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Abstract: Increased data acquisition by uncalibrated, heterogeneous digital sensor systems such as 9 
smartphones present new challenges. Binary metrics are proposed for the quantification of cyber-10 
physical signal characteristics and features, and a standardized constant-Q variation of the Gabor atom 11 
is developed for use with wavelet transforms. Two different CWT reconstruction formulas are 12 
presented and tested under different SNR conditions. A sparse superposition of Nth order Gabor atoms 13 
worked well against a blast synthetic using the wavelet entropy and an entropy-like parametrization of 14 
the SNR as the CWT coefficient-weighting functions. The proposed methods should be well suited for 15 
sparse feature extraction and dictionary-based machine learning. 16 
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 18 

1. Introduction 19 

This paper applies the constant-Q standardized Infrasonic Energy, Nth Octave (Inferno) framework 20 
[1] to the Gabor wavelet [2] and proposes binary metrics for signature characterization. One of the 21 
primary motivations of this work is to facilitate the fusion of multi-modal data streams in sensor systems 22 
that collect information at different temporal and spatial granularities. Consider a cyber-physical sensor 23 
system that converts observables into digital time series data consisting of a combination of signals and 24 
noise. Signals of interest can be hypothetically described by sparse representations that define their 25 
signature. If signature characteristics are sufficiently unique and recognizable from those of ambient 26 
coherent and incoherent noise, it can be used to identify and classify an object or process. 27 

The transformation of diverse digital measurements into robust, scalable, and transportable 28 
representations is a prerequisite for signal detection, source localization, and machine learning 29 
applications for signature classification. The challenge at hand is to construct sparse signal 30 
representations that contain sufficient information for classification. Unambiguous classification can be 31 
elusive; measurement artifacts, unexpected signal variability, and non-stationary noise often conspire to 32 
add uncertainty to our classifiers. As will be discussed in this paper, information and uncertainty 33 
quantification can be substantially simplified when using standardized wavelets and binary metrics. 34 
 35 

1.1. Binary Representations of Time and Frequency  36 

Oscillatory processes often exhibit spatial and temporal scalability and self-similarity. Although 37 
some physical processes scale linearly, many exhibit recurrent patterns that scale logarithmically and are 38 
well represented by power laws. Both linear and logarithmic scales can coexist. For example, overtones 39 
in harmonic acoustic systems are often linearly spaced in frequency, yet our sense of tone similarity is 40 
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close to base 2 logarithmic (binary) octave scales. The term octave comes from the eight major notes in 41 
12-tone musical notation, which closely repeat in with factors of two. This paper uses the term octave 42 
and binary interchangeably to denote the base 2 geometric scaling of frequency and time. The mapping 43 
between frequency (or pitch) and time (period) is direct for continuous tones, such as musical notes, or 44 
statistically stationary oscillations like the orbits of planets. Discrete Fourier transform methods are 45 
exceptionally well suited for the interpretation of steady tonal signals with linearly spaced harmonics. 46 
The Fourier transform deconstructs oscillations with distinct recurrent time periods into a spectral 47 
representation consisting of a set of discrete frequencies. The spectral transformation can be sparse 48 
because it removes time as a variable, facilitating the reconstruction of stable oscillations from a subset 49 
of coefficients in the Fourier spectrum. 50 

Stable oscillators can be even more succinctly represented by a fundamental frequency or period 51 
(exclusive or, as they are not independent). For many physical systems, a map can be constructed between 52 
the fundamental frequency and its harmonics. Signals where the fundamental and its harmonics (when 53 
they exist) are statistically stationary and easily discernible above noise can be referred to as the easy 54 
continuous wave (CW) problem, or the zeroth (trivial) class of CW problems. The trivial CW problem is 55 
well understood and should routinely be used as a speed and performance benchmark for detection and 56 
classification algorithms. 57 

The plot thickens when temporal variability is introduced in the signal or the noise. In the first class 58 
of CW problems, temporal variability is due to non-stationary broadband or band-limited noise. This is 59 
a chronic condition in infrasonic signal processing, where ambient noise can be coherent or incoherent 60 
across a dense sensor network [3] or an array aperture [4]. The first class of CW problems is also well 61 
understood when noise is predictable (e.g. normally distributed) over a time duration that is much longer 62 
or much shorter than the signal period in the detection band. However, this class of problems is not as 63 
well characterized when noise is not evenly distributed across the signal detection bandpass, and can be 64 
particularly inconvenient when noise overwhelms the fundamental frequency band. 65 

In the second class of CW problems, temporal variability is introduced by a change in the temporal, 66 
spectral, and/or statistical properties of the signal. These changes can be due to aging, failure, motion, 67 
communication, or any other change in state. In a simple two-state problem, one may quantify the 68 
properties of the first state, the transition period between states, and the properties on the final state. In 69 
a multiple-state problem, such as with communication systems, speech, or music, the short-term discrete 70 
Fourier transform (STFT) is often used to characterize spectral variability. 71 

If the transition period between states in the noise or the signal is faster that the characteristic time 72 
scale of the initial state, the STFT does not always provide an accurate representation of this transient. For 73 
some signals, the details of the transient are not relevant and only the steady states are important. But a 74 
new class of signals emerges when the detection of transient anomalies is prioritized. 75 

The zeroth class of transient problems consist of delta functions with their integrals and derivatives. 76 
Although such instantaneous spikes do not exist in the natural world but can be readily constructed 77 
digitally to evaluate the impulse response of a system or represent a neuromorphic network [5-6]. The 78 
first class of transient problems would be more realistic variants of the delta function that may be 79 
observed in the wild when a rapid change of state becomes the signal of interest. Just like a single-tone 80 
sinusoid may be regarded as the prototype end member for the trivial CW problem, an explosive 81 
detonation could be considered as a prototype transient signal source [7]. During an explosion, 82 
observations would vary from ambient noise to a brief blast transient that fades back to a possibly 83 
perturbed ambient noise state. If the observations were acoustic at some distance from the source, the 84 
system would go from quiescence to blast to quiescence, and the transition can be devastatingly fast. In 85 
general, poorly-conditioned STFTs provides inadequate representations of brief, rapidly changing 86 
signals because the signatures no longer resemble a CW, and so are not well represented by sinusoids. 87 
However, since a STFT is a windowed sinusoid, a well-conditioned STFT window at the peak frequency 88 
of a signal turns the waveform into a wavelet. 89 
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The concept of a windowed sinusoid to represent a transient signal was introduced by Gabor (1946), 90 
and later mathematically formalized by others as wavelets. Variants of the Gabor wavelet are presented 91 
in the Appendices. 92 

The second class of transient problems overlaps with the second class of CW problems. It 93 
corresponds to transients of significant durations which could be addressed with STFTs, wavelets, or 94 
their combination. Very often a transient is imbedded in a noise field with band-limited harmonic 95 
structure. Or the transient itself is a sweep, characterized by a substantial frequency change in the 96 
fundamental and its harmonic structure. 97 

The primary differences between STFTs and wavelet approaches are that the former uses a linear 98 
period mapping and a constant processing window duration and the latter uses geometric pseudo-period 99 
mapping and a window duration that scales with the pseudo-period. Whereas in the Fourier framework 100 
there is a one-to-one mapping between time and frequency, the wavelet mapping between time scale and 101 
frequency can be less evident and depends on the selected wavelet. 102 

In this paper I concentrate on developing standardized constant-Q Gabor atoms for the design and 103 
evaluation of transportable, sensor-agnostic signal detection, sparse feature extraction, and classification 104 
algorithms. 105 

1.2. Binary Representations of Energy and Information in Cyber-Physical Systems 106 

Cyber-physical systems (CPS) are algorithm-controlled computer systems with physical inputs and 107 
outputs. A typical example of a mobile CPS is a smartphone with a microphone input (sound activation) 108 
that outputs a response (speech, music, or signal recognition) to a screen. Cyber-physical Measurement 109 
and Signature Intelligence (MASINT) is an emerging discipline that concentrates on phenomena 110 
transmitted through cyber-physical devices and their interconnected data networks. For smartphones 111 
and other multi-sensor mobile platforms connected to wireless networks, this includes digital noise, bit 112 
errors, and latencies internal to the device and its communication channels [8-10]. 113 

Data processed by the cyber part of CPSs are digital and represented as binary digits (bits). Although 114 
the precision of the data is initially defined by its their integer symbol length (16, 32, 64 bit, etc.), the 115 
original data may be converted into float equivalents when an algorithms acts on it. For example, 116 
consider sound recorded by a smartphone at the standard rate of 48,000 samples per second. A typical 117 
sound record may have 16-bit resolution, so that its dynamic range in bits is 2-15 to 215 – 1. However, one 118 
may only be interested in the lower frequency components of the raw data, so one would implement a 119 
lowpass anti-aliasing before decimation. Such filters require double precision (64 bit at the time of this 120 
writing) to reduce instability. Therefore the precision of the resulting lowpass filtered data would be float 121 
64. However, the theoretical dynamic range of the system would not exceed the specification of the 122 
integer 16 physical input. Furthermore, data compression can be more efficient on floats than integers, 123 
which leads us to the topic of fractional bits as a measure of CPS amplitude, power, and information. 124 

Many of the metrics we used in traditional physical and geophysical systems are inherited from the 125 
analog era. The base 10 decibel scale is a measure of power relative to a reference level, and is used 126 
extensively in telecommunications, acoustics, and electrical engineering. Let’s estimate the hypothetical 127 
dynamic range of a 16-bit microphone record of a sinusoid at full scale. The peak rms amplitude would 128 
be 129 

𝑝𝑟𝑚𝑠 𝑠𝑖𝑔𝑛𝑎𝑙 =
216

2√2
 .         (1) 130 

All systems have quantization and system noise, and it can have a positive or negative bias. This is 131 
not a noise paper; for the sake of illustration, I model the system noise as oscillating around a mean of 132 
zero and alternating between -1 and 1, 133 

𝑝𝑟𝑚𝑠 𝑛𝑜𝑖𝑠𝑒 =
21

2√2
 .         (2) 134 
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The theoretical dynamic range of the system in dB for a sinusoid recorded with a 16-bit microphone and 135 
sound card combination with a one-bit noise floor could be characterized by the ratio of the power  136 

