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Abstract

This study develops and analyzes an optimal control model for the transmission dynamics of Mpox
across four countries (Nigeria, Spain, Italy, and the Democratic Republic of Congo (DRC)) with a
focus on evaluating the cost-effectiveness of awareness, effective treatment, and a combination of
both control strategies. Using a compartmental model and Pontryagin’s Maximum Principle, we
implement numerical simulations to assess the efficiency indices (EI), total cost (TC), and incremental
cost-effectiveness ratios (ICER) for awareness control only, treatment only, and combined control
interventions. Results reveal that while combined strategies achieve higher infection prevention,
effective treatment only strategies exhibit lower ICER values, indicating greater cost-effectiveness in all
countries. These findings highlight that while integrated approaches are epidemiologically impactful,
targeted effective treatment interventions may offer optimal public health value, particularly in settings
with limited healthcare resources like DRC and Nigeria.

Keywords: Mpox transmission dynamics; mathematical modeling; strain-specific epidemiology;
optimal control; incremental cost effectiveness ratio; efficiency index

1. Introduction
Mpox, previously known as monkeypox, is a zoonotic viral infection caused by the monkeypox

virus (MPXV), classified under the genus Orthopoxvirus in the Poxviridae family [1,2]. First identified
in 1958 in laboratory monkeys in Copenhagen, Denmark, the disease was recognized as a human
health concern in 1970, following the first confirmed human case in the Democratic Republic of Congo
(DRC) [1–3]. In 2022, the World Health Organization (WHO) officially renamed the disease Mpox to
mitigate the stigmatization associated with its former name [4]. Despite its classification as a neglected
tropical disease, the resurgence of Mpox cases beyond endemic regions underscores the urgent need
for targeted public health interventions, particularly in resource-limited settings where access to
healthcare remains a challenge.

Epidemiologically, mpox remains endemic in several African countries, particularly in central
and western Africa, where sporadic outbreaks have been documented since its discovery. The virus is
characterized by two genetically distinct clades: Clade I (Congo Basin) and Clade II (West African).
Clade I (with subclades Ia and Ib) is associated with a higher fatality rate for cases of approximately
10% and increased transmissibility, making it a critical public health concern in regions with limited
healthcare infrastructure [2,5,6]. Clade II (with subclades IIa and IIb), specifically Clade IIb, is responsi-
ble for the global outbreak of 2022, exhibits a lower virulence but remains a significant epidemiological
threat due to its potential for human-to-human transmission, particularly in densely populated urban
centers [2,5,6]. These clades have spread significantly to Europe and North America; however, the
threat posed by clade I remains low, while clade II mpox is still circulating at low levels.
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The re-emergence of mpox beyond its endemic regions serves as a stark reminder of the global
interconnectedness of infectious diseases. It underscores the importance of integrated surveillance
systems, rapid response frameworks, and international cooperation to prevent and manage emerging
zoonotic threats effectively. The 2022 outbreak marked a pivotal moment in mpox epidemiology, as
the disease spread rapidly beyond its endemic regions to more than 100 countries, including Europe,
the Americas, and Asia. This unprecedented spread highlighted the potential for global dissemina-
tion of the virus, driven by increased international travel, urbanization, and possibly asymptomatic
transmission. The outbreak also underscored the urgent need for comprehensive surveillance, rapid
diagnostic testing, and targeted public health interventions to curb the spread, particularly in settings
with limited resources [7–9].

Moreover, mathematical modeling studies have been instrumental in elucidating the transmis-
sion dynamics of Mpox and identifying optimal control strategies. Ngungu et al. [10] developed a
mathematical epidemiological model using real data from the United Kingdom to assess the impact of
non-pharmaceutical interventions on the transmission dynamics of Mpox, highlighting the effective-
ness of targeted control measures in mitigating infection spread. Furthermore, the dynamics of mpox
transmission have been extensively studied through some novel modeling approaches, emphasizing
the role of contaminated surfaces, asymptomatic infection, and co-infections with other diseases such
as COVID-19. For instance, Hassan et al. [11] developed a deterministic model incorporating environ-
mental transmission pathways and contaminated surfaces to emphasize the role of fomite transmission
in sustaining outbreaks and to assess the stability of the disease-free and endemic equilibria. Their
findings highlight that while effective control measures can reduce disease prevalence, the persistence
of contaminated surfaces remains a significant risk factor for Mpox transmission. Similarly, Li et al.
[7] assessed the impact of asymptomatic infection on disease spread in Nigeria, demonstrating that
personal protection coupled with effective vaccination is crucial for mitigating outbreaks. Co-infection
scenarios involving Mpox and other viral diseases such as COVID-19 have also been examined. Ach-
eneje et al. [12] analyzed the concurrent transmission dynamics of both diseases, incorporating optimal
control strategies aimed at reducing co-infection rates through social distancing, rodenticides, and
vaccination. Their cost–benefit analysis underscores the importance of integrated control measures in
minimizing both infection rates and associated costs.

Environmental factors have also been incorporated into mpox transmission models. Alshehri and
Ullah [9] emphasized the impact of environmental viral concentration, showing that environmental
contamination can significantly influence disease dynamics, particularly in densely populated urban
settings. Their model recommends implementing optimal control strategies targeting environmental
viral loads to effectively contain outbreaks.

Recent studies have further explored the application of optimal control theory to Mpox trans-
mission dynamics and have assessed the effectiveness of intervention strategies such as vaccination,
personal protective equipment, and isolation measures, underscoring the importance of context-specific
control measures tailored to different epidemiological settings. Adepoju and Ibrahim [13] focused
on vaccination and immunity loss following recovery, employing Pontryagin’s maximum principle
to determine cost-effective control strategies. Rashid et al. [8] extended these efforts by developing
a hybrid fractional Mpox model that integrates external factors, illustrating the benefits of targeted
interventions in reducing the basic reproduction number and associated healthcare costs. Building
on their team’s previous work on mathematical modeling approaches to investigate the transmission
dynamics of the Mpox virus [14], Peter et al. [15] conducted a comparative analysis of cost-effective
strategies for Mpox control, identifying the optimal combination of treatment and public awareness
campaigns. Their findings indicate that while combined strategies are effective in reducing disease
prevalence, targeted treatment-only interventions exhibit lower incremental cost-effectiveness ratios
(ICERs), particularly in resource-limited settings like Nigeria and the DRC.

Building on these foundational studies and our previous work in [16], the present study develops
and analyzes an optimal control model for Mpox transmission dynamics across four countries: Nigeria,
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Spain, Italy, and the DRC. By implementing a compartmental model and Pontryagin’s Maximum
Principle, we aim to assess the cost-effectiveness of awareness, treatment, and combined control
strategies through numerical simulations. The efficiency indices (EI), total cost (TC), and ICER for each
intervention are evaluated, providing insights into the optimal public health strategies for mitigating
Mpox outbreaks in diverse epidemiological contexts.

