to the potential benefits of Al,
especially in the form of ANN-based extremely nonlinear forecasting models, for improved demand
prediction in complicated environments and at progressively lower geographic and market scales. In
this instance, Saxena et al.’s hybrid model [236] for forecasting peak electric load also incorporates an
ANN model to facilitate demand response activities. For a year during the testing phase, the suggested
model properly forecasted 70% of the real days of peak load and suggested that a US institution may
save close to USD $80,000.

4.1.3. More Efficient Market Design

A better market structure can help lower balancing costs in addition to predicting generation
and demand [237]. Al can enhance the effectiveness of market balancing by accounting for the pace
and complexity of activities. Bidding procedures that maximize profits were demonstrated to cut
balancing expenses by 50% [239]. For instance, an algorithm called EUPHEMIA has been created
[231,232] to allocate energy and set day-ahead electricity pricing across Europe as well as to distribute
cross-border transmission capacity. With matched offers valued at an average of each day exceeding
EUR 200 million, the system is utilized to estimate day-ahead electricity costs for 25 European nations.
Although the algorithm currently relies on several rules and optimization models instead of using
machine learning, it may be feasible to make it better in the future by combining machine learning
and optimization to forecast parameters in advance or taking robustness into account, as has recently
been done with techniques at the intersection of machine learning and optimization [245]. Market-
generating companies were modeled in a different study by Kiran et al. [241] as agents that pick
up on the market environment. The data handling capacity of a multi-agent reinforcement learning
method from the electrical market and simulated ideal power flow was examined. By optimizing
the generating businesses’ profits, the agents reduced transmission line congestion and increased net
earnings by 15 to 20%.

4.2. Mitigating Profile Cost

Profile expenses are mostly brought on by the long-term and decreased use of pricey conventional
backup generation capacity to offset the unpredictable supply of VRE. To reduce the need for costly
backup energy generation equipment, they can be primarily controlled by making the power system
more flexible. The classification and evaluation of the many components of integration costs can be
complicated. However, some authors suggest that profile costs are the largest value pool that can
be affected by various strategies, including demand response and storage solutions [301]. Al can
further boost this as discussed next, even if it is already evident that storage technologies [302,303]
and demand response techniques [304,305] might be beneficial.

4.2.1. Demand Response

Demand response, which describes adjustments to end-users’ consumption habits, through mon-
etary rewards or enhanced usage optimization to match the power supply more closely, is becoming
more and more common within power networks [242,306-309]. In addition to profile costs, it has
complex effects [302] on integration costs generally, which makes it relevant for other cost components.
Demand response can reduce profile costs over time by reducing peak demand, maximizing capital
utilization, and delaying the need for network improvements. This can also have an impact on integra-
tion costs associated with the grid. It may also have an immediate influence on balancing expenses
since it affects the electrical markets [310,311]. Digital solutions, smart infrastructure, and Al are used
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[243] to increase the volume of demand response by 185 GW until 2040, creating an estimated value of
USD 270 billion, by avoiding investments in new electricity infrastructure, such as power generation
capacity, transmission, and distribution. By 2040, 1 billion residential buildings and 11 billion linked
household appliances are predicted to make up the majority of the global demand response volume.
This estimate may be overly optimistic or wrong, but it does show possibilities for the future.

Demand response can be supported by Al in several ways [244], including demand and future
power price predictions, load scheduling and management at the aggregator and customer levels,
incentive scheme design, and customer segmentation [312]. For instance, evolutionary game theory
and agent-based simulations were presented by Ramchurn et al. [245] to estimate the energy use of
every single dwelling. Typical load profiles for 26 million homes were employed in the simulation,
which included 5000 dwellings in the UK. The approach that was demonstrated decreased demand
peaks and, consequently, the grid’s required capacity by as much as 17% and 6% in carbon emissions.
Rocha et al. describe [246] a novel approach to energy planning for smart homes that is based on Al
approaches. This work presents an estimation of distributed generation while taking into account
variations in the price of power, a battery bank, operational cycles, and equipment priority. When
comparing smart homes with and without battery banks and distributed generation, the efficiency of
the system revealed a 51.4% cost savings. A machine learning method for a demand-side management
strategy that is both rule and prediction-based implementation in the residential sector was compared
by Pallonetto et al. [247]. The rule-based algorithm and the predictive algorithm resulted in savings
of 20.5% and 41.8%, respectively, on electricity end-use expenditures as associated with the baseline
situation. For utility generation expenses, savings for both methods fell into the same range.

