

1 Article

2

Quantized Constant-Q Gabor Atoms for Sparse Binary

3

Representations of Cyber-Physical Signatures

4 Milton A. Garces^{1,2*}5 ¹ Infrasound Laboratory, University of Hawaii, Manoa; milton@isla.hawaii.edu6 ² RedVox, Inc.; milton@redvoxsound.com

7 * Correspondence: milton@isla.hawaii.edu

8 Received: 9 July 2020; Accepted: date; Published: date; Last Updated: 20200812

9 **Abstract:** Increased data acquisition by uncalibrated, heterogeneous digital sensor systems such as
10 smartphones present new challenges. Binary metrics are proposed for the quantification of cyber-
11 physical signal characteristics and features, and a standardized constant-Q variation of the Gabor atom
12 is developed for use with wavelet transforms. Two different CWT reconstruction formulas are
13 presented and tested under different SNR conditions. A sparse superposition of Nth order Gabor atoms
14 worked well against a blast synthetic using the wavelet entropy and an entropy-like parametrization of
15 the SNR as the CWT coefficient-weighting functions. The proposed methods should be well suited for
16 sparse feature extraction and dictionary-based machine learning.

17 **Keywords:** Gabor atoms; wavelet entropy; binary metrics; acoustics; quantum wavelet

18

19

1. Introduction

20 This paper applies the constant-Q standardized Infrasonic Energy, Nth Octave (Inferno) framework
21 to the Gabor wavelet [2] and proposes binary metrics for signature characterization. One of the
22 primary motivations of this work is to facilitate the fusion of multi-modal data streams in sensor systems
23 that collect information at different temporal and spatial granularities. Consider a cyber-physical sensor
24 system that converts observables into digital time series data consisting of a combination of signals and
25 noise. Signals of interest can be hypothetically described by sparse representations that define their
26 signature. If signature characteristics are sufficiently unique and recognizable from those of ambient
27 coherent and incoherent noise, it can be used to identify and classify an object or process.

28 The transformation of diverse digital measurements into robust, scalable, and transportable
29 representations is a prerequisite for signal detection, source localization, and machine learning
30 applications for signature classification. The challenge at hand is to construct sparse signal
31 representations that contain sufficient information for classification. Unambiguous classification can be
32 elusive; measurement artifacts, unexpected signal variability, and non-stationary noise often conspire to
33 add uncertainty to our classifiers. As will be discussed in this paper, information and uncertainty
34 quantification can be substantially simplified when using standardized wavelets and binary metrics.

35

36

1.1. Binary Representations of Time and Frequency

37 Oscillatory processes often exhibit spatial and temporal scalability and self-similarity. Although
38 some physical processes scale linearly, many exhibit recurrent patterns that scale logarithmically and are
39 well represented by power laws. Both linear and logarithmic scales can coexist. For example, overtones
40 in harmonic acoustic systems are often linearly spaced in frequency, yet our sense of tone similarity is

41 close to base 2 logarithmic (binary) octave scales. The term octave comes from the eight major notes in
42 12-tone musical notation, which closely repeat in with factors of two. This paper uses the term octave
43 and binary interchangeably to denote the base 2 geometric scaling of frequency and time. The mapping
44 between frequency (or pitch) and time (period) is direct for continuous tones, such as musical notes, or
45 statistically stationary oscillations like the orbits of planets. Discrete Fourier transform methods are
46 exceptionally well suited for the interpretation of steady tonal signals with linearly spaced harmonics.
47 The Fourier transform deconstructs oscillations with distinct recurrent time periods into a *spectral*
48 representation consisting of a set of discrete frequencies. The spectral transformation can be sparse
49 because it removes time as a variable, facilitating the reconstruction of stable oscillations from a subset
50 of coefficients in the Fourier spectrum.

51 Stable oscillators can be even more succinctly represented by a fundamental frequency *or* period
52 (exclusive *or*, as they are not independent). For many physical systems, a map can be constructed between
53 the fundamental frequency and its harmonics. Signals where the fundamental and its harmonics (when
54 they exist) are statistically stationary and easily discernible above noise can be referred to as the easy
55 *continuous wave* (CW) problem, or the zeroth (trivial) class of CW problems. The trivial CW problem is
56 well understood and should routinely be used as a speed and performance benchmark for detection and
57 classification algorithms.

58 The plot thickens when temporal variability is introduced in the signal or the noise. In the first class
59 of CW problems, temporal variability is due to non-stationary broadband or band-limited noise. This is
60 a chronic condition in infrasonic signal processing, where ambient noise can be coherent or incoherent
61 across a dense sensor network [3] or an array aperture [4]. The first class of CW problems is also well
62 understood when noise is predictable (e.g. normally distributed) over a time duration that is much longer
63 or much shorter than the signal period in the detection band. However, this class of problems is not as
64 well characterized when noise is not evenly distributed across the signal detection bandpass, and can be
65 particularly inconvenient when noise overwhelms the fundamental frequency band.

66 In the second class of CW problems, temporal variability is introduced by a change in the temporal,
67 spectral, and/or statistical properties of the signal. These changes can be due to aging, failure, motion,
68 communication, or any other change in state. In a simple two-state problem, one may quantify the
69 properties of the first state, the transition period between states, and the properties on the final state. In
70 a multiple-state problem, such as with communication systems, speech, or music, the short-term discrete
71 Fourier transform (STFT) is often used to characterize spectral variability.

72 If the transition period between states in the noise or the signal is faster than the characteristic time
73 scale of the initial state, the STFT does not always provide an accurate representation of this *transient*. For
74 some signals, the details of the transient are not relevant and only the steady states are important. But a
75 new class of signals emerges when the detection of transient anomalies is prioritized.

76 The zeroth class of transient problems consist of delta functions with their integrals and derivatives.
77 Although such instantaneous spikes do not exist in the natural world but can be readily constructed
78 digitally to evaluate the impulse response of a system or represent a neuromorphic network [5-6]. The
79 first class of transient problems would be more realistic variants of the delta function that may be
80 observed in the wild when a rapid change of state becomes the signal of interest. Just like a single-tone
81 sinusoid may be regarded as the prototype end member for the trivial CW problem, an explosive
82 detonation could be considered as a prototype transient signal source [7]. During an explosion,
83 observations would vary from ambient noise to a brief blast transient that fades back to a possibly
84 perturbed ambient noise state. If the observations were acoustic at some distance from the source, the
85 system would go from quiescence to blast to quiescence, and the transition can be devastatingly fast. In
86 general, poorly-conditioned STFTs provides inadequate representations of brief, rapidly changing
87 signals because the signatures no longer resemble a CW, and so are not well represented by sinusoids.
88 However, since a STFT is a windowed sinusoid, a well-conditioned STFT window at the peak frequency
89 of a signal turns the waveform into a wavelet.

90 The concept of a windowed sinusoid to represent a transient signal was introduced by Gabor (1946),
 91 and later mathematically formalized by others as wavelets. Variants of the Gabor wavelet are presented
 92 in the Appendices.

93 The second class of transient problems overlaps with the second class of CW problems. It
 94 corresponds to transients of significant durations which could be addressed with STFTs, wavelets, or
 95 their combination. Very often a transient is imbedded in a noise field with band-limited harmonic
 96 structure. Or the transient itself is a sweep, characterized by a substantial frequency change in the
 97 fundamental and its harmonic structure.

98 The primary differences between STFTs and wavelet approaches are that the former uses a linear
 99 period mapping and a constant processing window duration and the latter uses geometric pseudo-period
 100 mapping and a window duration that scales with the pseudo-period. Whereas in the Fourier framework
 101 there is a one-to-one mapping between time and frequency, the wavelet mapping between time scale and
 102 frequency can be less evident and depends on the selected wavelet.

103 In this paper I concentrate on developing standardized constant-Q Gabor atoms for the design and
 104 evaluation of transportable, sensor-agnostic signal detection, sparse feature extraction, and classification
 105 algorithms.

106 1.2. Binary Representations of Energy and Information in Cyber-Physical Systems

107 Cyber-physical systems (CPS) are algorithm-controlled computer systems with physical inputs and
 108 outputs. A typical example of a mobile CPS is a smartphone with a microphone input (sound activation)
 109 that outputs a response (speech, music, or signal recognition) to a screen. Cyber-physical Measurement
 110 and Signature Intelligence (MASINT) is an emerging discipline that concentrates on phenomena
 111 transmitted through cyber-physical devices and their interconnected data networks. For smartphones
 112 and other multi-sensor mobile platforms connected to wireless networks, this includes digital noise, bit
 113 errors, and latencies internal to the device and its communication channels [8-10].

114 Data processed by the cyber part of CPSs are digital and represented as binary digits (bits). Although
 115 the precision of the data is initially defined by its their integer symbol length (16, 32, 64 bit, etc.), the
 116 original data may be converted into float equivalents when an algorithms acts on it. For example,
 117 consider sound recorded by a smartphone at the standard rate of 48,000 samples per second. A typical
 118 sound record may have 16-bit resolution, so that its dynamic range in bits is 2^{-15} to $2^{15} - 1$. However, one
 119 may only be interested in the lower frequency components of the raw data, so one would implement a
 120 lowpass anti-aliasing before decimation. Such filters require double precision (64 bit at the time of this
 121 writing) to reduce instability. Therefore the precision of the resulting lowpass filtered data would be float
 122 64. However, the theoretical dynamic range of the system would not exceed the specification of the
 123 integer 16 physical input. Furthermore, data compression can be more efficient on floats than integers,
 124 which leads us to the topic of fractional bits as a measure of CPS amplitude, power, and information.

125 Many of the metrics we used in traditional physical and geophysical systems are inherited from the
 126 analog era. The base 10 decibel scale is a measure of power relative to a reference level, and is used
 127 extensively in telecommunications, acoustics, and electrical engineering. Let's estimate the hypothetical
 128 dynamic range of a 16-bit microphone record of a sinusoid at full scale. The peak rms amplitude would
 129 be

$$130 \quad p_{rms\ signal} = \frac{2^{16}}{2\sqrt{2}} . \quad (1)$$

131 All systems have quantization and system noise, and it can have a positive or negative bias. This is
 132 not a noise paper; for the sake of illustration, I model the system noise as oscillating around a mean of
 133 zero and alternating between -1 and 1,

$$134 \quad p_{rms\ noise} = \frac{2^1}{2\sqrt{2}} . \quad (2)$$

135 The theoretical dynamic range of the system in dB for a sinusoid recorded with a 16-bit microphone and
 136 sound card combination with a one-bit noise floor could be characterized by the ratio of the power

$$137 \quad 10 * \log_{10} \left[\frac{p_{rms\ signal}}{p_{rms\ noise}} \right]^2 = 20 * \log_{10}[2^{15}] \approx 90dB \quad (3)$$

138 where a digital response is converted to the legacy base 10 logarithmic system. One advantage of the
 139 decibel approach is that it can be compared to the response of the human ear and other analog systems.
 140 However, analogue comparisons are not necessary for many cyber physical applications. A more natural
 141 unit for CPS is the binary logarithm

$$142 \quad \log_2 \left[\frac{p_{rms\ signal}}{p_{rms\ noise}} \right] = \log_2[2^{15}] \approx 15.0\ fbits \quad (4)$$

143 where the unit *fbits* corresponds to floating point representation of bits. For example, in 24-bit systems,
 144 present-day quantization error is ~3 bits, leading to an effective dynamic range of ~21 fbits. Likewise, a
 145 24-bit integer cast into a 32-bit symbol can have 8+3 bits of noise, and may be converted to a float that
 146 still has ~21 fbits of dynamic range.

147 Another unit that is often specified is the $\frac{1}{2}$ power point of the frequency response of a filter, which
 148 defines the quality factor of that filter. This is often referred to as the -3dB point, since $10 * \log_{10}(2) \approx 3dB$.
 149 However, accurate filter bank reproductions require a clear specification of the $\frac{1}{2}$ power point, and
 150 conversion from base 10 to base 2 specification can lead to computational errors. Plotting filter responses
 151 in floating point bits can be informative as it reveals the precision of the computation. Because it is
 152 awkward and there is already a precedent in information theory for using bits outside of their original
 153 definition as a binary digit, from here onwards in this paper the word bits will be used to represent either
 154 the floating point equivalent of bits or as a metric for information.

155 Consider the communication channel capacity introduced by Shannon [11], which in its simplest
 156 form can be expressed as

$$157 \quad Ch = W \log_2 \left(\frac{Sg + Ns}{Ns} \right) \quad (5)$$

158 where *Ch* is a measure of the differential entropy of a signal in the presence of noise, *W* is a measure of
 159 the bandwidth, *Sg* is representative of the power of a signal, and *Ns* is representative of the noise power.
 160 The units of the channel capacity are in shannons, or bits per second, and represent the theoretical upper
 161 bound of the rate of information transfer in a communication channel. Since it is often impossible to
 162 separate noise embedded in a signal but it is often possible to construct a noise model, we can think the
 163 ratio $(Sg + Ns)/Ns$ as a practical measure of the signal to noise ratio (SNR) of an observed signal that has
 164 been carried through a cyber-physical system or a medium.

165 The effective SNR and therefore the detectability of a compressed pulse (such as a wavelet) is the
 166 product of the bandwidth, the signal to noise ratio, and the duration of a signal *T* [12]. When using
 167 constant-Q Gabor wavelet with fractional octave (binary) bands *n* of order *N* and center frequency *f_n* to
 168 process a signal in the presence of noise, the next section shows that for

$$169 \quad SNR_n = \frac{Ns_n + Sg_n}{Ns_n} = 1 + \frac{Sg_n}{Ns_n} \quad (6)$$

170 the signal detectability per band can be represented by

$$171 \quad bSNR_n = \frac{1}{2} \log_2(SNR_n) \quad (7)$$

172 and the upper limit on rate of information in bits per second for a band-limited pulse with center
 173 frequency *f_n* can be estimated from

$$174 \quad Ch_n = \frac{f_n}{N} bSNR_n \quad (8)$$

175 Energy and Shannon entropies using the binary log are constructed for both the wavelet coefficients
 176 and SNR in a later section.

177 **2. Methods**

178 This is an algorithmic paper providing foundational methods to construct standardized Gabor
 179 wavelets within a binary framework. No materials are included or required; all the algorithms required
 180 to reproduce the results are included, with recommendations for specific existing functions in open-
 181 source software frameworks.

182 Although the methods are intended to be sensor-agnostic and transportable across diverse domains,
 183 the selection of the Gabor mother wavelet does define the optimal applicability of the algorithms: the
 184 methods in this paper will work best with a transient, or a portion of a transient, that can be well
 185 represented by a superposition of Gabor wavelets. Fortunately, this covers a fairly wide range of transient
 186 signature types. Furthermore, the fundamental principles in this work are expandable to other wavelets
 187 as well as to four-dimensional spatiotemporal representations.

188 **2.1. Transforming Time and Frequency to Scale**

189 A digital time series is constructed by collecting digital measurements at discrete times separated
 190 by a nominal sample interval $\Delta\tau_s$. One may estimate a standard deviation from nominal σ_{τ_s} associated
 191 with the sample interval; when this error is a very small percent of the sample interval (e.g. parts per
 192 million) it is generally treated as a constant. Some variability in the sample rate should be expected in
 193 cyber-physical sensing systems under different conditions (temperature, battery level, power load, data
 194 throughput, etc.) even when they have the same hardware configurations. This can have an impact when
 195 attempting high-accuracy time synchronization. If adequate performance metrics are collected, the
 196 sample rate error may be quantified and potentially compensated by an additional time-varying correction to
 197 the clock drift.

198 In many scientific domains, such as astronomy and climatology, the sample interval may be greater
 199 than one second. Domains where the phenomena of interest change more rapidly use the equivalent
 200 metric of samples per second, referred to as the sample rate and often expressed in units of Hertz. The
 201 relationship between the sample interval $\Delta\tau_s$ and its standard deviation σ_{τ_s} and the sample rate f_s
 202 and its associated error can be expressed as

$$203 \frac{1}{\Delta\tau_s + \sigma_{\tau_s}} = \frac{1}{\Delta\tau_s} \left(1 + \frac{\sigma_{\tau_s}}{\Delta\tau_s}\right)^{-1} \approx f_s \left(1 - \frac{\sigma_{\tau_s}}{\Delta\tau_s}\right) \text{ if } \frac{\sigma_{\tau_s}}{\Delta\tau_s} \ll 1. \quad (9)$$

204 Although time is the primary discrete sampling parameter, system requirements are often provided
 205 as frequency specifications within the context of Fourier transforms. The nominal sample rate sets the
 206 maximum upper edge of the bandpass of the system; there should be negligible energy at the Nyquist
 207 frequency, which is half of the sample rate. The actual bandpass of a system is set by the low- and high-
 208 frequency cutoffs of a cyber-physical system, which may include the sensor response, hardware
 209 specifications, firmware and software modifications (such as anti-aliasing filtering), and data
 210 compression.

211 The mapping between frequency and period is simple for continuous wave tone; the tone period is
 212 the inverse of the tone frequency. It is not so clear for transients. Following [7], a transient with a single
 213 spectral peak at a center frequency f_n may be associated with a pseudo-period $\tau_n = 1/f_n$. This mapping
 214 is important as the scale of wavelet representations is linearly proportional to the pseudo-period, which
 215 is also referred to as the scale period. A high-level overview of the Appendixes is provided in this section
 216 for ease of reference.