10 ∗ 𝑙𝑜𝑔10 [
𝑝𝑟𝑚𝑠 𝑠𝑖𝑔𝑛𝑎𝑙

𝑝𝑟𝑚𝑠 𝑛𝑜𝑖𝑠𝑒
]

2

= 20 ∗ 𝑙𝑜𝑔10[215] ≈ 90𝑑𝐵      (3) 137 

where a digital response is converted to the legacy base 10 logarithmic system. One advantage of the 138 
decibel approach is that it can be compared to the response of the human ear and other analog systems. 139 
However, analogue comparisons are not necessary for many cyber physical applications. A more natural 140 
unit for CPS is the binary logarithm 141 

𝑙𝑜𝑔2 [
𝑝𝑟𝑚𝑠 𝑠𝑖𝑔𝑛𝑎𝑙

𝑝𝑟𝑚𝑠 𝑛𝑜𝑖𝑠𝑒
] = 𝑙𝑜𝑔2[215] ≈ 15.0 𝑓𝑏𝑖𝑡𝑠      (4) 142 

where the unit fbits corresponds to floating point representation of bits. For example, in 24-bit systems, 143 
present-day quantization error is ~3 bits, leading to an effective dynamic range of ~21 fbits. Likewise, a 144 
24-bit integer cast into a 32-bit symbol can have 8+3 bits of noise, and may be converted to a float that 145 
still has ~21 fbits of dynamic range. 146 

Another unit that is often specified is the ½  power point of the frequency response of a filter, which 147 
defines the quality factor of that filter. This is often referred to as the -3dB point, since 10 ∗ 𝑙𝑜𝑔10(2)~3𝑑𝐵. 148 
However, accurate filter bank reproductions require a clear specification of the ½  power point, and 149 
conversion from base 10 to base 2 specification can lead to computational errors. Plotting filter responses 150 
in floating point bits can be informative as it reveals the precision of the computation. Because it is 151 
awkward and there is already a precedent in information theory for using bits outside of their original 152 
definition as a binary digit, from here onwards in this paper the word bits will be used to represent either 153 
the floating point equivalent of bits or as a metric for information. 154 

Consider the communication channel capacity introduced by Shannon [11], which in its simplest 155 
form can be expressed as 156 

𝐶ℎ = 𝑊𝑙𝑜𝑔2 (
𝑆𝑔+𝑁𝑠

𝑁𝑠
)        (5) 157 

where 𝐶ℎ is a measure of the differential entropy of a signal in the presence of noise, W is a measure of 158 
the bandwidth, 𝑆𝑔 is representative of the power of a signal, and Ns is representative of the noise power. 159 
The units of the channel capacity are in shannons, or bits per second, and represent the theoretical upper 160 
bound of the rate of information transfer in a communication channel. Since it is often impossible to 161 
separate noise embedded in a signal but it is often possible to construct a noise model, we can think the 162 
ratio (Sg+Ns)/Ns as a practical measure of the signal to noise ratio (SNR) of an observed signal that has 163 
been carried through a cyber-physical system or a medium. 164 

The effective SNR and therefore the detectability of a compressed pulse (such as a wavelet) is the 165 
product of the bandwidth, the signal to noise ratio, and the duration of a signal T [12]. When using 166 
constant-Q Gabor wavelet with fractional octave (binary) bands n of order N and center frequency 𝑓𝑛 to 167 
process a signal in the presence of noise, the next section shows that for 168 

𝑆𝑁𝑅𝑛 =
𝑁𝑠𝑛+𝑆𝑔𝑛

𝑁𝑠𝑛
= 1 +

𝑆𝑔𝑛

𝑁𝑠𝑛
        (6) 169 

the signal detectability per band can be represented by 170 

𝑏𝑆𝑁𝑅𝑛 =
1

2
 𝑙𝑜𝑔2(𝑆𝑁𝑅𝑛)        (7) 171 

and the upper limit on rate of information in bits per second for a band-limited pulse with center 172 
frequency 𝑓𝑛 can be estimated from 173 

𝐶ℎ𝑛 =  
𝑓𝑛

𝑁
 𝑏𝑆𝑁𝑅𝑛        (8) 174 
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Energy and Shannon entropies using the binary log are constructed for both the wavelet coefficients 175 
and SNR in a later section. 176 

2. Methods 177 

This is an algorithmic paper providing foundational methods to construct standardized Gabor 178 
wavelets within a binary framework. No materials are included or required; all the algorithms required 179 
to reproduce the results are included, with recommendations for specific existing functions in open-180 
source software frameworks. 181 

Although the methods are intended to be sensor-agnostic and transportable across diverse domains, 182 
the selection of the Gabor mother wavelet does define the optimal applicability of the algorithms: the 183 
methods in this paper will work best with a transient, or a portion of a transient, that can be well 184 
represented by a superposition of Gabor wavelets. Fortunately, this covers a fairly wide range of transient 185 
signature types. Furthermore, the fundamental principles in this work are expandable to other wavelets 186 
as well as to four-dimensional spatiotemporal representations. 187 

2.1. Transforming Time and Frequency to Scale 188 

A digital time series is constructed by collecting digital measurements at discrete times separated 189 
by a nominal sample interval  ∆𝜏𝑠. One mas estimate a standard deviation from nominal 𝜎𝜏𝑠

 associated 190 

with the sample interval; when this error is a very small percent of the sample interval (e.g. parts per 191 
million) it is generally treated as a constant. Some variability in the sample rate should be expected in 192 
cyber-physical sensing systems under different conditions (temperature, battery level, power load, data 193 
throughput, etc.) even when they have the same hardware configurations. This can have an impact when 194 
attempting high-accuracy time synchronization. If adequate performance metrics are collected, the 195 
sample rate error be quantified and potentially compensated by an additional time-varying correction to 196 
the clock drift. 197 

In many scientific domains, such as astronomy and climatology, the sample interval may be greater 198 
than one second. Domains where the phenomena of interest change more rapidly use the equivalent 199 
metric of samples per second, referred to as the sample rate and often expressed in units of Hertz. The 200 
relationship between the sample interval   ∆𝜏𝑠  and its standard deviation 𝜎𝜏𝑠

 and the sample rate 𝑓𝑠 201 

and its associated error can be expressed as 202 

1

  ∆𝜏𝑠+𝜎𝜏𝑠

=
1

  ∆𝜏𝑠
(1 +

𝜎𝜏𝑠

  ∆𝜏𝑠
)

−1

≈  𝑓𝑠 (1 −
𝜎𝜏𝑠

  ∆𝜏𝑠
)   if  

𝜎𝜏𝑠

  ∆𝜏𝑠
≪ 1.     (9) 203 

Although time is the primary discrete sampling parameter, system requirements are often provided 204 
as frequency specifications within the context of Fourier transforms. The nominal sample rate sets the 205 
maximum upper edge of the bandpass of the system; there should be negligible energy at the Nyquist 206 
frequency, which is half of the sample rate. The actual bandpass of a system is set by the low- and high- 207 
frequency cutoffs of a cyber-physical system, which may include the sensor response, hardware 208 
specifications, firmware and software modifications (such as anti-aliasing filtering), and data 209 
compression. 210 

The mapping between frequency and period is simple for continuous wave tone; the tone period is 211 
the inverse of the tone frequency. It is not so clear for transients. Following [7], a transient with a single 212 
spectral peak at a center frequency 𝑓𝑛 may be associated with a pseudo-period 𝜏𝑛 = 1/𝑓𝑛. This mapping 213 
is important as the scale of wavelet representations is linearly proportional to the pseudo-period, which 214 
is also referred to as the scale period. A high-level overview of the Appendixes is provided in this section 215 
for ease of reference. 216 

Constant quality factor (𝑄) bands with constant proportional bandwidth are traditionally defined as 217 
[1] 218 
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∆𝑓

𝑓𝑛
=

1

𝑄
           (10) 219 

where ∆𝑓 is the bandwidth centered on 𝑓𝑛. The 𝑄 is a measure of the number of cycles needed to reach 220 
the ½  power point at the bandwidth edges. Appendix A shows that the bandwidth edges are well-221 
defined in fractional octave band representations of order 𝑁 so that the quality factor can be evaluated 222 
precisely as, 223 

𝑄𝑁 = [ 2
1

2𝑁  −  2−
1

2𝑁]
−1

.        (11) 224 

From [1], and as shown in Appendices B and C, the characteristic time duration of the Gabor atom can 225 
be represented as 226 

𝑇𝑛 = 𝑀𝑁 𝜏𝑛          (12) 227 

where 𝑀𝑁 is a measure of the number of oscillations in the characteristic time duration of a wavelet. For 228 
efficient computation all physical times are nondimensionalized and converted to equivalent sample 229 
points by multiplying by the sample rate. If 𝑡 is the time in seconds, the nondimensionalized time 𝑚 is 230 

𝑚 = 𝑓𝑠 𝑡          (13) 231 

The approach is wavelet-agnostic up to this stage. Direct application of the ½  power points of the 232 
spectrum of Gabor-Morlet wavelet at the band edges (Appendix C) yields 233 
 234 

𝑀𝑁 = 2√𝑙𝑛2 𝑄𝑁 ≈ 2√2𝑙𝑛2 𝑁        (14) 235 

This last step can be tailored to other wavelet types to produce constant-Q variants. The combination of 236 
this specifications lead to standardized and well constrained quantized Gabor atoms.   237 
 238 

2.2. Binary Quantized Constant-Q Gabor Atoms 239 

Gabor [2] extended the Heisenberg principle to define the time-frequency uncertainty principle, and 240 
further proposed deconstructing signals into elementary waveforms he referred to as time-frequency 241 
atoms [2, 13] that provide the optimum compromise between time and frequency resolution and thus 242 
maximize information density. Its functional kin, the Morlet wavelet [14, 15], was developed for seismic 243 
applications and is much beloved by mathematicians. Much has been said and written over the last 75 244 
years about the merits, and limitations [e.g. 16], of the Gabor atom in diverse fields of applied science 245 
ranging from quantum mechanics [e.g. 17], neurophysiology [e.g. 18] and radar target recognition [e.g. 246 
19].  247 

Consider the translation and dilation of the familiar Gabor-Morlet mother wavelet 248 