Data centers are a viable domain of application for demand response, further showcasing the
possibilities of these methods [248,249]. Data centers used about 1% of the world’s electricity in
2019 [250]. Because they are highly automated, have sensors installed, can continuously monitor
their IT equipment, and can schedule many of their tasks to be completed ahead of schedule, they
allow for very flexible management of power demand through the use of cutting-edge technology
[248]. The extent of demand responsiveness of data centers might vary depending on how much they
engage with the electrical market [249]. The first level is to optimize energy consumption without
considering the power markets. Monitoring the price signals of the electrical markets to lower energy
prices can lead to a more sophisticated demand response. When the computational effort is split
among several geographically separated data centers, a third level can be reached [251,252] to benefit
from potential variations in the cost of electricity. For example, an energy-efficient, geographically
distributed, sustainable data center optimizer utilizing deep learning was proposed by Kang et al.
[253]. The suggested optimizer with deep learning guaranteed service quality requirements while
reducing the energy of data center costs by around 25% on average when associated with the traditional
rank-based genetic technique. All three levels may benefit from the application of Al, which can help
lower profile expenses.

Data center cooling is a crucial factor to consider when optimizing energy consumption because it
accounts for a considerable amount of the energy used [254]. A deep reinforcement learning framework
is used by Li et al. [255] to solve a problem of energy cost reduction including temperature constraints
in data centers. An assessment network is trained to predict an energy cost counter that is penalized by
the DC room’s cooling condition, and a policy network is trained to predict the ideal control options.
When tested on a simulation platform, the performance of their algorithm demonstrated an 11%
reduction in cooling costs compared to a physically built reference line control method. While not
tested in an actual data center setting, genuine data-based results showed a 15% decrease in cooling
expenses. Among the data centers, Google provides a real-world example of how Al can be used to
optimize energy consumption. There DeepMind Inc. [256,257] trained an ANN to predict average
Power Usage Effectiveness (PUE) which is the proportion of the total energy used in buildings to that
of information technology. The solution successfully decreased PUE by 15% and the amount of energy
consumed for cooling by 40%. Based on its ability to predict the pressure and temperature of the data


https://doi.org/10.20944/preprints202501.0631.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 January 2025 d0i:10.20944/preprints202501.0631.v1

24 of 42

center one hour in advance, DeepMind has been able to offer suggestions for consumption control.
As of 2018, DeepMind’s Al has direct control of a cooling system, requiring human involvement only,
when necessary, rather than humans implementing its recommendations. Multiple Google data centers
now host the scaled version of the system.

4.2.2. Storage Solutions

As the cost of storage technology declines, storage solutions, which may also become a crucial
source of adaptability with quick reaction times, can help to decrease profile expenses by the integration
of VRE sources in addition to demand response techniques. For example, the cost of lithium-ion battery
storage decreased by 85% between 2010 and 2018 [258]. A bottom-up analysis of manufacturing and
material costs further illustrates [259] that significant additional capital cost reductions for storage
systems are possible.

According to International Energy Agency (IEA) projections, battery storage capacity will increase
from 8 GW in 2019 to 330-550 GW by 2040, primarily as a result of cost-effectiveness [250]. According
to IEA projections, battery storage renewable curtailment in the EU may be reduced by 45 TWh by
2040, primarily with the help of digital technologies, and by an additional 22 TWh with demand
response enabled by digital means [243]. This would prevent around 30 Mt of CO, emissions and
restrict the curtailment of wind and solar PV power from 7% to 1.6%.