217 Constant quality factor (Q) bands with constant proportional bandwidth are traditionally defined as
 218 [1]

219

$$\frac{\Delta f}{f_n} = \frac{1}{Q} \quad (10)$$

220 where Δf is the bandwidth centered on f_n . The Q is a measure of the number of cycles needed to reach
 221 the $\frac{1}{2}$ power point at the bandwidth edges. Appendix A shows that the bandwidth edges are well-
 222 defined in fractional octave band representations of order N so that the quality factor can be evaluated
 223 precisely as,

224

$$Q_N = \left[2^{\frac{1}{2N}} - 2^{-\frac{1}{2N}} \right]^{-1}. \quad (11)$$

225 From [1], and as shown in Appendices B and C, the characteristic time duration of the Gabor atom can
 226 be represented as

227

$$T_n = M_N \tau_n \quad (12)$$

228 where M_N is a measure of the number of oscillations in the characteristic time duration of a wavelet. For
 229 efficient computation all physical times are nondimensionalized and converted to equivalent sample
 230 points by multiplying by the sample rate. If t is the time in seconds, the nondimensionalized time m is

231

$$m = f_s t \quad (13)$$

232 The approach is wavelet-agnostic up to this stage. Direct application of the $\frac{1}{2}$ power points of the
 233 spectrum of Gabor-Morlet wavelet at the band edges (Appendix C) yields

234

235

$$M_N = 2\sqrt{\ln 2} Q_N \approx 2\sqrt{2\ln 2} N \quad (14)$$

236 This last step can be tailored to other wavelet types to produce constant-Q variants. The combination of
 237 this specifications lead to standardized and well constrained quantized Gabor atoms.

238

239

2.2. Binary Quantized Constant-Q Gabor Atoms

240 Gabor [2] extended the Heisenberg principle to define the time-frequency uncertainty principle, and
 241 further proposed deconstructing signals into elementary waveforms he referred to as time-frequency
 242 atoms [2, 13] that provide the optimum compromise between time and frequency resolution and thus
 243 maximize information density. Its functional kin, the Morlet wavelet [14, 15], was developed for seismic
 244 applications and is much beloved by mathematicians. Much has been said and written over the last 75
 245 years about the merits, and limitations [e.g. 16], of the Gabor atom in diverse fields of applied science
 246 ranging from quantum mechanics [e.g. 17], neurophysiology [e.g. 18] and radar target recognition [e.g.
 247 19].

248

Consider the translation and dilation of the familiar Gabor-Morlet mother wavelet

249

$$\Psi_N(m) = \frac{1}{\pi^{1/4}} \exp\left(-\frac{m^2}{2}\right) \exp(iM_N m) \quad (15)$$

250

with dictionary [13]

251

$$\Psi_n[m - m'] = \frac{1}{\sqrt{s_n}} \Psi_N\left(\frac{m - m'}{s_n}\right) \quad (16)$$

252

which can be fully expressed as

253

$$\Psi_n(m - m') = \frac{1}{\pi^{1/4}} \frac{1}{\sqrt{s_n}} \exp\left\{-\frac{1}{2}\left[\frac{m - m'}{s_n}\right]^2\right\} \exp\left\{iM_N \left[\frac{m - m'}{s_n}\right]\right\} \quad (17)$$

254

where the mapping between the nondimensional scale s_n and the band period is

255

$$s_n = \frac{M_N}{2\pi} f_s \tau_n. \quad (18)$$

256 The constant-Q Gabor atoms are constrained to the discrete set of values

257 $s_n = s_0 2^{\frac{n}{N}} = \frac{M_N}{2\pi} f_s \tau_0 2^{\frac{n}{N}}, \quad M_N = 2\sqrt{\ln 2} Q_N$ (19)

258 with quality factor

259 $Q_N = \left[2^{\frac{1}{2N}} - 2^{-\frac{1}{2N}} \right]^{-1} \approx \sqrt{2}N$ (20)

260 defined by the $\frac{1}{2}$ power points of the Fourier spectrum, quantized order N . For this functional form,
261 the wavelet admissibility condition can be represented as

262 $M_N^2 \gg 1.$ (21)

263 By quantizing constant-Q bands and the resulting wavelet scales it is possible to also discretize the
264 uncertainty in time and frequency of the resulting analyses. Since Gaussian pulses in general [12] and
265 Gabor atoms in particular are well-known to have the lowest time-frequency uncertainty [2, 13], they are
266 natural building blocks for uncertainty quantification. The Gaussian-wrapped oscillation in general, and
267 the Gabor atom in particular, meet the minimal value for the Heisenberg-Gabor uncertainty principle
268 (Appendix D), where the nondimensionalized temporal standard deviation σ_t and angular frequency
269 standard deviation σ_ω over all time and frequency satisfy

270 $\sigma_{f_s t} = \frac{1}{\sqrt{2}} s_n \Rightarrow \sigma_{t_n} = \frac{1}{\sqrt{2}} \frac{M_N}{2\pi} \tau_n$ (22a)

271 $\sigma_{\omega/f_s} = \frac{1}{\sqrt{2}} s_n^{-1}$ (22b)

272 $\sigma_t \sigma_\omega = \frac{1}{2}$ (22c)

273 which quantify time and frequency uncertainty discretely, minimally, and unambiguously.

274 Converting to physical time with $m = f_s t$ yields a more familiar Morlet representation

275 $\Psi_n(t - t') = \frac{1}{(\pi s_n^2)^{1/4}} \exp \left\{ -\frac{1}{2} \left[\frac{f_s(t - t')}{s_n} \right]^2 \right\} \exp \left\{ i \frac{2\pi f_n}{f_s} [f_s(t - t')] \right\}$ (23)

276 where the scale s_n may be readily recognized as the standard deviation of a Gaussian envelope with
277 integration variable $m = f_s t$. This is very similar to the original form proposed by Gabor [2], and makes
278 intuitive sense as the oscillatory term is clearly exposed. However, the additional factor of f_s required to
279 nondimensionalize the numerator of the Gaussian envelope for numerical computation has indubitably
280 been an initial source of confusion amongst some physical scientists, author included.

281 2.3. Quantum Order

282 The recommended quanta for the Gabor atoms are positive integer band numbers n and the
283 preferred orders N as in [1]

284 $n = 0, 1, 2 \dots, \quad N = 1, 3, 6, 12, 24 \dots$ (24)

285 though the special orders $N=0.75$ and 1.5 are considered. The mother wavelet is uniquely defined (and
286 can be quantized) by the order N , although it is often specified by the more accessible variable M_N . The
287 mother wavelet is scale invariant. Each discrete atom in its dictionary is defined by its order N , its band
288 number n , and a reference scale at $n=0$. If the Gabor atoms remain within their quanta, there is only one
289 degree of freedom: the reference scale. The reference scale can be set by the data acquisition system (e.g.
290 the Nyquist frequency) or a standard frequency (for example, 1kHz in audio applications, 1Hz in
291 infrasound applications). The scale schema can also be set by a signal tuning frequency; the peak
292 frequency for a 1 ton detonation is used in Section 3. When integrating multi-sensor time series with
293 different evenly and unevenly sampled data, it is better to either use a standard reference frequency or
294 time scale (e.g. 1 kHz, 1 s, 1 hour) or the target frequency. The resulting bands will be evenly spaced to

295 standardize and facilitate multi-sensor cross-correlations and data fusion. However, it is important to
 296 reinforce that the mapping from nondimensional scale to physical time scale depends on the sample rate.
 297 Inversely, specifying a sample rate f_s or a sample interval $\Delta\tau_s = 1/f_s$ permits conversion to physical
 298 time t and time scales τ_n from the wavelet parameters,

$$299 \quad t = \frac{m}{f_s}, \quad \tau_n = \frac{2\pi}{M_N} \frac{s_n}{f_s}, \quad (25)$$

300 and map to the physical frequencies

$$301 \quad f_n = \frac{1}{\tau_n}, \quad \omega_n = 2\pi f_n. \quad (26)$$

302 It may be useful to think of the binary (base 2) order N as the quantized time and bandwidth stretch
 303 factor of the Gabor atom; as the order increases, the wavelet stretches in time and narrows in bandwidth,
 304 with each frequency band occupying a constant proportional frequency bandwidth that produces Q_N
 305 oscillations at the band frequency in the time domain. As noted a few sentences up in sparser
 306 mathematical notation, although in theory it is possible to use any integer band indexes n , the
 307 recommended best practice is to use only nonnegative integers to represent temporal scales, with τ_0
 308 corresponding to the smallest scale and ω_0 to the highest frequency below the Nyquist frequency.

309

310 This paper recommends atom quantization using the well-established fixed order N and quality
 311 factor Q_N values of standard geometric binary intervals referred to as fractional octave bands in
 312 acoustic and infrasound applications (Table 1).

313 **Table 1.** Quality factor Q and M_N for standard fractional octave bands of order N ¹.

N	Q_N	M_N
1	1.4142	2.3548
3	4.3185	7.1907
6	8.6514	14.4055
12	17.3099	28.8229
24	34.6235	57.6519
48	69.2488	115.3067
96	138.4984	230.6150

314 ¹ Dyadic base, G=2.

315 Appendix A develops a useful approximation for the quality factor Q_N of order N ,

$$316 \quad Q_N \approx \sqrt{2}N \approx 1.414 N, \quad M_N = 2\sqrt{\ln 2} Q_N \approx 2\sqrt{2\ln 2} N \approx 2.355 N \quad (27)$$

317 with exact equivalence for octave bands at $N=1$ (Table 2).

318 **Table 2.** Exact and approximate quality factor Q for standard fractional octave bands of order N ¹.

N	Q_N	$Q_N \approx \sqrt{2}N$
1	1.4142	1.4142
3	4.3185	4.2426
6	8.6514	8.4853
12	17.3099	16.9706
24	34.6235	33.9411
48	69.2488	67.8823

319	96	138.4984	135.7645
¹ Dyadic base, G=2.			

320
321 These relations are seldom made explicit for constant Q wavelet representations, which often leads
322 to inadvertently creative interpretations and implementations. In traditional fractional octave bands, N
323 is an integer with preferred numbers 1, 3, 6, 12, 24 and its half-power (-3 dB) band edges and center
324 frequencies are well established so their Q can be readily computed (Tables 1 and 2). The band spectrum
325 will overlap at the half-power point band edges to reduce (or at least regulate) spectral leakage and
326 improve energy estimation. Dyadic wavelets use order $N=1$ and are weakly admissible ($\Omega_N^2 \sim 5.54$);
327 carefully handled they do lead to very sparse and fast computational implementations (e.g. M9).
328

329 The estimate for Q_N in terms of the order N is useful for practical application where we wish to specify
330 the number of oscillations Q_N in a window. If one abandons the bounds of the preferred bands, one can
331 estimate the order for a wavelet that has any number of oscillations in its support window. Once N is
332 estimated, exact values for the center frequencies and band edges can be computed from the expressions
333 in Appendix A. These bespoke constant-Q bands will not meet binary (factor of two) recursions with $\frac{1}{2}$
334 power bandedge overlap, but may be useful for highly customized tuning. Examples are provided in
335 Table 3.

336 **Table 3.** Approximate quality factor Q and M_N for non-integer order N ¹.

Q_N	$N \approx Q_N/\sqrt{2}$	M_N
1	0.7071	1.6651
2	1.4142	3.3302
4	2.8284	6.6604
8	5.6569	13.3209
16	11.3137	26.6417
32	22.6274	53.2835
64	45.2548	106.5670
128	90.5097	213.1340

337 ¹ Dyadic base, G=2.

338 Consider the curious case of a single oscillation in the window, where

339
$$N = \frac{3}{4} = 0.75, Q_N = 1.04, M_N = 2\sqrt{\ln 2} \approx 1.74 \quad (28)$$

341 and Q is evaluated more precisely from the order N. Although intuitive and compact, the resulting
342 wavelets are marginally admissible ($\Omega_N^2 \sim 3$) and produce oddly spaced, but legitimate, constant-Q
343 frequency bands that grow rapidly and hit only every fourth standard octave (power of two) every three
344 bands. The window duration will be only 1.74 periods long and the spectral resolution of the Fourier
345 transform will be exceedingly sparse. Adding another oscillation per window (increasing the quality
346 factor to two), would correspond to

347
$$N = \frac{3}{2} = 1.5, Q_N = 2.14, M_N = 2\sqrt{\ln 2} \approx 3.57 \quad (29)$$

348 The resulting wavelets that are more admissible ($M_N^2 \sim 12.8$) but also produced oddly spaced constant-Q
349 frequency bands that land on every second standard octave every three bands. Third order bands hit

350 exact powers of two every third band and have around four oscillations per window (Appendix D).
 351 Although it is possible to force center frequency scales, if best practices for band overlap are ignored one
 352 will have a set of wavelet filter banks with substantial spectral leakage or gaps between adjacent bands,
 353 and the possibility for excessively overdetermined or underdetermined results. This is what usually
 354 happens with default parameters on most continuous or discrete wavelet transform algorithms. This paper
 355 standardizes and regulates band spacing by asserting the relationship between order, bandwidth, and
 356 duration. Since it is both silly and mathematically inadvisable (even inadmissible) to construct a wavelet
 357 with less than one oscillation in its window, it is recommended that $Q \geq 1$. This suggests a minimum
 358 order number (quantum) of $N=3/4$ for stable Gabor atoms, with $N=1$ yielding value exact power of two
 359 (binary) bands.
 360

361 It is possible to estimate the smallest possible universal binary scale from the Planck time, the
 362 smallest measurable time scale

$$363 \quad \Delta\tau_{Planck} = 10^{-43} s \sim 2^{-142} s. \quad (30)$$

364 Since the Planck time would be the smallest possible sample interval, the smallest oscillation that could
 365 be observed would be at the universal Nyquist period

$$366 \quad \tau_{min} = 2\Delta\tau_{Planck} \sim 2^{-141} s. \quad (31)$$

367 At the other end of the timeline, the age of the universe is estimated to be 13.8 billion years, or

$$368 \quad \tau_{max} \sim 2^{58} s \quad (32)$$

369 so that the (presently) known universe can be encompassed in the range of ~200 temporal octave bands.
 370 Computationally speaking, this is a small range of octaves that can be spanned by 200 temporal Gabor
 371 atoms. Earth is estimated to be ~4.6 billion years old, covering around about 57 of those temporal binary
 372 bands, and the oldest bones associated with Homo Sapiens-Sapiens are ~200,000 years old and within the
 373 last 42 temporal sub-bands since Earth's inception. The human voice for average individuals ranges
 374 between one and two octaves, and five octaves species-wide. A third order representation ($N=3$) of all
 375 the times scales in the universe can be represented by only 600 temporal Gabor atoms. In principle it
 376 would be possible to construct universal scales with $\tau_0 = 2^{-141} s$, whereas all timescales would occupy
 377 temporal sub-bands, but it is not clear there would be practical value to it.
 378

379 The beauty of the third order representation is that it is very close to the decimal representation,
 380 with every ten 1/3 octaves producing a decade ($2^{10/3} \sim 10$), and thus provide a geometrically elegant
 381 compromise between ten-digit humans and binary digit machines. In addition to better meeting the
 382 admissibility condition, third order bands will contain over 99% of the information within their octave
 383 (Appendix E), making them compact temporal carriers. If the third order representation is used as the
 384 base order ($N=3$), the preferred numbers are binary multiples ($N = 3, 6, 12, 24$ in Table 1), with a
 385 proportional elongation in the wavelet support and increase in spectral resolution.
 386

387 The nondimensionalized scale s_n at the Nyquist frequency is always the same regardless of
 388 whether one uses the Plank scale or half the age of the known universe (which would be not only
 389 impractical but not very informative as it would only leave one octave to process)

$$390 \quad Q_1 = \sqrt{2}, \quad M_1 = 2\sqrt{2\ln 2}, \quad s_0 = \frac{M_1}{2\pi} \frac{\tau_{min}}{\Delta\tau_{Planck}} = \sqrt{\frac{\ln 2}{2\pi^2}} \quad (33a)$$

$$391 \quad s_n = s_0 2^n \quad (33b)$$

392 Many software packages readily produce a Gabor-Morlet wavelet with default parameters. One of
 393 the most common values is $M_N = 5$, which is close to order $N = 2$ (Table 4). Other common values of

394 the wavelet support correspond to $\Omega_N = 4$, $N = 1.7$ and the more reasonable $M_N = 8$ which is close to
 395 preferred order $N = 3$.

396 **Table 4.** Approximate quality factor Q and order N for integer values of M .

M_N	$\sim Q_N$	N
1	0.600561204	0.4246609
2	1.201122409	0.8493218
4	2.402244818	1.698643601
5	3.002806022	2.123304501
6	3.603367226	2.547965401
8	4.804489635	3.397287201

397 ¹ Dyadic base, G=2.

398 Because none of these specifications correspond to standard orders, the resulting wavelets will tend to
 399 either overestimate (due to spectral leakage) or underestimate (due to spectral gaps between bands) the
 400 energy within adjacent binary bands when forced, or will produce oddly spaced bands.

