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Abstract: Increased data acquisition by uncalibrated, heterogeneous digital sensor systems such as
smartphones present new challenges. Binary metrics are proposed for the quantification of cyber-
physical signal characteristics and features, and a standardized constant-Q variation of the Gabor atom
is developed for use with wavelet transforms. Two different CWT reconstruction formulas are
presented and tested under different SNR conditions. A sparse superposition of Nth order Gabor atoms
worked well against a blast synthetic using the wavelet entropy and an entropy-like parametrization of
the SNR as the CWT coefficient-weighting functions. The proposed methods should be well suited for
sparse feature extraction and dictionary-based machine learning.
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1. Introduction

This paper applies the constant-Q standardized Infrasonic Energy, Nth Octave (Inferno) framework
[1] to the Gabor wavelet [2] and proposes binary metrics for signature characterization. One of the
primary motivations of this work is to facilitate the fusion of multi-modal data streams in sensor systems
that collect information at different temporal and spatial granularities. Consider a cyber-physical sensor
system that converts observables into digital time series data consisting of a combination of signals and
noise. Signals of interest can be hypothetically described by sparse representations that define their
signature. If signature characteristics are sufficiently unique and recognizable from those of ambient
coherent and incoherent noise, it can be used to identify and classify an object or process.

The transformation of diverse digital measurements into robust, scalable, and transportable
representations is a prerequisite for signal detection, source localization, and machine learning
applications for signature classification. The challenge at hand is to construct sparse signal
representations that contain sufficient information for classification. Unambiguous classification can be
elusive; measurement artifacts, unexpected signal variability, and non-stationary noise often conspire to
add uncertainty to our classifiers. As will be discussed in this paper, information and uncertainty
quantification can be substantially simplified when using standardized wavelets and binary metrics.

1.1. Binary Representations of Time and Frequency

Oscillatory processes often exhibit spatial and temporal scalability and self-similarity. Although
some physical processes scale linearly, many exhibit recurrent patterns that scale logarithmically and are
well represented by power laws. Both linear and logarithmic scales can coexist. For example, overtones
in harmonic acoustic systems are often linearly spaced in frequency, yet our sense of tone similarity is
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41  close to base 2 logarithmic (binary) octave scales. The term octave comes from the eight major notes in
42 12-tone musical notation, which closely repeat in with factors of two. This paper uses the term octave
43  and binary interchangeably to denote the base 2 geometric scaling of frequency and time. The mapping
44 between frequency (or pitch) and time (period) is direct for continuous tones, such as musical notes, or
45  statistically stationary oscillations like the orbits of planets. Discrete Fourier transform methods are
46  exceptionally well suited for the interpretation of steady tonal signals with linearly spaced harmonics.
47  The Fourier transform deconstructs oscillations with distinct recurrent time periods into a spectral
48  representation consisting of a set of discrete frequencies. The spectral transformation can be sparse
49  Dbecause it removes time as a variable, facilitating the reconstruction of stable oscillations from a subset
50  of coefficients in the Fourier spectrum.

o1 Stable oscillators can be even more succinctly represented by a fundamental frequency or period
52 (exclusive or, as they are not independent). For many physical systems, a map can be constructed between
53  the fundamental frequency and its harmonics. Signals where the fundamental and its harmonics (when
54 they exist) are statistically stationary and easily discernible above noise can be referred to as the easy
95 continuous wave (CW) problem, or the zeroth (trivial) class of CW problems. The trivial CW problem is
56  well understood and should routinely be used as a speed and performance benchmark for detection and
57 classification algorithms.

58 The plot thickens when temporal variability is introduced in the signal or the noise. In the first class
59  of CW problems, temporal variability is due to non-stationary broadband or band-limited noise. This is
60  a chronic condition in infrasonic signal processing, where ambient noise can be coherent or incoherent
61 across a dense sensor network [3] or an array aperture [4]. The first class of CW problems is also well
62  understood when noise is predictable (e.g. normally distributed) over a time duration that is much longer
63  or much shorter than the signal period in the detection band. However, this class of problems is not as
64  well characterized when noise is not evenly distributed across the signal detection bandpass, and can be
65  particularly inconvenient when noise overwhelms the fundamental frequency band.

66 In the second class of CW problems, temporal variability is introduced by a change in the temporal,
67  spectral, and/or statistical properties of the signal. These changes can be due to aging, failure, motion,
68  communication, or any other change in state. In a simple two-state problem, one may quantify the
69  properties of the first state, the transition period between states, and the properties on the final state. In
70  amultiple-state problem, such as with communication systems, speech, or music, the short-term discrete
71 Fourier transform (STFT) is often used to characterize spectral variability.

72 If the transition period between states in the noise or the signal is faster that the characteristic time
73 scale of the initial state, the STFT does not always provide an accurate representation of this transient. For
74 some signals, the details of the transient are not relevant and only the steady states are important. But a
75 new class of signals emerges when the detection of transient anomalies is prioritized.

76 The zeroth class of transient problems consist of delta functions with their integrals and derivatives.
77  Although such instantaneous spikes do not exist in the natural world but can be readily constructed
78  digitally to evaluate the impulse response of a system or represent a neuromorphic network [5-6]. The
79  first class of transient problems would be more realistic variants of the delta function that may be
80  observed in the wild when a rapid change of state becomes the signal of interest. Just like a single-tone
81  sinusoid may be regarded as the prototype end member for the trivial CW problem, an explosive
82  detonation could be considered as a prototype transient signal source [7]. During an explosion,
83  observations would vary from ambient noise to a brief blast transient that fades back to a possibly
84  perturbed ambient noise state. If the observations were acoustic at some distance from the source, the
85  system would go from quiescence to blast to quiescence, and the transition can be devastatingly fast. In
86  general, poorly-conditioned STFTs provides inadequate representations of brief, rapidly changing
87  signals because the signatures no longer resemble a CW, and so are not well represented by sinusoids.
88  However, since a STFT is a windowed sinusoid, a well-conditioned STFT window at the peak frequency
89  of a signal turns the waveform into a wavelet.
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90 The concept of a windowed sinusoid to represent a transient signal was introduced by Gabor (1946),
91  and later mathematically formalized by others as wavelets. Variants of the Gabor wavelet are presented
92  inthe Appendices.
93 The second class of transient problems overlaps with the second class of CW problems. It
94 corresponds to transients of significant durations which could be addressed with STFTs, wavelets, or
95  their combination. Very often a transient is imbedded in a noise field with band-limited harmonic
96  structure. Or the transient itself is a sweep, characterized by a substantial frequency change in the
97  fundamental and its harmonic structure.
98 The primary differences between STFTs and wavelet approaches are that the former uses a linear
99  period mapping and a constant processing window duration and the latter uses geometric pseudo-period
100  mapping and a window duration that scales with the pseudo-period. Whereas in the Fourier framework
101  there is a one-to-one mapping between time and frequency, the wavelet mapping between time scale and
102  frequency can be less evident and depends on the selected wavelet.
103 In this paper I concentrate on developing standardized constant-Q Gabor atoms for the design and
104  evaluation of transportable, sensor-agnostic signal detection, sparse feature extraction, and classification
105  algorithms.

106  1.2. Binary Representations of Energy and Information in Cyber-Physical Systems

107 Cyber-physical systems (CPS) are algorithm-controlled computer systems with physical inputs and
108  outputs. A typical example of a mobile CPS is a smartphone with a microphone input (sound activation)
109 that outputs a response (speech, music, or signal recognition) to a screen. Cyber-physical Measurement
110  and Signature Intelligence (MASINT) is an emerging discipline that concentrates on phenomena
111  transmitted through cyber-physical devices and their interconnected data networks. For smartphones
112 and other multi-sensor mobile platforms connected to wireless networks, this includes digital noise, bit
113 errors, and latencies internal to the device and its communication channels [8-10].

114 Data processed by the cyber part of CPSs are digital and represented as binary digits (bits). Although
115  the precision of the data is initially defined by its their integer symbol length (16, 32, 64 bit, etc.), the
116  original data may be converted into float equivalents when an algorithms acts on it. For example,
117  consider sound recorded by a smartphone at the standard rate of 48,000 samples per second. A typical
118  sound record may have 16-bit resolution, so that its dynamic range in bits is 215 to 215— 1. However, one
119  may only be interested in the lower frequency components of the raw data, so one would implement a
120  lowpass anti-aliasing before decimation. Such filters require double precision (64 bit at the time of this
121  writing) to reduce instability. Therefore the precision of the resulting lowpass filtered data would be float
122 64. However, the theoretical dynamic range of the system would not exceed the specification of the
123  integer 16 physical input. Furthermore, data compression can be more efficient on floats than integers,
124 which leads us to the topic of fractional bits as a measure of CPS amplitude, power, and information.
125 Many of the metrics we used in traditional physical and geophysical systems are inherited from the
126  analog era. The base 10 decibel scale is a measure of power relative to a reference level, and is used
127  extensively in telecommunications, acoustics, and electrical engineering. Let’s estimate the hypothetical
128  dynamic range of a 16-bit microphone record of a sinusoid at full scale. The peak rms amplitude would

129  be

216
130 Prms signal = A 1)
131 All systems have quantization and system noise, and it can have a positive or negative bias. This is

132 not a noise paper; for the sake of illustration, I model the system noise as oscillating around a mean of
133 zero and alternating between -1 and 1,

1
134 Prms noise = 22_ﬁ . 2)
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135  The theoretical dynamic range of the system in dB for a sinusoid recorded with a 16-bit microphone and
136  sound card combination with a one-bit noise floor could be characterized by the ratio of the power

. 2
137 10 * logyo [2mt)” = 20 « log, o[2'5] ~ 90dB 3)

Prms noise
138  where a digital response is converted to the legacy base 10 logarithmic system. One advantage of the
139  decibel approach is that it can be compared to the response of the human ear and other analog systems.
140  However, analogue comparisons are not necessary for many cyber physical applications. A more natural
141  unit for CPS is the binary logarithm
142 log, [Zmss4!] = 1og,[25] ~ 15.0 fbits (4)

Drms noise

143 where the unit fbits corresponds to floating point representation of bits. For example, in 24-bit systems,
144 present-day quantization error is ~3 bits, leading to an effective dynamic range of ~21 fbits. Likewise, a
145  24-bit integer cast into a 32-bit symbol can have 8+3 bits of noise, and may be converted to a float that
146  still has ~21 fbits of dynamic range.