The remainder of this study is organized as follows: In Section 2, we develop a mathematical
model to analyze the transmission dynamics of Mpox, extending it to include optimal control strategies
focused on awareness, treatment, and a combination of both interventions. This section also derives
the control reproduction number and characterizes the optimal control strategies using Pontryagin’s
Maximum Principle. Section 3 presents numerical simulations to assess the impact of the proposed
control strategies across four countries — Nigeria, Spain, Italy, and the Democratic Republic of Congo
— evaluating the effectiveness of awareness-only, treatment-only, and combined control measures in
reducing Mpox transmission. In Section 4, a cost-effectiveness analysis is conducted, involving the com-
putation of Efficiency Indices (EI), Total Cost (TC), and Incremental Cost-Effectiveness Ratios (ICER)
for each intervention scenario, identifying the most economically viable strategies in both resource-rich
and resource-limited settings. Finally, in Section 5, we discuss the key findings, highlighting their
implications for public health policy and identifying potential avenues for future research, particularly
in optimizing intervention strategies for emerging zoonotic diseases in settings with limited healthcare
resources.

2. Mathematical Model Formulation
The model we developed in this article takes into consideration the two strains (Clade I and Clade

II) of the Mpox virus, which are based on two different infection pathways in the human population
of the model. The total human population at time t, denoted by N(t), is subdivided into susceptible
humans S(t), exposed humans E(t), infectious humans based on Clade I I1(t), infectious humans
based on Clade II I2(t), hospitalized humans H(t), and recovered humans R(t). So, the total human
population is given by

N(t) = S(t) + E(t) + I1(t) + I2(t) + H(t) + R(t), (1)

while the mammal population is sub-divided into two compartments, susceptible Sm(t) and infectious
Im(t), such that the total mammal population is given by

M(t) = Sm(t) + Im(t). (2)

The total population of both human and mammal populations considered in the model dynamics is
given as

NT(t) = N(t) + M(t). (3)

Thus, the transmission model with two strain infection dynamics is represented by the following
system of non-linear ordinary differential equations:

Ṡ = Πh − (λh + µh)S + ϵR

Ė = λhS − γEh − µhEh

İ1 = (1 − θ)γEh − (τ1 + δ1 + µh)I1

İ2 = θγEh − (τ2 + δ2 + µh + ψ)I2

Ḣ = τ1 I1 + τ2 I2 − (δ3 + µh + η)H

Ṙ = ηH + ψI2 − (ϵ + µh)R
˙Sm = Πm − λmSm − µmSm

˙Im = λmSm − µm Im

(4)
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under the following initial conditions:

S(0) > 0, E(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0, H(0) ≥ 0, R ≥ 0, Sm > 0, Im ≥ 0. (5)

The effective contact rate with an infectious human or infectious mammal is defined as:

λh =
βh(I1 + σI2)

Nh
, λm =

αβhm(I1 + σI2)

Nh
+

βm Im

Nm
. (6)

The schematic diagram of the model is presented in Figure 1 and the state variables and parameters
of the model are described in Table 1. In the appendix, we present some mathematical analysis of
model (4).

Figure 1. Schematic Diagram for Dual Strain Mpox Model.

2.1. Development of Optimal Control Model

In this section, we aim to develop an optimal control model designed to reduce the incidence of
Mpox in the selected countries Italy, Spain, the Democratic Republic of the Congo (DRC), and Nigeria.
This model incorporates three distinct control variables:

• Awareness Campaign u1: This control represents initiatives aimed at preventing Mpox through ed-
ucational measures. It leverages social media, mainstream media, and civil society organizations,
including religious groups, to disseminate information and promote preventive behaviors.

• Effective Treatment and Management u2: This control focuses on specific antiviral treatments for
Mpox, including tecovirimat (TPOXX), brincidofovir, and cidofovir, to improve patient outcomes
and reduce disease transmission.

These control measures are integrated into the model 4 to optimize the mitigation strategies of Mpox
in selected countries.

Ṡ = Πh − (1 − u1)λhS + µhS + ϵR

Ė = (1 − u1)λhS − γEh − µhEh

İ1 = (1 − θ)γEh − (τ1 + δ1 + µh)I1

İ2 = θγEh − (τ2 + δ2 + µh + ψ)I2

Ḣ = τ1 I1 + τ2 I2 − (δ3 + µh)H − (η + u2)H

Ṙ = (u2 + η)H + ψI2 − (ϵ + µh)R
˙Sm = Πm − (1 − u3)λmSm − µmSm

˙Im = (1 − u3)λmSm − µm Im

(7)
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under the following initial conditions:

S(0) > 0, E(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0, H(0) ≥ 0, R ≥ 0, Sm > 0, Im ≥ 0. (8)

The goal is to reduce the number of infected individuals for both Clade I and Clade II while keeping
intervention costs minimal. The control measures include u1(t) for awareness campaigns, u2(t) for
effective treatment. Mathematically, this objective is achieved by minimizing the following cost
function, formulated as a quadratic function of the control variables to align with established standards
in the literature [17–20]. Thus, the model’s objective functional is given by:

J (u1, u2) =
∫ t f

t0

(
w1E + w2 I1 + w3 I2 + w4H +

1
2

2

∑
i=1

ϕiu2
i

)
.dt, (9)

and

J (u∗
1 , u∗

2) = minJ (u1, u2) : u1, u2 ∈ U, (10)

Thus, the control set is defined as

U = {u1(t), u2(t) ∈ R2}

where u1(t), u2(t), u3(t) are Lebesgue measurable functions satisfying

0 ≤ u1(t), u2(t) ≤ 1, for 0 ≤ t.

From equation 9, t0 and t f denote the initial and final time, respectively. The parameters w1, w2, w3,
and w4 represent weight constants corresponding to the exposed individuals, individuals infected
with strain I, individuals infected with strain II, and hospitalized individuals, respectively. These
weights reflect the relative importance of reducing specific population groups to effectively mitigate
the spread of Mpox in selected countries. Additionally, ϕi (for i = 1, 2) are weights designed to capture
the relative costs or efforts associated with implementing each time-dependent control strategy.

For the purpose of this study, we assume hypothetical values for the upper limits of the control
functions:

u1 max = 1, u2 max = 1

However, these values are selected based on the assumption that they are realistically achievable
given the available resources.
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Table 1. Description of Variables and Parameters Used in the Model (4).

Parameter Interpretation
Πh Recruitment rates into the human population
λh Transmission rate of individuals to the exposed from the susceptible class
ϵ Re-infection rate or loss of immunity of recovered individuals for both clade
γ Transmission rate of individuals from exposed class to

infectious compartment for clade I and clade II
θ The proportion of individuals infected
τ1 Hospitalised rate of individuals in infectious population clade I
τ2 Hospitalised rate of individuals in infectious population clade II
δ1 Disease-induced death rate in infectious population clade I
δ2 Disease-induced death rate in infectious population clade II
δ3 Disease-induced death rate in infectious population in the hospitalised class
η Recovery rate of individuals from hospitalized
ψ Recovery rate of individuals from infectious population clade II
µh Natural mortality rate of human population
Πm Recruitment rates into the vector population
λm Transmission rate of susceptible vector to infectious vector
µ Natural mortality rate of the vector population
α Modification parameters that reduce the infection transmission

rate between humans and mammals
βh The effective human-to-human transmission rate of Mpox
βhm The animal-to-human (reverse zoonotic) transmission rate.
βm The animal-to-animal (or reservoir-to-reservoir) transmission rate.