Ψ𝑁(𝑚) =
1

𝜋
1

4⁄
𝑒𝑥𝑝 (−

𝑚2

2
)  exp (𝑖𝑀𝑁𝑚)       (15) 249 

with dictionary [13] 250 

Ψ𝑛[𝑚 − 𝑚′] =
1

√𝓈𝑛
Ψ𝑁 (

𝑚−𝑚′

𝓈𝑛
)        (16) 251 

which can be fully expressed as 252 

Ψ𝑛(𝑚 − 𝑚′) =
1

𝜋
1

4⁄

1

√𝓈𝑛
𝑒𝑥𝑝 {−

1

2
[

𝑚−𝑚′

𝓈𝑛
]

2

} 𝑒𝑥𝑝 {𝑖𝑀𝑁 [
𝑚−𝑚′

𝓈𝑛
]}    (17) 253 

where the mapping between the nondimensional scale 𝓈𝑛 and the band period is 254 

𝓈𝑛 =  
𝑀𝑁

2𝜋
 𝑓𝑠𝜏𝑛.            (18) 255 
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The constant-Q Gabor atoms are constrained to the discrete set of values 256 

𝓈𝑛 =  𝓈02
𝑛

𝑁 =
𝑀𝑁

2𝜋
 𝑓𝑠𝜏02

𝑛

𝑁,     𝑀𝑁 = 2√𝑙𝑛2 𝑄𝑁        (19) 257 

with quality factor 258 

𝑄𝑁 = [ 2
1

2𝑁  −  2−
1

2𝑁]
−1

≈ √2𝑁         (20) 259 

defined by the ½  power points of the Fourier spectrum, quantized order 𝑁. For this functional form, 260 
the wavelet admissibility condition can be represented as 261 

𝑀𝑁
2  ≫ 1.           (21) 262 

By quantizing constant-Q bands and the resulting wavelet scales it is possible to also discretize the 263 
uncertainty in time and frequency of the resulting analyses. Since Gaussian pulses in general [12] and 264 
Gabor atoms in particular are well-known to have the lowest time-frequency uncertainty [2, 13], they are 265 
natural building blocks for uncertainty quantification. The Gaussian-wrapped oscillation in general, and 266 
the Gabor atom in particular, meet the minimal value for the Heisenberg-Gabor uncertainty principle 267 
(Appendix D), where the nondimensionalized temporal standard deviation 𝜎𝑡 and angular frequency 268 
standard deviation 𝜎𝜔 over all time and frequency satisfy 269 

𝜎𝑓𝑠𝑡  =  
1

√2
𝓈𝑛  ⇒   𝜎𝑡𝑛

 =  
1

√2

𝑀𝑁

2𝜋
𝜏𝑛         (22a) 270 

𝜎𝜔/𝑓𝑠
=  

1

√2
𝓈𝑛

−1          (22b) 271 

𝜎𝑡𝜎𝜔 =  
1

2
            (22c) 272 

which quantify time and frequency uncertainty discretely, minimally, and unambiguously. 273 
Converting to physical time with 𝑚 = 𝑓𝑠 𝑡 yields a more familiar Morlet representation 274 

Ψ𝑛(𝑡 − 𝑡′) =
1

(𝜋𝓈𝑛
2)

1
4⁄

𝑒𝑥𝑝 {−
1

2
[

 𝑓𝑠(𝑡−𝑡′)

𝓈𝑛
]

2

} 𝑒𝑥𝑝 {𝑖
2𝜋𝑓𝑛

 𝑓𝑠
[ 𝑓𝑠(𝑡 − 𝑡′)]}      (23) 275 

where the scale 𝓈𝑛 may be readily recognized as the standard deviation of a Gaussian envelope with 276 
integration variable 𝑚 =  𝑓𝑠𝑡. This is very similar to the original form proposed by Gabor [2], and makes 277 
intuitive sense as the oscillatory term is clearly exposed. However, the additional factor of 𝑓𝑠 required to 278 
nondimensionalize the numerator of the Gaussian envelope for numerical computation has indubitably 279 
been an initial source of confusion amongst some physical scientists, author included. 280 

2.3. Quantum Order 281 

The recommended quanta for the Gabor atoms are positive integer band numbers 𝑛  and the 282 
preferred orders 𝑁 as in [1] 283 

𝑛 = 0, 1, 2 … ,   𝑁 = 1, 3, 6, 12, 24 …        (24) 284 

though the special orders N=0.75 and 1.5 are considered. The mother wavelet is uniquely defined (and 285 
can be quantized) by the order N, although it is often specified by the more accessible variable 𝑀𝑁. The 286 
mother wavelet is scale invariant. Each discrete atom in its dictionary is defined by its order N, its band 287 
number n, and a refence scale at n=0. If the Gabor atoms remain within their quanta, there is only one 288 
degree of freedom: the reference scale. The reference scale can be set by the data acquisition system (e.g. 289 
the Nyquist frequency) or a standard frequency (for example, 1kHz in audio applications, 1Hz in 290 
infrasound applications). The scale schema can also be set by a signal tuning frequency; the peak 291 
frequency for a 1 ton detonation is used in Section 3. When integrating multi-sensor time series with 292 
different evenly and unevenly sampled data, it is better to either use a standard reference frequency or 293 
time scale (e.g. 1 kHz, 1 s, 1 hour) or the target frequency. The resulting bands will be evenly spaced to 294 
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standardize and facilitate multi-sensor cross-correlations and data fusion. However, it is important to 295 
reinforce that the mapping from nondimensional scale to physical time scale depends on the sample rate. 296 
Inversely, specifying a sample rate  𝑓𝑠 or a sample interval   ∆𝜏𝑠 = 1/𝑓𝑠 permits conversion to physical 297 
time 𝑡 and time scales  𝜏𝑛 from the wavelet parameters, 298 

𝑡 =
𝑚

 𝑓𝑠
,      𝜏𝑛 =

2𝜋

𝑀𝑁

𝓈𝑛

 𝑓𝑠
,            (25) 299 

and map to the physical frequencies 300 

𝑓𝑛 =
1

𝜏𝑛
,   𝜔𝑛 = 2𝜋𝑓𝑛 .       (26) 301 

It may be useful to think of the binary (base 2) order N as the quantized time and bandwidth stretch 302 
factor of the Gabor atom; as the order increases, the wavelet stretches in time and narrows in bandwidth, 303 
with each frequency band occupying a constant proportional frequency bandwidth that produces 𝑄𝑁 304 
oscillations at the band frequency in the time domain. As noted a few sentences up in sparser 305 
mathematical notation, although in theory it is possible to use any integer band indexes n, the 306 
recommended best practice is to use only nonnegative integers to represent temporal scales, with 𝜏0 307 
corresponding to the smallest scale and 𝜔0 to the highest frequency below the Nyquist frequency.  308 
 309 

This paper recommends atom quantization using the well-established fixed order 𝑁 and quality 310 
factor 𝑄𝑁 values of standard geometric binary intervals referred to as fractional octave bands in 311 
acoustic and infrasound applications (Table 1). 312 

Table 1. Quality factor Q and 𝑀𝑁 for standard fractional octave bands of order N 1. 313 

N 𝑸𝑵 𝑀𝑁 

1 1.4142 2.3548 

3 4.3185 7.1907 

6 8.6514 14.4055 

12 17.3099 28.8229 

24 34.6235 57.6519 

48 69.2488 115.3067 

96 138.4984 230.6150 

1 Dyadic base, G=2. 314 

Appendix A develops a useful approximation for the quality factor 𝑄𝑁 of order N, 315 

𝑄𝑁 ≈ √2𝑁 ≈ 1.414 𝑁,      𝑀𝑁 = 2√𝑙𝑛2 𝑄𝑁 ≈ 2√2𝑙𝑛2 𝑁 ≈  2.355 𝑁    (27) 316 

with exact equivalence for octave bands at N=1 (Table 2). 317 

Table 2. Exact and approximate quality factor Q for standard fractional octave bands of order N 1. 318 

N 𝑸𝑵 𝑸𝑵 ≈ √𝟐𝑵 

1 1.4142 1.4142 

3 4.3185 4.2426 

6 8.6514 8.4853 

12 17.3099 16.9706 

24 34.6235 33.9411 

48 69.2488 67.8823 
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96 138.4984 135.7645 

1 Dyadic base, G=2. 319 

 320 
These relations are seldom made explicit for constant Q wavelet representations, which often leads 321 

to inadvertently creative interpretations and implementations. In traditional fractional octave bands, 𝑁 322 
is an integer with preferred numbers 1, 3, 6, 12, 24 and its half-power (-3 dB) band edges and center 323 
frequencies are well established so their Q can be readily computed (Tables 1 and 2). The band spectrum 324 
will overlap at the half-power point band edges to reduce (or at least regulate) spectral leakage and 325 
improve energy estimation. Dyadic wavelets use order N=1 and are weakly admissible ( Ω𝑁

2  ~5.54 ); 326 
carefully handled they do lead to very sparse and fast computational implementations (e.g. M9).  327 
 328 
The estimate for 𝑄𝑁 in terms of the order 𝑁 is useful for practical application where we wish to specify 329 
the number of oscillations 𝑄𝑁 in a window. If one abandons the bounds of the preferred bands, one can 330 
estimate the order for a wavelet that has any number of oscillations in its support window. Once N is 331 
estimated, exact values for the center frequencies and band edges can be computed from the expressions 332 
in Appendix A. These bespoke constant-Q bands will not meet binary (factor of two) recursions with ½  333 
power bandedge overlap, but may be useful for highly customized tuning. Examples are provided in 334 
Table 3. 335 

Table 3. Approximate quality factor Q and 𝑀𝑁 for non-integer order N 1. 336 

𝑸𝑵 𝑵 ≈ 𝑸𝑵 √𝟐⁄  𝑀𝑁 

1 0.7071 1.6651 

2 1.4142 3.3302 

4 2.8284 6.6604 

8 5.6569 13.3209 

16 11.3137 26.6417 

32 22.6274 53.2835 

64 45.2548 106.5670 

128 90.5097 213.1340 

1 Dyadic base, G=2. 337 

Consider the curious case of a single oscillation in the window, where 338 

 340 

𝑁 =
3

4
= 0.75, 𝑄𝑁 = 1.04,              𝑀𝑁 = 2√𝑙𝑛2  ≈ 1.74     (28) 339 

and Q is evaluated more precisely from the order N. Although intuitive and compact, the resulting 341 
wavelets are marginally admissible (  Ω𝑁