401
 402 Although it is possible to quantize the constant-Q Gabor atoms using the order N , the quality factor
 403 Q , or the multiplier M_N , the order is the most logical way to define the quanta of the wavelet. Describing
 404 the proposed wavelet dictionaries of preferred orders as the quantized constant-Q Gabor atoms with
 405 binary bases and overlapping $1/2$ power points is rather awkward, and this paper proposes referring to
 406 these constructs as quantized wavelets, quantum wavelets of order N , or N th order Gabor atoms.
 407 Although $N=1$ provides a sparse clean binary (with power of two steps in frequency) representation with
 408 the tightest windows, the admissibility condition coupled with the better reconstruction capability
 409 presented in the next section suggest that using $N=3$ as the base order is preferable, with the added
 410 advantage that all subsequent preferred orders in Table 1 are binary factors of base order 3.

411 2.4. Continuous Wavelet Transform Deconstruction and Reconstruction

412 The continuous wavelet transform (CWT) of a function $g(x)$ is represented in [13] (Eq. 1.13) as

$$413 \quad \mathcal{W}(g, u, s) = \langle g, \Psi_{u,n} \rangle = \int_{-\infty}^{\infty} g(x) \frac{1}{\sqrt{s}} \Psi^* \left(\frac{x-u}{s} \right) dx \quad (34)$$

414 where $(*)$ represents the complex conjugate. The equivalent CWT for a discrete sequence of observations
 415 (or a synthetic time series) $g(m)$ is the convolution of g with a scaled and translated version of $\Psi(m)$.
 416 Consider the nondimensional Quantum mother wavelet of order N ,

$$417 \quad \Psi_N(m) = \frac{1}{\pi^{1/4}} \exp \left(-\frac{m^2}{2} \right) \exp (i M_N m) \quad (35a)$$

$$418 \quad \Psi_n[m] = \frac{1}{\sqrt{s_n}} \Psi_N \left(\frac{m}{s_n} \right) \quad (35b)$$

419 The discrete CWT can be expressed as

$$420 \quad \mathcal{W}_n[m] = \sum_{m'=0}^{Mp-1} g(m') \Psi_n^*(m' - m) = g \circledast \Psi_n^*[m] \quad (36)$$

421 where the symbol \circledast denotes a convolution (M9), often computed using the Discrete Fourier transform
 422 (Scipy). This is comparable to the expression in [20], although their convolution has no amplitude scaling
 423 as it is corrected afterwards. The CWT coefficients $\mathcal{W}_{m,n}$ provide a measure of the degree of similarity
 424 between the time series and the wavelet of scale index n while translating along the time index m . While
 425 exact waveform reconstruction from the CWT is challenging (e.g. [21-22]), reference [20] provides an

426 approximate expression for the wavelet-filtered time series $g'(m)$. The reconstruction filter from the Nth
 427 order Gabor atoms becomes,

$$428 \quad g[m] \approx \frac{\frac{1}{\pi^4}}{N} \frac{1}{C_\delta} \sum_{n=0}^{Np-1} \frac{\text{Re}\{\mathcal{W}_n[m]\}}{\sqrt{s_n}} \quad (37)$$

429 Where $\text{Re}\{\}$ denotes the real part of the coefficients and the reconstruction factor C_δ is scale independent
 430 and constant for wavelet function with fixed M_N . The reconstruction factor can be estimated by
 431 comparing against known test functions. Reference [20] empirically computed a reconstruction
 432 coefficient of $C_\delta = 0.776$ with $M_N = 6$, and [23] provides other estimates. Numerical evaluation shows
 433 the product $NC_\delta \sim 2$, and the reconstruction approximation for the analytic (Appendix F) quantum
 434 wavelet of arbitrary order is

$$435 \quad g_C[m] \approx \frac{\frac{1}{\pi^4}}{2} \sum_{n=0}^{Np-1} \frac{\mathcal{W}_n[m]}{\sqrt{s_n}} \quad (38)$$

436 It is important to note how substantially different this expression is to the inverse discrete Fourier
 437 transform, where

$$438 \quad g_{DFT}[m] = \frac{1}{\sqrt{Np}} \sum_{n=0}^{Np-1} \hat{g}_{DFT}[n] \exp(j2\pi mn/Np) \quad (39)$$

439 where $\hat{g}_{DFT}[n]$ are the Fourier coefficients. Unlike the discrete Fourier transform, the standard wavelet
 440 reconstruction does not require multiplication by the mother wavelet. However, in the special case where
 441 the atoms are well matched to the signal of interest, it is of interest to consider the sparse set of coefficients
 442 corresponding the complex time indexes $m_{n \in \text{max}}$ of the maximum energy, entropy, or SNR at each scale

$$443 \quad g_C[m] \approx \frac{\frac{1}{\pi^4}}{2} \sum_{n=0}^{Np-1} \frac{\mathcal{W}_n[m_{n \in \text{max}}]}{\sqrt{s_n}} \text{Re}\{\Psi_n[m - m_{n \in \text{max}}]\} \quad (40)$$

444 where the maximum coefficient indexes can be computed separately for real and imaginary components.
 445 This has the form of a sum over the dominant Gabor atoms for each scale. Since one is only considering
 446 the maxima in a given record window, this is a very sparse representation consisting of the coefficient
 447 and the time offset corresponding to the peak energy or entropy estimate. Numerical evaluation shows
 448 that this last expression can be used to estimate the full analytic function representation as long as
 449 reconstruction uses the complex coefficients but only the real atom function since the time shifts in the
 450 Hilbert transform already include the $\pi/2$ time shift.

451 2.5. Wavelet Information and Entropy

452 One advantage of the constant Q wavelet representation is that it is possible to estimate the
 453 information content and detectability of a signal in a band by applying the same set of wavelet transforms
 454 to the signal and comparing them to the transform of a noise segment or model. Consider the definition
 455 for Shannon's channel capacity [11], with

$$456 \quad \text{SNR}_n = \frac{Ns_n + Sg_n}{Ns_n} = 1 + \frac{Sg_n}{Ns_n} \quad (41)$$

$$457 \quad Ch_n = W \log_2(\text{SNR}_n) \quad (42)$$

458 where Sg is the wavelet-transformed signal power and Ns is the wavelet-transformed noise power in a
 459 band. I consider two possible estimates for the bandwidth W . The first estimate approximates W by the
 460 $\frac{1}{2}$ power point bandwidth

$$461 \quad \Delta f_n = \frac{f_n}{Q_N} \approx \frac{1}{\sqrt{2}} \frac{f_n}{N} \approx 0.7071 \frac{f_n}{N}. \quad (43)$$

462 The second estimate W using the Gabor box standard deviation for the angular frequency

463 $\sigma_\omega = \frac{1}{\sqrt{2}} \frac{\omega_n}{M_N} \approx \frac{1}{4\sqrt{\ln 2}} \frac{\omega_n}{N} \approx \frac{\pi}{2\sqrt{\ln 2}} \frac{f_n}{N} \approx 1.8867 \frac{f_n}{N}$ (44)

464 so that

465 $\sigma_f = \frac{\sigma_\omega}{2\pi} = \frac{1}{4\sqrt{\ln 2}} \frac{f_n}{N} \approx 0.3003 \frac{f_n}{N}$. (45)

466 Taking the average of Δf_n and σ_f

467 $Ch_n \approx \frac{1}{2} \frac{f_n}{N} \log_2(SNR_n)$. (45)

468 The effective SNR_G and therefore the “detectability” of a bandwidth-limited compressed pulse [12]
 469 can be represented by the product of the Gabor time-bandwidth product (Appendix C) and the signal to
 470 noise ratio

471 $SNR_G = \sigma_t \sigma_\omega \times SNR_n$. (46)

472 Since the time-bandwidth product for the Gaussian wavelet is constant

473 $\sigma_t \sigma_\omega = \frac{1}{2}$ (47)

474 and the uncertainty of its Gabor box is at the minimum, the likelihood of the detection of a SOI in a given
 475 band n is only proportional to its SNR.

476 Shannon’s definition of the channel capacity was intended to represent the highest theoretical
 477 transfer rate of information through an analog line. Since SNR is given in power, which is typically the
 478 square of the signal amplitude, an unscaled binary log is off by a factor of two from the original data in
 479 bits. To reconcile this definition with the original collection of a time series signal in floating point bits
 480 (fbits), I define the binary SNR to match the signal rms amplitude as well as Shannon’s units for the
 481 information rate per band $Ch_{N,n}$ of the quantum compressed pulse as

482 $bSNR_n = \frac{1}{2} \log_2(SNR_n) = \log_2(\sqrt{SNR_n})$, fbits (48)

483 $Ch_{N,n} = \frac{f_n}{N} \times bSNR_n$, shannons/s = fbits/s. (49)

484 The increase in higher information delivery rate with increasing frequency is intuitive as more cycles are
 485 transferred per second. As the order number increases, the bandwidth narrows and so the potential
 486 information rate decreases. Less obvious is the decrease in high-frequency information with increasing
 487 distance in a lossy transmission channel. Assuming the noise power remains unchanged, the decrease in
 488 SNR with increasing scaled distance r from the source origin on a lossy acoustic channel can be
 489 represented as

490 $SNR = SNR_0 \frac{\exp(-\gamma f^2 r)}{r^{n_g}}$. (50)

491 where $n_g = 2$ for spherical geometric spreading in free space and $n_g = 1$ for cylindrical spreading in a
 492 waveguide. The binary SNR can be represented as

493 $SNR = \left[bSNR_0 - \frac{n_g}{2} \log_2 r \right] - f^2 r (\gamma \log_2 e)$. (51)

494 The term in parenthesis shows the expected reduction of one bit per doubling of distance for spherical
 495 spreading ($n_g = 2$). The last term suggests the frequency dependence of the channel capacity in a lossy
 496 acoustic medium may have the general form

497 $Ch_n \sim \alpha(\log_2 r) f - \beta(r) f^3$ (52)

498 so that with increasing range the optimal information transmission frequency shifts to lower frequencies.

499 One may readily extend the binary SNR definition to the measure of relative power

500 $bR = \log_2 \left(\sqrt{\frac{s}{s_{max}}} \right) = \frac{1}{2} \log_2 \left(\frac{s}{s_{max}} \right), \text{ fbits}$ (53)

501 and the -3dB half-power point becomes the -1/2 bit power point.

502 The entropy of a signal of interest can be estimated by the wavelet coefficients. A practical approach
503 is described in [24]. The information content of each scale n at the time step m can be estimated from the
504 wavelet energy. First estimate the complex wavelet coefficient energy from

505 $E_{m,n} = |Re\{\mathcal{W}_{m,n}\}|^2 + j |Im\{\mathcal{W}_{m,n}\}|^2.$ (54)

506 The total energy in a given record can be estimated from

507 $E = \sum_m \sum_n \sqrt{E_{m,n} E_{m,n}^*}.$ (55)

508 The complex probability of $\mathcal{W}_{m,n}$ in the record is

509 $p_{m,n} = \frac{E_{m,n}}{E}$ (56)

510 where

511 $\sum_m \sum_n p_{m,n} p_{m,n}^* = 1.$ (57)

512 The log energy entropy (lee) per coefficient can be defined by the binary logarithm

513

514 $e_{lee} = \log_2(p_{m,n}^2) = 2\log_2(p_{m,n})$ (58)

515

516 where it should be noted that the factor of two scaling coefficient does not alter the relative weight of
517 each coefficient. The Shannon entropy (se) per CWT coefficient is defined as

518

519 $e_{se} = -p_{m,n} \log_2(p_{m,n})$ (59)

520

521 with corresponding complex versions that separate the real and imaginary components. These entropies
522 can be readily evaluated to construct noise models from the lowest entropy components. If a stable noise
523 model can be constructed from the record or from prior knowledge of the environment and transmission
524 channel, SNR estimates can be computed and the process repeated to evaluate the dimensionless binary
525 log of the SNR

526 $bSNR_{m,n} = \frac{1}{2} \log_2(SNR_{m,n})$ (60)

527

528 and the product of the ratio and the binary ratio (RbR), an entropy-like nondimensional metric of the
529 SNR that can be readily evaluated to identify and extract the wavelet coefficients would be most
530 representative of a signal of interest,

531

532 $RbR_{m,n} = SNR_{m,n} \times bSNR_{m,n}.$ (61)

533 **3. Discussion: Explosion Case Study**

534 The methods presented in this paper are foundational: the intention is to use the Gabor atoms as
535 fundamental building blocks with minimal time-frequency uncertainty and high information density.
536 These methods are illustrated and discussed in the context of a blast pulse. Consider a normalized
537 transient wave function characteristic of an explosion. Suppose one wanted to construct sparse wavelet
538 representation of a pulse with peak energy at 6.3 Hz, corresponding to the detonation of one metric ton

539 on TNT observed at 1 km. It is known [e.g. 7] that at some distance from the source this center frequency
 540 may drop by an octave (factor of two in frequency) or more, as well as become stretched out (dispersed)
 541 in time due to propagation effects. A theoretical source pressure function for the detonation of high
 542 explosives was developed in some detail in [7] with 1 kiloton as the case study, and is used here to
 543 construct a representative synthetic waveform for a 1 ton detonation. Define τ_c

$$544 \quad \tau_c = 4\tau_p, \quad f_c = \frac{1}{\tau_c}, \quad \omega_c = 2\pi f_c \quad (62)$$

545 as the pseudo-period of a blast pulse corresponding to the peak spectral energy at the frequency f_c and
 546 angular frequency ω_c , where τ_p is the time duration of the initial positive pulse traditionally used in
 547 blast physics. The nondimensionalized time scale is

$$548 \quad \hat{t} = \frac{t}{\tau_p} = 4 \frac{t}{\tau_c} \quad (63)$$

549 The form of the amplitude-normalized source pressure function for an explosive blast [7] can be
 550 represented as

$$551 \quad g(\hat{t}) = (1 - \hat{t}), \quad 0 \leq \hat{t} \leq 1 \quad (64a)$$

$$552 \quad g(\hat{t}) = \frac{1}{6}(1 - \hat{t})(1 + \sqrt{6} - \hat{t})^2, \quad 1 < \hat{t} \leq 1 + \sqrt{6}. \quad (64b)$$

553 This pulse has an associated analytical function $g_C(\hat{t})$ discussed in Appendix F. Since the theoretical
 554 Hilbert transform has some unresolved issues, the numerical Hilbert transform [25] is used for
 555 comparison.

556 Note the amplitude is not used in this exercise as in cyber-physical systems such as smartphones the
 557 amplitude response of on-board sensors may not be known. However, sensor dynamic range is usually
 558 specified and available (e.g. int16, float32) and can be used for signal scaling relative to the full range or
 559 the noise.

560 The normalized pulse has zero mean (conservation of momentum) and its theoretical variance is
 561

$$562 \quad \sigma_p^2 = \int_{-\infty}^{\infty} g^2(\hat{t}) dt = 0.95 \frac{\tau_c}{8}. \quad (65)$$

563 The complex Fourier transform $\hat{g}(j\hat{\omega})$ of this pulse is
 564

$$565 \quad \hat{g}(j\hat{\omega}) = \frac{\pi}{2\omega_n} \left[\frac{1-j\hat{\omega}-e^{-j\hat{\omega}}}{\hat{\omega}^2} + \frac{e^{-j\hat{\omega}(1+\sqrt{6})}}{3\hat{\omega}^4} \{j\hat{\omega}\sqrt{6} + 3 + e^{j\hat{\omega}\sqrt{6}}[3\hat{\omega}^2 + j\hat{\omega}2\sqrt{6} - 3]\} \right] \quad (66)$$

566 where $\hat{\omega} = \frac{\pi}{2\omega_c} = \frac{\tau_c}{4}\omega = \tau_p\omega$ and the peak in the spectrum is at $\omega = \omega_c$. Note there are at least two
 567 pseudoperiods of importance evident in the main blast pulse: the main spectral pseudoperiod τ_c and
 568 positive phase pseudoperiod of $2\tau_p$. Near the source the positive phase pseudoperiod will dominate as
 569 it has the highest energy and bandwidth. With increasing distance and high-frequency attenuation the
 570 main pseudoperiod becomes more prominent and may also be downshifted in frequency [7]. However,
 571 additional scales can be introduced by reflection and refraction in the transmission channel that can
 572 induce phase shifts often modeled with Hilbert transforms (Appendix F).