2.2. Control Reproduction Number

We establish a threshold parameter to control Mpox spread in selected countries using the next-
generation matrix method. This approach is widely recognized and reliable, as demonstrated in related
works [3,19,21,22]. To achieve this, model equation (11) is simplified to focus on the compartments
relevant to disease transmission.

Ė = (1 − u1)λhS − γEh − µhEh

İ1 = (1 − θ)γEh − (τ1 + δ1 + µh)I1,

İ2 = θγEh − (τ2 + δ2 + µh + ψ)I2,
˙Im = λmSm − µm Im,

(11)

F =


0 (1 − u1)βh (1 − u1)βhσ 0
0 0 0 0
0 0 0 0
0 βhmαµhπm

πhµm

βhmασµhπm
πhµm

βm

; V−1 =


γ + µh 0 0 0

(−1 + θ)γ k1 0 0
−θγ 0 k2 + ψ 0

0 0 0 µm


for simplification κ1 = (δ1 + µh + τ1), κ2 = (δ2 + µh + τ2), while the control reproduction number is
computed as:

ρ(FV−1) = Rc =
(1 − u1)βhγ[κ1σθ + (1 − θ)(κ2 + ψ)]

(γ + µh)κ1(κ2 + ψ)
(12)

in the absence of control measure to mitigate the spread of Mpox in each of the countries, the control
reproduction number computed becomes the basic reproduction number computed as:

R0 =
βhγ[κ1σθ + (1 − θ)(κ2 + ψ)]

(γ + µh)κ1(κ2 + ψ)
(13)
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In Figure 2, the effect of the control measure on the control reproduction number in equation
(12) is illustrated by plotting the transmission rate (βh) against the control measure (u1) for selected
countries. The visualization shows that as the transmission rate decreases and disease awareness
increases, the reproduction number gradually declines over time.

(a) Spain Contour Plot (b) Italy Contour Plot

(c) Nigeria Contour plot (d) DRC Contour Plot
Figure 2. Contour plots for Spain, Italy, Nigeria, and the DRC using the control reproduction numbers as the
response function

2.3. Characterization of the optimal control

The optimal control variables (u∗
1 , u∗

2), associated with the three intervention strategies, along with
their corresponding state variables E∗, I∗1 , I∗2 , H∗, are determined by applying Pontryagin’s Maximum
Principle [17,23]. The necessary conditions for optimality are derived accordingly, while the terminal
conditions for the adjoint variables are specified using the transversality conditions as described by
Hartl [18]. Thus,the Hamiltonian H is given by:

H =w1E + w2 I1 + w3 I2 + w4H +
1
2
(ϕ1u2

1 + ϕ2u2
2 + ϕ3u2

3)

+ χ1[Πh − (1 − u1)(λh + µh)S + ϵR]

+ χ2[(1 − u1)λhS − γEh − µhEh]

+ χ3[(1 − θ)γEh − (τ1 + δ1 + µh)I1]

+ χ4[θγEh − (τ2 + δ2 + µh + ψ)I2]

+ χ5[τ1 I1 + τ2 I2 − (δ3 + µh + η + u2)H]

+ χ6[(η + u2)H + ψI2 − (ϵ + µh)R]

+ χ7[Πm − λmSm − µmSm, ]

+ χ8[λmSm − µm Im]

(14)

where χi, i = 1, . . . , 8 are the adjoint variables. Thus, the Pontryagins maximum principle [18] is
applied.
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The optimal solution for u∗ = (u1, u2) can be determined by applying the necessary conditions
established by Pontryagin’s principle. This process entails differentiating H with respect to each control
variable and solving the resulting equations. Through this approach, we obtain the expressions for the
optimal control variables u∗ = (u∗

1 , u∗
2) as follows:

∂H
∂u1

= 0,
∂H
∂u2

= 0

Then the following optimal conditions for (u∗
1 , u∗

2) are obtained as:

u1 =
S[βh(σI2 + I1)(χ2 − χ1)− µhNχ1]

Nϕ1

u2 =
H(χ5 − χ6)

ϕ2

(15)

ensuring the optimal values obtained in equation 15 is always in the interval [0, 1] the optimal value
for each control is then defined as follows:

u∗
1 =min

{
max

(
0,

S[βh(σI2 + I1)(χ2 − χ1)− µhNχ1]

Nϕ1

)
, u1max

}
,

u∗
2 =min

{
max

(
0,

H(χ5 − χ6)

ϕ2

)
, u2max

} (16)

By substituting u∗
1 , u∗

2 into equation 14, the optimal condition for the Hamiltonian H∗ is obtained.
Furthermore, the adjoint system is derived by computing the partial derivatives of H with respect to
each state variable

dχ∗(t)
dt

= −∂H∗

∂x

leading to the following expressions:

dχ∗
1

dt
= −∂H

∂S
=− χ1

[
(1 − u1)βh

(I2σ + I1)S
N2 − (1 − u1)

(
βh(I2σ + I1)

N
+ µh

)]
− χ2

[
(1 − u1)

βh(I2σ + I1)

N
− (1 − u1)

βh(I2σ + I1)S
N2

]
− χ7

αβhm(I2σ + I1)Sm

N2 + χ8
αβhm(I2σ + I1)Sm

N2

(17)

dχ∗
2

dt
= −∂H

∂E
=− w1 −

χ1(1 − u1)βh(I2σ + I1)S
N2 − χ2

[
−(1 − u1)βh

(I2σ + I1)S
N2 − γ − µh

]
− χ3(1 − θ)γ − χ4θγ − χ7αβhm

(I2σ + I1)Sm

N2

+ χ8αβhm
(I2σ + I1)Sm

N2

(18)

dχ∗
3

dt
= −∂H

∂I1
=− w2 + χ1(1 − u1)

(
βh
N

− βh(I2σ + I1)

N2

)
S

− χ2

[
(

1 − u1)Sβh
N

− (1 − u1)
βh(I2σ + I1)S

N2

]
− χ3(−r1 − d1 − µh)

− χ5r1 + χ7

[
αβhm

N
− αβhm(I2σ + I1)

N2

]
Sm

− χ8

[
αβhm

N
− αβhm(I2σ + I1)

N2

]
Sm

(19)
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dχ∗
4

dt
= −∂H

∂I2
=− w3 + χ1(1 − u1)

(
βhσ

N
− βh(I2σ + I1)

N2

)
S

− χ2(1 − u1)

[
Sβhσ

N
− βh(I2σ + I1)S

N2

]
− χ4(−r2 − d2 − µh − ψ)

− χ5r2 − χ6ψ + χ7

[
αβhmσ

N
− αβhm(I2σ + I1)

N2

]
Sm

− χ8

[
αβhmσ

N
− αβhm(I2σ + I1)

N2

]
Sm

(20)

dχ∗
5

dt
= − ∂H

∂H
=− w4 − χ1(1 − u1)βh

(I2σ + I1)S
N2 + χ2(1 − u1)βh

(I2σ + I1)S
N2

− χ5(−d3 − µh − η − u2)− χ6(η + u2)