2  ~3 ) and produce oddly spaced, but legitimate, constant-Q 342 
frequency bands that grow rapidly and hit only every fourth standard octave (power of two) every three 343 
bands. The window duration will be only 1.74 periods long and the spectral resolution of the Fourier 344 
transform will be exceedingly sparse. Adding another oscillation per window (increasing the quality 345 
factor to two), would correspond to 346 

𝑁 =
3

2
= 1.5, 𝑄𝑁 = 2.14,             𝑀𝑁 = 2√𝑙𝑛2  ≈ 3.57       (29) 347 

The resulting wavelets that are more admissible ( 𝑀𝑁
2 ~12.8 ) but also produced oddly spaced constant-Q 348 

frequency bands that land on every second standard octave every three bands. Third order bands hit 349 
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exact powers of two every third band and have around four oscillations per window (Appendix D). 350 
Although it is possible to force center frequency scales, if best practices for band overlap are ignored one 351 
will have a set of wavelet filter banks with substantial spectral leakage or gaps between adjacent bands, 352 
and the possibility for excessively overdetermined or underdetermines results. This is what usually 353 
happens with default parameters on most contiuous or discrete wavelet transform algorithms. This paper 354 
standardizes and regulates band spacing by asserting the relationship between order, bandwidth, and 355 
duration. Since it is both silly and mathematically inadvisable (even inadmissible) to construct a wavelet 356 
with less than one oscillation in its window, it is recommended that 𝑄 ≥ 1. This suggests a minimum 357 
order number (quantum) of N=3/4 for stable Gabor atoms, with N=1 yielding value exact power of two 358 
(binary) bands. 359 
 360 

It is possible to estimate the smallest possible universal binary scale from the Planck time, the 361 
smallest measurable time scale 362 

∆𝜏𝑃𝑙𝑎𝑛𝑐𝑘 = 10−43𝑠 ~ 2−142𝑠.         (30) 363 

Since the Planck time would be the smallest possible sample interval, the smallest oscillation that could 364 
be observed would be at the universal Nyquist period 365 

𝜏𝑚𝑖𝑛 = 2∆𝜏𝑃𝑙𝑎𝑛𝑐𝑘~ 2−141𝑠.          (31) 366 

At the other end of the timeline, the age of the universe is estimated to be 13.8 billion years, or 367 

𝜏𝑚𝑎𝑥~258 𝑠            (32) 368 

so that the (presently) known universe can be encompassed in the range of ~200 temporal octave bands. 369 
Computationally speaking, this is a small range of octaves that can be spanned by 200 temporal Gabor 370 
atoms. Earth is estimated to be ~4.6 billion years old, covering around about 57 of those temporal binary 371 
bands, and the oldest bones associated with Homo Sapiens-Sapiens are ~200,000 years old and within the 372 
last 42 temporal sub-bands since Earth’s inception. The human voice for average individuals ranges 373 
between one and two octaves, and five octaves species-wide. A third order representation (N=3) of all 374 
the times scales in the universe can be represented by only 600 temporal Gabor atoms. In principle it 375 
would be possible to construct universal scales with 𝜏0 =  2−141𝑠, whereas all timescales would occupy 376 
temporal sub-bands, but it is not clear there would be practical value to it. 377 
 378 

The beauty of the third order representation is that it is very close to the decimal representation, 379 
with every ten 1/3 octaves producing a decade (210/3~10), and thus provide a geometrically elegant 380 

compromise between ten-digit humans and binary digit machines. In addition to better meeting the 381 
admissibility condition, third order bands will contain over 99% of the information within their octave 382 
(Appendix E), making them compact temporal carriers. If the third order representation is used as the 383 
base order (N=3), the preferred numbers are binary multiples (N = 3, 6, 12, 24 in Table 1), with a 384 
proportional elongation in the wavelet support and increase in spectral resolution. 385 
 386 

The nondimensionalized scale 𝓈𝑛  at the Nyquist frequency is always the same regardless of 387 
whether one uses the Plank scale or half the age of the known universe (which would be not only 388 
impractical but not very informative as it would only leave one octave to process) 389 

 𝑄1 = √2, 𝑀1 = 2√2𝑙𝑛2, 𝓈0 =
𝑀1

2𝜋

𝜏𝑚𝑖𝑛

∆𝜏𝑃𝑙𝑎𝑛𝑐𝑘
= √

𝑙𝑛2

2𝜋2      (33a) 390 

𝓈𝑛 =  𝓈02𝑛           (33b) 391 

Many software packages readily produce a Gabor-Morlet wavelet with default parameters. One of 392 
the most common values is 𝑀𝑁 = 5, which is close to order N = 2 (Table 4). Other common values of 393 
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the wavelet support correspond to Ω𝑁 = 4, 𝑁 = 1.7 and the more reasonable 𝑀𝑁 = 8 which is close to 394 
preferred order N = 3. 395 

 Table 4. Approximate quality factor Q and order N for integer values of 𝑀. 396 

𝑀𝑁 ~𝑸𝑵 𝐍 

1 0.600561204 0.4246609 

2 1.201122409 0.8493218 

4 2.402244818 1.698643601 

5 3.002806022 2.123304501 

6 3.603367226 2.547965401 

8 4.804489635 3.397287201 

1 Dyadic base, G=2. 397 

Because none of these specifications correspond to standard orders, the resulting wavelets will tend to 398 
either overestimate (due to spectral leakage) or underestimate (due to spectral gaps between bands) the 399 
energy within adjacent binary bands when forced, or will produce oddly spaced bands. 400 
 401 

Although it is possible to quantize the constant-Q Gabor atoms using the order N, the quality factor 402 
Q, or the multiplier 𝑀𝑁, the order is the most logical way to define the quanta of the wavelet. Describing 403 
the proposed wavelet dictionaries of preferred orders as the quantized constant-Q Gabor atoms with 404 
binary bases and overlapping ½  power points is rather awkward, and this paper proposes referring to 405 
these constructs as quantized wavelets, quantum wavelets of order N, or Nth order Gabor atoms. 406 
Although N=1 provides a sparse clean binary (with power of two steps in frequency) representation with 407 
the tightest windows, the admissibility condition coupled with the better reconstruction capability 408 
presented in the next section suggest that using N=3 as the base order is preferable, with the added 409 
advantage that all subsequent preferred orders in Table 1 are binary factors of base order 3. 410 

2.4. Continuous Wavelet Transform Deconstruction and Reconstruction 411 

The continuous wavelet transform (CWT) of a function 𝑔(𝑥) is represented in [13] (Eq. 1.13) as 412 

𝒲(𝑔, 𝑢, 𝓈 ) = 〈𝑔, Ψ𝑢,𝑛〉 = ∫ 𝑔(𝑥)
1

√𝓈
Ψ∗ (

𝑥−𝑢

𝓈
)

∞

−∞
𝑑𝑥  (34) 413 

where (*) represents the complex conjugate. The equivalent CWT for a discrete sequence of observations 414 
(or a synthetic time series) 𝑔(𝑚) is the convolution of 𝑔 with a scaled and translated version of Ψ(𝑚). 415 
Consider the nondimensional Quantum mother wavelet of order N, 416 

Ψ𝑁(𝑚) =
1

𝜋
1

4⁄
𝑒𝑥𝑝 (−

𝑚2

2
)  exp (𝑖𝑀𝑁𝑚)        (35a) 417 

Ψ𝑛[𝑚] =
1

√𝓈𝑛
Ψ𝑁 (

𝑚

𝓈𝑛
)          (35b) 418 

The discrete CWT can be expressed as 419 

𝒲𝑛[𝑚] = ∑ 𝑔(𝑚′)Ψ𝑛
∗(𝑚′ − 𝑚)𝑀𝑝−1

𝑚′=0 = 𝑔 ⊛ Ψ𝑛
∗[𝑚]       (36) 420 

where the symbol ⊛ denotes a convolution (M9), often computed using the Discrete Fourier transform 421 
(Scipy). This is comparable to the expression in [20], although their convolution has no amplitude scaling 422 
as it is corrected afterwards. The CWT coefficients 𝒲𝑚,𝑛 provide a measure of the degree of similarity 423 
between the time series and the wavelet of scale index n while translating along the time index m. While 424 
exact waveform reconstruction from the CWT is challenging (e.g. [21-22]), reference [20] provides an 425 
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approximate expression for the wavelet-filtered time series 𝑔′(𝑚). The reconstruction filter from the Nth 426 
order Gabor atoms becomes, 427 

𝑔[𝑚] ≈
𝜋

1
4

𝑁

1

𝐶𝛿
∑

𝑅𝑒{𝒲𝑛[𝑚]}

√𝓈𝑛

𝑁𝑝−1
𝑛=0           (37) 428 

Where Re{ } denotes the real part of the coefficients and the reconstruction factor 𝐶𝛿 is scale independent 429 
and constant for wavelet function with fixed M𝑁 . The reconstruction factor can be estimated by 430 
comparing against known test functions. Reference [20] empirically computed a reconstruction 431 
coefficient of 𝐶𝛿 = 0.776 with M𝑁 = 6, and [23] provides other estimates. Numerical evaluation shows 432 
the product 𝑁𝐶𝛿  ~2, and the reconstruction approximation for the analytic (Appendix F) quantum 433 
wavelet of arbitrary order is 434 

𝑔ℂ [𝑚] ≈
𝜋

1
4

2
 ∑

𝒲𝑛[𝑚]

√𝓈𝑛

𝑁𝑝−1
𝑛=0           (38) 435 

It is important to note how substantially different this expression is to the inverse discrete Fourier 436 
transform, where 437 

𝑔𝐷𝐹𝑇[𝑚] =
1

√𝑁𝑝
 ∑ 𝑔̂𝐷𝐹𝑇[𝑛]𝑁𝑝−1

𝑛=0 𝑒𝑥𝑝(𝑗2𝜋𝑚𝑛 𝑁𝑝⁄ )       (39) 438 

where 𝑔̂𝐷𝐹𝑇[𝑛] are the Fourier coefficients. Unlike the discrete Fourier transform, the standard wavelet 439 
reconstruction does not require multiplication by the mother wavelet. However, in the special case where 440 
the atoms are well matched to the signal of interest, it of interest to consider the sparse set of coefficients 441 
corresponding the complex time indexes 𝑚𝑛 ℂ 𝑚𝑎𝑥 of the maximum energy, entropy, or SNR at each scale 442 