573
 574 The power spectra of real digital signals are usually expressed using only the positive frequencies
 575 up to the Nyquist frequency, where the unilateral spectral density $Pg(\hat{\omega})$ is defined as
 576

$$577 \quad Pg(\hat{\omega}) = 2|\hat{g}(j\hat{\omega})|^2 = 2\hat{g}(j\hat{\omega})\hat{g}^*(j\hat{\omega}). \quad (67)$$

579 Since the target signature corresponds to a one tonne (1000 kg) blast, the analysis concentrates on a
 580 target frequency of 6.3 Hz [7]. The general procedure for constructing target-tuned fractional binary
 581 bands of order N is to define a set of base-2 scales around the center or reference frequency
 582

$$583 \quad f_c = 6.3\text{Hz}, \quad f_j = f_c 2^{\frac{j}{N}}. \quad (68)$$

584 The upper limit is set by the Nyquist frequency

$$585 \quad f_{j \max} = f_{tg} 2^{\frac{j \max}{N}} < \frac{f_s}{2} \Rightarrow j \max < \text{floor} \left(N \log_2 \left[\frac{f_s}{2f_{tg}} \right] \right) \quad (69a)$$

586 And the lower limit is set by the largest data window duration T

$$587 \quad f_{j \min} = f_{tg} 2^{\frac{j \min}{N}} > \frac{2}{T} \Rightarrow j \min > \text{ceil} \left(N \log_2 \left[\frac{2}{T f_{tg}} \right] \right) \quad (69b)$$

588 so the center frequencies are defined by

$$589 \quad f_j = f_c 2^{\frac{j}{N}}, \quad j \in [j \min, j \max] \quad (70)$$

590 which will be sufficient information to compute the Morlet scale \mathcal{s}_n . If one must convert to a sorted,
 591 monotonically increasing pseudoperiod, let

$$592 \quad \tau_j = \frac{1}{f_j}, \quad \tau_0 = \min(\tau_j) \quad (71)$$

593 and restart the counter for the period

$$594 \quad \tau_n = \tau_0 2^{\frac{n}{N}}, \quad n \in [0, j \max - j \min = \text{length}(f_j)]. \quad (72)$$

595 This re-indexing is much easier to do numerically than to describe algorithmically. For the purposes of
 596 illustration and demonstration, let's choose a signal frequency that exactly matches the target frequency;
 597 if this example fails there is no purpose in continuing. A sample rate of 200 Hz will be more than sufficient
 598 for this example. Gaussian noise with a standard deviation that is one bit below the signal variance (factor
 599 of 1/2) is added, and then anti-alias filter all frequencies below Nyquist. The analytic function is
 600 computed numerically from the real pulse for later comparisons with the wavelet-reconstructed signal.

601 The CWT scalogram is computed using the complex nondimensional mother quantum wavelet of
 602 order N . The complex Gabor-Morlet wavelet in Scipy [25] is represented by the function
 603 `scipy.signal.morlet2`, and has the desired canonical form,

$$604 \quad \Psi_H(m) = \frac{1}{\pi^{1/4}} \exp \left(-\frac{m^2}{2} \right) \exp(i M_N m) \quad (73a)$$

$$605 \quad \Psi_{u,n}(m) = \frac{1}{\sqrt{\mathcal{s}_n}} \Psi_H \left(\frac{m-u}{\mathcal{s}_n} \right) \quad (73b)$$

$$606 \quad \mathcal{s}_n = \mathcal{s}_0 2^{\frac{n}{N}} = \left[\frac{M_N}{2\pi} f_s \tau_0 \right] 2^{\frac{n}{N}} = \frac{M_N f_s}{2\pi f_n} \quad (73c)$$

$$607 \quad T_n = [M_N \tau_0] 2^{\frac{n}{N}} = \frac{M_N}{f_n} \quad (73d)$$

$$608 \quad M_N = 2\sqrt{\ln 2} Q_N \quad (73e)$$

$$609 \quad Q_N = \left[2^{\frac{1}{2N}} - 2^{-\frac{1}{2N}} \right]^{-1} \quad (73f)$$

610
 611 The only free variables are the order N , the smallest time scale τ_0 , and the sample rate f_s . Although that
 612 the nondimensionalized scale will change with the sample rate, but the final results can always be
 613 returned to the physical domain frequencies f_n . The nominal number of points per window can be

614 estimated from $f_s T_n$. The complex wavelet coefficients can be readily computed from the real part of the
 615 discrete version of the blast source-time function $p(m)$

616

617
$$\mathcal{W}_n[m] = \sum_{m'=0}^{Mp-1} p(m') \Psi_n^*(m' - m) = p \odot \Psi_n^*[m]. \quad (74)$$

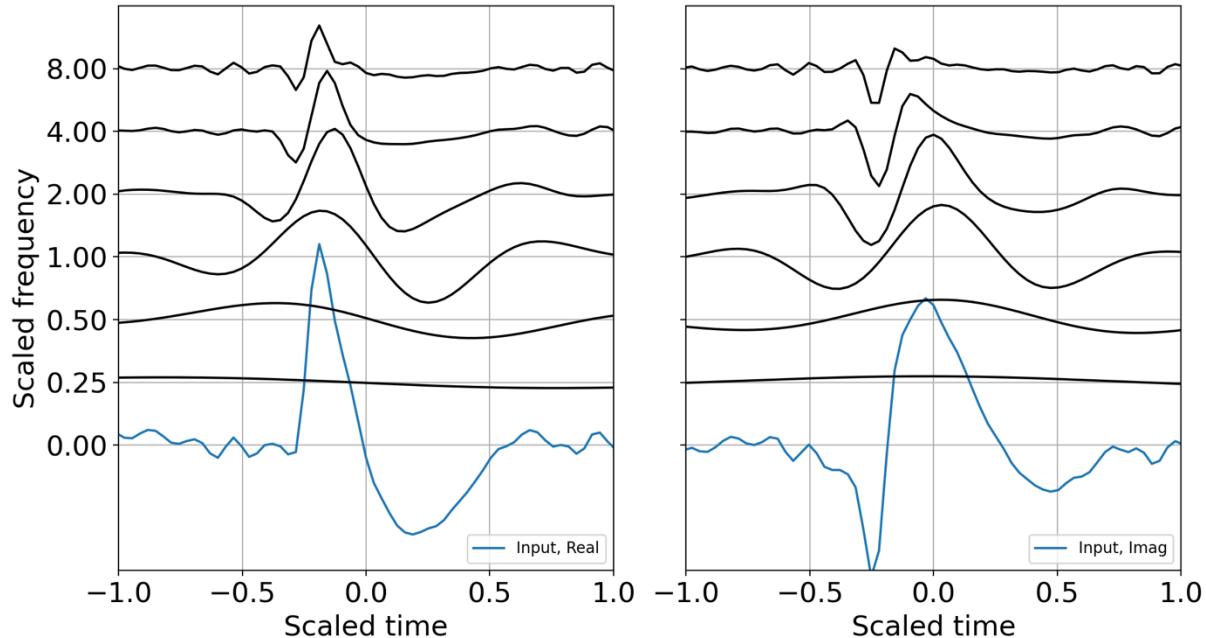
618 The SciPy cwt function turn invokes the convolution function. This is computationally expensive: we've
 619 turned a time series with Mp points into a complex 2[Mp x Nbands] array of band-passed waveforms.
 620 The terms wavelets and wavelet filter banks are often used interchangeably in the context of the CWT.

621 The wavelet-filtered reconstructed complex analytical signal can be approximated from

622
$$g_{C,ij}[m_k:m_l] \approx \frac{\pi^4}{2} \sum_{n=i}^j \frac{w_n[m_k:m_l]}{\sqrt{s_n}} \quad (75)$$

623 where the i, j indexes indicate that one may choose selected scales for the reconstruction over selected
 624 time indexes m_k, m_l corresponding to the wavelet coefficients that best represent a signal of interest
 625 during the time interval of relevance. The scaled wavelet coefficients for the binary band decomposition
 626 are shown in Figure 1, and Figure 2 shows a comparison of the input synthetic analytic record and the
 627 analytic signal reconstruction (summed over all scales) for the octave band representation. In Figure 1
 628 the CWT wavelet amplitudes are scaled by the reconstruction coefficients.

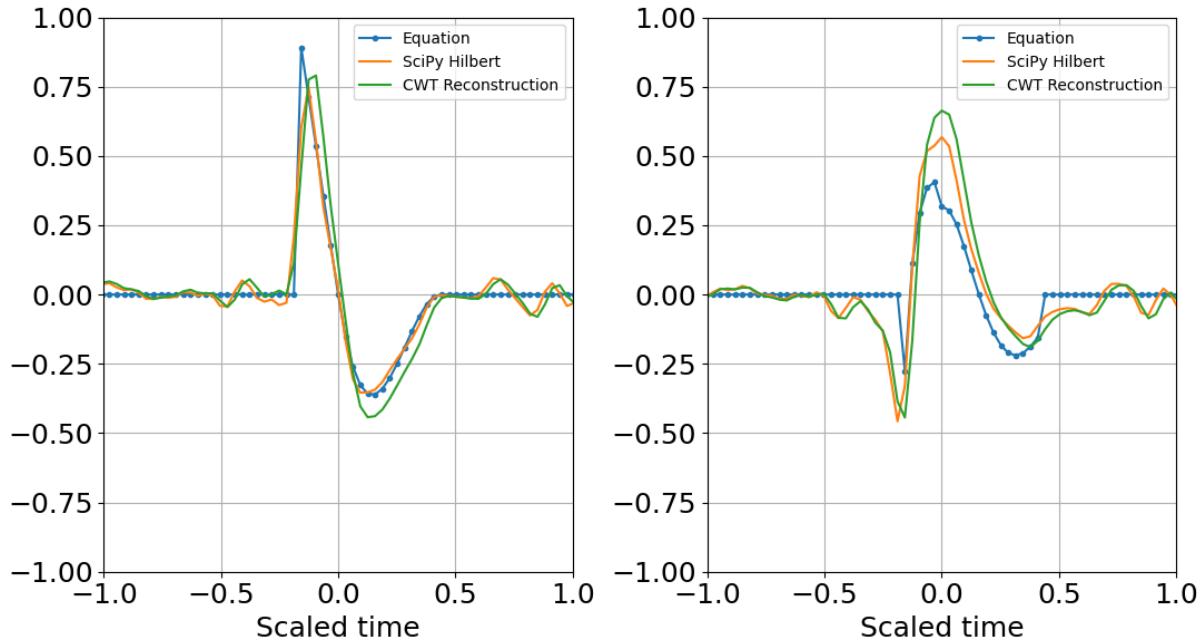
629



630

631 Figure 1. Analytical signal from mathematical equation, computation with SciPy Hilbert, and the CWT
 632 reconstruction. (a) Real part; (b) imaginary part. The wavelets were evaluated in binary bands (N=1) and
 633 constructed around the target frequency of 6.3 Hz, which scales frequency and time. The real input
 634 waveform and its computed Hilbert transform are displayed in blue at the zero frequency.

635



636

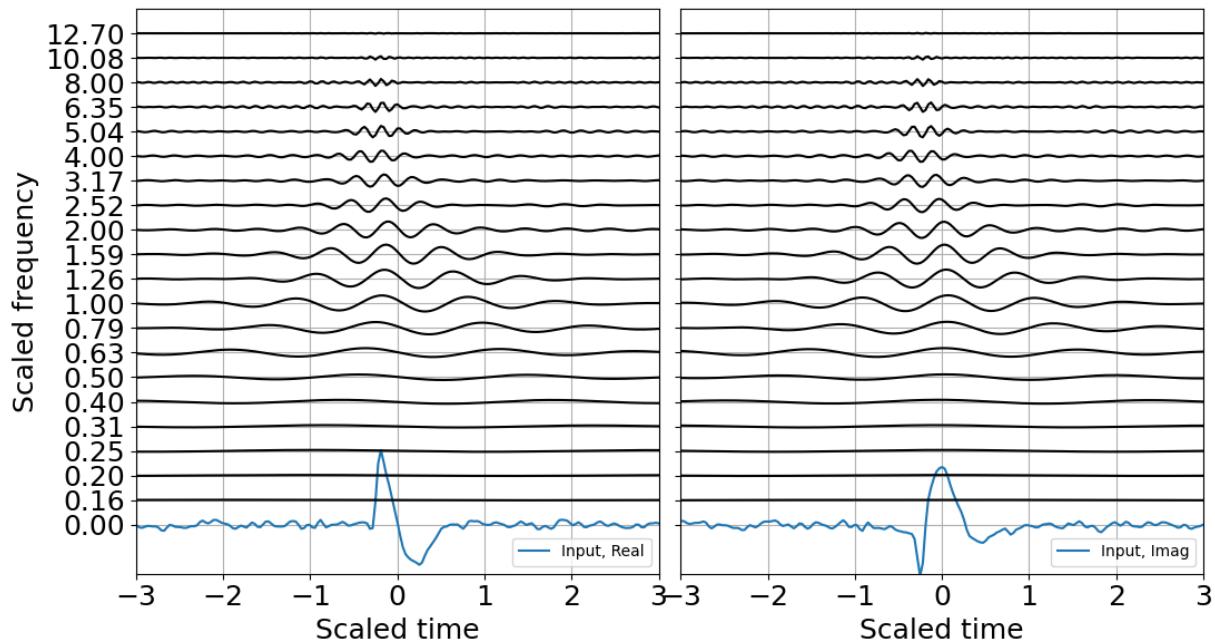
637 Figure 2. Wavelet reconstruction with binary bands. (a) Real part; (b) Imaginary part. The Equation
 638 waveform has no noise and is not filtered, whereas Hilbert has Gaussian noise and has been anti-aliased
 639 filtered.

640 The reconstruction process recovers the original dimensionality of the time series but returns its Hilbert
 641 transform, so the total dimensionality may be doubled (2Mp sample points). If only the original real
 642 signal is desired, then the dimensionality is unchanged.

643

644 The next steps estimate entropy and SNR, and consider sparse signal representation. Although binary
 645 bands are adequate for characterizing this signal, and are routinely used in the discrete wavelet
 646 transform, I take advantage of the flexibility offered by the CWT and use third order bands (N=3) for the
 647 examples that follow. One of the benefits of order 3 bands is that the admissibility condition is better met
 648 and scales are recursive in powers of 2 and 10 (e.g. Garces, 2013). As presented in Appendix D, third
 649 order bands will contain over 99% of the Gabor box variance within an octave and within 80% of the full
 650 window T_n , reducing spectral leakage. If, in addition, one wants a factor of two accuracy in explosive
 651 yield estimates, 1/3 octave resolution is a minimum requirement. A third order band wavelet
 652 decomposition is presented in Figure 3, and is the equivalent of the scalograms usually represented as
 653 color plots. The wire mesh representation illustrates the simplicity of the CWT decomposition. The
 654 difference between Figure 3 and Figure 5 is that the first scales the raw CWT coefficients by the
 655 reconstruction scaling, whereas Figure 5 shows the raw coefficients.

656



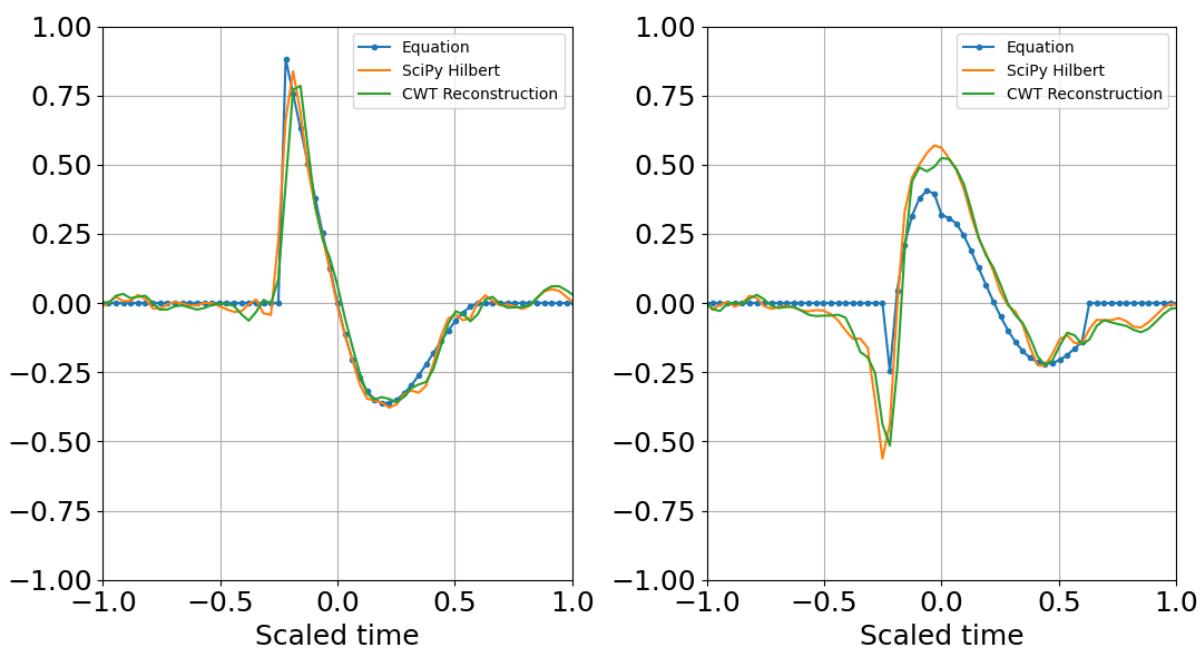
657

658

659

660

Figure 3. Wavelet decomposition with 1/3 octave bands, with CWT amplitudes scaled by the reconstruction coefficients. (a) Real part; (b) Imaginary part. As with Figure 1, the input waveform is displayed at the zero frequency.