− χ7(1 − u3)
αβhm(I2σ + I1)Sm

N2 + χ8(1 − u3)
αβhm(I2σ + I1)Sm

N2

(21)

dχ∗
6

dt
= −∂H

∂R
=− χ1

[
(1 − u1)βh(I2σ + I1)S

N2 + ϵ

]
+ χ2

(1 − u1)βh(I2σ + I1)S
N2

− χ6(−ϵ − µh)− χ7(1 − u3)
αβhm(I2σ + I1)Sm

N2

+ χ8(1 − u3)
αβhm(I2σ + I1)Sm

N2

(22)

dχ∗
7

dt
= − ∂H

∂Sm
=− χ7

[
(1 − u3)βm ImSm

(Sm + Im)2 − (1 − u3)

(
αβhm(I2σ + I1)

N
+

βm Im

Sm + Im

)
− µm

]
− χ8

[
− (1 − u3)βm ImSm

(Sm + Im)2 + (1 − u3)

(
αβhm(I2σ + I1)

N
+

βm Im

Sm + Im

)] (23)

dχ∗
8

dt
= − ∂H

∂Im
=χ7(1 − u3)

[
]

βm

Sm + Im
− βm Im

(Sm + Im)2

]
Sm

− χ8

[
(1 − u3)

(
βm

Sm + Im
− βm Im

(Sm + Im)2

)
Sm − µm

] (24)

With the transversal condition that χi(t f ) = 0 for i = 1, 2, . . . , 8

3. Numerical analysis
This section explores the impact of the two optimal control strategies in mitigating the spread

of monkeypox within the human population. The primary focus is on evaluating the effectiveness
of combined control measures in halting disease transmission. To achieve this, we conduct a numeri-
cal simulation of the monkeypox model, comparing scenarios with and without optimized control
interventions to assess the influence of the control variables introduced earlier. However, the effects of
different control strategy are represented by u1, and u2. These strategies are systematically categorized
into two groups: single control, and combine controls allowing for a structured analysis of the three
possible control strategies considered in this research. Specifically, the strategies are defined as follows:

• Strategy 1: Implements only awareness strategy u1.
• Strategy 2 : Implements only recommended effective treatment strategy u2.
• Strategy 3: Implements both awareness and recommended treatment strategies combine u1 and

u2.
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The model simulations utilize parameter values from existing literature [16] for selected countries,
The optimality system integrates the model equations, adjoint equations, and control characterizations,
solved in MATLAB R2022B using the forward-backward sweep method. This approach involves
a 16-dimensional system of ordinary differential equations solved iteratively with the fourth-order
Runge-Kutta method. Paramater values use for the numerical simulation are presented in Table 2 and
Table 3 with a final time horizon of 100 days. The weight coefficients and cost functional are assigned
as (w1 = 40, w2 = 30, w3 = 10, w4 = 30, ϕ1 = 10, 000, ϕ2 = 80, 000).

Here, we clarify the choice to choose our cost. The higher expenditure associated with awareness
efforts, as compared to treatment and zoonotic control, is largely due to the extensive scope and
continuity required for effective implementation. Public education campaigns often involve repeated
communication through various channels such as radio, television, social media, and community
outreach programs. These activities demand ongoing investments in logistics, personnel, training, and
materials to ensure the message reaches diverse and widespread populations.While treatment and
zoonotic control typically involve more direct, targeted actions such as administering medication to
confirmed cases or managing animal reservoirs in specific areas which can be executed with more
contained costs. As a result, promoting awareness on a large scale tends to incur greater overall
financial commitment.

Thus, we assume that ϕ1 > ϕ2, indicating that the cost of awareness is higher than the cost of
treatment and zoonotic control.

Table 2. Estimated parameter values of the model (4) for the countries Spain, Nigeria, Italy and DRC

Paramater Spain Nigeria DRC Italy
ϵ 2.300e-04 8.800e-04 1.870 e-01 4.3 e-05
βm 4.466e01 5.419e-01 6.728e01 2.5404 e01
θ 5.000e-05 3.300e-04 2.000e-02 5.0e-04
um 4.10 e-02 2.300e-02 2.151e-01 5.043 e-01
ψ 3.090 e-02 1.160e-02 5.300e-04 2.212e-01
η 0.789e01 1.038e-01 8.023e-01 1.3080e01
τ1 0. 4645e01 0.4954e01 0.4610e01 0.96082 e01
τ2 3.853e-01 3.922e-01 0.1553e01 0.27450 e01
βhm 0.2677 e01 0.1810 e01 0.2254 e01 1.25396 e01
σ 0.31741 e01 0.4117 e01 0.9819 e01 0.18953 e01
βh 0.6902 e01 0.3810 e01 0.4695 e01 1.25396 e01
γ 0.1072 e01 6.284 e-01 8.703 e-01 0.14317 e01
α 0.2311 e01 3.3360 e-01 3.888 e-01 0.75697 e01

Model (4) parameter values are cited from the literature for Spain, Italy, Nigeria, and the Demo-
cratic Republic of the Congo. The parameters (Πm, δ1, δ1, δ3) are hypothetically chosen, while others
are taken from the literature: Πh [24], µ [1], and γ [2,3,25].

Table 3. Reference Paramater Values

Country Πh µ γ Πm δ1 δ2 δ3
Italy 687.30 0.0121 0.0714 1393.5 0.0180 0.1039 0.0004
Spain 2330.3 0.0118 0.0714 9559.5 0.0009 0.4551 0.0003
Nigeria 5329.8 0.0185 0.0714 1083.9 0.0320 0.5761 0.0076
DRC 8259.8 0.0163 0.0714 956.8 0.0001 0.5739 0.0102

3.1. Optima Control Simulation

In the following sections, a detailed simulation is presented, along with an in-depth analysis and
discussion of intervention strategies.

As depicted in Figure 3a Nigeria, with its large and densely populated regions, faces increased
risk of rapid Mpox transmission, especially in urban centers where close contact is common. The No
control scenario (in solid red line), which shows the highest peak and slowest decline, reflects what
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could happen in the absence of intervention widespread transmission and prolonged outbreaks. The
Treatment Only control u2 and Awareness Control Only u1 strategies offer moderate benefits, but
alone they are insufficient to quickly suppress Mpox outbreaks, likely due to logistical challenges to
access healthcare care and the reach of treatment. Interestingly, treatment alone performs better than
awareness, suggesting that strengthening clinical response infrastructure may yield faster short term
impact in Nigeria. The most effective result comes from the combination of Treatment and Awareness
(green line), which achieves the fastest decline in Mpox disease prevalence. This aligns with Nigeria’s
need for comprehensive strategies that include not just clinical treatment, but strong public awareness
campaigns to reduce risky behavior, encourage early reporting, and counter misinformation.

(a) Control Plot (b) Control Profile
Figure 3. Country: Nigeria

In light of the current Mpox situation in Italy characterized by low but ongoing reported cases,
the control plot depicted in Figure 4a highlights the comparative effectiveness of various intervention
strategies. The simulation indicates that while treatment alone moderately reduces disease burden,
public awareness campaigns (black solid line) have a stronger initial impact by limiting exposure and
transmission. Notably, the combination of treatment and awareness achieves the most substantial
and rapid decline in Mpox prevalence. This outcome supports the implementation of integrated
public health measures in Italy, reinforcing the need for both medical readiness and sustained risk
communication to prevent a potential resurgence.