𝑔ℂ [𝑚] ≈
𝜋

1
4

2
 ∑

𝒲𝑛[𝑚𝑛 ℂ 𝑚𝑎𝑥]

√𝓈𝑛

𝑁𝑝−1
𝑛=0 𝑅𝑒{Ψ𝑛[𝑚 − 𝑚𝑛 ℂ 𝑚𝑎𝑥]}      (40) 443 

where the maximum coefficient indexes can be computed separately for real and imaginary components. 444 
This has the form of a sum over the dominant Gabor atoms for each scale. Since one is only considering 445 
the maxima in a given record window, this is a very sparse representation consisting of the coefficient 446 
and the time offset corresponding to the peak energy or entropy estimate. Numerical evaluation shows 447 
that this last expression can be used to estimate the full analytic function representation as long as 448 
reconstruction uses the complex coefficients but only the real atom function since the time shifts in the 449 
Hilbert transform already include the 𝜋/2 time shift. 450 

2.5. Wavelet Information and Entropy 451 

 One advantage of the constant Q wavelet representation is that it is possible to estimate the 452 
information content and detectability of a signal in a band by applying the same set of wavelet transforms 453 
to the signal and comparing them to the transform of a noise segment or model. Consider the definition 454 
for Shannon’s channel capacity [11], with 455 

𝑆𝑁𝑅𝑛 =
𝑁𝑠𝑛+𝑆𝑔𝑛

𝑁𝑠𝑛
= 1 +

𝑆𝑔𝑛

𝑁𝑠𝑛
         (41) 456 

𝐶ℎ𝑛 =  𝑊𝑙𝑜𝑔2(𝑆𝑁𝑅𝑛)          (42) 457 

where Sg is the wavelet-transformed signal power and Ns is the wavelet-transformed noise power in a 458 
band. I consider two possible estimates for the bandwidth W. The first estimate approximates W by the 459 
½  power point bandwidth 460 

∆𝑓𝑛 =
𝑓𝑛

𝑄𝑁
≈

1

√2

𝑓𝑛

𝑁
≈ 0.7071 

𝑓𝑛

𝑁
.        (43) 461 

The second estimates W using the Gabor box standard deviation for the angular frequency 462 
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𝜎𝜔 =
1

√2

𝜔𝑛

𝑀𝑁
≈

1

4√𝑙𝑛2 

𝜔𝑛

𝑁
  ≈  

𝜋

2√𝑙𝑛2 

𝑓𝑛

𝑁
≈ 1.8867 

𝑓𝑛

𝑁
      (44) 463 

so that 464 

𝜎𝑓 =
𝜎𝜔

2𝜋
 =

1

4√𝑙𝑛2 

𝑓𝑛

𝑁
≈ 0.3003 

𝑓𝑛

𝑁
.         (45) 465 

Taking the average of ∆𝑓𝑛 and 𝜎𝑓 466 

𝐶ℎ𝑛 ≈  
1

2

𝑓𝑛

𝑁
𝑙𝑜𝑔2(𝑆𝑁𝑅𝑛).         (45) 467 

The effective 𝑆𝑁𝑅𝐺 and therefore the “detectability” of a bandwidth-limited compressed pulse [12] 468 
can be represented by the product of the Gabor time-bandwidth product (Appendix C) and the signal to 469 
noise ratio  470 

 𝑆𝑁𝑅𝐺 = 𝜎𝑡  𝜎𝜔 × 𝑆𝑁𝑅𝑛.         (46) 471 

Since the time-bandwidth product for the Gaussian wavelet is constant 472 

𝜎𝑡𝜎𝑤 =
1

2
           (47) 473 

and the uncertainty of its Gabor box is at the minimum, the likelihood of the detection of a SOI in a given 474 
band 𝑛 is only proportional to its SNR. 475 

Shannon’s definition of the channel capacity was intended to represent the highest theoretical 476 
transfer rate of information through an analog line. Since SNR is given in power, which is typically the 477 
square of the signal amplitude, an unscaled binary log is off by a factor of two from the original data in 478 
bits. To reconcile this definition with the original collection of a time series signal in floating point bits 479 
(fbits), I define the binary SNR to match the signal rms amplitude as well as Shannon’s units for the 480 
information rate per band 𝐶ℎ𝑁,𝑛 of the quantum compressed pulse as 481 

𝑏𝑆𝑁𝑅𝑛 =
1

2
𝑙𝑜𝑔2(𝑆𝑁𝑅𝑛) = 𝑙𝑜𝑔2(√𝑆𝑁𝑅𝑛),    𝑓𝑏𝑖𝑡𝑠      (48) 482 

𝐶ℎ𝑁,𝑛 =
𝑓𝑛

𝑁
× 𝑏𝑆𝑁𝑅𝑛,    𝑠ℎ𝑎𝑛𝑛𝑜𝑛𝑠/𝑠 =  𝑓𝑏𝑖𝑡𝑠/𝑠.      (49) 483 

The increase in higher information delivery rate with increasing frequency is intuitive as more cycles are 484 
transferred per second. As the order number increases, the bandwidth narrows and so the potential 485 
information rate decreases. Less obvious is the decrease in high-frequency information with increasing 486 
distance in a lossy transmission channel. Assuming the noise power remains unchanged, the decrease in 487 
SNR with increasing scaled distance 𝑟  from the source origin on a lossy acoustic channel can be 488 
represented as 489 

𝑆𝑁𝑅 = 𝑆𝑁𝑅𝑜  
𝑒𝑥𝑝(−𝛾𝑓2𝑟)

𝑟𝑛𝑔 .        (50) 490 

where 𝑛𝑔 = 2 for spherical geometric spreading in free space and 𝑛𝑔 = 1 for cylindrical spreading in a 491 

waveguide. The binary SNR can be represented as 492 

𝑆𝑁𝑅 = [𝑏𝑆𝑁𝑅0 −
𝑛𝑔

2
𝑙𝑜𝑔2𝑟 ]  − 𝑓2𝑟 (𝛾 𝑙𝑜𝑔2𝑒).       (51) 493 

The term in parenthesis shows the expected reduction of one bit per doubling of distance for spherical 494 

spreading (𝑛𝑔 = 2). The last term suggests the frequency dependence of the channel capacity in a lossy 495 

acoustic medium may have the general form 496 

𝐶ℎ𝑛~ 𝛼(𝑙𝑜𝑔2𝑟) 𝑓 − 𝛽(𝑟) 𝑓3         (52) 497 

so that with increasing range the optimal information transmission frequency shifts to lower frequencies. 498 
One may readily extend the binary SNR definition to the measure of relative power 499 
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𝑏𝑅 = 𝑙𝑜𝑔2 (√
𝑆

𝑆𝑚𝑎𝑥
) =

1

2
𝑙𝑜𝑔2 (

𝑆

𝑆𝑚𝑎𝑥
) ,   𝑓𝑏𝑖𝑡𝑠       (53) 500 

and the -3dB half-power point becomes the -1/2 bit power point. 501 
 The entropy of a signal of interest can be estimated by the wavelet coefficients. A practical approach 502 
is described in [24]. The information content of each scale n at the time step m can be estimated from the 503 
wavelet energy. First estimate the complex wavelet coefficient energy from 504 

𝐸𝑚,𝑛 = |𝑅𝑒{ 𝒲𝑚,𝑛}|
2

+ 𝑗 |𝐼𝑚{ 𝒲𝑚,𝑛}|
2
.        (54) 505 

The total energy in a given record can be estimated from 506 

𝐸 =  ∑ ∑ √𝐸𝑚,𝑛𝐸𝑚,𝑛
∗

𝑛𝑚  .         (55) 507 

The complex probability of 𝒲𝑚,𝑛 in the record is 508 

  𝑝𝑚,𝑛 =
𝐸𝑚,𝑛

𝐸
            (56) 509 

where 510 

∑ ∑ 𝑝𝑚,𝑛𝑛𝑚 𝑝𝑚,𝑛
∗ = 1 .           (57) 511 

The log energy entropy (lee) per coefficient can be defined buy the binary logarithm 512 
 513 

𝑒𝑙𝑒𝑒 = 𝑙𝑜𝑔2(𝑝𝑚,𝑛
2 ) = 2𝑙𝑜𝑔2(𝑝𝑚,𝑛)         (58) 514 

 515 
where it should be noted that the factor of two scaling coefficient does not alter the relative weight of 516 
each coefficient. The Shannon entropy (se) per CWT coefficient is defined as 517 
 518 

𝑒𝑠𝑒 = −𝑝𝑚,𝑛𝑙𝑜𝑔2(𝑝𝑚,𝑛)          (59) 519 

 520 
with corresponding complex versions that separate the real and imaginary components. These entropies 521 
can be readily evaluated to construct noise models from the lowest entropy components. If a stable noise 522 
model can be constructed from the record or from prior knowledge of the environment and transmission 523 
channel, SNR estimates can be computed and the process repeated to evaluate the dimensionless binary 524 
log of the SNR 525 

𝑏𝑆𝑁𝑅𝑚,𝑛 =
1

2
𝑙𝑜𝑔2(𝑆𝑁𝑅𝑚,𝑛)          (60) 526 

 527 
and the product of the ratio and the binary ratio (RbR), an entropy-like nondimensional metric of the 528 
SNR that can be readily evaluated to identify and extract the wavelet coefficients would be most 529 
representative of a signal of interest, 530 
 531 

𝑅𝑏𝑅𝑚,𝑛 =  𝑆𝑁𝑅𝑚,𝑛 × 𝑏𝑆𝑁𝑅𝑚,𝑛.         (61) 532 

3. Discussion: Explosion Case Study 533 

The methods presented in this paper are foundational: the intention is to use the Gabor atoms as 534 
fundamental building blocks with minimal time-frequency uncertainty and high information density. 535 
These methods are illustrated and discussed in the context of a blast pulse. Consider a normalized 536 
transient wave function characteristic of an explosion. Suppose one wanted to construct sparse wavelet 537 
representation of a pulse with peak energy at 6.3 Hz, corresponding to the detonation of one metric ton 538 
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on TNT observed at 1 km. It is known [e.g. 7] that at some distance from the source this center frequency 539 
may drop by an octave (factor of two in frequency) or more, as well as become stretched out (dispersed) 540 
in time due to propagation effects. A theoretical source pressure function for the detonation of high 541 
explosives was developed in some detail in [7] with 1 kiloton as the case study, and is used here to 542 
construct a representative synthetic waveform for a 1 ton detonation. Define 𝜏𝑐 543 