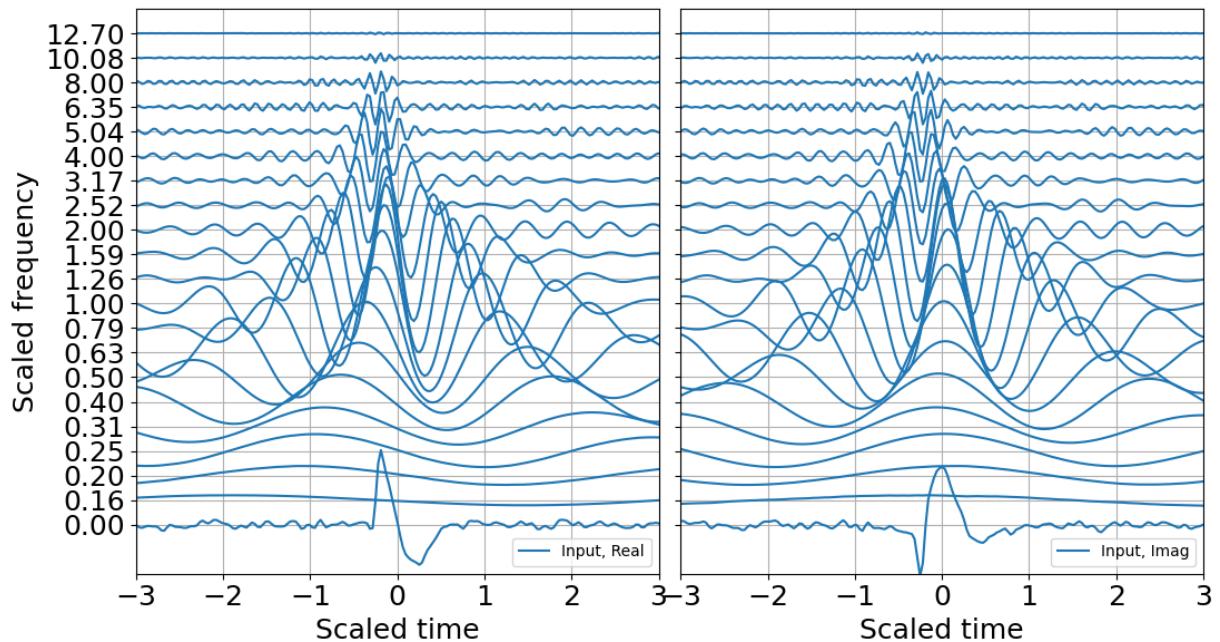


661

662

Figure 4. Wavelet reconstruction with 1/3 octave bands. (a) Real part; (b) Imaginary part.

663



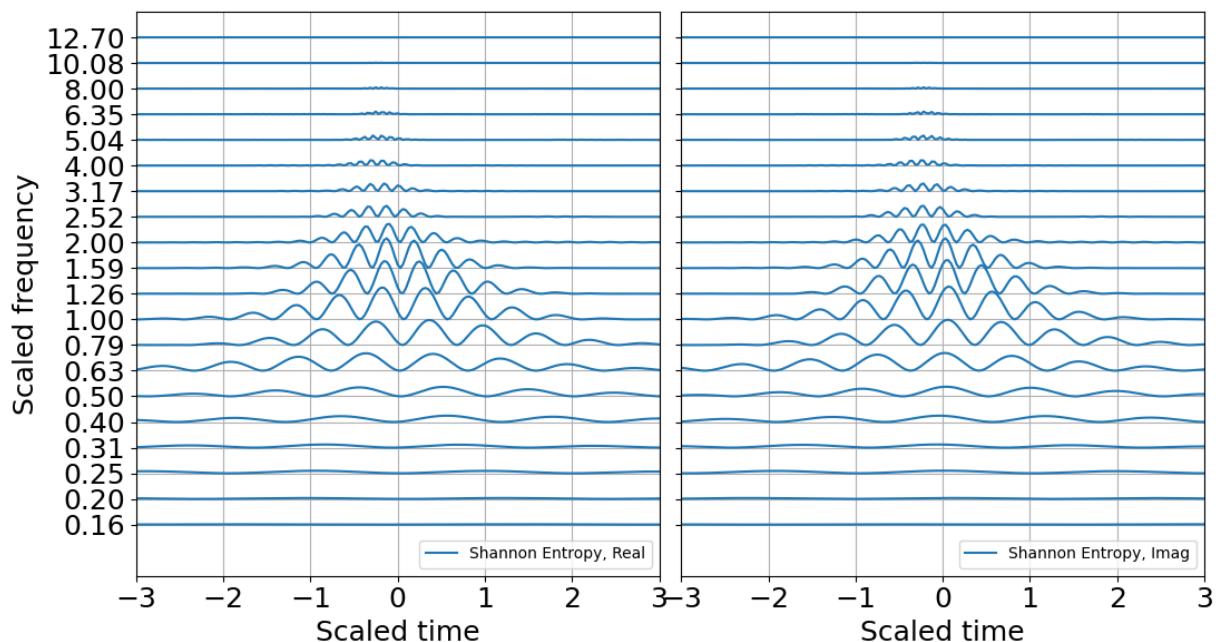
664

665 Figure 5. Wavelet decomposition in order 3 binary bands, raw CWT amplitudes. (a) Real part; (b)
 666 Imaginary part.

667

668 The energy probability distribution is constructed from the wavelet coefficients to estimate entropy,
 669 as discussed in the previous section. The log energy entropy looks like any other scalogram and does not
 670 add much value, but the Shannon entropy plot is interesting and well scaled (Figure 6). The peak entropy
 671 is at the blast center frequency, as expected.

672



673

674 Figure 6. Shannon entropy in order 3 bands from raw CWT amplitudes. (a) Real part; (b) Imaginary part.

675
676
677
678
679
680
681
682
683
684
685
686
687

Next a noise model is constructed to build the SNR and to establishing criteria for standardized and reproducible sparse signal representation. Many are the ways to characterize noise, and few of them accurately characterize non-stationary noise over brief observation windows. An incorrect noise model can penalize the signal passband and degrade the signal SNR. For the white noise model with variance that is one bit below the signal variance, the CWT of the noise (Figure 7) shows how the high-frequency oscillations are adequately sampled whereas the low-frequency oscillations are undersampled. This leads to instability if the noise is only estimated over a brief observation record. In principle once can build a noise model over a substantial period of time to obtain better statistical significance under the assumption the noise is stationary. This can be a tenuous assumption in some circumstances. Noise studies are beyond the scope of this paper; the noise spectrum is flattened by using the mean of the noise coefficients to estimate the band-averaged noise level.

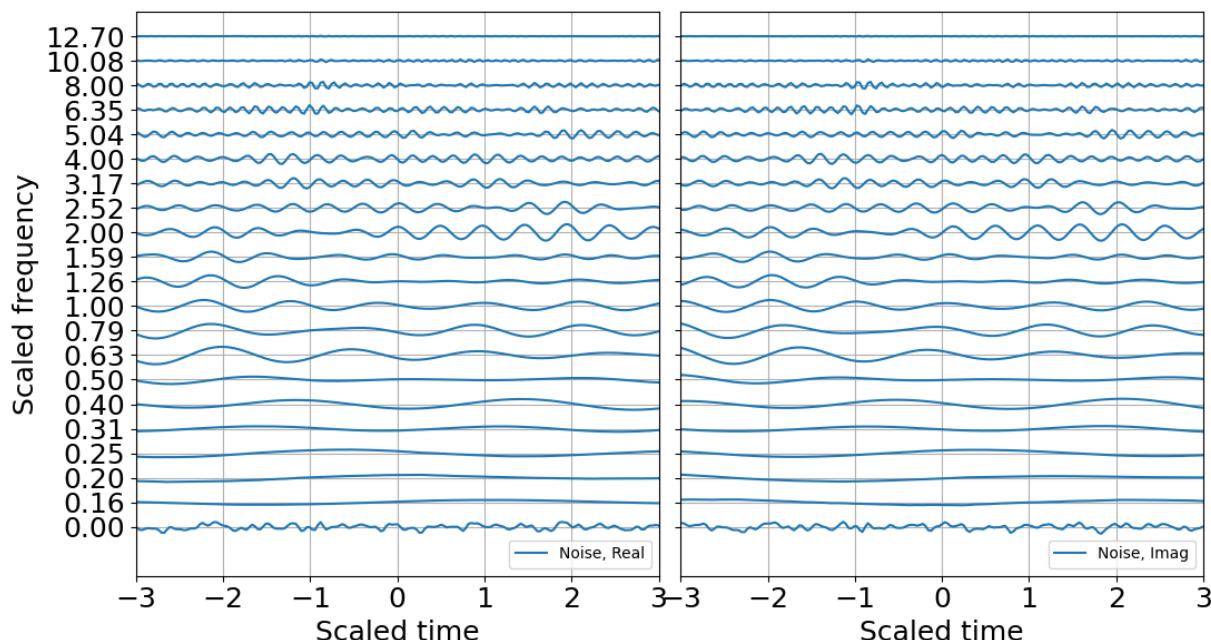
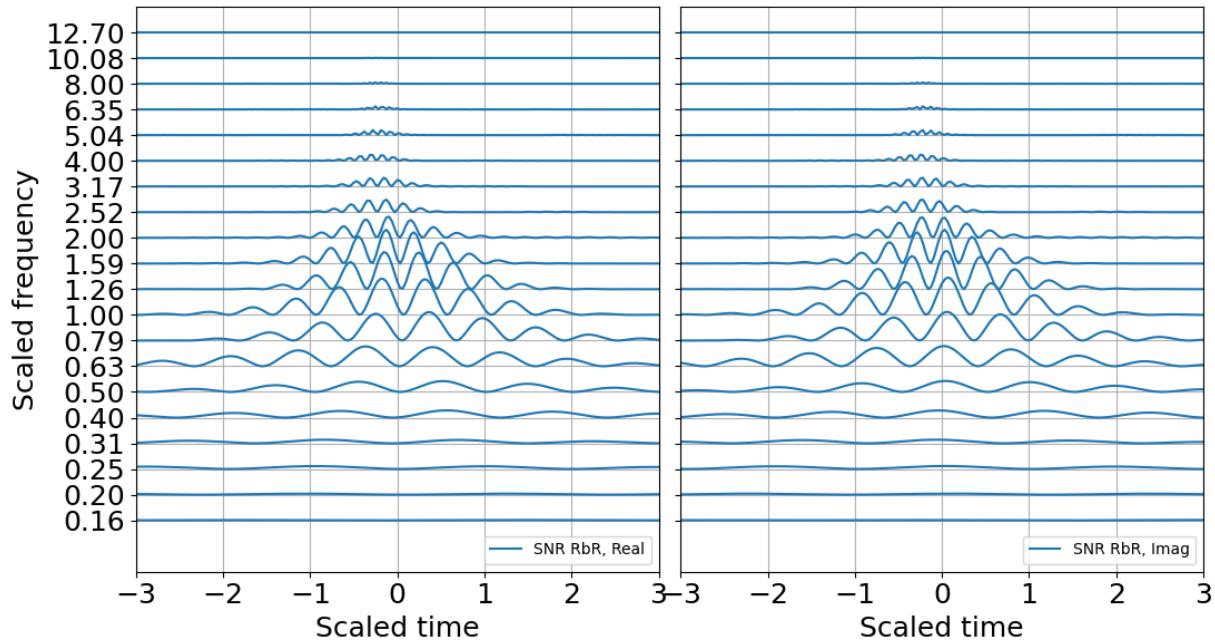
688
689

Figure 7. Raw CWT of noise in 1/3 octave bands. (a) Real part; (b) Imaginary part.

690 The binary SNR look much like the log energy entropy as expected since they are both scaled by a
691 constant value, the former over the band-averaged noise and the latter over the total energy. The SNR
692 RbR, as described in the previous section, should also look very much like the entropy, except it would
693 be zero for SNR of unity and positive for SNR>1. The SNR RbR is shown in Figure 8, and unsurprisingly,
694 matches the Shannon entropy plot. These are good news; the entropy plot requires constructing an
695 energy distribution that scales with the record, whereas the SNR requires constructing a noise model that
696 is mostly independent of the record and should have more stability as long as the ambient noise is
697 approximately stationary or can at least be adequately modeled. If one is curating data for machine
698 learning training, the entropy would be a good metric for picking and annotating, as well as for refining
699 noise models. If one is trying to trigger or detect signals operationally, the SNR may be a preferable metric
700 as it makes no assumptions about the total energy in a record and only scales relative to a (preferably)
701 stable noise representation.



702

703

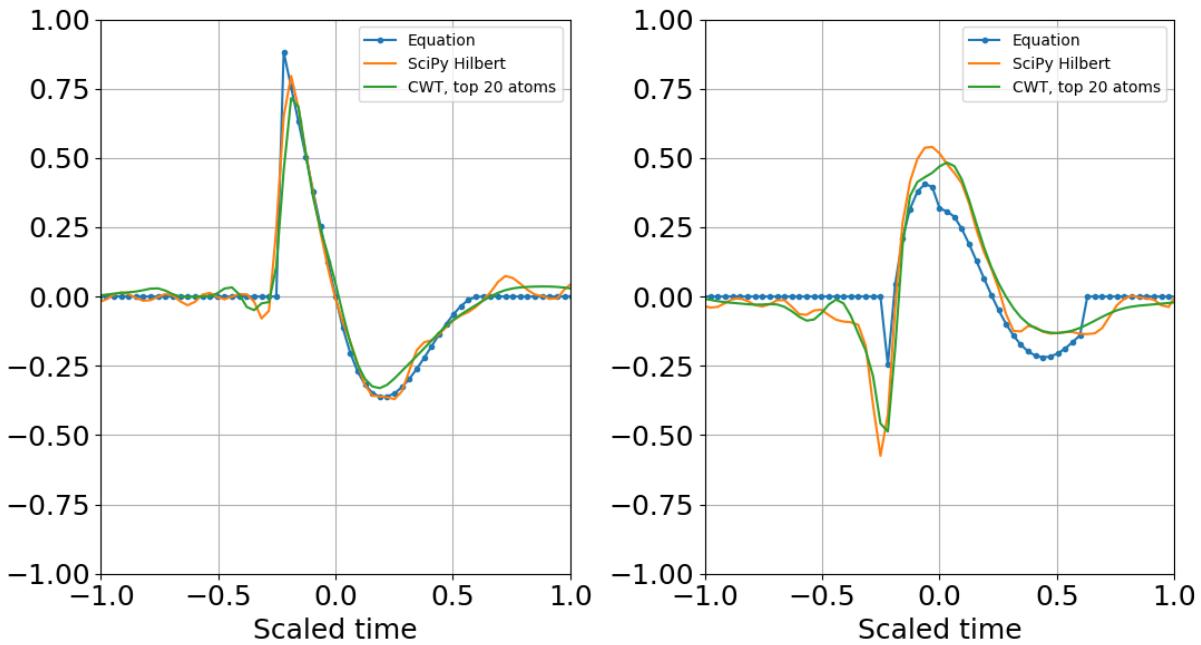
Figure 8. SNR RbR in 1/3 octave bands. (a) Real part; (b) Imaginary part.

704 One may use the CWT coefficient energy, the Shannon entropy, or the SNR RbR test the feasibility of the
 705 sparse Gabor atom superposition. Suppose we use any of these N_p scales $\times M$ point time matrices to
 706 identify the peak contributions over the record, and identify the complex time indexes as $m_{\mathbb{C} \max}$. The
 707 quantum wavelet superposition would be expressed as
 708

$$709 \quad g_{\mathbb{C} ij}[m_k: m_l] \approx \frac{\pi^4}{2} \sum_{n=i}^j \frac{w_n[m_{n \mathbb{C} \max}]}{\sqrt{s_n}} \operatorname{Re}\{\Psi_n[m_k: m_l - m_{n \mathbb{C} \max}]\} \quad (76)$$

710

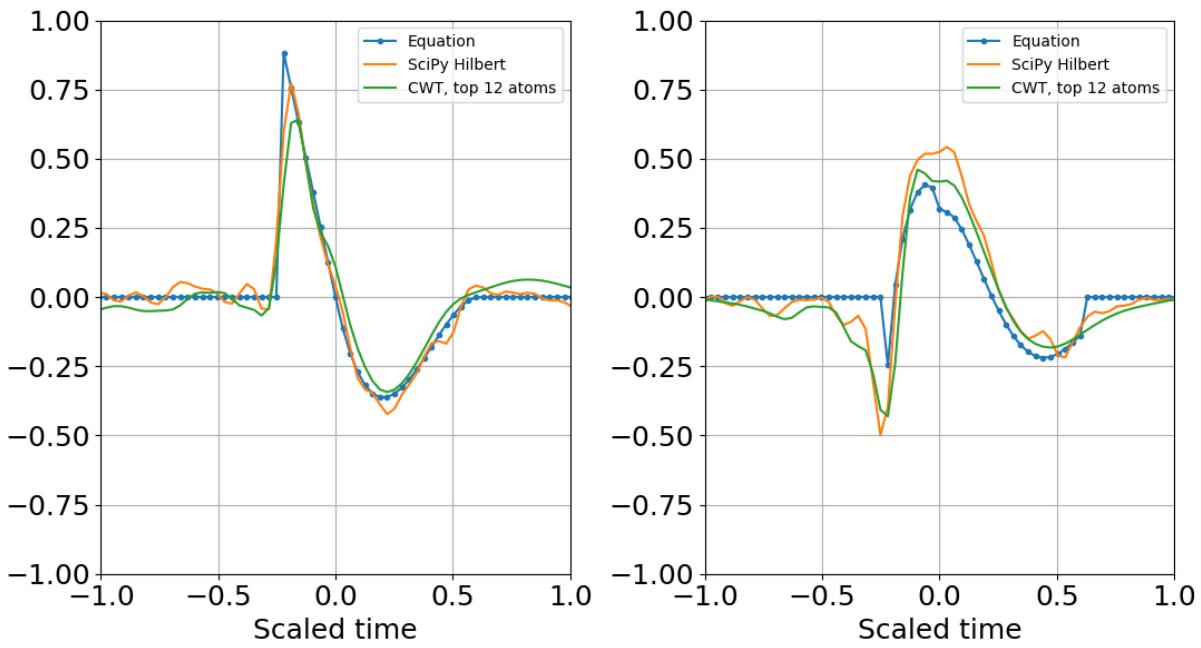
711 where the dimensionality of the representation is reduced to the complex coefficients and time indexes.
 712 Since the wavelet function can be reproduced for any time index, the time array need not be stored. In
 713 other words, if there are 20 scales, there will be 20 real coefficients and time offsets and 20 imaginary
 714 coefficients and time offsets, with total dimensionality of $4 \times 20 = 80$ parameters. If there is sufficient SNR
 715 and the signal is band limited it is possible to further reduce dimensionality by removing any coefficients
 716 below a specified threshold that may be fitting to noise (e.g. overfitting). Figure 9 shows the result of
 717 reconstruction from the superposition of all the top atoms of the 20 scales, and Figure 10 shows
 718 reconstruction from a sparser set of 12 scales with the highest SNR RbR. Similar results were obtained
 719 using the Shannon entropy. The Gaussian noise standard deviation for these two runs was one bit below
 720 the signal standard deviation.