In the future, electric automobiles may potentially make innovative storage solutions possible.
Since Electric Vehicles (EVs) are both users of power and mobile battery storage services, they can
modify their consumption patterns with relative ease, which presents a unique use case for demand
response. This could have an impact on profile prices. These EVs have the potential to be crucial in the
future in terms of giving the grid flexibility, and Al can greatly help achieve this [260]. To minimize the
overall cost of energy for an electric vehicle, various machine learning-based algorithms can also be
created to control the charging of EVs in reaction to pricing in real-time. To decide whether to charge
EVs during connection sessions, Lopez et al. [261] presented intelligent charging approaches based
on various machine learning techniques (decision trees, random forests, SVM, and neural networks).
They computed cost savings through a variety of methods, demonstrating that deep neural networks
performed best and machine learning approaches generally had the major effect. Globally, there were
about 5.1 million EVs in 2018, however, the IEA [262] projects that by 2030, there will be between 135
and 250 million of them. The flexibility offered by "smart charging" might save between USD 100
and USD 280$% billion in new power infrastructure investments between 2016 and 2040, based on how
many EVs will be sold in the future [243]. Based on a 2025 California simulation [263], it is projected
that through vehicle-to-grid solutions, EVs could save between USD 12.8 and USD 15.4$ billion in
stationary electricity storage expenditures.

Al possesses the potential to expedite and simulate battery system development, manufacture,
and optimization [264-267]. Using data-driven tools to illustrate and comprehend battery storage
systems’ capacity degradation can also help to reduce expenses. By using machine learning, commercial
graphite-lithium-iron phosphate cells may be categorized and predicted based on their cycle life. For
instance, based on a dataset from cycling 124 cells under various fast-charging settings, Severson et al.
[264] showed that the cycle life prediction error improved by 9.1% when utilizing the first 100 cycles
and a classification error by 4.9% when using the first 5 cycles.

Al is being used more and more to support energy management to increase efficiency [269],
which is a crucial prerequisite to guarantee the financial sustainability of storage, and optimal system
configuration [268]. Mahmoud et al. [268] proposed an online monitoring system with Al assistance to
test a current commercial type-load profile linked to Western Australia’s South West Interconnected
System distribution network, to optimize the battery storage system'’s size and lower the associated
microgrid’s operating expenses. As per the simulated outcomes, the intelligence included in the control
of battery storage in the grid-connected without export, islanded, and grid-connected with export
functionality resulted in an annual generation cost reduction of 6.5%, 7.6%, and 11.5%, respectively.
To address issues with management, control, and real-time economic operations, Samuel et al. [270]
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created a deep convolutional neural network for multi-micro grids” energy management system. The
suggested model takes renewable energy, demand loads, energy storage devices, and current power
pricing into account. It was suggested that the best scheduling strategy be used to minimize the overall
daily operational expenses for several microgrids. As a result, the microgrid’s operating expenses can
drop by as much as 87.86%.

Based on previous optimal operation mode training datasets, supervised machine learning was
applied in [271] to forecast the real-time operating mode of the upcoming period of operation for
PV battery systems installed in homes. As a benchmark, various machine-learning-based algorithm
types were compared and assessed with a predictive control method based on a model-based economy.
The effectiveness of the algorithms was evaluated using real data sets gathered from 50 homes. The
outcomes demonstrated that the algorithms for machine learning were more accurate, which described
into greater savings throughout several assessments.

The Hornsdale Power Reserve is a similar development, which Tesla constructed in 2017 and
which has 129 MWh of storage capacity. It is the biggest stationary battery energy storage system
made of lithium-ion batteries in the world [272]. The Tesla-developed auto-bidder has enabled the
system to function and has made a substantial contribution to Southern Australia’s grid stability. A US
software business called Advances Microgrid Solution (AMS) also creates innovative Al-based energy
storage technologies based on the lessons learned from the Hornsdale Power Reserve. According to
AMS, Al-powered smart battery trading systems are five times more effective than the most skilled
human traders [273]. In a similar development, Tesla constructed the Hornsdale Power Reserve in
2017, making it the biggest energy storage system for stationary lithium-ion batteries in the world
with 129 MWh of storage [272]. The system, which runs on an auto-bidder created by Tesla, greatly
improves Southern Australia’s grid stability. Furthermore, flexible "smartened" electric heating on
the demand side may be capable of storing energy and releasing it as required, giving the power
system flexibility [313]. In the future, all of these might present more chances for Al use cases. To
sum up, data-intensive technologies and Al have the potential to reduce profile costs by improving
consumption optimization or enhancing power system flexibility through improved management of
the rapidly expanding, extremely extensive networks of dispersed storage devices, like EVs or storage
services. Since profile costs make up a significant portion of integration expenses, future value creation
and research in this area should concentrate on mitigating these costs.