147 Another unit that is often specified is the %2 power point of the frequency response of a filter, which
148 defines the quality factor of that filter. This is often referred to as the -3dB point, since 10 * log,,(2)~3dB.
149  However, accurate filter bank reproductions require a clear specification of the % power point, and
150  conversion from base 10 to base 2 specification can lead to computational errors. Plotting filter responses
151  in floating point bits can be informative as it reveals the precision of the computation. Because it is
152  awkward and there is already a precedent in information theory for using bits outside of their original
153  definition as a binary digit, from here onwards in this paper the word bits will be used to represent either
154 the floating point equivalent of bits or as a metric for information.

155 Consider the communication channel capacity introduced by Shannon [11], which in its simplest
156  form can be expressed as

_ Sg+Ns
157 Ch = Wlog, (*£=2) (5)

158  where Ch is a measure of the differential entropy of a signal in the presence of noise, W is a measure of
159  thebandwidth, Sg isrepresentative of the power of a signal, and N is representative of the noise power.
160  The units of the channel capacity are in shannons, or bits per second, and represent the theoretical upper
161  bound of the rate of information transfer in a communication channel. Since it is often impossible to
162  separate noise embedded in a signal but it is often possible to construct a noise model, we can think the
163  ratio (Sg+Ns)/Ns as a practical measure of the signal to noise ratio (SNR) of an observed signal that has
164  been carried through a cyber-physical system or a medium.

165 The effective SNR and therefore the detectability of a compressed pulse (such as a wavelet) is the
166  product of the bandwidth, the signal to noise ratio, and the duration of a signal T [12]. When using
167  constant-Q Gabor wavelet with fractional octave (binary) bands n of order N and center frequency f; to
168  process a signal in the presence of noise, the next section shows that for

Nsp+Sgn

169 SNR, = Lnt80n _ 1 4 S0n (6)
N.

Sn Nsp

170  the signal detectability per band can be represented by
171 bSNR,, =~ 1og,(SNR,) @)

172 and the upper limit on rate of information in bits per second for a band-limited pulse with center
173  frequency f, can be estimated from

174 Chy, =  bSNR,, 8)
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175 Energy and Shannon entropies using the binary log are constructed for both the wavelet coefficients
176  and SNR in a later section.
177 2. Methods
178 This is an algorithmic paper providing foundational methods to construct standardized Gabor

179  wavelets within a binary framework. No materials are included or required; all the algorithms required
180  to reproduce the results are included, with recommendations for specific existing functions in open-
181  source software frameworks.

182 Although the methods are intended to be sensor-agnostic and transportable across diverse domains,
183  the selection of the Gabor mother wavelet does define the optimal applicability of the algorithms: the
184 methods in this paper will work best with a transient, or a portion of a transient, that can be well
185  represented by a superposition of Gabor wavelets. Fortunately, this covers a fairly wide range of transient
186  signature types. Furthermore, the fundamental principles in this work are expandable to other wavelets
187  aswell as to four-dimensional spatiotemporal representations.

188  2.1. Transforming Time and Frequency to Scale

189 A digital time series is constructed by collecting digital measurements at discrete times separated
190 by a nominal sample interval Az;. One mas estimate a standard deviation from nominal o, associated
191  with the sample interval; when this error is a very small percent of the sample interval (e.g. parts per
192  million) it is generally treated as a constant. Some variability in the sample rate should be expected in
193  cyber-physical sensing systems under different conditions (temperature, battery level, power load, data
194 throughput, etc.) even when they have the same hardware configurations. This can have an impact when
195  attempting high-accuracy time synchronization. If adequate performance metrics are collected, the
196  sample rate error be quantified and potentially compensated by an additional time-varying correction to
197  the clock drift.

198 In many scientific domains, such as astronomy and climatology, the sample interval may be greater
199  than one second. Domains where the phenomena of interest change more rapidly use the equivalent
200  metric of samples per second, referred to as the sample rate and often expressed in units of Hertz. The
201  relationship between the sample interval At and its standard deviation o, and the sample rate f;
202  and its associated error can be expressed as

1 1 o7 -1 - oz . or
203 Motor = A_‘rs (1 + A_‘L'S) = fs (1 - A‘L’S) if A_TS < 1. (9)
204 Although time is the primary discrete sampling parameter, system requirements are often provided

205  as frequency specifications within the context of Fourier transforms. The nominal sample rate sets the
206  maximum upper edge of the bandpass of the system; there should be negligible energy at the Nyquist
207  frequency, which is half of the sample rate. The actual bandpass of a system is set by the low- and high-
208  frequency cutoffs of a cyber-physical system, which may include the sensor response, hardware
209  specifications, firmware and software modifications (such as anti-aliasing filtering), and data
210  compression.

211 The mapping between frequency and period is simple for continuous wave tone; the tone period is
212  the inverse of the tone frequency. It is not so clear for transients. Following [7], a transient with a single
213  spectral peak at a center frequency f, may be associated with a pseudo-period t, = 1/f;. This mapping
214  isimportant as the scale of wavelet representations is linearly proportional to the pseudo-period, which
215  isalso referred to as the scale period. A high-level overview of the Appendixes is provided in this section
216  for ease of reference.

217 Constant quality factor (Q) bands with constant proportional bandwidth are traditionally defined as
218 [1]
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AF_1
a0 (10)

where Af is the bandwidth centered on f,,. The Q is a measure of the number of cycles needed to reach
the % power point at the bandwidth edges. Appendix A shows that the bandwidth edges are well-
defined in fractional octave band representations of order N so that the quality factor can be evaluated
precisely as,
1 1771

v =2 - 2w (1)
From [1], and as shown in Appendices B and C, the characteristic time duration of the Gabor atom can
be represented as

T, = My Tp (12)

where My is a measure of the number of oscillations in the characteristic time duration of a wavelet. For
efficient computation all physical times are nondimensionalized and converted to equivalent sample
points by multiplying by the sample rate. If ¢t is the time in seconds, the nondimensionalized time m is

m=f,t (13)

The approach is wavelet-agnostic up to this stage. Direct application of the %2 power points of the
spectrum of Gabor-Morlet wavelet at the band edges (Appendix C) yields

My = 2vIn2 Qy ~ 2v2In2 N (14)

This last step can be tailored to other wavelet types to produce constant-Q variants. The combination of
this specifications lead to standardized and well constrained quantized Gabor atoms.

2.2. Binary Quantized Constant-Q Gabor Atoms

Gabor [2] extended the Heisenberg principle to define the time-frequency uncertainty principle, and
further proposed deconstructing signals into elementary waveforms he referred to as time-frequency
atoms [2, 13] that provide the optimum compromise between time and frequency resolution and thus
maximize information density. Its functional kin, the Morlet wavelet [14, 15], was developed for seismic
applications and is much beloved by mathematicians. Much has been said and written over the last 75
years about the merits, and limitations [e.g. 16], of the Gabor atom in diverse fields of applied science
ranging from quantum mechanics [e.g. 17], neurophysiology [e.g. 18] and radar target recognition [e.g.
19].

Consider the translation and dilation of the familiar Gabor-Morlet mother wavelet

2
Yy(m) = ﬁ exp (— mT) exp (iMym) (15)
with dictionary [13]
, 1 m—mr

Wom —m'] = =Wy (%) (16)

which can be fully expressed as

—mrn? 3 —-ms

Y, (m—m') = ﬁ\/%_nexp {— % [%] }exp {lMN [ms:l ]} (17)

where the mapping between the nondimensional scale s,, and the band period is

Sy = N fr. (18)

2n
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256 The constant-Q Gabor atoms are constrained to the discrete set of values
257 50 = 8020 =0 £700N, My = 2VInZ Qy (19)
258  with quality factor
1 141
259 Oy = [Zﬁ — Z_W] ~ 2N (20)

260  defined by the %2 power points of the Fourier spectrum, quantized order N. For this functional form,
261  the wavelet admissibility condition can be represented as

262 MZ > 1. (21)

263 By quantizing constant-Q bands and the resulting wavelet scales it is possible to also discretize the
264  uncertainty in time and frequency of the resulting analyses. Since Gaussian pulses in general [12] and
265  Gabor atoms in particular are well-known to have the lowest time-frequency uncertainty [2, 13], they are
266  natural building blocks for uncertainty quantification. The Gaussian-wrapped oscillation in general, and
267  the Gabor atom in particular, meet the minimal value for the Heisenberg-Gabor uncertainty principle
268  (Appendix D), where the nondimensionalized temporal standard deviation o, and angular frequency
269  standard deviation g, over all time and frequency satisfy

M
270 Ore = %5,1 > 0, = %2—7’:‘[" (22a)
1 _

271 Uw/fs = ﬁénl (22b)
272 0.0, = 5 (22¢)
273  which quantify time and frequency uncertainty discretely, minimally, and unambiguously.