(a) Control Plot (b) Control Profile
Figure 4. Country Italy

The optimal control analysis for the Spain population as depicted in Figure 5a reveals that com-
bining treatment and public awareness significantly reduces Mpox disease prevalence more effectively
than either strategy alone. Without any control measures (dotted line in red), the disease peaks
higher and declines slowly, indicating a severe outbreak. Implementing treatment alone moderately
reduces prevalence of Mpox disease in spain, but awareness campaigns alone outperform treatment by
promoting early prevention. However, the synergy of both controls results in the fastest and steepest
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decline in cases, achieving near-eradication within 60 days. Therefore, integrated intervention is the
most effective strategy for controlling Mpox in Spain. Furthermore, In Figure 5b both awareness and
treatment controls were used at full strength for most of the 100 days. This helped reduce Mpox cases
quickly and effectively. The controls dropped near the end as the disease was brought under control.

(a) Spain Control Plot (b) Spain Control Profile
Figure 5. Country Spain

In Figure 6a, the plot illustrates the effectiveness of various control strategies on Mpox prevalence
in the Democratic Republic of the Congo (DRC). The red curve, representing no control, shows a
sustained high burden of disease, reflecting the current challenges faced by the DRC, such as limited
healthcare access and weak surveillance systems. The black curve (awareness only) offers a better
improvement in the prevalence of the Mpox disease, indicating the importance of public education
and publicity alone has positive impact in curtailing the disease. The blue dashed line (treatment
only) demonstrates slight improvement, emphasizing the importance of timely medical intervention.
However, the green dotted curve (treatment and awareness) shows the most significant reduction in
Mpox cases, highlighting that a combined strategy is the most effective. This supports the need for
integrated policies that improve both public health education and access to treatment in DRC.

(a) DRC Control Plot (b) DRC Control Profile
Figure 6. Country DRC

4. Cost Effectiveness Analysis
Evaluating the cost dynamics of monkeypox management (Mpox) in this study involves analyzing

two main controls: awareness (prevention) costs and treatment (curative) costs. Both are integral to a
country’s public health strategy, but they have different structures and financial implications in selected
countries. Awareness campaigns are primarily focused on prevention reducing the spread of the
disease through education and behavior change. On the other hand, treatment costs are incurred when
individuals are diagnosed and require medical intervention. These costs can be significant, especially
for moderate to severe cases. The cost of hospitalization includes expenses related to inpatient care, bed
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space, feeding, and utilities. Symptomatic treatments, such as antipyretics, antivirals, and antibiotics
to manage secondary bacterial infections, contribute to the overall cost of treatment.

In countries like Nigeria, Spain, Italy, and the Democratic Republic of Congo (DRC), the per-case
cost of treating Mpox is generally higher than that of conducting awareness campaigns, mainly due
to the financial burden of hospitalization and specialized healthcare services. Although awareness
interventions are typically more affordable on a per-unit basis, their cumulative cost can exceed that
of treatment when deployed extensively over time, especially in regions with low incidence rates.
These economic considerations are reflected in the construction of the objective functional in Equation
9, where weights are assigned to each compartment as follows: w1 = 20, w2 = 3000, w3 = 1000,
and w4 = 3000. To reflect realistic cost differences, the cost coefficients for awareness and treatment
are hypothetically set such that awareness (ϕ1 = 1200) is less costly than treatment (ϕ2 = 5000).
Accordingly, Figure 7 presents the efficiency indices for different control strategies—awareness alone,
treatment alone, and combined control—highlighting their respective effectiveness in minimizing
infections across the countries studied, independent of cost considerations.

Figure 7. Efficiency indices for control measures for selected countries for 100 days projection

However, in Figure 7 control u1 is the most effective in all countries due to its number of averted
infections, especially in DRC. However, Control u2 adds value mainly in Spain and Nigeria but is weak
alone in DRC. Combining both controls (u1u2) gives the highest efficiency, showing strong synergy in
most countries.

4.1. Incremental Cost Effectiveness Ratio

The Incremental Cost-Effectiveness Ratio (ICER) is a metric used to assess the relative cost and
health benefits of two competing interventions, particularly when resources are limited. It is computed
using the following expression:

ICER =
change in total cost of intervention

change in total infections averted by interventions
(25)

When comparing two strategies ( L and M), and M proves to be more effective than L (i.e.,
TIA(M) > TIA(L)), ICER becomes a key indicator for evaluating their relative value. Specifically,
ICER quantifies the additional cost required to gain one extra unit of effectiveness when transitioning
from strategy L to strategy M.

The ICER for the baseline strategy L is calculated as the ratio of its total cost (TC(L)) to its total
effectiveness (TIA(L)):

ICER(L) =
TC(L)

TIA(L)
(26)
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For the more effective strategy M, the ICER is determined by assessing the cost and effectiveness
differences between it and the baseline strategy L. This is calculated as:

ICER(M) =
TC(M)− TC(L)

TIA(M)− TIA(L)
(27)

It is essential to clearly define the column headers for Table ( 4, 5 and 6). Column (A) represents
the total infection in the absence of any control measures. Column (B) denotes the total infection
associated with the implementation of a specific control strategy. The Total Infection Averted (TIA),
given by the difference (A − B), quantifies thetotal number of infection averted through the application
of the control strategy.

Table 4. Efficiency indices (EI) and total cost (TC) of control strategies for Mpox in each country

Nation Control A B TIA EI TC
Nigeria u1u2 2.81 × 1010 7.43 × 109 2.06 × 1010 73.5 3.04 × 106

Nigeria u1 2.81 × 1010 1.07 × 1010 1.73 × 1010 61.8 5.84 × 105

Nigeria u2 2.81 × 1010 2.09 × 1010 7.14 × 109 25.5 2.44 × 106

Spain u1u2 6.60 × 109 1.42 × 109 5.18 × 109 78.5 3.07 × 106

Spain u1 6.60 × 109 2.58 × 109 4.02 × 109 60.9 5.89 × 105

Spain u2 6.60 × 109 3.95 × 109 2.65 × 109 40.2 2.48 × 106

Italy u1u2 7.69 × 109 2.80 × 109 4.89 × 109 63.6 3.06 × 106

Italy u1 7.69 × 109 3.50 × 109 4.19 × 109 54.4 5.88 × 105

Italy u2 7.69 × 109 6.52 × 109 1.17 × 109 15.3 2.48 × 106

DRC u1u2 2.20 × 1010 6.03 × 109 1.60 × 1010 72.6 3.04 × 106

DRC u1 2.20 × 1010 6.16 × 109 1.58 × 1010 72.0 5.87 × 105

DRC u2 2.20 × 1010 2.19 × 1010 1.37 × 108 0.6 2.45 × 106

To determine the most cost-effective control strategy between the combined control (u1u2) and
the awareness-only strategy (u1), we apply the incremental cost-effectiveness ratio (ICER) formulas as
defined in equations (26) and (27), using the data presented in Table 4. Specifically, for Nigeria, the
ICER values are computed as follows:

ICER(u1u2) =
TC(u1u2)

TA(u1u2)
=

3.04 × 106

2.06 × 1010 ≈ 0.00015

ICER(u1) =
TC(u1)− TC(u1u2)

TA(u1)− TA(u1u2)
=

5.84 × 105 − 3.04 × 106

1.73 × 1010 − 2.06 × 1010 ≈ 0.00075

Since ICER(u1u2) < ICER(u1), the awareness-only strategy (u1) is considered less cost-effective
and is thus eliminated from further consideration in Table 4. This indicates that the combined applica-
tion of awareness and treatment controls yields a greater reduction in infection at a lower cost per case
averted, making it the more economically efficient option.