𝜏𝑐 = 4𝜏𝑝,      𝑓𝑐 =
1

𝜏𝑐
,      𝜔𝑐 = 2𝜋𝑓𝑐         (62) 544 

as the pseudo-period of a blast pulse corresponding to the peak spectral energy at the frequency 𝑓𝑐 and 545 
angular frequency 𝜔𝑐, where 𝜏𝑝 is the time duration of the initial positive pulse traditionally used in 546 

blast physics. The nondimensionalized time scale is 547 

𝜏̂ =
𝑡

𝜏𝑝
= 4

𝑡

𝜏𝑐
            (63) 548 

The form of the amplitude-normalized source pressure function for an explosive blast [7] can be 549 
represented as 550 

𝑔(𝜏̂) = (1 − 𝜏̂),     0 ≤ 𝜏̂ ≤ 1         (64a) 551 

𝑔(𝜏̂) =
1

6
(1 − 𝜏̂)(1 + √6 − 𝜏̂)

2
,      1 < 𝜏̂ ≤ 1 + √6.      (64b) 552 

This pulse has an associated analytical function 𝑔ℂ(𝜏̂) discussed in Appendix F. Since the theoretical 553 
Hilbert transform has some unresolved issues, the numerical Hilbert transform [25] is used for 554 
comparison. 555 

Note the amplitude is not used in this exercise as in cyber-physical systems such as smartphones the 556 
amplitude response of on-board sensors may not be known. However, sensor dynamic range is usually 557 
specified and available (e.g. int16, float32) and can be used for signal scaling relative to the full range or 558 
the noise. 559 

The normalized pulse has zero mean (conservation of momentum) and its theoretical variance is 560 
 561 

𝜎𝑝
2 = ∫ 𝑔2(𝜏̂)

∞

−∞
𝑑𝑡 = 0.95

𝜏𝑐

8
.         (65) 562 

The complex Fourier transform 𝑔̂(𝑗𝜔̂) of this pulse is  563 
 564 

𝑔̂(𝑗𝜔̂) =
π

2𝜔𝑛 
[

1−𝑗𝜔̂−𝑒−𝑗𝜔̂

𝜔̂2 +  
𝑒−𝑗𝜔̂(1+√6)

3𝜔̂4 {𝑗𝜔̂√6 + 3 + 𝑒𝑗𝜔̂√6[3𝜔̂2 + 𝑗𝜔̂2√6 − 3]}]     (66) 565 

 566 

where 𝜔̂ =
𝜋

2

𝜔

𝜔𝑐
=

𝜏𝑐

4
𝜔 = 𝜏𝑝𝜔 and the peak in the spectrum is at 𝜔 = 𝜔𝑐 . Note there are at least two 567 

pseudoperiods of importance evident in the main blast pulse: the main spectral pseudoperiod 𝜏𝑐 and 568 
positive phase pseudoperiod of 2𝜏𝑝. Near the source the positive phase pseudoperiod will dominate as 569 

it has the highest energy and bandwidth. With increasing distance and high-frequency attenuation the 570 
main pseudoperiod becomes more prominent and may also be downshifted in frequency [7]. However, 571 
additional scales can be introduced by reflection and refraction in the transmission channel that can 572 
induce phase shifts often modeled with Hilbert transforms (Appendix F). 573 
 574 

The power spectra of real digital signals are usually expressed using only the positive frequencies 575 
up to the Nyquist frequency, where the unilateral spectral density 𝑃𝑔(𝜔̂) is defined as  576 
 577 

𝑃𝑔(𝜔̂) = 2|𝑔̂(𝑗𝜔̂)|2 = 2 𝑔̂(𝑗𝜔̂)𝑔̂∗(𝑗𝜔̂).       (67) 578 
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Since the target signature corresponds to a one tonne (1000 kg) blast, the analysis concentrates on a 579 
target frequency of 6.3 Hz [7]. The general procedure for constructing target-tuned fractional binary 580 
bands of order N is to define a set of base-2 scales around the center or reference frequency 581 

 582 

𝑓𝑐 = 6.3Hz,   𝑓𝑗 = 𝑓𝑐2
𝑗

𝑁.          (68) 583 

The upper limit is set by the Nyquist frequency 584 

𝑓𝑗 𝑚𝑎𝑥 = 𝑓𝑡𝑔2
𝑗 𝑚𝑎𝑥

𝑁 <
𝑓𝑠

2
  ⇒   𝑗 𝑚𝑎𝑥 < 𝑓𝑙𝑜𝑜𝑟 (𝑁𝑙𝑜𝑔2 [

𝑓𝑠

2𝑓𝑡𝑔
])       (69a) 585 

And the lower limit is set by the largest data window duration 𝑇 586 

𝑓𝑗 𝑚𝑖𝑛 = 𝑓𝑡𝑔2
𝑗 𝑚𝑖𝑛

𝑁 >
2

𝑇
   ⇒   𝑗 𝑚𝑖𝑛 > 𝑐𝑒𝑖𝑙 (𝑁𝑙𝑜𝑔2 [

2

𝑇𝑓𝑡𝑔
])        (69b) 587 

so the center frequencies are defined by 588 

𝑓𝑗 = 𝑓𝑐2
𝑗

𝑁 , 𝑗 ∈ [𝑗 𝑚𝑖𝑛, 𝑗 𝑚𝑎𝑥]          (70) 589 

which will be sufficient information to compute the Morlet scale 𝓈𝑛. If one must convert to a sorted, 590 
monotonically increasing pseudoperiod, let 591 

𝜏𝑗 =
1

𝑓𝑗
, 𝜏0 = 𝑚𝑖𝑛(𝜏𝑗)         (71) 592 

and restart the counter for the period 593 

𝜏𝑛 = 𝜏02
𝑛

𝑁,  𝑛 ∈ [0, 𝑗 𝑚𝑎𝑥 − 𝑗 min = 𝑙𝑒𝑛𝑔𝑡ℎ (𝑓𝑗)].      (72) 594 

This re-indexing is much easier to do numerically than to describe algorithmically. For the purposes of 595 
illustration and demonstration, let’s choose a signal frequency that exactly matches the target frequency; 596 
if this example fails there is no purpose in continuing. A sample rate of 200 Hz will be more than sufficient 597 
for this example. Gaussian noise with a standard deviation that is one bit below the signal variance (factor 598 
of 1/2) is added, and then anti-alias filter all frequencies below Nyquist. The analytic function is 599 
computed numerically from the real pulse for later comparisons with the wavelet-reconstructed signal. 600 

The CWT scalogram is computed using the complex nondimensional mother quantum wavelet of 601 
order N. The complex Gabor-Morlet wavelet in Scipy [25] is represented by the function 602 
scipy.signal.morlet2, and has the desired canonical form, 603 

Ψ𝐻(𝑚) =
1

𝜋
1

4⁄
𝑒𝑥𝑝 (−

𝑚2

2
)  exp (𝑖M𝑁𝑚)       (73a) 604 

Ψ𝑢,𝑛(𝑚) =
1

√𝓈𝑛
Ψ𝐻 (

𝑚−𝑢

𝓈𝑛
)        (73b) 605 

𝓈𝑛 = 𝓈0 2
𝑛

𝑁 = [
𝑀𝑁

2𝜋
𝑓𝑠𝜏0]  2

𝑛

𝑁 =
𝑀𝑁

2𝜋

𝑓𝑠

𝑓𝑛
       (73c) 606 

𝑇𝑛 = [𝑀𝑁𝜏0 ]2
𝑛

𝑁 =
𝑀𝑁

𝑓𝑛
         (73d) 607 

𝑀𝑁 = 2√𝑙𝑛2 𝑄𝑁          (73e) 608 

𝑄𝑁 = [ 2
1

2𝑁  −  2−
1

2𝑁]
−1

         (73f) 609 

 610 
The only free variables are the order N, the smallest time scale 𝜏0, and the sample rate 𝑓𝑠. Although that 611 
the nondimensionalized scale will change with the sample rate, but the final results can always be 612 
returned to the physical domain frequencies 𝑓𝑛 . The nominal number of points per window can be 613 
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estimated from 𝑓𝑠𝑇𝑛 . The complex wavelet coefficients can be readily computed from the real part of the 614 
discrete version of the blast source-time function 𝑝(𝑚) 615 
 616 

𝒲𝑛[𝑚] = ∑ 𝑝(𝑚′)Ψ𝑛
∗(𝑚′ − 𝑚)𝑀𝑝−1

𝑚′=0
= 𝑝 ⊛ Ψ𝑛

∗[𝑚].      (74) 617 

The SciPy cwt function turn invokes the convolution function. This is computationally expensive: we’ve 618 
turned a time series with Mp points into a complex 2[Mp x Nbands] array of band-passed waveforms. 619 
The terms wavelets and wavelet filter banks are often used interchangeably in the context of the CWT.  620 

The wavelet-filtered reconstructed complex analytical signal can be approximated from 621 

𝑔ℂ 𝑖𝑗[𝑚𝑘: 𝑚𝑙] ≈
𝜋

1
4

2
 ∑

𝒲𝑛[𝑚𝑘:𝑚𝑙]

√𝓈𝑛

𝑗
𝑛=𝑖          (75) 622 

where the i, j indexes indicate that one may choose selected scales for the reconstruction over selected 623 
time indexes 𝑚𝑘: 𝑚𝑙  corresponding to the wavelet coefficients that best represent a signal of interest 624 
during the time interval of relevance. The scaled wavelet coefficients for the binary band decomposition 625 
are shown in Figure 1, and Figure 2 shows a comparison of the input synthetic analytic record and the 626 
analytic signal reconstruction (summed over all scales) for the octave band representation. In Figure 1 627 
the CWT wavelet amplitudes are scaled by the reconstruction coefficients. 628 
 629 