274 Converting to physical time with m = f; t yields a more familiar Morlet representation

N _1[Ls=t0)?  21fy o

275 p(t—t)= ) exp{ . [ - ] }exp {l = [f;(t—t )]} (23)
276 where the scale &, may be readily recognized as the standard deviation of a Gaussian envelope with

277  integration variable m = ft. This is very similar to the original form proposed by Gabor [2], and makes
278  intuitive sense as the oscillatory term is clearly exposed. However, the additional factor of f; required to
279  nondimensionalize the numerator of the Gaussian envelope for numerical computation has indubitably
280  been an initial source of confusion amongst some physical scientists, author included.

281  2.3. Quantum Order

282 The recommended quanta for the Gabor atoms are positive integer band numbers n and the
283  preferred orders N asin [1]

284 n=012.., N=1,3,612,24.. (24)

285  though the special orders N=0.75 and 1.5 are considered. The mother wavelet is uniquely defined (and
286  can be quantized) by the order N, although it is often specified by the more accessible variable My. The
287  mother wavelet is scale invariant. Each discrete atom in its dictionary is defined by its order N, its band
288  number n, and a refence scale at n=0. If the Gabor atoms remain within their quanta, there is only one
289  degree of freedom: the reference scale. The reference scale can be set by the data acquisition system (e.g.
290  the Nyquist frequency) or a standard frequency (for example, 1kHz in audio applications, 1Hz in
291  infrasound applications). The scale schema can also be set by a signal tuning frequency; the peak
292  frequency for a 1 ton detonation is used in Section 3. When integrating multi-sensor time series with
293  different evenly and unevenly sampled data, it is better to either use a standard reference frequency or
294  time scale (e.g. 1 kHz, 15, 1 hour) or the target frequency. The resulting bands will be evenly spaced to
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standardize and facilitate multi-sensor cross-correlations and data fusion. However, it is important to
reinforce that the mapping from nondimensional scale to physical time scale depends on the sample rate.
Inversely, specifying a sample rate f; or a sample interval Aty = 1/f; permits conversion to physical
time t and time scales 7, from the wavelet parameters,

t = %' TTI. = ;—7;67:’ (25)
and map to the physical frequencies
1
fn = ;' Wp = ann . (26)

It may be useful to think of the binary (base 2) order N as the quantized time and bandwidth stretch
factor of the Gabor atom; as the order increases, the wavelet stretches in time and narrows in bandwidth,
with each frequency band occupying a constant proportional frequency bandwidth that produces Qy
oscillations at the band frequency in the time domain. As noted a few sentences up in sparser
mathematical notation, although in theory it is possible to use any integer band indexes n, the
recommended best practice is to use only nonnegative integers to represent temporal scales, with t,
corresponding to the smallest scale and w, to the highest frequency below the Nyquist frequency.

This paper recommends atom quantization using the well-established fixed order N and quality
factor Qy values of standard geometric binary intervals referred to as fractional octave bands in
acoustic and infrasound applications (Table 1).

Table 1. Quality factor Q and My for standard fractional octave bands of order N .

N Qn My

1 1.4142 2.3548
3 4.3185 7.1907
6 8.6514 14.4055
12 17.3099 28.8229
24 34.6235 57.6519
48 69.2488 115.3067
96 138.4984 230.6150

! Dyadic base, G=2.

Appendix A develops a useful approximation for the quality factor Qy of order N,
Qv ~ V2N ~ 1414 N, My = 2vIn2 Qy ~ 2V2In2 N ~ 2355 N 27)

with exact equivalence for octave bands at N=1 (Table 2).

Table 2. Exact and approximate quality factor Q for standard fractional octave bands of order N .

N Qn Qy ~ V2N
1 1.4142 1.4142
3 4.3185 4.2426
6 8.6514 8.4853
12 17.3099 16.9706
24 34.6235 33.9411

48 69.2488 67.8823
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96 138.4984 135.7645
! Dyadic base, G=2.

These relations are seldom made explicit for constant Q wavelet representations, which often leads
to inadvertently creative interpretations and implementations. In traditional fractional octave bands, N
is an integer with preferred numbers 1, 3, 6, 12, 24 and its half-power (-3 dB) band edges and center
frequencies are well established so their Q can be readily computed (Tables 1 and 2). The band spectrum
will overlap at the half-power point band edges to reduce (or at least regulate) spectral leakage and
improve energy estimation. Dyadic wavelets use order N=1 and are weakly admissible ( Q3 ~5.54);
carefully handled they do lead to very sparse and fast computational implementations (e.g. M9).

The estimate for Qy in terms of the order N is useful for practical application where we wish to specify
the number of oscillations Qy in a window. If one abandons the bounds of the preferred bands, one can
estimate the order for a wavelet that has any number of oscillations in its support window. Once N is
estimated, exact values for the center frequencies and band edges can be computed from the expressions
in Appendix A. These bespoke constant-Q bands will not meet binary (factor of two) recursions with %2
power bandedge overlap, but may be useful for highly customized tuning. Examples are provided in
Table 3.

Table 3. Approximate quality factor Q and My for non-integer order N .

Qn N =~ Qy/V2 My
1 0.7071 1.6651
2 1.4142 3.3302
4 2.8284 6.6604
8 5.6569 13.3209
16 11.3137 26.6417
32 22.6274 53.2835
64 45.2548 106.5670
128 90.5097 213.1340

! Dyadic base, G=2.

Consider the curious case of a single oscillation in the window, where

N=2=075 Qy=104 My = 2VIn2 ~ 1.74 (28)

and Q is evaluated more precisely from the order N. Although intuitive and compact, the resulting
wavelets are marginally admissible ( Q% ~3) and produce oddly spaced, but legitimate, constant-Q
frequency bands that grow rapidly and hit only every fourth standard octave (power of two) every three
bands. The window duration will be only 1.74 periods long and the spectral resolution of the Fourier
transform will be exceedingly sparse. Adding another oscillation per window (increasing the quality
factor to two), would correspond to

N = 2 =15, Qy = 2.14, My = 2VIn2 ~ 357 (29)

The resulting wavelets that are more admissible ( M§~12.8 ) but also produced oddly spaced constant-Q
frequency bands that land on every second standard octave every three bands. Third order bands hit
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350  exact powers of two every third band and have around four oscillations per window (Appendix D).
351  Although it is possible to force center frequency scales, if best practices for band overlap are ignored one
352  will have a set of wavelet filter banks with substantial spectral leakage or gaps between adjacent bands,
353  and the possibility for excessively overdetermined or underdetermines results. This is what usually
354  happens with default parameters on most contiuous or discrete wavelet transform algorithms. This paper
355  standardizes and regulates band spacing by asserting the relationship between order, bandwidth, and
356  duration. Since it is both silly and mathematically inadvisable (even inadmissible) to construct a wavelet
357  with less than one oscillation in its window, it is recommended that @ > 1. This suggests a minimum
358  order number (quantum) of N=3/4 for stable Gabor atoms, with N=1 yielding value exact power of two
359  (binary) bands.

360

361 It is possible to estimate the smallest possible universal binary scale from the Planck time, the
362  smallest measurable time scale

363 ATpigne = 107835 ~ 27142¢, (30)

364  Since the Planck time would be the smallest possible sample interval, the smallest oscillation that could
365  be observed would be at the universal Nyquist period

366 Toin = 20Tpigner~ 27 1. (31)
367 At the other end of the timeline, the age of the universe is estimated to be 13.8 billion years, or
368 Tax~28 s (32)

369  so that the (presently) known universe can be encompassed in the range of ~200 temporal octave bands.
370  Computationally speaking, this is a small range of octaves that can be spanned by 200 temporal Gabor
371  atoms. Earth is estimated to be ~4.6 billion years old, covering around about 57 of those temporal binary
372  bands, and the oldest bones associated with Homo Sapiens-Sapiens are ~200,000 years old and within the
373  last 42 temporal sub-bands since Earth’s inception. The human voice for average individuals ranges
374  between one and two octaves, and five octaves species-wide. A third order representation (N=3) of all
375  the times scales in the universe can be represented by only 600 temporal Gabor atoms. In principle it

376  would be possible to construct universal scales with 7, = 27**'s, whereas all timescales would occupy
377  temporal sub-bands, but it is not clear there would be practical value to it.

378

379 The beauty of the third order representation is that it is very close to the decimal representation,

380  with every ten 1/3 octaves producing a decade (2!°/3~10), and thus provide a geometrically elegant
381  compromise between ten-digit humans and binary digit machines. In addition to better meeting the
382  admissibility condition, third order bands will contain over 99% of the information within their octave
383  (Appendix E), making them compact temporal carriers. If the third order representation is used as the
384 base order (N=3), the preferred numbers are binary multiples (N = 3, 6, 12, 24 in Table 1), with a
385  proportional elongation in the wavelet support and increase in spectral resolution.