721

722
723
724

Figure 9. Superposition of largest SNR entropy coefficients per band using all twenty 1/3 octave bands. (a) Real part; (b) Imaginary part. The noise standard deviation is one bit below the signal's. Dimensionality is reduced to the number of coefficients and their corresponding time shifts.



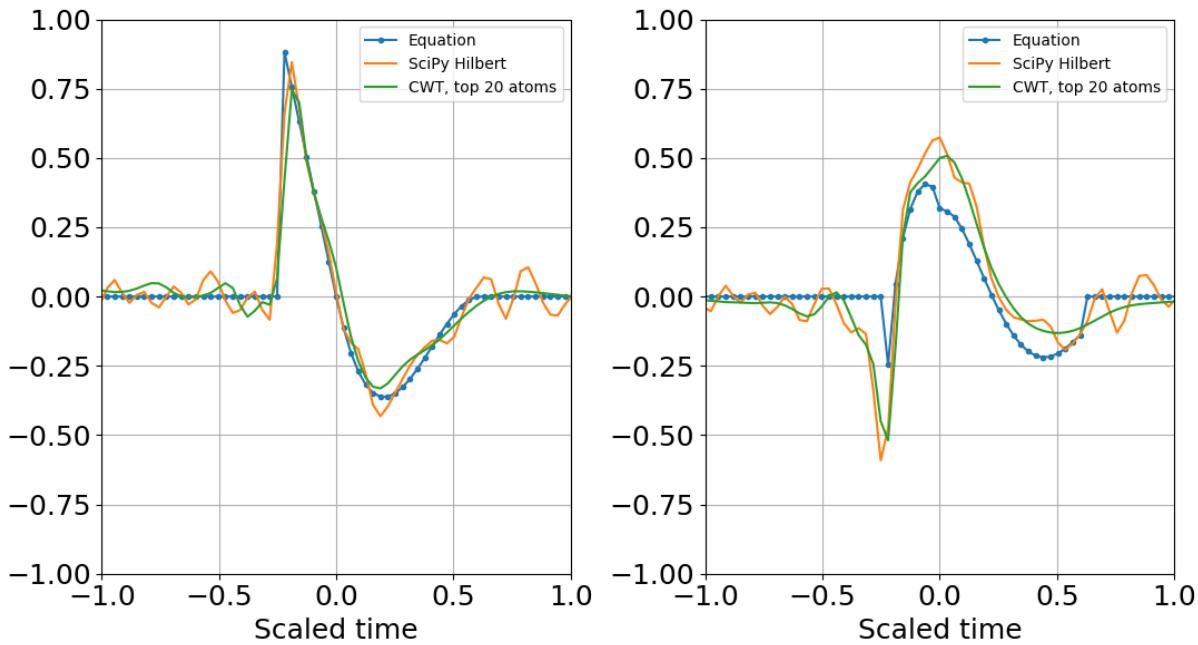
725

726
727

Figure 10. Superposition of largest coefficients per band within 4 bits of the peak SNR entropy. (a) Real part; (b) Imaginary part. Dimensionality is further reduced by applying the cutoff.

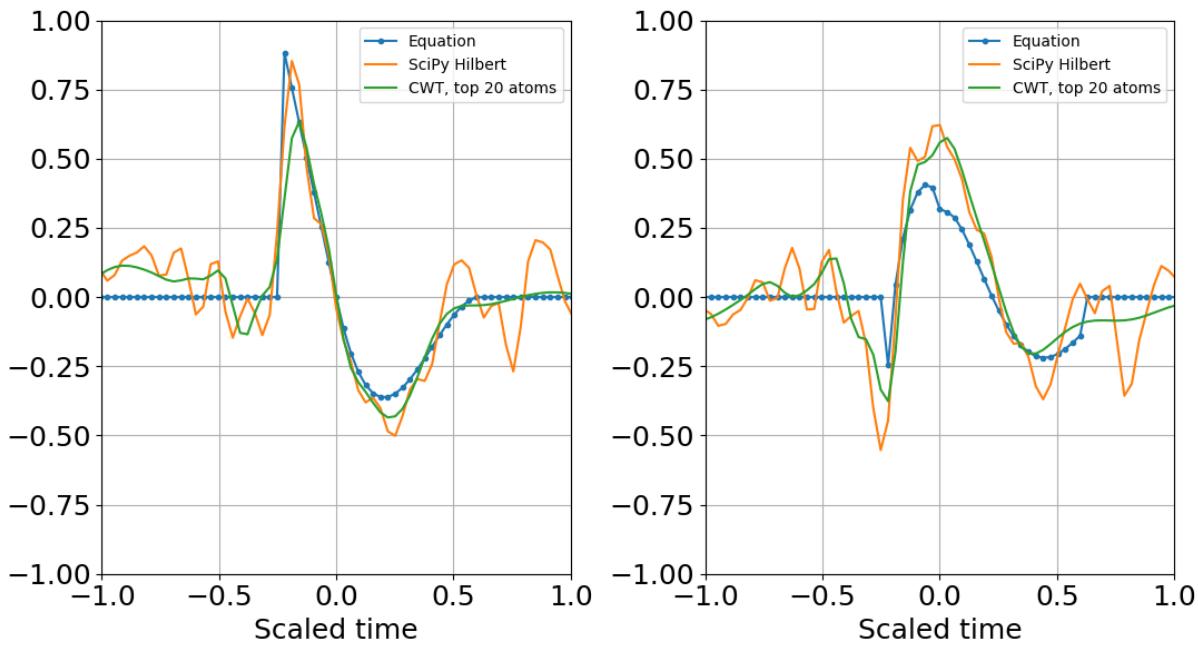
728
729

Increasing the noise standard deviation by a factor of two (one bit) still permits reconstruction from superposition (Figure 11), and increasing by another bit also allowed atomic reconstruction (Figure 12).



730

731 Figure 11. (a) Real part and (b) imaginary part of the original and reconstructed waveform. Increasing the
 732 noise amplitude so that its variance is the same as the signal variance still permitted reconstruction from
 733 the superposition of the largest atoms per band.



734

735 Figure 12. (a) Real part and (b) imaginary part of the original and reconstructed waveform. Increasing the
 736 noise standard deviation is one bit above the signal standard deviation also allowed reconstruction from
 737 the quantum wavelet superposition.

738 There is no end to the number of sensitivity studies that can be performed; in addition to other SNR test
 739 I also shifter the peak blast frequency from the target frequency and could still get stable reconstruction.

740 Increasing the order past $N>6$ only worsened the fit to the target waveform so it only increases
741 dimensionality and computational cost with a decrease in reconstruction fidelity, as is to be expected
742 from using a wavelet that does not match the target signature.

743 **5. Concluding Remarks**

744 This paper proposes a transition to binary metrics for digital data and introduces a standardized,
745 quantized variation of the Gabor atoms with binary bases, optimal time-frequency resolution, and clear
746 spectral energy containment. A binary entropy-like metric for the SNR is proposed and used to extract
747 the peak coefficients to evaluate the performance of the superposition of Gabor atoms against the more
748 traditional CWT reconstruction. Although the immediate application is the analysis of time series data
749 collected with cyber-physical systems such as smartphones, the methods presented in this paper should
750 be transportable to other types of digital records and can be extended to other wavelet families.

751 I used a synthetic for a 1 tonne detonation in Gaussian noise as an example, and did not include the
752 blast amplitude as a key parameter so as to concentrate on the entropy and SNR, both which are
753 dimensionless scaled quantities. Observations collected close to an explosion should have brief durations
754 and a high SNR; for short pulses it is advisable to use smaller orders ($N=1-6$) Gabor atoms. Due to cube
755 root yield scaling, the third order bands will provide factor of two yield resolution, and one-sixth order
756 bands a factor of square root of two yield resolution. Acceptable signal reconstructions were obtained
757 from the CWT coefficients as well as the superposition of the peak 3rd order Gabor atoms for the blast
758 signature. At increasing distance from the source the peak frequency is expected to drop [7] and the pulse
759 disperses to spread out in time. This opens up the possibility for stable 6 and 12 order analyses with a
760 corresponding improvement in yield resolution. Future work will concentrate on such dispersed
761 signatures as well as consider other types of CW signatures that would be well matched to higher-order
762 Gabor atoms.

763 The methods developed have the goal of providing a tunable, standardized framework for signature
764 feature extraction to be used for signal classification, and should be well suited for dictionary learning
765 [13].

766
767
768

769 **Appendix A. Generalized Constant Q Bands**

770 This work builds on the Infrasonic Energy, Nth Octave (Inferno) framework [1], which has been
 771 implemented in infrasound array processing algorithms for nuclear monitoring applications (e.g. [3-4])
 772 Logarithmic constant-bandwidth, also referred to as proportional frequency or constant quality factor
 773 (Q) bands, are traditionally defined by their scaled bandwidth

774

775
$$\frac{\Delta f}{f_n} = \frac{f_H - f_L}{f_n} = \frac{1}{Q}$$

776

777 where f_n is the center frequency of band number n and f_H and f_L are referred to as the upper and lower
 778 band edge frequency, respectively. Defining the center, upper, and lower band edge *periods* as

779

780
$$\tau_n = \frac{1}{f_n}, \tau_H = \frac{1}{f_L}, \tau_L = \frac{1}{f_H},$$

781 then

782
$$\frac{\Delta \tau}{\tau_n} = \frac{\tau_H - \tau_L}{\tau_n} = \frac{\Delta f}{f_n} = \frac{\Delta \omega}{\omega_n} = \frac{1}{Q}$$

783

784 In this section we generalize the constant-Q framework to the logarithmic discretization of
 785 evaluation intervals relative to a given reference scale and base. For a given reference scale τ_0 , which
 786 could be time, frequency, spatial length, wavenumber, or any other useful metric, we define a logarithmic
 787 scale base $G > 1$ and center scale τ_n as

788

789
$$\frac{\tau_n}{\tau_0} = G^{\frac{n}{N}}$$

790

791 where n is the band number and N is the band order, subject to the constraints

792 $n \in \mathbb{Z}, N \geq 1$.

793

794 The natural base for both contemporary and quantum computers is base 2, and analysis windows
 795 with powers of two are recommended for complex computations at large scales. Many efficient
 796 algorithms are based on binary (base two) filter banks. Selecting $G = 2$ yields

797

798
$$\frac{\tau_n}{\tau_0} = 2^{\frac{n}{N}}, \quad \frac{\tau_H}{\tau_n} = 2^{\frac{1}{2N}}, \quad \frac{\tau_L}{\tau_n} = 2^{-\frac{1}{2N}}, \quad \frac{\tau_H \tau_L}{\tau_n^2} = 1$$

799

800
$$Q_N = \left[2^{\frac{1}{2N}} - 2^{-\frac{1}{2N}} \right]^{-1}$$

801

802

803 Note that center and band edge scales attached to a given band n change with the order N , reference
 804 scale τ_0 , and the reference base G . If the reference scale and base are standardized, all bands are invariant.
 805 For example, the concert A pitch standard is fixed at 440 Hz and may be used to tune other instruments
 806 anywhere and at any time.

807

808 The next step substantially simplifies the estimation of constant-Q bands with a minimal
 809 introduction of a 2% computational error. To the author's knowledge, this is the first time this expression
 810 is presented (and he would be most grateful to be informed otherwise). Numerical evaluation shows that:

811

812
$$\lim_{N \rightarrow \infty} \frac{Q_N}{Q_1} = \lim_{N \rightarrow \infty} \left(G^{\frac{1}{2}} - G^{-\frac{1}{2}} \right) \left(G^{\frac{1}{2N}} - G^{-\frac{1}{2N}} \right)^{-1} \approx N \frac{G - 1}{\sqrt{G} \ln(G)} \approx (1.02)N \approx N$$

813
 814
$$Q_N \approx N Q_1 = N \left[\frac{\sqrt{G}}{G - 1} \right]$$

 815
 816 The center frequencies and band edges, and thus the quality factor, of traditional fractional octave bands
 817 are well known and can be readily computed for all the standard bands. The primary value of the
 818 expression for Q_N is that it provides a simple, explicit estimate of the relation between the quality factor
 819 and the band order, which in turn permits an estimate of the support window duration for a given
 820 wavelet in terms of the band order. Numerical inspection shows that for most practical applications and
 821 for $G = 2 \approx 10^{\frac{3}{10}}$, even those when N is non integer, we can use the expression
 822

823
$$Q_N = \frac{f_n}{\Delta f_n} \approx \sqrt{2}N$$

 824

825 to estimate the relationship between the band order and the quality factor.
 826

827 Although the center frequency is traditionally defined as the geometric mean of the band edges, the
 828 $\frac{1}{2}$ power spectral points at the band edges are only symmetric around the arithmetic mean of the center
 829 frequency. The relation between the arithmetic mean $f_{na} = (f_L + f_H)/2$ and the geometric mean $f_{ng} =$
 830 $\sqrt{f_L f_H}$ of the center frequency of fractional binary bands is
 831

832
$$\frac{f_{na}}{f_{ng}} \cong \sqrt{1 + \frac{1}{8N^2}} \approx 1 + \frac{1}{16N^2}$$

 833

834 where the approximation uses the binomial expansion. The arithmetic and geometric center frequencies
 835 are close to each other, and for fractional octave bands ($N > 1$) get ever tighter. However, the band edge
 836 power levels at the half band width $\Delta f_n/2$ should be considered to be relative to the arithmetic mean
 837 rather than the geometric mean. In general practice it is easier to use the arithmetic frequency as f_n , with
 838 the understanding that the fractional octave specifications are defined by geometric scaling.
 839

840 As an extension of the Inferno framework [1] the nominal duration of the Gabor atom window T_n
 841 may be defined as a multiple M_N of the scale as
 842

843
$$T_n(N, n) \stackrel{\text{def}}{=} M_N \tau_n = M_N \tau_0 G^{\frac{n}{N}}$$

844 where the scale multiplier M_N is set by the half power points of the wavelet. Traditional constant-Q
 845 frameworks in acoustics and music applications match the 12-tone equal temperament system ($N=12$) for
 846 $G = 2$ or $G = 10^{\frac{3}{10}} \approx 2$ and are consistent with the Renard series recommended in ISO3 for $N=1, 3, 6, 12,$
 847 24.
 848

849 **Appendix B. The Gabor Atom**

850 Different disciplines call the same things different names; many of the challenges in present-day
 851 data science are often due to divergent lexicon and the diversity of applications specific to each field. The
 852 idea of using a windowed sinusoid as a basis function for signal representation was developed in detail
 853 in Gabor's [2] landmark paper, where he also introduced the time-frequency uncertainty principle.