Similarly, to assess the cost-effectiveness of the control strategies in Spain, we apply equations
(26) and (27) using the corresponding values from Table 4. The ICER values for the combined strategy
(u1u2) and the awareness-only strategy (u1) are calculated as follows:

ICER(u1u2) =
TC(u1u2)

TIA(u1u2)
=

3.07 × 106

5.18 × 109 ≈ 0.00059

ICER(u1) =
TC(u1)− TC(u1u2)

TIA(u1)− TIA(u1u2)
=

5.89 × 105 − 3.07 × 106

4.02 × 109 − 5.18 × 109 ≈ 0.00213
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Given that ICER(u1u2) < ICER(u1), the awareness-only control strategy (u1) is considered less
cost-effective in the Spanish context. Therefore, it is excluded from further evaluation in Table 4,
reaffirming the economic advantage of the combined control strategy in achieving greater infection
reduction per unit cost.

For Italy, the cost-effectiveness of the combined control strategy (u1u2) compared to the awareness-
only strategy (u1) is evaluated using the ICER formulas. Using the data in Table 4, the computations
are as follows:

ICER(u1u2) =
TC(u1u2)

TIA(u1u2)
=

3.06 × 106

4.89 × 109 ≈ 0.00063

ICER(u1) =
TC(u1)− TC(u1u2)

TIA(u1)− TIA(u1u2)
=

5.88 × 105 − 3.06 × 106

4.19 × 109 − 4.89 × 109 ≈ 0.00319

Since ICER(u1u2) < ICER(u1), the awareness-only control strategy (u1) is deemed less cost-
effective for Italy and is thus excluded from Table 4. The combined control (u1u2) offers a more efficient
use of resources in minimizing infections.

For the Democratic Republic of Congo (DRC), we analyze the ICER values to determine the more
cost-effective strategy between (u1u2) and (u1), using the values from Table 4:

ICER(u1u2) =
TC(u1u2)

TIA(u1u2)
=

3.04 × 106

1.60 × 1010 ≈ 0.00019

ICER(u1) =
TC(u1)− TC(u1u2)

TIA(u1)− TIA(u1u2)
=

5.87 × 105 − 3.04 × 106

1.58 × 1010 − 1.60 × 1010 ≈ 0.00087

As ICER(u1u2) < ICER(u1), the awareness-only strategy (u1) is again considered less cost-
effective in the DRC and is excluded from further analysis. The combined strategy (u1u2) is identified
as the more cost-efficient approach for controlling Mpox infections. Thus, based on earlier ICER
analyses obtained for each country, the awareness-only strategy (u1) was eliminated and the result
presented in Table 5

Table 5. Efficiency indices (EI) and total cost (TC) for selected Mpox control strategies in each country

Nation Control A B TIA EI TC
Nigeria u1u2 2.81 × 1010 7.43 × 109 2.06 × 1010 73.5 3.04 × 106

Nigeria u2 2.81 × 1010 2.09 × 1010 7.14 × 109 25.5 2.44 × 106

Spain u1u2 6.60 × 109 1.42 × 109 5.18 × 109 78.5 3.07 × 106

Spain u2 6.60 × 109 3.95 × 109 2.65 × 109 40.2 2.48 × 106

Italy u1u2 7.69 × 109 2.80 × 109 4.89 × 109 63.6 3.06 × 106

Italy u2 7.69 × 109 6.52 × 109 1.17 × 109 15.3 2.48 × 106

DRC u1u2 2.20 × 1010 6.03 × 109 1.60 × 1010 72.6 3.04 × 106

DRC u2 2.20 × 1010 2.19 × 1010 1.37 × 108 0.6 2.45 × 106

To further evaluate the cost-effectiveness of the implemented control strategies, we apply the
incremental cost-effectiveness ratio (ICER) formulas defined in equations (26) and (27). Using the data
from Table 5, we compare the combined control strategy (u1u2) with the treatment only strategy (u2).
The resulting ICER values, alongside key efficiency and cost metrics, are presented in Table 6.
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Table 6. Efficiency indices (EI), total cost (TC), and ICER of Mpox control strategies across countries

Nation Control A B TIA EI TC ICER
Nigeria u1u2 2.81 × 1010 7.43 × 109 2.06 × 1010 73.5 3.04 × 106 0.00015
Nigeria u2 2.81 × 1010 2.09 × 1010 7.14 × 109 25.5 2.44 × 106 0.00004
Spain u1u2 6.60 × 109 1.42 × 109 5.18 × 109 78.5 3.07 × 106 0.00059
Spain u2 6.60 × 109 3.95 × 109 2.65 × 109 40.2 2.48 × 106 0.00023
Italy u1u2 7.69 × 109 2.80 × 109 4.89 × 109 63.6 3.06 × 106 0.00063
Italy u2 7.69 × 109 6.52 × 109 1.17 × 109 15.3 2.48 × 106 0.00016
DRC u1u2 2.20 × 1010 6.03 × 109 1.60 × 1010 72.6 3.04 × 106 0.00019
DRC u2 2.20 × 1010 2.19 × 1010 1.37 × 108 0.6 2.45 × 106 0.00004

From Table 6, it is evident that the treatment only strategy (u2) consistently exhibits a lower
ICER value compared to the combined control (u1u2) across all countries. This indicates that, from
a cost effectiveness perspective, implementing effective treatment and management control alone
yields greater economic efficiency in preventing infections than the more resource intensive combined
strategy (u1u2).

5. Conclusions
5.1. Discussion and Concluding Remarks

The analysis of cost-effectiveness for Mpox control strategies across Nigeria, Spain, Italy, and the
DRC reveals critical insights into how resources can be optimally allocated for epidemic management
in these regions. The results, drawn from Table 6, show that the effective treatment only strategy (u2)
is consistently more cost effective than the combined control strategy (u1u2) in all countries.

In Nigeria, where healthcare infrastructure may be stretched, the ICER for effective treatment
only (u2) is significantly lower at 0.00004 compared to the combined control strategy (u1u2), which
stands at 0.00015. This indicates that prioritizing effective treatment rather than trying to combine it
with awareness campaigns will yield more efficient use of limited resources. The cost effectiveness of
effective treatment only becomes even more important when considering Nigeria’s resource constraints
and the need for rapid, and impactful interventions that can be scaled effectively across the country.

Similarly, in Spain, with a relatively more robust healthcare system but still facing pressures
from occasional outbreaks, the ICER for effective treatment only (0.00023) is lower than the combined
control strategy (0.00059). This suggests that, even in a high income country, effective treatment
interventions should take precedence as they offer the greatest cost benefit. Spain can benefit from
maintaining a clear focus on treatment, which will allow for a more efficient allocation of resources
without compromising the response to the epidemic.