386

387 The nondimensionalized scale s, at the Nyquist frequency is always the same regardless of
388  whether one uses the Plank scale or half the age of the known universe (which would be not only
389  impractical but not very informative as it would only leave one octave to process)

390 Q1 =V2, M, = 2\2In2, s, = 2 _Tmin_ _ |2 (33a)
27 ATpianck 2m

391 8y = 82" (33b)

392 Many software packages readily produce a Gabor-Morlet wavelet with default parameters. One of

393  the most common values is My = 5, which is close to order N = 2 (Table 4). Other common values of
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394  the wavelet support correspond to Qy =4, N = 1.7 and the more reasonable My = 8 which is close to
395  preferred order N = 3.

396 Table 4. Approximate quality factor Q and order N for integer values of M.
My ~Qy N
1 0.600561204 0.4246609
2 1.201122409 0.8493218
4 2.402244818 1.698643601
5 3.002806022 2.123304501
6 3.603367226 2.547965401
8 4.804489635 3.397287201

397 ! Dyadic base, G=2.

398  Because none of these specifications correspond to standard orders, the resulting wavelets will tend to
399  either overestimate (due to spectral leakage) or underestimate (due to spectral gaps between bands) the
400  energy within adjacent binary bands when forced, or will produce oddly spaced bands.

401

402 Although it is possible to quantize the constant-Q Gabor atoms using the order N, the quality factor
403  Q, or the multiplier My, the order is the most logical way to define the quanta of the wavelet. Describing
404  the proposed wavelet dictionaries of preferred orders as the quantized constant-Q Gabor atoms with
405  binary bases and overlapping > power points is rather awkward, and this paper proposes referring to
406 these constructs as quantized wavelets, quantum wavelets of order N, or Nth order Gabor atoms.
407  Although N=1 provides a sparse clean binary (with power of two steps in frequency) representation with
408  the tightest windows, the admissibility condition coupled with the better reconstruction capability
409  presented in the next section suggest that using N=3 as the base order is preferable, with the added
410  advantage that all subsequent preferred orders in Table 1 are binary factors of base order 3.

411 2.4. Continuous Wavelet Transform Deconstruction and Reconstruction

412 The continuous wavelet transform (CWT) of a function g(x) is represented in [13] (Eq. 1.13) as
413 W(g,u,8) = (g, %un) = [, 9(0) =" (55) dx (34)

414 where (*) represents the complex conjugate. The equivalent CWT for a discrete sequence of observations
415  (or a synthetic time series) g(m) is the convolution of g with a scaled and translated version of ¥(m).
416 Consider the nondimensional Quantum mother wavelet of order N,

417 Py(m) = ﬁ exp (— mTZ) exp (iMym) (35a)
418 W [m] = f— ¥, (ﬂ) (35b)

419  The discrete CWT can be expressed as
420 Walm] = E,72 g(m)¥i(m’ = m) = g © ¥;lm] (36)

421  where the symbol ® denotes a convolution (M9), often computed using the Discrete Fourier transform
422  (Scipy). This is comparable to the expression in [20], although their convolution has no amplitude scaling
423  asitis corrected afterwards. The CWT coefficients W, ,, provide a measure of the degree of similarity
424 between the time series and the wavelet of scale index n while translating along the time index m. While
425  exact waveform reconstruction from the CWT is challenging (e.g. [21-22]), reference [20] provides an
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426  approximate expression for the wavelet-filtered time series g'(m). The reconstruction filter from the Nth
427  order Gabor atoms becomes,

428 glm ]~"—“iz”” PR (37)

429 Where Ref{ } denotes the real part of the coefficients and the reconstruction factor Cs is scale independent
430  and constant for wavelet function with fixed My. The reconstruction factor can be estimated by
431  comparing against known test functions. Reference [20] empirically computed a reconstruction
432 coefficient of C5 = 0.776 with My = 6, and [23] provides other estimates. Numerical evaluation shows
433  the product NCs~2, and the reconstruction approximation for the analytic (Appendix F) quantum
434  wavelet of arbitrary order is

435 gc[m] ~ "—‘* Tly (38)

436 It is important to note how substantially different this expression is to the inverse discrete Fourier
437  transform, where

438 gorrIm] = = TnZy" Goerln] exp(jzmmn/Np) (39)

439 where §prr[n] are the Fourier coefficients. Unlike the discrete Fourier transform, the standard wavelet
440  reconstruction does not require multiplication by the mother wavelet. However, in the special case where
441  the atoms are well matched to the signal of interest, it of interest to consider the sparse set of coefficients
442  corresponding the complex time indexes M, ¢ may Of the maximum energy, entropy, or SNR at each scale

1

443 dc [m] ~ TL; ZQZ(TWR%‘% [m - mn((:max]} (40)

444 where the maximum coefficient indexes can be computed separately for real and imaginary components.
445  This has the form of a sum over the dominant Gabor atoms for each scale. Since one is only considering
446  the maxima in a given record window, this is a very sparse representation consisting of the coefficient
447  and the time offset corresponding to the peak energy or entropy estimate. Numerical evaluation shows
448  that this last expression can be used to estimate the full analytic function representation as long as
449  reconstruction uses the complex coefficients but only the real atom function since the time shifts in the
450  Hilbert transform already include the 7/2 time shift.

451  2.5. Wavelet Information and Entropy

452 One advantage of the constant Q wavelet representation is that it is possible to estimate the
453  information content and detectability of a signal in a band by applying the same set of wavelet transforms
454 to the signal and comparing them to the transform of a noise segment or model. Consider the definition
455  for Shannon’s channel capacity [11], with

456 SNR,, = LntS9n _ 1 4 Son (41)
Nsp Nsp
457 Ch, = Wlog,(SNR,,) (42)

458  where Sg is the wavelet-transformed signal power and N is the wavelet-transformed noise power in a
459  band. I consider two possible estimates for the bandwidth W. The first estimate approximates W by the
460 5 power point bandwidth

461 A, =2x ZPs07071 2 (43)

462  The second estimates W using the Gabor box standard deviation for the angular frequency
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—Lton 1 O T Ju, In
9o = Buy S wWmz N w2 N 1.8867 (44)
so that
—%0 __1 fn I

op =% = =11~ 03003 2 (45)

Taking the average of Af, and of
Chy ~ 22109, (SNR,). (45)

The effective SNR; and therefore the “detectability” of a bandwidth-limited compressed pulse [12]
can be represented by the product of the Gabor time-bandwidth product (Appendix C) and the signal to
noise ratio

SNR; = 0, 0, X SNR,,. (46)
Since the time-bandwidth product for the Gaussian wavelet is constant
0e = 47)

and the uncertainty of its Gabor box is at the minimum, the likelihood of the detection of a SOl in a given
band n is only proportional to its SNR.

Shannon’s definition of the channel capacity was intended to represent the highest theoretical
transfer rate of information through an analog line. Since SNR is given in power, which is typically the
square of the signal amplitude, an unscaled binary log is off by a factor of two from the original data in
bits. To reconcile this definition with the original collection of a time series signal in floating point bits
(fbits), I define the binary SNR to match the signal rms amplitude as well as Shannon’s units for the
information rate per band Chy , of the quantum compressed pulse as

bSNRy, = >10g;(SNR,) = log,(y/SNRy,), fbits (48)
Chypn = Fn X bSNR,,, shannons/s = fbits/s. (49)

The increase in higher information delivery rate with increasing frequency is intuitive as more cycles are
transferred per second. As the order number increases, the bandwidth narrows and so the potential
information rate decreases. Less obvious is the decrease in high-frequency information with increasing
distance in a lossy transmission channel. Assuming the noise power remains unchanged, the decrease in
SNR with increasing scaled distance r from the source origin on a lossy acoustic channel can be
represented as
exp(-yf?r)

SNR = SNR, 225011 (50)
where n, = 2 for spherical geometric spreading in free space and n; =1 for cylindrical spreading in a
waveguide. The binary SNR can be represented as

SNR = [bSNR0 - n?glogzr] — f?r (y logye). (51)

The term in parenthesis shows the expected reduction of one bit per doubling of distance for spherical
spreading (ng, = 2). The last term suggests the frequency dependence of the channel capacity in a lossy
acoustic medium may have the general form

Chy~ a(loger) f — B(r) f3 (52)

so that with increasing range the optimal information transmission frequency shifts to lower frequencies.
One may readily extend the binary SNR definition to the measure of relative power
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S 1 S .
) =log, (m) fhits (53)

Smax

bR = log, (

and the -3dB half-power point becomes the -1/2 bit power point.