4.3. Mitigating Grid-Related Costs

The conclusions examine how Al can affect grid-related expenses, mostly due to the necessity
of fortifying the electrical grid because of VRE fluctuations and the higher costs associated with
transmission infrastructure resulting from the generally remote locations of VRE generation sites
[226]. Keep in mind that the cost of constructing grid access for offshore windmills will probably be
higher than the cost of establishing a grid connection between solar PV fields, as grid-related expenses
vary depending on the VRE technology [314]. Forecasting the turbine position and line connection
topology using Al and other modeling tools allowed for the optimization of the initial investment
costs of large-scale offshore wind farms in the past [315]. To keep the cost of the circuit layout as low
as possible, an ant colony algorithm was used in conjunction with other techniques in that study to
establish the wind farm’s internal line connection topology.

4.3.1. Power Quality Disturbance

The VRE integration may cause significant disturbances to the power system, power quality and
distributed generation sources [274]. The VRE generation, particularly solar PVs, can result in the
power system’s behaviour from unidirectional to bidirectional, depending on power quality measures
in the grid [275]. Al techniques can assist in enhancing the grid’s power quality, which will increase
the system’s financial gains [276]. For instance, Singh et al.[277] used Al approaches to identify power
system conflicts and achieved an accuracy of 98.57% for forecast accuracy based on real conflicts and
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99.93% for simulated results. Kumar et al. [278] presented that the solar PV power filter could use Al
to enhance power quality.

4.3.2. Predictive Maintenance

It will be particularly crucial to schedule maintenance or stop power grid failures in VRE-intensive
areas where it is difficult to physically access the grid infrastructure for repair, in addition to the costs
associated with the investment. By providing improved predictive maintenance solutions, Al can
be used to optimize maintenance and reduce grid-related expenses. The literature examines the
application of Al-supported predictive maintenance along the value chain for electricity, with a focus
on power lines [279-282], as well as VRE [283-285] and conventional generating [286]. The partnership
between Columbia University and New York City’s Con Edison to build the city’s electrical grid
with a predictive maintenance system based on machine learning [281] is an illustration of how Al is
affecting predictive maintenance. A basic procedure that aims to forecast the likelihood of component
and system failures was created using previous electrical grid data models. After the system was
implemented, 1468 out of 4590 network days were failure-free, as opposed to 908 days that were
failure-free before. This represents a significant improvement. As an additional illustration, Gao et
al. [287] optimized the distribution network using an algorithm based on reinforcement learning,
primarily to boost hosting capacity, lower network line losses, and decrease VRE curtailment. Without
requiring any interaction with the real physical network, which is expensive and fraught with security
risks, the algorithm was trained using past data from network reconfigurations. The algorithm greatly
reduces the weekly operating costs of the behaviour policy for most of the datasets from the past.
The model can result in weekly operational cost savings of up to 60%, depending on the network
architecture.

More broadly, E. ON has created the predictive analytics for wind Turbines (Pred ATur) system
[284] to improve personnel scheduling and maintenance. The Pred ATur integrates the output of two
complementary approaches using sensor data from wind turbines. In the meanwhile, the machine
learning strategy expands upon a digital doppelganger of the wind turbines that simulates every
sensor output, the park-average approach checks the state of the turbines by comparing them with
those of nearby turbines. Currently, Pred ATur keeps an eye on about 1,800 turbines. The projected
annual EBITDA impact for Pred ATur detections in 2017 is €3.2-5.7 million based on value estimates.

5. Discussion

The integration of VRE sources into power systems presents a host of economic and operational
challenges, which Al promises to mitigate through various innovative applications. This section
critically examines the findings of the systematic review, highlighting the strengths and limitations of
Al-driven approaches, and identifying areas for future research and improvement.

5.1. Economic Value Creation of Al in VRE Integration

Al's potential to create economic value in VRE integration is evident across multiple applications.
Generation and demand forecasting, and market design improvements are particularly impactful in
mitigating balancing costs. Al-driven forecasting models increase the accuracy of VRE generation
predictions, thereby reducing the need for costly balancing actions. However, the economic benefits
are highly contingent on the quality and granularity of the data used to train these models. Inadequate
data quality or insufficient data points can lead to suboptimal predictions, limiting the economic
benefits Al can offer.