In Italy, where the healthcare system is advanced but still vulnerable to the pressures of managing
infectious disease outbreaks, the effective treatment only strategy (u2) demonstrates a significant cost
advantage, with an ICER of 0.00016, compared to the combined strategy (u1u2) with ICER of 0.00063.
Given Italy’s extensive experience in the management of infectious diseases (as seen in its response
to COVID-19), the findings suggest that even in well funded healthcare systems, effective treatment
interventions are more cost effective and should remain the focal point of control efforts.

In DRC, a country with a fragile healthcare system and limited resources, the effective treatment
only strategy is again more cost effective, with an ICER of 0.00004, much lower than the combined
strategy at 0.00019. The findings for DRC highlight the importance of focusing on treatment as the pri-
mary response, particularly in low resource settings where cost efficiency is a key consideration. Given
the challenges DRC faces with healthcare access and infrastructure, an effective treatment focused
approach could potentially save more lives without overburdening the already limited healthcare
capacity.

However, across these diverse settings ranging from low resource environments like Nigeria and
DRC to more advanced systems in Spain and Italy the effective treatment only strategy proves to be
the most cost effective option for controlling Mpox. This aligns with the realities each country faces in
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terms of healthcare infrastructure, financial constraints, and the need for effective measures to control
epidemics.

5.2. Limitation of the Study and Future Work

One notable limitation of this study is the exclusion of zoonotic transmission dynamics in the
modeling framework. Specifically, the model does not account for human interactions with animal
reservoirs, such as those working in zoos, wildlife parks, veterinary clinics, pet ownership settings,
and related environments. Incorporating a dedicated compartment to represent individuals who
are regularly exposed to potential animal hosts would enhance the model’s realism and provide a
more comprehensive understanding of Mpox transmission pathways. Future studies should consider
integrating these dynamics to better inform control strategies, particularly in regions where human-
animal interactions are frequent and significant.
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Appendix A. Mathematical Model Analysis
Here, we aim to qualitatively analyze the dynamic properties of the strain Mpox dynamics

model 4.

Appendix A.1. Positivity and Boundedness

For model 4 to be epidemiologically meaningful, it is imperative to show that all its state variables
are non-negative for all time (t), and that D is indeed bounded. Thus, we adopt the following theorem:

Theorem A1. let the initial values for the model 4 be S(0) ≥ 0, E(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0, H(0) ≥
0, R(0) ≥ 0, Sm(0) ≥ 0, lm(0) ≥ 0. Then the solutions (S, E, I1, I2 H, R, Sm Im) are positive for all time
(t > 0)

Proof. Let t1 = sup t > 0 : S > 0, E > 0, I1 > 0, I2 > 0, H > 0, R > 0, Sm > 0, Im > 0 ∈ [0, t]. Thus,
t1 > 0 We have, from the first equation of model 4 that

dS
dt

= −(λh + µh)S, where λh =
βh(I1 + σI2)

Nh

which can be written as: ∫ dS
dt

= −
∫ dS

dt
,

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 July 2025 doi:10.20944/preprints202507.0661.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0661.v1
http://creativecommons.org/licenses/by/4.0/


18 of 23

so that

S(t1) = S(0) exp
[
−
∫ t1

0
λ(u).du

]
> 0,

Similarly, this can be shown that E > 0, I1 > 0, I2 > 0, H > 0, R > 0, Sm > 0, Im > 0

The SEIHR X SI formulated model is represented by differential equations in system 4, which is
to be analyzed in a feasible region D, and all state variables and parameters of the model are assumed
to be positive ∀t ≥ 0. The bounded region is obtained through the following lemma.

Lemma A1. The compact D defined as (∆1 × ∆2) is a positively invariant set, which attracts all positive orbits
in R8

+.

Proof. According to the system of equation (4), we have: Proof. Since Nh(t) = S(t) + E(t) + I1(t) +
I2(t) + Rh(t) and Nm(t) = Sm(t) + Im(t), then the derivative of Nh(t) is given by

dNh
dt

=
dS
dt

+
dE
dt

+
dI1

dt
+

d12

dt
+

dH
dt

+
dR
dt

(A1)

and
dNm

dt
=

dSm

dt
+

dIm

dt
(A2)

Simplifying eqn (A1) becomes:

dNh
dt

= Πh − µhNh − (δ1 Ih + δ2 I2 + δ3H (A3)

Since δ1, δ2, δ3 > 0 and I1(t) I2(t), H(t),≥ 0 for all t ≥ 0, eqn (A3) becomes:

dNh
dt

≤ Πh − µhNh (A4)

Integrating eqn (A4) and solving gives:

Nh(t) ≤
Πh
µh

+

(
Nh(0)−

Πh
µh

)
e−µht

≤ Nh(0)e
−µht +

Πh
µh

(
1 − e−µht) (A5)

Similarly, solving the second equation of (A2):

Nm(t) ≤
Πm

ϕ + δ
+

(
NR(0)−

Πm

µm

)
e−µmt

≤ Nm(0)e−µmt +
Πm

µm

(
1 − e−µmt) (A6)

Therefore, as t ≥ 0, Nh(t) ≤
Πh
µh

and Nm(t) ≤
Πm

µm
Hence:

Ω1 =

{
(S, E, I1 I2 H, Rh) ∈ R6

+ : Nh ≤ Πh
µh

}
Ω2 =

{
(Sm, Im) ∈ R2

+ : Nm ≤ Πm

µm

}
D =

{
Ω1 × Ω2|Nh ≤ Πh

µh
, Nm ≤ Πm

µm

} (A7)
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This implies that Πh
µh

and Πm
µm

are the upper bond for human population Nh(t) and mammal
reservoirs, Nm(t) respectively. Thus, from lemma A1 the set Ω is positive invariant with respect to the
system (4). Then we conclude that the set Ω is positively invariant and all solutions of system (4) are
non-negative and epidemiologically well-posed.

Appendix A.2. Disease-Free Equilibrium

At the disease-free equilibrium (DFE), the compartment E = I1 = I2 = H = R = lm = 0. The DFE
of the model E0 = (S0, E0, I0

1 , I0
2 , H0, R0, S0

m, l0
m), is given as

E0 = (
Πh
µh

, 0, 0, 0, 0, 0,
Πm

µm
, 0)

To compute the basic reproduction number R0, we used the next-generation matrix approach.
The rate of transfer vectors into and out of the affected compartments f and v respectively, are given by

f =


Sβh(I1+I2σ)

Nh

0
0

Sm(
Im βm
Nm

+ αβhm(I1+I2σ)
Nh

)

, v =


E(γh + µh)

−Eγh(1 − θ) + I1(δ1 + µh + τ1)

−Eγhθ + I2(δ2 + µh + ψ + τ2)

H(δ3 + η + µh)− I1τ1 − I2τ2

Imµm


The Jacobian matrix of f and v are given by;

F =


0 βh βhσ 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 Πmαβhmµh

Πhµm

Πmαβhmµhσ
Πhµm

0 Πm βm
Nmµm

, and V =


m0 0 0 0 0

−γh(1 − θ) m1 0 0 0
−γhθ 0 m3 0 0

0 −τ1 −τ2 m4 0
0 0 0 0 µm


So that,

ρ(FV−1) = R0 =
βhγh[σθ(δ1 + µh + τ1) + (1 − θ)(δ2 + µh + ψ + τ2)]

(γh + µh)(δ1 + µh + τ1)(δ2 + µh + ψ + τ2)
(A8)

=
βhγh[σθm1 + (1 − θ)m2]

m0m1m2
(A9)

where R0 is positive since all parameters are positive and 0 ≤ θ ≤ 1.