The entropy of a signal of interest can be estimated by the wavelet coefficients. A practical approach
is described in [24]. The information content of each scale n at the time step m can be estimated from the
wavelet energy. First estimate the complex wavelet coefficient energy from

Emn = |[Re{ W} +J |Im{ Wyn}|*. (54)

The total energy in a given record can be estimated from

E= ZmZn\/ Em,nEr*n,n . (55)

The complex probability of W, , in the record is

Emn
Pmn = F (56)
where
Zm Zn Pmn p;in,n =1. (57)

The log energy entropy (lee) per coefficient can be defined buy the binary logarithm

e = l0g, (przn,n) = 2log, (pm,n) (58)

where it should be noted that the factor of two scaling coefficient does not alter the relative weight of
each coefficient. The Shannon entropy (se) per CWT coefficient is defined as

€se = _pm,nlogZ (pm,n) (59)

with corresponding complex versions that separate the real and imaginary components. These entropies
can be readily evaluated to construct noise models from the lowest entropy components. If a stable noise
model can be constructed from the record or from prior knowledge of the environment and transmission
channel, SNR estimates can be computed and the process repeated to evaluate the dimensionless binary
log of the SNR

bSNRyn = 2102 (SNRm ) (60)

and the product of the ratio and the binary ratio (RbR), an entropy-like nondimensional metric of the
SNR that can be readily evaluated to identify and extract the wavelet coefficients would be most
representative of a signal of interest,

RbRy, = SNRyyn X BSNRy, . (61)

3. Discussion: Explosion Case Study

The methods presented in this paper are foundational: the intention is to use the Gabor atoms as
fundamental building blocks with minimal time-frequency uncertainty and high information density.
These methods are illustrated and discussed in the context of a blast pulse. Consider a normalized
transient wave function characteristic of an explosion. Suppose one wanted to construct sparse wavelet
representation of a pulse with peak energy at 6.3 Hz, corresponding to the detonation of one metric ton
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on TNT observed at 1 km. It is known [e.g. 7] that at some distance from the source this center frequency
may drop by an octave (factor of two in frequency) or more, as well as become stretched out (dispersed)
in time due to propagation effects. A theoretical source pressure function for the detonation of high
explosives was developed in some detail in [7] with 1 kiloton as the case study, and is used here to
construct a representative synthetic waveform for a 1 ton detonation. Define 7,

T =41, f.= %, W, = 21f, (62)

as the pseudo-period of a blast pulse corresponding to the peak spectral energy at the frequency f. and
angular frequency w., where 7, is the time duration of the initial positive pulse traditionally used in
blast physics. The nondimensionalized time scale is

pot gt

=Ll (63)
The form of the amplitude-normalized source pressure function for an explosive blast [7] can be
represented as

g®H=@1-1%, 0<t<1 (64a)

g =11 -HA+V6-1)", 1<i<1+6. (64b)

This pulse has an associated analytical function g¢(f) discussed in Appendix F. Since the theoretical
Hilbert transform has some unresolved issues, the numerical Hilbert transform [25] is used for
comparison.

Note the amplitude is not used in this exercise as in cyber-physical systems such as smartphones the
amplitude response of on-board sensors may not be known. However, sensor dynamic range is usually
specified and available (e.g. int16, float32) and can be used for signal scaling relative to the full range or
the noise.

The normalized pulse has zero mean (conservation of momentum) and its theoretical variance is

op = 2, 9*(®) dt = 0.957. (65)

The complex Fourier transform §(j@) of this pulse is

1-j@—eJ® e—jo(1+V8)
&2 304

(joV6 + 3 + e/®8[302 + j2V6 — 3]}] (66)

where @ = gwﬂ = Z—Cw = 7,0 and the peak in the spectrum is at w = w, . Note there are at least two
c

pseudoperiods of importance evident in the main blast pulse: the main spectral pseudoperiod 7, and
positive phase pseudoperiod of 27,. Near the source the positive phase pseudoperiod will dominate as
it has the highest energy and bandwidth. With increasing distance and high-frequency attenuation the
main pseudoperiod becomes more prominent and may also be downshifted in frequency [7]. However,
additional scales can be introduced by reflection and refraction in the transmission channel that can
induce phase shifts often modeled with Hilbert transforms (Appendix F).

The power spectra of real digital signals are usually expressed using only the positive frequencies
up to the Nyquist frequency, where the unilateral spectral density Pg(&) is defined as

Pg(®) =21g(@)I* =2 g(@)g (). (67)
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Since the target signature corresponds to a one tonne (1000 kg) blast, the analysis concentrates on a
target frequency of 6.3 Hz [7]. The general procedure for constructing target-tuned fractional binary
bands of order N is to define a set of base-2 scales around the center or reference frequency

f.=63Hz, f = f.2F. (68)

The upper limit is set by the Nyquist frequency

jmax fs

f}'maxzftgz N <; = jmax<floor(Nlog2[

Zf ) (69a)

tg

And the lower limit is set by the largest data window duration T

jmin L . 2
fimin = feg2 ¥ > = jmin > ceil (Nlog2 [ED (69b)
so the center frequencies are defined by
J
fi = fc2N, j € [j min,j max] (70)

which will be sufficient information to compute the Morlet scale &,. If one must convert to a sorted,
monotonically increasing pseudoperiod, let

7 = fi,-’ Ty = min(‘rj) (71)

and restart the counter for the period
T, = 102%, n € [0,j max — jmin = length (f})]. (72)

This re-indexing is much easier to do numerically than to describe algorithmically. For the purposes of
illustration and demonstration, let’s choose a signal frequency that exactly matches the target frequency;
if this example fails there is no purpose in continuing. A sample rate of 200 Hz will be more than sufficient
for this example. Gaussian noise with a standard deviation that is one bit below the signal variance (factor
of 1/2) is added, and then anti-alias filter all frequencies below Nyquist. The analytic function is
computed numerically from the real pulse for later comparisons with the wavelet-reconstructed signal.

The CWT scalogram is computed using the complex nondimensional mother quantum wavelet of
order N. The complex Gabor-Morlet wavelet in Scipy [25] is represented by the function
scipy.signal.morlet2, and has the desired canonical form,

2
Y, (m) = ﬁexp (— mT) exp (iMym) (73a)
Wy (m) = =Wy (") (73b)
8n = 8 2% = [%jgro] 2% = %]}:—Z (73c)
T, = [Myto 12V = o (73d)
My = 2VTn2 Qy (73e)
1 1471
Oy = [zm - z‘m] (73f)

The only free variables are the order N, the smallest time scale 7,, and the sample rate f;. Although that
the nondimensionalized scale will change with the sample rate, but the final results can always be
returned to the physical domain frequencies f,,. The nominal number of points per window can be
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estimated from f;T,, . The complex wavelet coefficients can be readily computed from the real part of the
discrete version of the blast source-time function p(m)

Wylm] = Zob~ p(m) ¥ (m' — m) = p @ ¥;[m]. (74)

m'=0
The SciPy cwt function turn invokes the convolution function. This is computationally expensive: we’ve
turned a time series with Mp points into a complex 2[Mp x Nbands] array of band-passed waveforms.
The terms wavelets and wavelet filter banks are often used interchangeably in the context of the CWT.
The wavelet-filtered reconstructed complex analytical signal can be approximated from

1
T4 j  Wplmgm
geylmicmi] = 5 3 e (75)
where the i, j indexes indicate that one may choose selected scales for the reconstruction over selected
time indexes my:m; corresponding to the wavelet coefficients that best represent a signal of interest
during the time interval of relevance. The scaled wavelet coefficients for the binary band decomposition
are shown in Figure 1, and Figure 2 shows a comparison of the input synthetic analytic record and the
analytic signal reconstruction (summed over all scales) for the octave band representation. In Figure 1
the CWT wavelet amplitudes are scaled by the reconstruction coefficients.

SOO-W\/\/\/\v’\—-\/\ -W\/\/\/\J\w«f
4.00+ .
32001 :
Q
& 1.00+ /—\/\/
g
5 0.501 ~—4X\——
o
§ 0.25 J\’\/\/\/

0.00

—— Input, Real —— Input, Imag

-1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0
Scaled time Scaled time

Figure 1. Analytical signal from mathematical equation, computation with SciPy Hilbert, and the CWT
reconstruction. (a) Real part; (b) imaginary part. The wavelets were evaluated in binary bands (N=1) and
constructed around the target frequency of 6.3 Hz, which scales frequency and time. The real input
waveform and its computed Hilbert transform are displayed in blue at the zero frequency.
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1.00 : 1.00 :
—— Equation —— Equation
—— SciPy Hilbert —— SciPy Hilbert
0.75- —— CWT Reconstruction 0.751 —— CWT Reconstruction
0.50+ 0.50 1
0.251 0.251
0.00 0.00 ==
—0.251 —0.251
—0.501 —0.501
—0.751 —0.751
—1.00 . . . —-1.00 . . |
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Scaled time Scaled time

Figure 2. Wavelet reconstruction with binary bands. (a) Real part; (b) Imaginary part. The Equation
waveform has no noise and is not filtered, whereas Hilbert has Gaussian noise and has been anti-aliased
filtered.

The reconstruction process recovers the original dimensionality of the time series but returns its Hilbert
transform, so the total dimensionality may be doubled (2Mp sample points). If only the original real
signal is desired, then the dimensionality is unchanged.

The next steps estimate entropy and SNR, and consider sparse signal representation. Although binary
bands are adequate for characterizing this signal, and are routinely used in the discrete wavelet
transform, I take advantage of the flexibility offered by the CWT and use third order bands (N=3) for the
examples that follow. One of the benefits of order 3 bands is that the admissibility condition is better met
and scales are recursive in powers of 2 and 10 (e.g. Garces, 2013). As presented in Appendix D, third
order bands will contain over 99% of the Gabor box variance within an octave and within 80% of the full
window T, reducing spectral leakage. If, in addition, one wants a factor of two accuracy in explosive
yield estimates, 1/3 octave resolution is a minimum requirement. A third order band wavelet
decomposition is presented in Figure 3, and is the equivalent of the scalograms usually represented as
color plots. The wire mesh representation illustrates the simplicity of the CWT decomposition. The
difference between Figure 3 and Figure 5 is that the first scales the raw CWT coefficients by the
reconstruction scaling, whereas Figure 5 shows the raw coefficients.
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Figure 3. Wavelet decomposition with 1/3 octave bands, with CWT amplitudes scaled by the

reconstruction coefficients. (a) Real part; (b) Imaginary part. As with Figure 1, the input waveform is
displayed at the zero frequency.