 630 

Figure 1. Analytical signal from mathematical equation, computation with SciPy Hilbert, and the CWT 631 
reconstruction. (a) Real part; (b) imaginary part. The wavelets were evaluated in binary bands (N=1) and 632 
constructed around the target frequency of 6.3 Hz, which scales frequency and time. The real input 633 
waveform and its computed Hilbert transform are displayed in blue at the zero frequency. 634 

 635 
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 636 

Figure 2. Wavelet reconstruction with binary bands. (a) Real part; (b) Imaginary part. The Equation 637 
waveform has no noise and is not filtered, whereas Hilbert has Gaussian noise and has been anti-aliased 638 
filtered. 639 

The reconstruction process recovers the original dimensionality of the time series but returns its Hilbert 640 
transform, so the total dimensionality may be doubled (2Mp sample points). If only the original real 641 
signal is desired, then the dimensionality is unchanged. 642 
 643 
The next steps estimate entropy and SNR, and consider sparse signal representation. Although binary 644 
bands are adequate for characterizing this signal, and are routinely used in the discrete wavelet 645 
transform, I take advantage of the flexibility offered by the CWT and use third order bands (N=3) for the 646 
examples that follow. One of the benefits of order 3 bands is that the admissibility condition is better met 647 
and scales are recursive in powers of 2 and 10 (e.g. Garces, 2013). As presented in Appendix D, third 648 
order bands will contain over 99% of the Gabor box variance within an octave and within 80% of the full 649 
window 𝑇𝑛, reducing spectral leakage. If, in addition, one wants a factor of two accuracy in explosive 650 
yield estimates, 1/3 octave resolution is a minimum requirement. A third order band wavelet 651 
decomposition is presented in Figure 3, and is the equivalent of the scalograms usually represented as 652 
color plots. The wire mesh representation illustrates the simplicity of the CWT decomposition. The 653 
difference between Figure 3 and Figure 5 is that the first scales the raw CWT coefficients by the 654 
reconstruction scaling, whereas Figure 5 shows the raw coefficients. 655 
 656 
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 657 

Figure 3. Wavelet decomposition with 1/3 octave bands, with CWT amplitudes scaled by the 658 
reconstruction coefficients. (a) Real part; (b) Imaginary part. As with Figure 1, the input waveform is 659 
displayed at the zero frequency. 660 

 661 

Figure 4. Wavelet reconstruction with 1/3 octave bands. (a) Real part; (b) Imaginary part. 662 

 663 
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 664 

Figure 5. Wavelet decomposition in order 3 binary bands, raw CWT amplitudes. (a) Real part; (b) 665 
Imaginary part. 666 

 667 
The energy probability distribution is constructed from the wavelet coefficients to estimate entropy, 668 

as discussed in the previous section. The log energy entropy looks like any other scalogram and does not 669 
add much value, but the Shannon entropy plot is interesting and well scaled (Figure 6). The peak entropy 670 
is at the blast center frequency, as expected. 671 

 672 

 673 

Figure 6. Shannon entropy in order 3 bands from raw CWT amplitudes. (a) Real part; (b) Imaginary part. 674 
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 675 
Next a noise model is constructed to build the SNR and to establishing criteria for standardized and 676 

reproducible sparse signal representation. Many are the ways to characterize noise, and few of them 677 
accurately characterize non-stationary noise over brief observation windows. An incorrect noise model 678 
can penalize the signal passband and degrade the signal SNR. For the white noise model with variance 679 
that is one bit below the signal variance, the CWT of the noise (Figure 7) shows how the high-frequency 680 
oscillations are adequately sampled whereas the low-frequency oscillations are undersampled. This leads 681 
to instability if the noise is only estimated over a brief observation record. In principle once can build a 682 
noise model over a substantial period of time to obtain better statistical significance under the assumption 683 
the noise is stationary. This can be a tenuous assumption in some circumstances. Noise studies are 684 
beyond the scope of this paper; the noise spectrum is flattened by using the mean of the noise coefficients 685 
to estimate the band-averaged noise level. 686 

 687 

 688 

Figure 7. Raw CWT of noise in 1/3 octave bands. (a) Real part; (b) Imaginary part. 689 

The binary SNR look much like the log energy entropy as expected since they are both scaled by a 690 
constant value, the former over the band-averaged noise and the latter over the total energy. The SNR 691 
RbR, as described in the previous section, should also look very much like the entropy, except it would 692 
be zero for SNR of unity and positive for SNR>1. The SNR RbR is shown in Figure 8, and unsurprisingly, 693 
matches the Shannon entropy plot. These are good news; the entropy plot requires constructing an 694 
energy distribution that scales with the record, whereas the SNR requires constructing a noise model that 695 
is mostly independent of the record and should have more stability as long as the ambient noise is 696 
approximately stationary or can at least be adequately modeled. If one is curating data for machine 697 
learning training, the entropy would be a good metric for picking and annotating, as well as for refining 698 
noise models. If one is trying to trigger or detect signals operationally, the SNR may be a preferable metric 699 
as it makes no assumptions about the total energy in a record and only scales relative to a (preferably) 700 
stable noise representation. 701 
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 702 

Figure 8. SNR RbR in 1/3 octave bands. (a) Real part; (b) Imaginary part.  703 

One may use the CWT coefficient energy, the Shannon entropy, or the SNR RbR test the feasibility of the 704 
sparse Gabor atom superposition. Suppose we use any of these Np scales x Mpoint time matrices to 705 
identify the peak contributions over the record, and identify the complex time indexes as 𝑚ℂ 𝑚𝑎𝑥. The 706 
quantum wavelet superposition would be expressed as 707 
 708 

𝑔ℂ 𝑖𝑗[𝑚𝑘: 𝑚𝑙] ≈
𝜋

1
4

2
 ∑

𝒲𝑛[𝑚𝑛 ℂ 𝑚𝑎𝑥]

√𝓈𝑛

𝑗
𝑛=𝑖 𝑅𝑒{Ψ𝑛[𝑚𝑘: 𝑚𝑙 − 𝑚𝑛 ℂ 𝑚𝑎𝑥]}      (76) 709 

 710 
where the dimensionality of the representation is reduced to the complex coefficients and time indexes. 711 
Since the wavelet function can be reproduced for any time index, the time array need not be stored. In 712 
other words, if there are 20 scales, there will be 20 real coefficients and time offsets and 20 imaginary 713 
coefficients and time offsets, with total dimensionality of 4x20 = 80 parameters. If there is sufficient SNR 714 
and the signal is band limited it is possible to further reduce dimensionality by removing any coefficients 715 
below a specified threshold that may be fitting to noise (e.g. overfitting). Figure 9 shows the result of 716 
reconstruction from the superposition of all the top atoms of the 20 scales, and Figure 10 shows 717 
reconstruction from a sparser set of 12 scales with the highest SNR RbR. Similar results were obtained 718 
using the Shannon entropy. The Gaussian noise standard deviation for these two runs was one bit below 719 
the signal standard deviation. 720 
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 721 

Figure 9. Superposition of largest SNR entropy coefficients per band using all twenty 1/3 octave bands. 722 
(a) Real part; (b) Imaginary part. The noise standard deviation is one bit below the signal’s. Dimensionality 723 
is reduced to the number of coefficients and their corresponding time shifts. 724 

 725 

Figure 10. Superposition of largest coefficients per band within 4 bits of the peak SNR entropy. (a) Real 726 
part; (b) Imaginary part. Dimensionality is further reduced by applying the cutoff. 727 

Increasing the noise standard deviation by a factor of two (one bit) still permits reconstruction from 728 
superposition (Figure 11), and increasing by another bit also allowed atomic reconstruction (Figure 12). 729 
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 730 

Figure 11. (a) Real part and (b) imaginary part of the original and reconstructed waveform. Increasing the 731 
noise amplitude so that its variance is the same as the signal variance still permitted reconstruction from 732 
the superposition of the largest atoms per band. 733 

 734 

Figure 12. (a) Real part and (b) imaginary part of the original and reconstructed waveform. Increasing the 735 
noise standard deviation is one bit above the signal standard deviation also allowed reconstruction from 736 
the quantum wavelet superposition. 737 

There is no end to the number of sensitivity studies that can be performed; in addition to other SNR test 738 
I also shifter the peak blast frequency from the target frequency and could still get stable reconstruction. 739 
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Increasing the order past N>6 only worsened the fit to the target waveform so it only increases 740 
dimensionality and computational cost with a decrease in reconstruction fidelity, as is to be expected 741 
from using a wavelet that does not match the target signature. 742 

5. Concluding Remarks 743 

This paper proposes a transition to binary metrics for digital data and introduces a standardized, 744 
quantized variation of the Gabor atoms with binary bases, optimal time-frequency resolution, and clear 745 
spectral energy containment. A binary entropy-like metric for the SNR is proposed and used to extract 746 
the peak coefficients to evaluate the performance of the superposition of Gabor atoms against the more 747 
traditional CWT reconstruction. Although the immediate application is the analysis of time series data 748 
collected with cyber-physical systems such as smartphones, the methods presented in this paper should 749 
be transportable to other types of digital records and can be extended to other wavelet families. 750 

I used a synthetic for a 1 tonne detonation in Gaussian noise as an example, and did not include the 751 
blast amplitude as a key parameter so as to concentrate on the entropy and SNR, both which are 752 
dimensionless scaled quantities. Observations collected close to an explosion should have brief durations 753 
and a high SNR; for short pulses it is advisable to use smaller orders (N=1-6) Gabor atoms. Due to cube 754 
root yield scaling, the third order bands will provide factor of two yield resolution, and one-sixth order 755 
bands a factor of square root of two yield resolution. Acceptable signal reconstructions were obtained 756 
from the CWT coefficients as well as the superposition of the peak 3rd order Gabor atoms for the blast 757 
signature. At increasing distance from the source the peak frequency is expected to drop [7] and the pulse 758 
disperses to spread out in time. This opens up the possibility for stable 6 and 12 order analyses with a 759 
corresponding improvement in yield resolution. Future work will concentrate on such dispersed 760 
signatures as well as consider other types of CW signatures that would be well matched to higher-order 761 
Gabor atoms. 762 

The methods developed have the goal of providing a tunable, standardized framework for signature 763 
feature extraction to be used for signal classification, and should be well suited for dictionary learning 764 
[13].  765 