Moreover, Al’s ability to enhance market design, particularly in the context of balancing markets,
has significant implications for economic efficiency. Al algorithms can optimize bidding strategies,
reduce market inefficiencies, and ultimately lower balancing costs. However, the implementation of Al
in market design also raises concerns about fairness, transparency, and market manipulation. Ensuring
that Al-driven market mechanisms are designed with robust safeguards and regulatory oversight is
essential to prevent potential exploitation and ensure equitable outcomes for all market participants.
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5.2. Enhancing Demand Response and Storage Solutions

Al also plays a crucial role in enhancing demand response and optimizing storage solutions,
both are vital for mitigating profile costs. Demand response strategies, supported by Al, allow for
more efficient consumption patterns and load management, reducing peak demand and associated
costs. Furthermore, Al-driven algorithms for managing battery storage systems and EVs charging
can significantly improve system efficiency and reduce operational costs. Despite these advantages,
the economic viability of Al in demand response and storage solutions depends on the scalability of
these technologies and the regulatory frameworks governing energy markets. Additionally, the initial
investment required for Al implementation in these areas can be a barrier to widespread adoption.

The potential of Al to optimize the integration of Distributed Energy Resources (DERs) through
advanced demand response and storage solutions cannot be overstated. By enabling real-time moni-
toring and dynamic management of DERs, Al can facilitate the seamless integration of these resources
into the grid, enhancing overall system flexibility and resilience. However, the complexity of man-
aging a diverse array of DERs, coupled with the need for robust cybersecurity measures, presents
significant challenges. Addressing these challenges will be crucial to unlock the full economic potential
of Al-driven demand response and storage solutions.

5.3. Addressing Grid-Related Costs Through Al

Al’s capability to enhance predictive maintenance and improve power quality is essential for
addressing grid-related costs. Predictive maintenance, enabled by machine learning and data ana-
lytics, can foresee potential failures of power grid infrastructure, thereby reducing downtime and
maintenance costs. Similarly, Al techniques can optimize power quality by identifying and mitigating
disturbances, thus ensuring a stable and reliable power supply. However, the effectiveness of these
Al applications relies heavily on the integration of advanced sensing technologies and real-time data
processing capabilities. The high cost of deploying these technologies and the complexity of integrating
Al systems with existing grid infrastructure remain significant challenges.

Additionally, Al can play a pivotal role in optimizing the planning and operation of power grids.
By leveraging Al for grid management, operators can enhance grid stability, optimize power flows,
and reduce transmission losses. Advanced Al algorithms can also facilitate the efficient integration
of renewable energy sources by dynamically adjusting grid parameters in response to real-time
data. Nevertheless, the successful deployment of Al in grid management necessitates significant
investments in digital infrastructure and skilled personnel. Ensuring that grid operators have the
necessary expertise to implement and manage Al technologies will be critical to realizing the full
benefits of Al in grid-related applications.

5.4. Challenges and Limitations

While Al offers substantial benefits, several challenges and limitations must be acknowledged.
Figure 5 illustrates the limitation’s of Al which hinder its practical deployment and widespread
adoption. The reliability and transparency of AI models have concerns, particularly in safety-critical
applications such as power systems. Al models are often perceived as black boxes, making it difficult
to interpret their decision-making processes. This lack of transparency can hinder trust and acceptance
among stakeholders. Moreover, the cybersecurity risks associated with Al systems are a growing
concern, as they could be potential targets for cyberattacks, jeopardizing the stability and security
of power systems. Furthermore, the success of Al applications in VRE integration is closely tied to
the availability of high-quality data. Inconsistent or inaccurate data can lead to false predictions and
suboptimal decisions, undermining the economic benefits of Al There is also a need for standardized
methodologies to evaluate the economic impact of Al applications, as current approaches vary widely,
making it challenging to compare results across different studies. Ethical considerations also play
significant role in the deployment of Al in energy systems. Ensuring that Al algorithms are designed
and implemented in a manner that is fair, unbiased, and respects privacy is essential. Addressing
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these ethical considerations will require ongoing collaboration between Al developers, energy sector
stakeholders, and policymakers to establish clear guidelines and standards.
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Figure 5. Limitations of AI: addressing the challenges of privacy, reliability and ethical concerns