1.00 : 1.00 :
—s— Equation —— Equation
—— SciPy Hilbert —— SciPy Hilbert
0.75 1 —— CWT Reconstruction 0.75 1 —— CWT Reconstruction
0.50 0.50 1
0.251 0.25
0.00 1+ es 0.00
—0.251 —0.25
—0.501 —0.50
—0.751 —0.75
—-1.00 . . . —-1.00 . ; .
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Scaled time Scaled time

Figure 4. Wavelet reconstruction with 1/3 octave bands. (a) Real part; (b) Imaginary part.
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664
665 Figure 5. Wavelet decomposition in order 3 binary bands, raw CWT amplitudes. (a) Real part; (b)
666 Imaginary part.
667
668 The energy probability distribution is constructed from the wavelet coefficients to estimate entropy,

669  as discussed in the previous section. The log energy entropy looks like any other scalogram and does not
670  add much value, but the Shannon entropy plot is interesting and well scaled (Figure 6). The peak entropy
671  isat the blast center frequency, as expected.

672
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673

674 Figure 6. Shannon entropy in order 3 bands from raw CWT amplitudes. (a) Real part; (b) Imaginary part.
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Next a noise model is constructed to build the SNR and to establishing criteria for standardized and
reproducible sparse signal representation. Many are the ways to characterize noise, and few of them
accurately characterize non-stationary noise over brief observation windows. An incorrect noise model
can penalize the signal passband and degrade the signal SNR. For the white noise model with variance
that is one bit below the signal variance, the CWT of the noise (Figure 7) shows how the high-frequency
oscillations are adequately sampled whereas the low-frequency oscillations are undersampled. This leads
to instability if the noise is only estimated over a brief observation record. In principle once can build a
noise model over a substantial period of time to obtain better statistical significance under the assumption
the noise is stationary. This can be a tenuous assumption in some circumstances. Noise studies are
beyond the scope of this paper; the noise spectrum is flattened by using the mean of the noise coefficients
to estimate the band-averaged noise level.
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Figure 7. Raw CWT of noise in 1/3 octave bands. (a) Real part; (b) Imaginary part.

The binary SNR look much like the log energy entropy as expected since they are both scaled by a
constant value, the former over the band-averaged noise and the latter over the total energy. The SNR
RbR, as described in the previous section, should also look very much like the entropy, except it would
be zero for SNR of unity and positive for SNR>1. The SNR RbR is shown in Figure 8, and unsurprisingly,
matches the Shannon entropy plot. These are good news; the entropy plot requires constructing an
energy distribution that scales with the record, whereas the SNR requires constructing a noise model that
is mostly independent of the record and should have more stability as long as the ambient noise is
approximately stationary or can at least be adequately modeled. If one is curating data for machine
learning training, the entropy would be a good metric for picking and annotating, as well as for refining
noise models. If one is trying to trigger or detect signals operationally, the SNR may be a preferable metric
as it makes no assumptions about the total energy in a record and only scales relative to a (preferably)
stable noise representation.
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Figure 8. SNR RbR in 1/3 octave bands. (a) Real part; (b) Imaginary part.

One may use the CWT coefficient energy, the Shannon entropy, or the SNR RbR test the feasibility of the
sparse Gabor atom superposition. Suppose we use any of these Np scales x Mpoint time matrices to
identify the peak contributions over the record, and identify the complex time indexes as Mmc 4. The
quantum wavelet superposition would be expressed as

1
4 Mn ¢ max]

o
geijlmemy] =~ = ZL:inTRe{an[mk: My — My ¢ maxl} (76)

where the dimensionality of the representation is reduced to the complex coefficients and time indexes.
Since the wavelet function can be reproduced for any time index, the time array need not be stored. In
other words, if there are 20 scales, there will be 20 real coefficients and time offsets and 20 imaginary
coefficients and time offsets, with total dimensionality of 4x20 = 80 parameters. If there is sufficient SNR
and the signal is band limited it is possible to further reduce dimensionality by removing any coefficients
below a specified threshold that may be fitting to noise (e.g. overfitting). Figure 9 shows the result of
reconstruction from the superposition of all the top atoms of the 20 scales, and Figure 10 shows
reconstruction from a sparser set of 12 scales with the highest SNR RbR. Similar results were obtained
using the Shannon entropy. The Gaussian noise standard deviation for these two runs was one bit below
the signal standard deviation.
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Figure 9. Superposition of largest SNR entropy coefficients per band using all twenty 1/3 octave bands.

(a) Real part; (b) Imaginary part. The noise standard deviation is one bit below the signal’s. Dimensionality

is reduced to the number of coefficients and their corresponding time shifts.
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Figure 10. Superposition of largest coefficients per band within 4 bits of the peak SNR entropy. (a) Real

part; (b) Imaginary part. Dimensionality is further reduced by applying the cutoff.

Increasing the noise standard deviation by a factor of two (one bit) still permits reconstruction from
superposition (Figure 11), and increasing by another bit also allowed atomic reconstruction (Figure 12).
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731 Figure 11. (a) Real part and (b) imaginary part of the original and reconstructed waveform. Increasing the
732 noise amplitude so that its variance is the same as the signal variance still permitted reconstruction from
733 the superposition of the largest atoms per band.
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735 Figure 12. (a) Real part and (b) imaginary part of the original and reconstructed waveform. Increasing the
736 noise standard deviation is one bit above the signal standard deviation also allowed reconstruction from
737 the quantum wavelet superposition.

738  There is no end to the number of sensitivity studies that can be performed; in addition to other SNR test
739  Talso shifter the peak blast frequency from the target frequency and could still get stable reconstruction.
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Increasing the order past N>6 only worsened the fit to the target waveform so it only increases
dimensionality and computational cost with a decrease in reconstruction fidelity, as is to be expected
from using a wavelet that does not match the target signature.

5. Concluding Remarks

This paper proposes a transition to binary metrics for digital data and introduces a standardized,
quantized variation of the Gabor atoms with binary bases, optimal time-frequency resolution, and clear
spectral energy containment. A binary entropy-like metric for the SNR is proposed and used to extract
the peak coefficients to evaluate the performance of the superposition of Gabor atoms against the more
traditional CWT reconstruction. Although the immediate application is the analysis of time series data
collected with cyber-physical systems such as smartphones, the methods presented in this paper should
be transportable to other types of digital records and can be extended to other wavelet families.

I used a synthetic for a 1 tonne detonation in Gaussian noise as an example, and did not include the
blast amplitude as a key parameter so as to concentrate on the entropy and SNR, both which are
dimensionless scaled quantities. Observations collected close to an explosion should have brief durations
and a high SNR; for short pulses it is advisable to use smaller orders (N=1-6) Gabor atoms. Due to cube
root yield scaling, the third order bands will provide factor of two yield resolution, and one-sixth order
bands a factor of square root of two yield resolution. Acceptable signal reconstructions were obtained
from the CWT coefficients as well as the superposition of the peak 3 order Gabor atoms for the blast
signature. At increasing distance from the source the peak frequency is expected to drop [7] and the pulse
disperses to spread out in time. This opens up the possibility for stable 6 and 12 order analyses with a
corresponding improvement in yield resolution. Future work will concentrate on such dispersed
signatures as well as consider other types of CW signatures that would be well matched to higher-order
Gabor atoms.

The methods developed have the goal of providing a tunable, standardized framework for signature
feature extraction to be used for signal classification, and should be well suited for dictionary learning
[13].
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Appendix A. Generalized Constant Q Bands

This work builds on the Infrasonic Energy, Nth Octave (Inferno) framework [1], which has been
implemented in infrasound array processing algorithms for nuclear monitoring applications (e.g. [3-4])
Logarithmic constant-bandwidth, also referred to as proportional frequency or constant quality factor
(Q) bands, are traditionally defined by their scaled bandwidth

Af:fH_fL_ 1

fa fa Q

where f, is the center frequency of band number nand f; and f; arereferred to as the upper and lower
band edge frequency, respectively. Defining the center, upper, and lower band edge periods as

1 1 1
W ==, Ty =—, T, = —
TRTRTY
then
At ty—1, Af Aw 1
TTl TTl fTL wn Q

In this section we generalize the constant-Q framework to the logarithmic discretization of
evaluation intervals relative to a given reference scale and base. For a given reference scale 7, which
could be time, frequency, spatial length, wavenumber, or any other useful metric, we define a logarithmic
scale base G > 1 and center scale t,, as

Tn

To

=3

=G

where 7 is the band number and N is the band order, subject to the constraints
nez N=1.

The natural base for both contemporary and quantum computers is base 2, and analysis windows
with powers of two are recommended for complex computations at large scales. Many efficient
algorithms are based on binary (base two) filter banks. Selecting G = 2 yields

Tn T, L THTyL

n
— = 2N, — = 22N, — = 272N,

> 1
To Tn Tn Tn

Note that center and band edge scales attached to a given band n change with the order N, reference
scale t,, and the reference base G. If the reference scale and base are standardized, all bands are invariant.
For example, the concert A pitch standard is fixed at 440 Hz and may be used to tune other instruments
anywhere and at any time.