854 Gabor's atoms were further developed by Grossman and Morlet [14] and P. Goupillaud et al. [15]
 855 (amongst others), who formalized and popularized what we now know as *wavelet* transforms. Mallat [13]
 856 presents a lucid overview of the complementary nature of Fourier and wavelet representations in his
 857 Wavelet Tour of Signal Processing; the serious student would be wise to consider it required reading.
 858

859 The Gabor wavelet is a special case of a wavelet-modulated window ([13] Eqs. 4.60-4.62) and is
 860 representative of a bandwidth-limited compressed pulse [12]. For a physical scientist, its most intuitive
 861 form is

862
$$\Psi(x) = \frac{1}{[\pi\sigma^2]^{1/4}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \exp(i\eta_n x),$$

863 representing a sinusoid with time t and scaled angular frequency η_n (or linear space and wavenumber)
 864 modulated by Gaussian window with standard deviation σ . Comparison with the canonical expression
 865

866
$$\Psi_n(x) = \frac{1}{(\pi s_n^2)^{1/4}} \exp\left\{-\frac{1}{2}\left[\frac{x}{s_n}\right]^2\right\} \exp\left\{i\left[\frac{2\pi f_n}{f_s}\right]x\right\}$$

867 shows that the scaled angular frequency and standard deviation are
 868

869
$$\eta_n = \frac{2\pi f_n}{f_s}, \quad \sigma = s_n, \quad \sigma\eta = M_N \frac{f}{f_n}$$

870 The Fourier transform of the mother wavelet is
 871

873
$$\Psi(\eta) = [4\pi\sigma^2]^{1/4} \exp\left\{-\frac{1}{2}\sigma^2[\eta - \eta_n]^2\right\} = [4\pi s_n^2]^{1/4} \exp\left\{-\frac{1}{2}M_N^2\left[\frac{f}{f_n} - 1\right]^2\right\}$$

874 has unit second moment

875
$$\int_{-\infty}^{\infty} \Psi(x)\Psi^*(x)dx = 1,$$

876 and its first moment vanishes in the limit

877
$$\int_{-\infty}^{\infty} \Psi(t)dt \rightarrow 0 \text{ for } \sigma^2\eta_c^2 \gg 1.$$

879
 880 Another important representation of the Gabor wavelet [27-28] is
 881

882
$$\psi = (4\pi\sigma^2)^{-\frac{1}{4}} \Psi$$

883
$$\psi(x) = \frac{1}{[2\pi\sigma^2]^{\frac{1}{2}}} \exp\left\{-\frac{x^2}{2\sigma^2}\right\} \exp\{i\eta_c x\}$$

884
 885 With the advantage that its Fourier transform
 886

887
$$\hat{\psi}(\eta) = \exp\left\{-\frac{1}{2}\sigma^2[\eta - \eta_c]^2\right\} = \exp\left\{-\frac{1}{2}M_N^2\left[\frac{f}{f_n} - 1\right]^2\right\}$$

888
 889 has a peak amplitude of unity and yields equal-amplitude filter banks.
 890

891 The Inferno framework was developed with the introduction of multiresolution array processing in
 892 the field of infrasound. The time duration of an analysis window at a specific period is represented as

893
894

$$T_n = M_N \tau_n$$

895 This time window generally sets the temporal resolution of the resulting data products. On the case of
 896 the STFT, the analysis window can be referred to as the window of integration. In other words, the
 897 integration window T_n is defined as a multiple M_N of the pseudo period. This window immediately
 898 constrains the lowest frequency f_{min} that can be represented and the resolution of a spectral
 899 representation,

900
$$f_{min} = \frac{1}{T_n}$$

901

902 The upper bandwidth of the analysis window can be set by the Nyquist frequency, which is half of the
 903 sampling frequency of the digital time series. In practice the upper bandwidth is close to one quarter of
 904 Nyquist. Although this representation is simple and tidy, it is not particularly informative. A more useful
 905 representation of how the window duration is the number of wavelet oscillations in the window, which
 906 can be represented by the quality factor Q_N of the wave function. As presented in Appendix C, the
 907 relation between the scale multiplier M_N and the quality factor can be estimated by the $\frac{1}{2}$ power (-3dB,
 908 or half bit) points on the power spectrum,

909
$$M_N = 2\sqrt{\ln 2} Q_N$$

910

911 The wavelet admissibility condition for the for this wavelet is equivalent to the zero mean, or

912

913
$$M_N^2 \gg 1$$

914

915 which is essentially met by the standard bands presented in Table 1. Although traditionally the Nth
 916 octave frequencies are represented by the geometric mean of the band edge frequencies (Appendix A),
 917 in the evaluation of spectral power losses it is important to use the arithmetic mean for f_n which would
 918 be centered in the bandwidth Δf_n in linear frequency space. Since the ratios of the arithmetic and
 919 geometric means are constant and set by the band order N , the geometric scaling is still preserved.

920

921 The canonical form for computational evaluation is:

922
$$\Psi_n(x - x') = \frac{1}{\pi^{1/4}} \frac{1}{\sqrt{s_n}} \exp \left\{ -\frac{1}{2} \left[\frac{x - x'}{s_n} \right]^2 \right\} \exp \left\{ i M_N \left[\frac{x - x'}{s_n} \right] \right\}$$

923

924 The second b-type form has a different structure

925
$$\psi_n(x) = \Psi_{x',n}(x) (4\pi)^{-\frac{1}{4}} s_n^{-\frac{1}{2}}$$

926

927
$$\psi_n(x - x') = (2\pi)^{-\frac{1}{2}} s_n^{-1} \exp \left\{ -\frac{1}{2} \left[\frac{x - x'}{s_n} \right]^2 \right\} \exp \left\{ i 2\pi \frac{f_n}{f_s} (x - x') \right\}$$

928 applying

929
$$s_n = s_0 2^{\frac{n}{N}},$$

930 yields

931
$$\psi_n(x - x') = (\pi 2 s_0^2)^{-\frac{1}{2}} [s_n]^{-1} \exp \left\{ -\frac{1}{2 s_0^2} \left[\frac{x - x'}{s_n} \right]^2 \right\} \exp \left\{ i \frac{M_N}{s_0} \left[\frac{x - x'}{s_n} \right] \right\}$$

932 which has the form

933
$$\psi_N(\mu) = \frac{1}{\sqrt{\pi b}} \exp\left\{-\frac{\mu^2}{b}\right\} \exp\left\{i \frac{M_N}{s_0} \mu\right\}$$

934
$$\psi_n(\mu) = \frac{1}{s_n} \psi_N\left(\frac{\mu - \mu'}{s_n}\right)$$

935 with

936
$$s_n = \frac{s_n}{s_0} = 2^{\frac{n}{N}}, \quad n \geq 0, \quad s_0 = M_N \frac{f_s \tau_0}{2\pi}$$

937
$$b = 2s_0^2 = 2 \left[M_N \frac{f_s \tau_0}{2\pi} \right]^2$$

938 Note that since

939
$$b = 8 \ln 2 \left(\frac{f_s}{\Delta \omega_0} \right)^2$$

940 the "bandwidth" b is inversely proportional to the actual bandwidth of the highest frequency.

941

942 **Appendix C. The Q of the Quantum Wavelet**

943

944 The power spectral density of the Gabor wavelet is:

945
$$\hat{\Psi}^2_n(f) = [4\pi s_n^2]^{1/2} \exp\left\{-M_N^2 \left[\frac{f - f_n}{f_n}\right]^2\right\},$$

946

947
$$\frac{\hat{\Psi}^2_{u,n}(f_n \pm \Delta f_n/2)}{\hat{\Psi}^2_{u,n}(f_n)} = \exp\left\{-M_N^2 \left[\frac{\Delta f_n}{2f_n}\right]^2\right\} = \exp\left\{-\left[\frac{M_N}{2Q_N}\right]^2\right\} = \frac{1}{Y}$$

948

949 Where Y is the fractional power loss. There exist various definitions of the quality factor of a system. This
950 paper defines Q_N by 1/2 of the spectral power relative to the peak spectral power, where $Y = 2$.
951 Therefore, for the Gabor wavelet,

952

953
$$M_N = 2\sqrt{\ln 2} Q_N$$

954

955 Consider the decay of the spectrum relative with distance δ from the peak frequency

956

957
$$\frac{\hat{\Psi}^2_{u,n}(f_n + \delta \Delta f_n/2)}{\hat{\Psi}^2_{u,n}(f_n)} = \exp\left\{-\left[\frac{\delta M_N}{2Q_N}\right]^2\right\} = \exp\left\{-[\delta \sqrt{\ln 2}]^2\right\} = 2^{-\delta^2}$$

958

959 The loss in dBs and binary bits can be expressed as

960

961
$$dB = 10 * \log_{10}(2^{-\delta^2}) = -\delta^2 10 * \log_{10}(2) \approx -3\delta^2$$

962
$$bR = \frac{1}{2} \log_2(2^{-\delta^2}) = \frac{-\delta^2}{2}$$

963

964 There is a loss of 3dB, 12dB, 27dB, and 48dB, and a binary power loss of 1/2, 2, 4.5, and 8 fbits, for integer
965 multiples of the bandedge $\delta = 1, 2, 3, 4$, respectively.

966 It is worth considering an alternate definition for the quality factor of an oscillator. Consider the time
967 required for the amplitude to drop to 1/e of its peak value. In the case of the Quantum wavelet this is set

968 by the Gaussian envelope, and this particular definition is best suited for the real part of the wavelet
 969 which is symmetric about the origin. By applying this definition,
 970

$$971 \exp\left\{-\frac{1}{2}\left[\frac{x}{s_n}\right]^2\right\} = \exp\left\{-\frac{1}{2}\left[\frac{f_s \tau_e}{s_n}\right]^2\right\} = \exp\left\{-\frac{1}{2}\left[\frac{\omega_n \tau_e}{M_N}\right]^2\right\} = \exp\{-1\}$$

$$972 \tau_e = \frac{\sqrt{2} T_n}{\pi 2} \approx 0.45 \frac{T_n}{2}$$

973 Since the wavelet is symmetric, this states that the portion of the wavelet contained within $2\tau_e$ of the
 974 window has an amplitude above 1/e of the peak. The quality factor associated with this type of oscillator
 975 is
 976

$$977 Q_e = \frac{\omega_n \tau_e}{2} = \frac{M_N}{\sqrt{2}}$$

978 and comparison with the half power point quality factor shows
 979

$$980 Q_e = \sqrt{2 \ln 2} \quad Q_N \approx 1.1774 \quad Q_N$$

981 and they are sufficiently close to each other to be equivalent for descriptive purposes. The time duration
 982 of the quantum wavelet is defined by
 983

$$984 T_n = M_N \tau_n = 2\sqrt{\ln 2} \quad Q_N \tau_n$$

985 where $Q_N \approx Q_e$ can be interpreted as the number of oscillations in a little less than half of the total
 986 window T_n with amplitude above 1/e of the maximum amplitude. The remaining half of the window is
 987 useful to allow the wavelet to settle down and meet the desirable condition of a vanishing first moment.
 988

989 Practical implementations of Gabor wavelets and their variants often have to make some
 990 compromises in the application of the wavelet duration T_n , in particular if the window is required to be
 991 a power of two. Direct integration of the wavelet power over the window T_n shows that it contains
 992 99.999% of all the power. Integration over $2\tau_e$ will be insufficient. However, there exists a third quality
 993 factor defined by
 994

$$995 \exp\left\{-\frac{1}{2}\left[\frac{\omega_n \tau_\pi}{M_N}\right]^2\right\} = \exp\{-\pi\}$$

996 where
 997

$$1000 Q_\pi = \frac{\omega_n \tau_\pi}{2}$$

$$1001 Q_\pi = \sqrt{\pi} \quad Q_e \approx 1.7724 \quad Q_e$$

$$1002 \tau_\pi = \sqrt{\pi} \quad \tau_e = \sqrt{\frac{2 T_n}{\pi 2}} \approx 0.7978 \frac{T_n}{2}$$

1003 In other words, $2\tau_\pi$ encompasses ~80% of the window, and integration of the wavelet power over $2\tau_\pi$
 1004 returns 99.96% of the total power. Therefore $2\tau_\pi = 0.8T_n$ may be a reasonable lower bound for the
 1005 wavelet duration. This is further considered in the next Appendix.
 1006

1007 Appendix D. The Gabor Box

1008
 1009
 1010

1011 Gabor introduced the time-frequency uncertainty principle in his landmark paper[1]. It is not
 1012 possible to observe for all time and reach zero frequency. It is also impossible to sample infinitely fast
 1013 and reach infinite frequency. All observations require a restriction in the observation time and the
 1014 observation rate, and this places hard limits on the observable bandwidth of a process. The fundamental
 1015 discretization interval scale invokes the Gabor uncertainty principle, which states the time and period of
 1016 a signal cannot be known exactly but can be contained inside the box defined by the temporal and
 1017 frequency variance of the probability distribution of the wave function.

1018 This section follows the generalized mathematical formalism of [13], Section 2.3.2, Uncertainty
 1019 Principle. As in [13] and [7] the Fourier Transform pair used in this work is

1020
$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$

1021
$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{j\omega t} d\omega ,$$

1022 where $\hat{f}(\omega)$ and $f(t)$ may be complex. The Parseval-Plancherel identity asserts that

1023
$$\|f\|^2 = \int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{f}(\omega)|^2 d\omega = \frac{1}{2\pi} \|\hat{f}\|^2$$

1025 where

1027
$$|f|^2 = f \cdot f^*$$

1028 and the asterix denotes complex conjugation. A related identity the for product is routinely used in
 1029 Fourier and Wavelet analyses and the application of filter banks.

1031
$$\int_{-\infty}^{\infty} f(t) g^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) \hat{g}^*(\omega) d\omega$$

1034 The Gabor uncertainty principle constrains uncertainty to Gabor box defined by the variance in time
 1035 and frequency. It is equivalent to the Heisenberg uncertainty principle for position and momentum
 1036 extended to time and frequency, or space and wavenumber. Let a one-dimensional signal of interest be
 1037 represented by a wave function $f(t)$. The probability density that a signal can be localized in time at a
 1038 given time t is

1039
$$\frac{|f(t)|^2}{\|f\|^2} = \frac{2\pi |f(t)|^2}{\|\hat{f}\|^2},$$

1040 and the probability density that its angular frequency is ω is

1041
$$\frac{|\hat{f}(\omega)|^2}{\|\hat{f}\|^2} = \frac{|\hat{f}(\omega)|^2}{2\pi \|f\|^2}.$$

1042 The variance in the time localization of the signal as

1043
$$\sigma_t^2 = \frac{1}{\|f\|^2} \int_{-\infty}^{\infty} (t - u)^2 |f(t)|^2 dt.$$

1044 and the variance in the frequency localization of the signal as

1045
$$\sigma_{\omega}^2 = \frac{1}{\|\hat{f}\|^2} \int_{-\infty}^{\infty} (\omega - \xi)^2 |\hat{f}(\omega)|^2 d\omega.$$

1047

1048 Reference [13] uses these expressions to rederive the Heisenberg-Gabor uncertainty principle, which
 1049 states that the temporal and angular frequency variance satisfy:

1050
$$\sigma_t^2 \sigma_\omega^2 \geq \frac{1}{4}$$

1051 In the special case of the Gabor-Morlet wavelet and its Quantum spawn, where the wave function
 1052 is symmetric and centered around the time-shift u and the spectrum is symmetric relative to the peak
 1053 frequency ω_n , the variance for the time and frequency distribution of the signal wave function can be
 1054 readily evaluated.

1055
$$\sigma_t^2 = \frac{1}{\|\psi_H\|^2} \int_{-\infty}^{\infty} (t-u)^2 |\psi_H(t-u)|^2 dt = \frac{1}{2} s_n^2$$

1056
$$\sigma_{\omega_n}^2 = \frac{1}{\|\hat{\psi}_H\|^2} \int_{-\infty}^{\infty} (\omega - \omega_n)^2 |\hat{\psi}_H(\omega - \omega_n)|^2 d\omega = \frac{1}{2} s_n^{-2}$$

1057

1058 and the Gabor box defined by the variance is minimal,

1059
$$\sigma_t^2 \sigma_{\omega_n}^2 = \frac{1}{4},$$

1060 which is another reason for this wavelet's popularity.

1061 Consider the standard deviation for time integrated over the scaled window ϵT_n
 1062

1063
$$\sigma_t^2(\epsilon) = \frac{1}{\|\psi_H\|^2} \int_{u - \frac{\epsilon T_n}{2}}^{u + \frac{\epsilon T_n}{2}} (t-u)^2 |\psi_H(t-u)|^2 dt = \frac{1}{\sqrt{\pi}} \left[\frac{M_N}{\omega_n} \right]^2 \int_{-\epsilon\pi}^{\epsilon\pi} x^2 e^{-x^2} dx$$

1064

1065
$$\int_{-a}^a x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{2} \left[\text{erf}(a) - \frac{2}{\sqrt{\pi}} a e^{-a^2} \right]$$

1066

1067 For $\epsilon \geq \frac{3}{2\pi}$

1068
$$\sigma_t^2(\epsilon) \cong \frac{1}{2} s_n^2 \text{erf}(\epsilon\pi)$$

1069

1070 For $\epsilon = [1.0, 0.8, 0.45]$

1071
$$\sigma_t^2(\epsilon) \cong \frac{1}{2} s_n^2 [0.9999, 0.9996, 0.9544]$$

1072 where ϵ corresponds to integration over T_n , $2\tau_\pi \approx 0.8T_n$, and $2\tau_e \approx 0.45T_n$, corresponding to the full
 1073 window, the decay time associated with Q_π , and the e-folding time associated with Q_e , respectively
 1074 (Appendix D).