5.5. Future Research Directions

Future research should focus on several key areas to fully harness Al’s potential in VRE integration.
First, developing transparent and interpretable Al models is crucial to gaining stakeholder trust and
facilitating widespread adoption. Efforts should be made to enhance the explainability of Al algorithms
to ensure that their decisions can be understood and validated by human operators. Second, addressing
the cybersecurity risks associated with Al systems is imperative. Future work should also explore
the robust security frameworks and protocols to protect Al-driven power systems from cyber threats.
Collaboration between Al researchers, cybersecurity experts, and energy sector stakeholders will be
essential in this endeavor. Third, advancing data collection and processing techniques will significantly
improve the accuracy and reliability of Al applications. Investment in advanced sensing technologies
and real-time data analytics will provide the high-quality data necessary for optimal Al performance.
Additionally, developing standardized evaluation methodologies will enable more consistent and
comparable assessments of Al's economic impact across different studies.

Finally, policy and regulatory frameworks should be developed to support the integration of Al
in the energy sector. Policymakers should create an enabling environment that encourages innovation
while ensuring the safe and secure deployment of Al technologies. Incentives for choosing Al-driven
solutions and guidelines for data sharing and privacy protection will be critical in this regard. To further
improve the economic value of Al in VRE integration, interdisciplinary research that combines insights
from computer science, economics, and energy engineering will be essential. Such collaborative efforts
can lead to the development of innovative Al-driven solutions that address the multifaceted challenges
of VRE integration. Al has tremendous potential for enhancing the economic efficiency and operational
reliability of VRE integration. While significant progress has been made, addressing the challenges
and limitations identified in this discussion will be crucial for realizing Al’s full potential. Continued
research, investment, and policy support are essential to foster a resilient and economically sustainable
energy landscape powered by Al-driven innovations.

6. Conclusions

This systematic review has comprehensively explored the potential of Al to enhance the economic
efficiency and operational reliability of VRE integration into power systems. The increasing penetration


https://doi.org/10.20944/preprints202501.0631.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 January 2025 d0i:10.20944/preprints202501.0631.v1

29 of 42

of VRE is driven by the urgent need to mitigate climate change and achieve sustainable development
goals, however, it is associated with significant economic and operational challenges. Al has emerged
as a promising solution to address these challenges through its applications in generation and demand
forecasting, market design, demand response, storage solutions, power quality enhancement, and
predictive maintenance. Key findings from this review include:

1. Al-driven models significantly enhance the accuracy of VRE generation and demand forecasts,
leading to reduced balancing costs and improved grid stability. However, the economic benefits
of these models are contingent on the quality and granularity of input data. Ensuring high-quality,
comprehensive datasets is crucial for maximizing the economic impact of Al applications.

2. Alalgorithms optimize market bidding strategies, reduce inefficiencies, and lower balancing costs.
However, the implementation of Al in market design must address issues of fairness, transparency,
and potential market manipulation to ensure equitable outcomes for all participants.

3. Al enhances demand response strategies and optimizes the management of battery storage
systems and EVs charging, resulting in significant cost savings and improved system efficiency.
The scalability of these techniques, and supportive regulatory frameworks are essential for their
widespread adoption and economic viability.

4. Al techniques improve power quality by identifying and mitigating disturbances and enhance
predictive maintenance by forecasting potential failures of power grid infrastructure. The integra-
tion of advanced sensing technologies and real-time data processing capabilities is crucial for the
effectiveness of these applications.

5. The reliability and transparency of Al models, cybersecurity risks, data quality, and ethical con-
siderations are significant challenges to be addressed. Developing transparent and interpretable
Al models, robust security frameworks, and standardized evaluation methodologies are essential
for getting stakeholders’ trust and ensuring successful Al deployment in VRE integration.

6.  Future research should focus on enhancing the explainability of Al algorithms, addressing
cybersecurity risks, advancing data collection and processing techniques, and evolving policy
and regulatory frameworks to support Al integration in the energy sector. Interdisciplinary
research that combines insights from computer science, economics, and energy engineering will
be critical for developing innovative Al-driven solutions.
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