The next step substantially simplifies the estimation of constant-Q bands with a minimal
introduction of a 2% computational error. To the author’s knowledge, this is the first time this expression
is presented (and he would be most grateful to be informed otherwise). Numerical evaluation shows that:
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813
VG
814 QNzNleN[m
815

816  The center frequencies and band edges, and thus the quality factor, of traditional fractional octave bands
817  are well known and can be readily computed for all the standard bands. The primary value of the
818  expression for Qy is that it provides a simple, explicit estimate of the relation between the quality factor
819  and the band order, which is turn permits an estimate of the support window duration for a given
820  wavelet in terms of the band order. Numerical inspection shows that for most practical applications and

3
821  for G =2 ~ 1010, even those when N is non integer, we can use the expression

822
fn
823 Qv =7 e V2N
824
825  to estimate the relationship between the band order and the quality factor.
826
827 Although the center frequency is traditionally defined as the geometric mean of the band edges, the

828 1 power spectral points at the band edges are only symmetric around the arithmetic mean of the center
829  frequency. The relation between the arithmetic mean f,, = (f, + f;)/2 and the geometric mean fag =
830  /fifu of the center frequency of fractional binary bands is

831

P A
832 E: 1+W~1+16N2
833

834  where the approximation uses the binomial expansion. The arithmetic and geometric center frequencies
835  are close to each other, and for fractional octave bands (N>1) get ever tighter. However, the band edge
836  power levels at the half band width Af,/2 should be considered to be relative to the arithmetic mean
837  rather than the geometric mean. In general practice it is easier to use the arithmetic frequency as f,, with
838  the understanding that the fractional octave specifications are defined by geometric scaling.

839
840 As an extension of the Inferno framework [1] the nominal duration of the Gabor atom window T,
841  may be defined as a multiple My of the scale as
n
842 T,(N,n) & MyT, = MyToGN
843

844  where the scale multiplier My is set by the half power points of the wavelet. Traditional constant-Q
845  frameworks in acoustics and music applications match the 12-tone equal temperament system (N=12) for

3
846 G =2 or G = 1070 = 2 and are consistent with the Renard series recommended in ISO3 for N=1, 3, 6, 12,
847 24,
848

849  Appendix B. The Gabor Atom

850 Different disciplines call the same things different names; many of the challenges in present-day
851  data science are often due to divergent lexicon and the diversity of applications specific to each field. The
852  idea of using a windowed sinusoid as a basis function for signal representation was developed in detail
853  in Gabor’s [2] landmark paper, where he also introduced the time-frequency uncertainty principle.
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854  Gabor’s atoms were further developed by Grossman and Morlet [14] and P. Goupillaud et al. [15]
855  (amongst others), who formalized and popularized what we now know as wavelet transforms. Mallat [13]
856  presents a lucid overview of the complementary nature of Fourier and wavelet representations in his
857  Wavelet Tour of Signal Processing; the serious student would be wise to consider it required reading.

858
859 The Gabor wavelet is a special case of a wavelet-modulated window ([13] Eqs. 4.60-4.62) and is
860  representative of a bandwidth-limited compressed pulse [12]. For a physical scientist, its most intuitive
861 formis

1 x2 .
862 Y(x) = oyt P (— ﬁ) exp (in, x),
863

864  representing a sinusoid with time t and scaled angular frequency 7, (or linear space and wavenumber)
865  modulated by Gaussian window with standard deviation o. Comparison with the canonical expression

1 1rx72 2nf,
866 Y, (x) =———ex {——[—] }ex {l[ “ x}
n (%) oy P 2ls SN
867  shows that the scaled angular frequency and standard deviation are
868
2mf, f

869 == s=5, on=My=—

Mn 7. n n N
870
871  The Fourier transform of the mother wavelet is
872

2
873 P(n) = [4m0?) /4 exp {_202[77 - nn]z} = [4ms2) e exp {—iMﬁ, [fL - 1] },
874  has unit second moment
875 [ v )de =1,
876  and it first moment vanishes in the limit
877
878 JZ w(®)dt > 0for o?n2» 1.
879
880  Another important representation of the Gabor wavelet [27-28] is
881
1
882 Y = (4nc?) 2 Y
x2
883 Yx) = T exp {— m} exp{in.x}
[2mo?]2
884
885  With the advantage that its Fourier transform
886
S~y 1 _ 1 f 2

887 B = exp{-30%l—ncJ?} = exp {—;va [E ~1] }
888
889  has a peak amplitude of unity and yields equal-amplitude filter banks.
890
891 The Inferno framework was developed with the introduction of multiresolution array processing in

892  the field of infrasound. The time duration of an analysis window at a specific period is represented as
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893 Tn =My,

894

895  This time window generally sets the temporal resolution of the resulting data products. On the case of
896  the STFT, the analysis window can be referred to as the window of integration. In other words, the
897  integration window T, is defined as a multiple My of the pseudo period. This window immediately
898 constrains the lowest frequency fp;, that can be represented and the resolution of a spectral

899  representation,
1

900 fmin = T_n

901

902  The upper bandwidth of the analysis window can be set by the Nyquist frequency, which is half of the
903  sampling frequency of the digital time series. In practice the upper bandwidth is close to one quarter of
904  Nyquist. Although this representation is simple and tidy, it is not particularly informative. A more useful
905  representation of how the window duration is the number of wavelet oscillations in the window, which
906  can be represented by the quality factor Qy of the wave function. As presented in Appendix C, the
907  relation between the scale multiplier My and the quality factor can be estimated by the % power (-3dB,
908  or half bit) points on the power spectrum,

909 My = 2VIn2 Qy

910

911  The wavelet admissibility condition for the for this wavelet is equivalent to the zero mean, or
912

913 MZ »>1

914

915  which is essentially met by the standard bands presented in Table 1. Although traditionally the Nth
916  octave frequencies are represented by the geometric mean of the band edge frequencies (Appendix A),
917  in the evaluation of spectral power losses it is important to use the arithmetic mean for f, which would
918  be centered in the bandwidth Af, in linear frequency space. Since the ratios of the arithmetic and
919  geometric means are constant and set by the band order N, the geometric scaling is still preserved.

920
921  The canonical form for computational evaluation is:
, 1 1 1[x -] ) x—x'
922 ¥, (x —x") —m\/j_nexp{—z[ . ] ]exp{LMN[ . ]}
923
924  The second b-type form has a different structure
1

925 Yu(®) = Wy, (@) T 52
926

1[x -«
927 Yo(x —x') = (211)'% 8,  exp {— > [x 5nx ] ]exp {iZn % (x— x’)}
928  applying
929 8= 8 2N,
930 yields
931 P, (x —x) = (m 255)_% [s,]7 % exp {— 2‘% [xs_x']z} exp {i IZ—N [%]}

932  which has the form
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Sn Sn
with
Sn n fsTO
= — = ZN' > 0, = M
Sn = n B0 N
fsTo 2
b=2s82=2 [M ]
8o N 21

Note that since

_ fs )
b = 8In2 (Aw(,

the “bandwidth” b is inversely proportional to the actual bandwidth of the highest frequency.

Appendix C. The Q of the Quantum Wavelet

The power spectral density of the Gabor wavelet is:

P2, (f) = [4ms2] 2 exp{ i [ f"] }

l’pzu,n(fn + Afn/z) _ fn — MN ’ =
o A Dt e D

Where Y is the fractional power loss. There exist various definitions of the quality factor of a system. This
paper defines Qy by 1/2 of the spectral power relative to the peak spectral power, where Y = 2.
Therefore, for the Gabor wavelet,

Consider the decay of the spectrum relative with distance § from the peak frequency

Lijzu,n(fn*‘ 5Afn/2) 3 SMy ~ 0
l’pzu,n(fn) B exp{ [ZQ } = exp {_[5\/@] } =2

The loss in dBs and binary bits can be expressed as

dB = 10 * l0g;,(27%") = —6210 * log,((2) ~ —362

—52
bR = —log2(2‘52) = —

There is a loss of 3dB, 12dB, 27dB, and 48dB, and a binary power loss of %2, 2, 4.5, and 8 fbits, for integer
multiples of the bandedge § = 1,2, 3, 4, respectively.

It is worth considering an alternate definition for the quality factor of an oscillator. Consider the time
required for the amplitude to drop to 1/e of its peak value. In the case of the Quantum wavelet this is set
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by the Gaussian envelope, and this particular definition is best suited for the real part of the wavelet
which is symmetric about the origin. By applying this definition,

exp {—%[;—n]z} = exp {—% }Eier} = exp {—% an—;er} = exp{—1}

V2T, T,
T, =——~ 0452
T 2 2

Since the wavelet is symmetric, this states that the portion of the wavelet contained within 27, of the
window has an amplitude above 1/e of the peak. The quality factor associated with this type of oscillator
is

_ WnTe _ MN

Qe_ 2 _\/i

and comparison with the half power point quality factor shows

Q. =V2In2 Qy ~ 1.1774Q,

and they are sufficiently close to each other to be equivalent for descriptive purposes. The time duration
of the quantum wavelet is defined by

T, = My 1, = 2YIn2 Quty,

where Qy = Q. can be interpreted as the number of oscillations in a little less than half of the total
window T, with amplitude above 1/e of the maximum amplitude. The remaining half of the window is
useful to allow the wavelet to settle down and meet the desirable condition of a vanishing first moment.