1075 Next, consider the standard deviation for time integrated over the scaled window ϵT_n
 1076

1077
$$\sigma_{\omega_n}^2(\delta) = \frac{1}{\|\hat{\psi}_H\|^2} \int_{\omega_n - \frac{\delta \Delta \omega_n}{2}}^{\omega_n + \frac{\delta \Delta \omega_n}{2}} (\omega - \omega_n)^2 |\hat{\psi}_H(\omega - \omega_n)|^2 d\omega = \frac{1}{\sqrt{\pi}} \left[\frac{M_N}{\omega_n} \right]^{-2} \int_{-\delta\sqrt{\ln 2}}^{\delta\sqrt{\ln 2}} x^2 e^{-x^2} dx$$

1078

1079
$$\sigma_{\omega_n}^2(\delta) \cong \frac{1}{2} s_n^{-2} \left[\text{erf}(\delta\sqrt{\ln 2}) - \frac{2}{\sqrt{\pi}} (\delta\sqrt{\ln 2}) 2^{-\delta^2} \right]$$

1080
1081 For $\delta = [1, 2, 3, 4]$

1082
$$\sigma_{\omega_n}^2(\delta) \cong \frac{1}{2} s_n^{-2} [0.2912, 0.8640, 0.9941, 0.9999]$$

1083
1084 where δ corresponds to integration over $\Delta\omega_n, 2\Delta\omega_n, 3\Delta\omega_n, \text{ and } 4\Delta\omega_n$, respectively. These results show
1085 that the Gabor box can be well approximated (>99% of the variance) by a window of duration $2\tau_n =$
1086 $0.8T_n$ and a bandwidth of $3\Delta\omega_n$, and over 99.99% of the variance is contained by a Gabor box of
1087 dimensions $T_n, 4\Delta\omega_n$. In other words, third octave bands will contain over 99% of the variance within its
1088 octave and within 80% of the full window T_n .

1089
1090 **Appendix E. The Gabor Family**

1091
1092 A few variations of the Gabor-Morlet wavelet are available in present-day computing environments.
1093 One of the more familiar forms of the mother wavelet used in modern computations [27-28] is

1094
$$\psi(\mu) = \frac{1}{\sqrt{\pi b}} \exp\left\{-\frac{\mu^2}{b}\right\} \exp\{i2\pi\bar{f}_b \mu\}$$

1095
$$\psi_{\mu',n}(t) = \frac{1}{s_n} \psi\left(\frac{\mu - \mu'}{s_n}\right)$$

1096 This form is found in the Matlab "cmor" function as well as the Python Pywavelets [29] "cmorB-C"
1097 function with $C = \bar{f}_b$. The term b is referred to as the "bandwidth parameter" of the wavelet. The
1098 Quantum wavelet has the equivalence

1099
$$s_n = 2^{\frac{n}{N}}, \quad n \geq 0,$$

1100
$$\tau_n = \tau_0 s_n = \frac{1}{f_0} s_n$$

1101
$$b = 2 \left[M_N \frac{f_s \tau_0}{2\pi} \right]^2$$

1102
$$C = \bar{f}_b = \frac{f_0}{f_s} = \frac{1}{f_s \tau_0}$$

1103 Where f_0 , the highest center frequency, is used as the starting point. The scaled wavelet duration is $M_N \frac{f_s}{f_n}$
1104 and can be rounded to approximate the number of points for each scale.

1105 Foster [30] expresses the abbreviated Morlet wavelet as

1106
1107
$$F(z) = e^{iz - cz^2} = \exp\left\{i\omega_n t - \frac{1}{2M_N^2} \omega_n^2 t^2\right\}$$

1108
1109 So that $z = \omega_n t$ and now $c = \frac{1}{2M_N^2}$ is inversely proportional to the Q of the wave function. The beauty of
1110 Foster's approach is that it can be used for unevenly sampled data. A modernization of this algorithms
1111 can be found at [31].

1112
1113 **Appendix F. The Analytic Function for the GT Blast Pulse**

1114 The reconstruction coefficients of the complex Morlet CWT return the imaginary part of the
 1115 analytic signal. The complex analytic signal corresponding to the real signal $g(\hat{t})$ is

1116
$$g_{\mathcal{C}}(\hat{t}) = g(\hat{t}) + j \mathcal{H}[g(\hat{t})]$$

1117 Where \mathcal{H} denotes the Hilbert transform, a recurrent topic in wave propagation as reflection introduces
 1118 phase shifts that are often modeled as Hilbert transforms of the original signal [32]. For example, some
 1119 of the U-shaped infrasound waveforms associated with thermospheric returns resemble the Hilbert
 1120 transform of an explosion pulse [3]. The Hilbert transform is also useful for estimating instantaneous
 1121 frequency and in the computation of the Hilbert-Huang transform [33].

1122 Let $g(\hat{t})$ represent the GT pulse,

1123
$$g(\hat{t}) = (1 - \hat{t}), \quad 0 \leq \hat{t} \leq 1$$

1124
$$g(\hat{t}) = \frac{1}{6}(1 - \hat{t})(1 + \sqrt{6} - \hat{t})^2, \quad 1 < \hat{t} \leq 1 + \sqrt{6} .$$

1125 The Hilbert transform of the canonical GT blast pulse is rather unwieldy, but can be evaluated from

1126
$$g_{\mathcal{H}}(\hat{t}) = \mathcal{H}[g(\hat{t})] = \mathcal{P} \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{g(x)}{t - x} dx$$

1127 Where the \mathcal{P} in front of the integral denotes the Cauchy principal value. Multiple integration by parts
 1128 over the interval of the GT pulse yields

1129
$$g_{\mathcal{H}}(\hat{t}) = \frac{1}{\pi} [1 + (1 - \hat{t}) \ln(-\hat{t}) - (1 - \hat{t}) \ln(1 - \hat{t})], \quad 0 \leq \hat{t} \leq 1$$

1130
$$g_{\mathcal{H}}(\hat{t}) = \frac{1}{6\pi} \frac{(a-1)}{6} [a(2a+5) - 1 + 6\hat{t}^2 - 3\hat{t}(1+3a)]$$

1131
$$+ \frac{1}{6\pi} [(\hat{t} - 1)(a - \hat{t})^2] [\ln(a - \hat{t}) - \ln(1 - \hat{t})], \quad 1 < \hat{t} \leq a = 1 + \sqrt{6} .$$

1132 Since

1133
$$\lim_{x \rightarrow 0} x \ln(x) = 0, \quad \lim_{x \rightarrow 0} x^2 \ln(x) = 0$$

1134 The solutions are well behaved near the zero crossings. However, there are some issues in this solution.
 1135 First, there are the two troublesome implicitly complex terms. The first is

1136
$$\ln(-\hat{t}) = \ln(\hat{t}) + j\pi, \quad 0 \leq \hat{t} \leq 1$$

1137 where $\ln(\hat{t})$ tends to negative infinity at $\hat{t} = 0$. The second tricky term is

1138
$$\ln(1 - \hat{t}) = \ln(\hat{t} - 1) + j\pi, \quad 1 < \hat{t} \leq 1 + \sqrt{6}$$

1139 The complex terms are awkward; fortunately, multiplication and division by zero can be readily avoided
 1140 numerically by adding the smallest floating point value (float epsilon) to arguments in logarithmic
 1141 computations so it is possible to evaluate the real part of the solution. Another inconvenience is the
 1142 discontinuity in $g_{\mathcal{H}}$ and its slope as $\hat{t} \rightarrow 1$. Rewriting the first term as

1143
$$g_{\mathcal{H}}(\hat{t})_{\hat{t} < 1} = \frac{1}{\pi} [1 + (1 - \hat{t}) \ln(\hat{t}) - (1 - \hat{t}) \ln(1 - \hat{t})] + j(1 - \hat{t}), \quad \hat{t} \rightarrow 1 \text{ from below}$$

1144
$$g_{\mathcal{H}}(\hat{t} \rightarrow 1) = \frac{1}{\pi}$$

1145 Evaluating the second term yields

1146
$$g_{\mathcal{H}}(\hat{t} = 1) = \frac{1}{\pi} \frac{\sqrt{2}}{\sqrt{3}} = \frac{1}{\pi} \left[1 - \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3}} \right], \quad \hat{t} \rightarrow 1 \text{ from above}$$

1147 These deficiencies are suboptimal, and not altogether surprising given that the waveform [7] did not
 1148 design integrability into the GT pulse. Fortunately, these inadequacies are deemed computationally
 1149 irrelevant by using the numerical convolution provided by the SciPy [25] signal.hilbert, which returns
 1150 the analytic function for an input real signal. The comparison between the unfiltered synthetic theoretical
 1151 analytic signals, the CWT reconstruction, and the numerical Hilbert transform are presented in the
 1152 figures in the main text.

1153

1154 **Funding:** This material is based upon work supported in part by the Department of Energy National Nuclear
 1155 Security Administration under Award Numbers DE-XXXX and the Air Force Research Laboratory under agreement
 1156 FAXXXX.

1157 **Disclaimer:** This report was prepared as an account of work sponsored by an agency of the United States
 1158 Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any
 1159 warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
 1160 usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
 1161 privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
 1162 trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,
 1163 or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed
 1164 herein do not necessarily state or reflect those of the United States Government or any agency thereof.

1165 **Acknowledgments:** The author is thankful to two anonymous reviewers who helped improve the accessibility of
 1166 the document. B. Williams, S. Takazawa and J. Tobin helped review early and late drafts of the document. Many
 1167 thanks for E. Lam, S. Leung, J. Carlo, A. Smith, A. Rangarajan, J. Zeineddine for providing valuable context.

1168 **Conflicts of Interest:** The author declares no conflict of interest. The funders had no role in the design of the study;
 1169 in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the
 1170 results.

1171 References

- 1172 1. Garcés, M. A. On Infrasound Standards, Part 1. Time, frequency, and Energy scaling. *Inframatics*, 2013, 2, 13-
 1173 35, doi:10.4236/inframatics.2013.22002.
- 1174 2. Gabor, D. Theory of Communication, Part 3, *Electrical Engineers*, 1946, Vol. 93, No. 26, pp. 445-457.
- 1175 3. Vergoz, J.; LePichon, A.; Millet, C. The Antares explosion observed by the USArray: an unprecedented collection
 1176 of infrasound phases recorded from the same event. In *Infrasound Monitoring for Atmospheric Studies*, 2nd
 1177 ed.; Le Pichon, A.; Blanc, E.; Hauchecorne, A. Eds; Springer Nature: Switzerland, 2019; DOI 10.1007/978-3-319-
 1178 75140_5, p. 349-386.
- 1179 4. Mialle, P.; Brown, D.; Arora, N. Advances in operational processing at the international data center. In
 1180 *Infrasound Monitoring for Atmospheric Studies*, 2nd ed.; Le Pichon, A.; Blanc, E.; Hauchecorne, A. Eds;
 1181 Springer Nature: Switzerland, 2019; DOI 10.1007/978-3-319-75140_5, p. 273-345.
- 1182 5. Yu, Q.; Yao, Y.; Wang, L.; Tang, H.; Dang, J.; Tan, K. C. Robust Environmental Sound Recognition with Sparse
 1183 Key-point Encoding and Efficient Multi-spike Learning. *arXiv:1902.01094*, 2019
- 1184 6. Severa, W.; Vineyard, C. M.; Rellana, R.; Verzl, S.; Almone, J. B. Training Deep Neural Networks for Binary
 1185 Communication with the Whetstone Networks, *Nat Mach Intell*, 2019, 1, 86-94, <https://doi.org/10.1038/s42256-018-0015-v>
- 1187 7. Garcés, M. A. Explosion Source Models. In *Infrasound Monitoring for Atmospheric Studies*, 2nd ed.; Le Pichon,
 1188 A.; Blanc, E.; Hauchecorne, A. Eds; Springer Nature: Switzerland, 2019; DOI 10.1007/978-3-319-75140_5, p. 273-
 1189 345.

1190 8. Pacenak, Z.; Kleissl, J.; Lam E. "Detection of a Surface Detonated Nuclear Weapon using a Photovoltaic Rich
1191 Microgrid", IEEE Power and Energy Society General Meeting, San Diego, CA, 1 Aug 2018.

1192 9. Cai, Y.; Lam, E.; Howlett, T.; Cai, A. Spatiotemporal Analysis of 'Jello Effect' in Drone Videos, 10th International
1193 Conference on Applied Human Factors and Ergonomics, Washington D.C., USA, 26 July 2019.

1194 10. Elliot, D.; Martino, E.; Otero, C. E.; Smith, A.; Peter, A.; Luchterhand, B.; Lam, E.; Leung, S. Cyber-Physical
1195 Analytics: Environmental Sound Classification at the Edge. IEEE World Forum on the Internet of Things 2020,
1196 Edge and Fog Computing Paper 1205, New Orleans, 5-9 April 2020.

1197 11. Shannon, C. E., The Mathematical Theory of Communication. Urbana, IL, University of Illinois Press, 1998
1198 [1949].

1199 12. Berg, N. J.; Pellegrino, J. M. Acousto-optic Signal Processing: Theory and Implementation. Marcel Dekker, NY,
1200 1996, ISBN 0-8247-8925-3.

1201 13. Mallat, S., A Wavelet Tour of Signal Processing: The Sparse Way, Academic Press, 1998, 3rd edn. 2009.

1202 14. Grossmann, A.; Morlet, J. Decomposition of Hardy Functions into Square Integrable Wavelets of Constant
1203 Shape. Soc. Int. Am. Math. (SIAM), J. Math. Analys. 1984, Vol. 15, pp. 723-736.

1204 15. Goupillaud, P.; Grossmann, A.; Morlet, J. Cycle-octave and Related Transforms in Seismic Signal Analysis.
1205 Geoexploration 1984, Vol 23, Issue 1, 1984, Pages 85-102, ISSN 0016-7142, [https://doi.org/10.1016/0016-7142\(84\)90025-5](https://doi.org/10.1016/0016-7142(84)90025-5).

1206 16. Sheu, Y.-L.; Hsu, L.-Y.; Wu, H.-T.; Li, P.-C.; Chu, S.-I. A New Time-Frequency Method to Reveal Quantum
1207 Dynamics of Atomic Hydrogen in Intense Laser Pulses: Synchrosqueezing Transform, AIP Advances 2014, 4,
1208 117138; <https://doi.org/10.1063/1.4903164>

1209 17. Ashmead, J. Morlet Wavelets in Quantum Mechanics. Quanta 2012, 1(1), 58-70;
1210 doi:<https://doi.org/10.12743/quanta.v1i1.5>

1211 18. Canolty, R. T.; Womelsdorf, T. Multiscale Adaptive Gabor Expansion (MAGE): Improved Detection of
1212 Transient Oscillatory Burst Amplitude and Phase, bioRxiv 369116, 2019; doi: <https://doi.org/10.1101/369116>

1213 19. Shi, Y.; Xian-Da Zhang, X.-D. A Gabor Atom Network for Signal Classification with Application in Radar Target
1214 Recognition. IEEE Transactions on Signal Processing 2001, vol. 49, no. 12, pp. 2994-3004, doi: 10.1109/78.969508.

1215 20. Li, T; Zhou, M. ECG Classification Using Wavelet Packet Entropy and Random Forests. Entropy 2016, 18, 285;

1216 21. Torrence, C.; Compo, G. P. A Practical Guide to Wavelet Analysis. Bull. Amer. Meteor. Soc. 1998, 79, 61-
1217 78, [https://doi.org/10.1175/1520-0477\(1998\)079<0061:APGTWA>2.0.CO;2](https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2)

1218 22. Farge, M., Wavelet Transforms and their Applications to Turbulence. Annual Review of Fluid Mech.
1219 1992, 24:1, 395-458, doi: 10.1146/annurev.fl.24.010192.002143.

1220 23. Lebedeva E.A.; Postnikov E.B. On Alternative Wavelet Reconstruction Formula: A Case Study of Approximate
1221 Wavelets. R Soc Open Sci. 2014; 1(2):140124; doi:10.1098/rsos.140124

1222 24. Bishop, M., <http://mark-bishop.net/signals/CWTReconstructionFactors.pdf>, Last modified 2018-07-29.

1223 25. Li, T; Zhou, M. ECG Classification Using Wavelet Packet Entropy and Random Forests. Entropy 2016, 18, 285;
1224 doi:10.3390/e18080285.

1225 26. Virtanen, P.; Gommers, R.; Oliphant, T.E. *et al.* SciPy 1.0: fundamental algorithms for scientific computing in
1226 Python. Nat Methods 2020, 17, 261-272. <https://doi.org/10.1038/s41592-019-0686-2>

1227 27. Mallat, S., Group Invariant Scattering. Comm. Pure Appl. Math. 2012, 65(10):1331-1398.

1228 28. Mallat, S.; Zhang, S.; Rochette, G.. Phase Harmonic Correlations and Convolutional Neural Networks. IMA J.
1229 of Information and Inference 2019; <https://arxiv.org/abs/1810.12136>

1230 29. Lee, G. R.; Gommers, R.; Wasilewski, F.; Wohlfahrt, K.; O'Leary, A.. PyWavelets: A Python Package for Wavelet
1231 Analysis. Journal of Open Source Software 2019, 4(36), 1237, <https://doi.org/10.21105/joss.01237>.

1232 30. Foster, G. Wavelets for Period Analysis of Unevenly Sampled Time Series. Astronomical J. 1996, Vol. 112(4),
1233 pp.1709-1729.

1234 31. Takazawa, S. Z transform repo.

1235 32. Brekhovskikh, L., Waves in Layered Media, Second Edition, Elsevier, Oxford, 1980.

1236 33. Huang, N. E.; Z. Wu, Z. A Review on Hilbert-Huang Transform: Method and its Applications to Geophysical
1237 Studies. Rev. Geophys. 2008, 46, RG2006, doi:10.1029/2007RG000228.

1238

1239

1240