Appendix A.3. Existence and uniqueness of solution

We show that eqn (4) has a unique solution (S, E, I1, I2, H, R, Sm, lm) ∈ R8
+ under the condition

eqn (5) using the Lipschitz condition.

Consider a general form of ODE y′ = f (x, y) with y(x0) = y0, x ∈ R. If f is continuous and has
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partial derivatives that are continuous in the region R, then f (x, y) is Lipschitz continuous.
We re-write our model 4 in the form F(x) with solution x ∈ R8

+

F1 = Πh − (λh + µh)S + ϵR,

F2 = λhS − γEh − µhEh

F3 = (1 − θ)γEh − (τ1 + δ1 + µh)I1,

F4 = θγEh − (τ2 + δ2 + µh + ψ)I2,

F5 = τ1 I1 + τ2 I2 − (δ3 + µh + η)H

F6 = ηH + ψI2 − (ϵ + µh)R,

F7 = Πm − λmSm − µmSm,

F8 = λmSm − µm Im,

(A10)

Lemma A2. Let F(x) be continuous differentiable at x ∈ R8
+.

Theorem A2. The model (4) has a unique solution if F(x) is continuous and have continuous partial derivative.

Proof.
Some partial derivatives of F(x) are given below
∂F1
∂x1

= | − (λh + µh)| < ∞ ∂F1
∂x2

= 0 < ∞; ∂F1
∂x3

= | βhx1
Nh

| < ∞ ∂F1
∂x4

= | βhσx1
Nh

| < ∞
∂F1
∂x5

= 0 < ∞; ∂F1
∂x6

= ϵ < ∞ ∂F1
∂x7

= 0 < ∞; ∂F1
∂x8

= 0 < ∞

The rest of the partial derivatives exist, are continuous, and are bounded in the same way as eqn (A10).
Hence, by theorem A2, the model (4) has a unique solution.

Appendix A.3.1. Endemic equilibrium

The model (4) has an endemic equilibrium E1 = (S∗∗, E∗∗, I∗∗1 , I∗∗2 , H∗∗, R∗∗, S∗∗
m , l∗∗m ) with E1 = 0

is given as: S∗∗
m = Πm

λ∗
m+µm

, I∗∗m = Πm
µm(λ∗

m+µm)
, E∗∗ =

λ∗∗
h S∗∗

h
m0

, I∗∗1 =
(1−θ)γλ∗∗

h S∗∗
h

m0m1
I∗∗2 =

θγλ∗∗
h S∗∗

h
m0m2

H∗∗ =
τ1(1 − θ)γm2λ∗∗

h S∗∗
h + τ2θγm1λ∗∗

h S∗∗
h

m0m1m2m3
, R∗∗ =

ητ1(1 − θ)γm2λ∗∗
h S∗∗

h + ητ2θγm1λ∗∗
h S∗∗

h + ψθm1m2γλ∗∗
h S∗∗

m0m1m2m3m4

Substituting equation A.3.1 into the forces of infection λ∗∗
h and λ∗∗

m and simplifying, such that

λ∗∗
h =

βh(I∗∗1 + σI∗∗2 )

Nh
, λm =

αβhm(I∗∗1 + σI∗∗2 )

Nh
+

βm I∗∗m
Nm

we have,
p1(λ

∗∗
h )2 + p2(λ

∗∗
h ) = 0

where m0 = (γ+µh), m1 = (τ1 + δ1 +µh), m2 = (τ2 + δ2 ++µh +ψ), m3 = δ3 +µh + η, m4 = (ϵ+µh),
p1 = m1m2m3m4Πh + m2m3m4(1 − θ)γΠh + m1m3m4θγΠh + m0m4τ1(1 − θ)γΠh + m1m4τ2θγΠh +

ηm0τ1(1 − θ)γΠh + ηm1τ2θγΠh,p2 = M0m1m2m3m4Πh − βhm2m3m4(1 − θ)γΠh − βhm1m3m4σθγΠh

Appendix A.4. Local stability of Mpox-free equilibrium

We analyze the local stability of Mpox free equilibrium of the model system (4) by using the
control reproduction number R0 in the following theorem as described in [26]
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Theorem A3. The Mpox free equilibrium E0, of the model (4) is locally asymptotically stable in the biological
feasible region D if R0 < 1 and unstable if R0 > 1.

Proof. In order to prove Theorem A3 , the Jacobian matrix of the model (4) was obtained at Mpox
disease-free equilibrium E0, where E = I1 = I2 = H = R = Im = 0, and Nh = S and Nm = Sm. as

J(E0)
=



−µh 0 −βh −σβh 0 ϵ 0 0

0 −(γ + µh) βh σβh 0 0 0 0

0 (1 − θ)γ −(τ1 + δ1 + µh) 0 0 0 0 0

0 θγ 0 −(τ2 + δ2 + µh + ψ) 0 0 0 0

0 0 τ1 τ2 −(δ3 + µh + η) 0 0 0

0 0 0 ψ η −(ϵ + µh) 0 0

0 0 − αβhmΠmµh
µmΠh

− σαβhmΠmµh
µmΠh

0 0 −µm −βm

0 0 αβhmΠmµh
µmΠh

σαβhmΠmµh
µmΠh

0 0 0 −(µm − βm)


(A11)

From eqn (A11), it is sufficient to show that all the eigenvalues of E0 are negative. We obtain the
first four eigenvalues as: −µh, −µm − (ϵ + µh), −(δ3 + η + µh), −(µm − βm), while the remaining
eigenvalues can be obtained from the sub-matrix J1(E0), which is given by:

J1(E0)
=

−(γ + µh) βh σβh

(1 − θ)γ −(τ1 + δ1 + µh) 0
θγ 0 −(τ2 + δ2 + µh + ψ)

 =

 −m0 βh σβh

(1 − θ)γ −m1 0
θγ 0 −m2

 (A12)

The solutions of the characteristic polynomial for eqn (A12) are given as

x3 + ϕ1x2 + ϕ2x + ϕ3 = 0 (A13)

where
ϕ1 = m2 + m1 + m0

ϕ2 = m0(m1 + m2) + m1m2 − βhγ[(1 − θ) + θσ]

ϕ3 = m1m0m2(1 −R0)

Applying Routh-Hurwitz criterion, the cubic eqn (A13) will have a roots with negative real parts
if and only if ϕ1 > 0, ψ3 > 0 and ϕ1ϕ2 > ϕ3. Clearly, ϕ1 > 0 and ϕ3 > 0, (i f R0 < ∞). As a result, the
disease free equilibrium (E0) is locally asymptotically stable if R0 < ∞)
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