Practical implementations of Gabor wavelets and their variants often have to make some
compromises in the application of the wavelet duration T, in particular if the window is required to be
a power of two. Direct integration of the wavelet power over the window T,, shows that it contains
99.999% of all the power. Integration over 27, will be insufficient. However, there exists a third quality
factor defined by

exp {— % [wl\;;”r} = exp{—m}

where
(‘)n TTT

Q=
Qr =T Q. ~ 17724,

2T, T,
T, =T 1, = ﬁi’“ ~ 0.79787”

In other words, 21, encompasses ~80% of the window, and integration of the wavelet power over 27,
returns 99.96% of the total power. Therefore 27, = 0.8T,, may be a reasonable lower bound for the
wavelet duration. This is further considered in the next Appendix.

Appendix D. The Gabor Box
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Gabor introduced the time-frequency uncertainty principle in his landmark paper[1]. It is not
possible to observe for all time and reach zero frequency. It is also impossible to sample infinitely fast
and reach infinite frequency. All observations require a restriction in the observation time and the
observation rate, and this places hard limits on the observable bandwidth of a process. The fundamental
discretization interval scale invokes the Gabor uncertainty principle, which states the time and period of
a signal cannot be known exactly but can be contained inside the box defined by the temporal and
frequency variance of the probability distribution of the wave function.

This section follows the generalized mathematical formalism of [13], Section 2.3.2, Uncertainty
Principle. As in [13] and [7] the Fourier Transform pair used in this work is

fw) = f F(Oe T dt

f® =55, f@el do
where f(w) and f(t) may be complex. The Parseval-Plancherel identity asserts that
o) 1 o) N 2 1 2
2 _ 2 gp — S
1= [ rord= 5 [ jf@f do = I

where

IfI2=f-f

and the asterix denotes complex conjugation. A related identity the for product is routinely used in
Fourier and Wavelet analyses and the application of filter banks.

(oo} 1 (oo} .
| rog©d=5 [ fwg o

The Gabor uncertainty principle constrains uncertainty to Gabor box defined by the variance in time
and frequency. It is equivalent to the Heisenberg uncertainty principle for position and momentum
extended to time and frequency, or space and wavenumber. Let a one-dimensional signal of interest be
represented by a wave function f(t). The probability density that a signal can be localized in time at a
given time t is

F@®R _ 2nlf @)
e T

and the probability density that its angular frequency is w is

@] _ [f@l’
A1 2wl

The variance in the time localization of the signal as

2_ L fw(t— Y IFOF dt
% =) T @l

and the variance in the frequency localization of the signal as

02 =

- fw(w ~ 9?2 (@)} do.
I£]]" /e
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1047

1048  Reference [13] uses these expressions to rederive the Heisenberg-Gabor uncertainty principle, which
1049  states that the temporal and angular frequency variance satisfy:

1050 ot} =

ENI.

1051 In the special case of the Gabor-Morlet wavelet and its Quantum spawn, where the wave function
1052  is symmetric and centered around the time-shift u and the spectrum is symmetric relative to the peak
1053  frequency w,, the variance for the time and frequency distribution of the signal wave function can be
1054  readily evaluated.

1 @ 1
1055 ot =”¢—”2f (6= Iy (¢~ dt = 83
1056 05, = [y (w — wn)| dow = —5n2
(7 ||
1057
1058  and the Gabor box defined by the variance is minimal,
1059 o202 = %
1060  which is another reason for this wavelet’s popularity.
1061 Consider the standard deviation for time integrated over the scaled window €T,
1062
ut€ln
1063 d2(e) = o ||2J. (t —w)? [Pyt —w)|?dt = T —] f_mx e dx
1064
a 2 \/E 2 2
2 ,—Xx — o -a
1065 f_ax e ™ dx = 5 [erf(a) \/Eae ]
1066
1067 For € > %
1
1068 of(e) = 55,21 erf (em)
1069

1070  For e =[1.0,0.8,0.45]

1071 02(e) = 5,, [0.9999,0.9996, 0.9544 ]

1072  where € corresponds to integration over Ty, 27, ~ 0.8T,, and 27, ~ 0.45T,, corresponding to the full
1073  window, the decay time associated with Q,, and the e-folding time associated with Q,, respectively

1074  (Appendix D).

1075 Next, consider the standard deviation for time integrated over the scaled window €T,
1076
wn+280n -2 &/F
1077 g2 (8) = (0 — wp)? [Py(w — wy)| dw = [ ] J % dx
" [P Jon-250n W ol " Vrlod e

1078
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2 ~ 1 -2 2 —52
04, (8) = Eén [erf(S\/ ln2) - _\/E (5\/ an) 2 ]

For 8§ =[1, 2, 3, 4]

1
a2 (8) = 55;2 [0.2912, 0.8640,0.9941,0.9999]

where § corresponds to integration over Aw,, 2Aw,, 3Aw,, and 4Aw,, respectively. These results show
that the Gabor box can be well approximated (>99% of the variance) by a window of duration 27, =
0.8T,, and a bandwidth of 3Aw,, and over 99.99% of the variance is contained by a Gabor box of
dimensions T,, 4Aw,. In other words, third octave bands will contain over 99% of the variance within its
octave and within 80% of the full window T,,.

Appendix E. The Gabor Family

A few variations of the Gabor-Morlet wavelet are available in present-day computing environments.

One of the more familiar forms of the mother wavelet used in modern computations [27-28] is

1 u? o7
109 = 5 -tz
1 _ r
lljul_n(t) = s_lIJ ('u S = )

This form is found in the Matlab “cmor” function as well as the Python Pywavelets [29] “cmorB-C”
function with C = f,. The term b is referred to as the “bandwidth parameter” of the wavelet. The
Quantum wavelet has the equivalence

Tyn = TSy = =S
n 0°n fon
_ fsTOZ
b_Z[MN 211]
_fe 1
:fb:—oz
fs fsTo

Where fj, the highest center frequency, is used as the starting point. The scaled wavelet duration is My ]’:—S
n

and can be rounded to approximate the number of points for each scale.

Foster [30] expresses the abbreviated Morlet wavelet as

F(z) = e7 %" = exp{iw,t — ! w?3t?
2ME

So that z = w,t and now ¢ = # is inversely proportional to the Q of the wave function. The beauty of
N

Foster’s approach is that it can be used for unevenly sampled data. A modernization of this algorithms
can be found at [31].

Appendix F. The Analytic Function for the GT Blast Pulse
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The reconstruction coefficients of the complex Morlet CWT return the imaginary part of the
analytic signal. The complex analytic signal corresponding to the real signal g(%) is

gc(®) = g(®) +j H[g(D)]

Where H denotes the Hilbert transform, a recurrent topic in wave propagation as reflection introduces
phase shifts that are often modeled as Hilbert transforms of the original signal [32]. For example, some
of the U-shaped infrasound waveforms associated with thermospheric returns resemble the Hilbert
transform of an explosion pulse [3]. The Hilbert transform is also useful for estimating instantaneous
frequency and in the computation of the Hilbert-Huang transform [33].

Let g(%) represent the GT pulse,

g =@01-1%, 0<st<1
g(f)=§(1—f)(1+\/€—f)2, 1<t<1++6.

The Hilbert transform of the canonical GT blast pulse is rather unwieldy, but can be evaluated from

1 [oe]
9@ =slg@) =7 - [ L

dx

—00

Where the P in front of the integral denotes the Chaucy principal value. Multiple integration by parts
over the interval of the GT pulse yields

! 1+ A -Din(-9) - A -Dn(1 - 1)1, 0<t<1

—[
s
1 (a-1)
6 6

g () =

[a2a +5) — 1+ 682 —32(1 + 3a)]

g (D) =

+ %[(f—1)(a—f)2][ln(a—f)—ln(l—f)], 1<t<a=1+6.

Since
limx In(x) =0, limx?In(x) =0
x-0 x-0
The solutions are well behaved near the zero crossings. However, there are some issues in this solution.
First, there are the two troublesome implicitly complex terms. The first is
In(—t) = In(?) + jm, 0<t<1
where [n(f) tends to negative infinity at ¢ = 0. The second tricky term is
m(1-%)=mm@E-1)+jr, 1<t<1+6

The complex terms are awkward; fortunately, multiplication and division by zero can be readily avoided
numerically by adding the smallest floating point value (float epsilon) to arguments in logarithmic
computations so it is possible to evaluate the real part of the solution. Another inconvenience is the
discontinuity in gj and its slope as ¥ — 1. Rewriting the first term as

91 (Dseq = %[1 +(A-DIn() - A -Dln(A-D]+jA —-1), ¢ —> 1 from below

£ 1) ==
gu(® - 1) -
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1145  Evaluating the second term yields
1V2 1] V3-+2
1146 t=1 =——=—[1——], £ = 1 from above
9 ( ) Ty3 7 NG f
1147 These deficiencies are suboptimal, and not altogether surprising given that the waveform [7] did not

1148  design integrability into the GT pulse. Fortunately, these inadequacies are deemed computationally
1149  irrelevant by using the numerical convolution provided by the SciPy [25] signal.hilbert, which returns
1150  the analytic function for an input real signal. The comparison between the unfiltered synthetic theoretical
1151  analytic signals, the CWT reconstruction, and the numerical Hilbert transform are presented in the
1152  figures in the main text.
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