 766 

 767 

  768 
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Appendix A. Generalized Constant Q Bands 769 

This work builds on the Infrasonic Energy, Nth Octave (Inferno) framework [1], which has been 770 
implemented in infrasound array processing algorithms for nuclear monitoring applications (e.g. [3-4]) 771 
Logarithmic constant-bandwidth, also referred to as proportional frequency or constant quality factor 772 
(Q) bands, are traditionally defined by their scaled bandwidth 773 

 774 
∆𝑓

𝑓𝑛

=
𝑓𝐻 − 𝑓𝐿

𝑓𝑛

=  
1

𝑄
 775 

 776 
where 𝑓𝑛 is the center frequency of band number n and 𝑓𝐻 and 𝑓𝐿 are referred to as the upper and lower 777 
band edge frequency, respectively. Defining the center, upper, and lower band edge periods as 778 

 779 

𝜏𝑛 =
1

𝑓𝑛

,  𝜏𝐻 =
1

𝑓𝐿

,  𝜏𝐿 =
1

𝑓𝐻

, 780 

then 781 
∆𝜏

𝜏𝑛

=
𝜏𝐻 − 𝜏𝐿

𝜏𝑛

=
∆𝑓

𝑓𝑛

=
∆𝜔

𝜔𝑛

=  
1

𝑄
  782 

 783 
In this section we generalize the constant-Q framework to the logarithmic discretization of 784 

evaluation intervals relative to a given reference scale and base. For a given reference scale 𝜏0, which 785 
could be time, frequency, spatial length, wavenumber, or any other useful metric, we define a logarithmic 786 
scale base G > 1 and center scale 𝜏𝑛 as 787 

 788 
𝜏𝑛

𝜏0

= 𝐺
𝑛
𝑁 789 

 790 
where n is the band number and N is the band order, subject to the constraints 791 
𝑛 ∈ ℤ, 𝑁 ≥ 1. 792 
 793 

The natural base for both contemporary and quantum computers is base 2, and analysis windows 794 
with powers of two are recommended for complex computations at large scales. Many efficient 795 
algorithms are based on binary (base two) filter banks. Selecting G = 2 yields  796 

 797 
𝜏𝑛

𝜏0

= 2
𝑛
𝑁 ,           

𝜏𝐻

𝜏𝑛

= 2
1

2𝑁,
𝜏𝐿

𝜏𝑛

= 2−
1

2𝑁,
𝜏𝐻𝜏𝐿

𝜏𝑛
2

= 1  798 

 799 

𝑄𝑁 = [ 2
1

2𝑁  −  2−
1

2𝑁]
−1

 800 

 801 
 802 

Note that center and band edge scales attached to a given band n change with the order N, reference 803 
scale 𝜏0, and the reference base G. If the reference scale and base are standardized, all bands are invariant. 804 
For example, the concert A pitch standard is fixed at 440 Hz and may be used to tune other instruments 805 
anywhere and at any time. 806 

 807 
The next step substantially simplifies the estimation of constant-Q bands with a minimal 808 

introduction of a 2% computational error. To the author’s knowledge, this is the first time this expression 809 
is presented (and he would be most grateful to be informed otherwise). Numerical evaluation shows that: 810 

 811 
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lim
𝑁→∞

𝑄𝑁

𝑄1

= lim
𝑁→∞

( 𝐺
1
2  −  𝐺−

1
2) ( 𝐺

1
2𝑁  −  𝐺−

1
2𝑁)

−1

≈ 𝑁
𝐺 − 1

√𝐺𝑙𝑛(𝐺)
≈ (1.02 )𝑁 ≈ 𝑁 812 

 813 

𝑄𝑁 ≈ 𝑁𝑄1 = 𝑁 [
√𝐺

𝐺 − 1
] 814 

 815 
The center frequencies and band edges, and thus the quality factor, of traditional fractional octave bands 816 
are well known and can be readily computed for all the standard bands. The primary value of the 817 
expression for 𝑄𝑁 is that it provides a simple, explicit estimate of the relation between the quality factor 818 
and the band order, which is turn permits an estimate of the support window duration for a given 819 
wavelet in terms of the band order. Numerical inspection shows that for most practical applications and 820 

for 𝐺 = 2 ≈ 10
3

10, even those when 𝑁 is non integer, we can use the expression 821 
 822 

𝑄𝑁 =
𝑓𝑛

∆𝑓𝑛

≈ √2𝑁 823 

 824 
to estimate the relationship between the band order and the quality factor. 825 
 826 

Although the center frequency is traditionally defined as the geometric mean of the band edges, the 827 
½  power spectral points at the band edges are only symmetric around the arithmetic mean of the center 828 

frequency. The relation between the arithmetic mean 𝑓𝑛𝑎 = (𝑓𝐿 + 𝑓𝐻) 2⁄  and the geometric mean 𝑓𝑛𝑔 =829 

√𝑓𝐿𝑓𝐻 of the center frequency of fractional binary bands is 830 
 831 

𝑓𝑛𝑎

𝑓𝑛𝑔 

 ≅ √1 +  
1

8𝑁2
≈ 1 +  

1

16𝑁2
 832 

 833 
where the approximation uses the binomial expansion. The arithmetic and geometric center frequencies 834 
are close to each other, and for fractional octave bands (N>1) get ever tighter. However, the band edge 835 
power levels at the half band width ∆𝑓𝑛/2 should be considered to be relative to the arithmetic mean 836 
rather than the geometric mean. In general practice it is easier to use the arithmetic frequency as 𝑓𝑛, with 837 
the understanding that the fractional octave specifications are defined by geometric scaling. 838 
 839 

As an extension of the Inferno framework [1] the nominal duration of the Gabor atom window 𝑇𝑛 840 
may be defined as a multiple 𝑀𝑁 of the scale as 841 

𝑇𝑛(𝑁, 𝑛) ≝ 𝑀𝑁𝜏𝑛 = 𝑀𝑁𝜏0𝐺
𝑛
𝑁  842 

 843 
where the scale multiplier 𝑀𝑁 is set by the half power points of the wavelet. Traditional constant-Q 844 
frameworks in acoustics and music applications match the 12-tone equal temperament system (𝑁=12) for 845 

𝐺 = 2 or 𝐺 = 10
3

10 ≈ 2 and are consistent with the Renard series recommended in ISO3 for 𝑁=1, 3, 6, 12, 846 
24. 847 
 848 

Appendix B. The Gabor Atom 849 

Different disciplines call the same things different names; many of the challenges in present-day 850 
data science are often due to divergent lexicon and the diversity of applications specific to each field. The 851 
idea of using a windowed sinusoid as a basis function for signal representation was developed in detail 852 
in Gabor’s [2] landmark paper, where he also introduced the time-frequency uncertainty principle. 853 
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Gabor’s atoms were further developed by Grossman and Morlet [14] and P. Goupillaud et al. [15] 854 
(amongst others), who formalized and popularized what we now know as wavelet transforms. Mallat [13] 855 
presents a lucid overview of the complementary nature of Fourier and wavelet representations in his 856 
Wavelet Tour of Signal Processing; the serious student would be wise to consider it required reading. 857 

 858 
The Gabor wavelet is a special case of a wavelet-modulated window ([13] Eqs. 4.60-4.62) and is 859 

representative of a bandwidth-limited compressed pulse [12]. For a physical scientist, its most intuitive 860 
form is 861 

Ψ(𝑥) =
1

[𝜋𝜎2]
1

4⁄
𝑒𝑥𝑝 (−

𝑥2

2𝜎2)  exp (𝑖𝜂𝑛 𝑥), 862 

 863 
representing a sinusoid with time t and scaled angular frequency 𝜂𝑛 (or linear space and wavenumber) 864 
modulated by Gaussian window with standard deviation 𝜎. Comparison with the canonical expression  865 

Ψ𝑛(𝑥) =
1

(𝜋𝓈𝑛
2)

1
4⁄

𝑒𝑥𝑝 {−
1

2
[

𝑥

𝓈𝑛

]
2

} 𝑒𝑥𝑝 {𝑖 [
2𝜋𝑓𝑛

 𝑓𝑠

] 𝑥} 866 

shows that the scaled angular frequency and standard deviation are 867 
 868 

𝜂𝑛 =
2𝜋𝑓𝑛

 𝑓𝑠

,      𝜎 = 𝓈𝑛,     𝜎𝜂 = 𝑀𝑁

𝑓

𝑓𝑛

 869 

 870 
The Fourier transform of the mother wavelet is 871 
 872 

Ψ̂(𝜂) = [4𝜋𝜎2]
1

4⁄  𝑒𝑥𝑝 {−
1

2
𝜎2[𝜂 − 𝜂𝑛]2} = [4𝜋𝓈𝑛

2]
1

4⁄  𝑒𝑥𝑝 {−
1

2
𝑀𝑁

2 [
𝑓

𝑓𝑛
− 1]

2

}, 873 

has unit second moment 874 

 ∫ Ψ(𝑥)Ψ∗(𝑥)𝑑𝑥 = 1  
∞

−∞
, 875 

and it first moment vanishes in the limit  876 
 877 

  ∫ Ψ(𝑡)𝑑𝑡 → 0 for 
∞

−∞
 𝜎2𝜂𝑐

2 ≫ 1 . 878 

 879 
Another important representation of the Gabor wavelet [27-28] is 880 
 881 

𝜓 = (4𝜋𝜎2)−
1
4 Ψ 882 

  𝜓(𝑥) =
1

[2𝜋𝜎2]
1
2

 𝑒𝑥𝑝 {−
𝑥2

2𝜎2
} 𝑒𝑥𝑝{𝑖𝜂c𝑥} 883 

 884 
With the advantage that its Fourier transform 885 
 886 

𝜓̂(𝜂) =  𝑒𝑥𝑝 {−
1

2
𝜎2[𝜂 − 𝜂c]2} =  𝑒𝑥𝑝 {−

1

2
𝑀𝑁

2 [
𝑓

𝑓𝑛
− 1]

2

}, 887 

 888 
has a peak amplitude of unity and yields equal-amplitude filter banks. 889 
 890 

The Inferno framework was developed with the introduction of multiresolution array processing in 891 
the field of infrasound. The time duration of an analysis window at a specific period is represented as 892 
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𝑇𝑛 = 𝑀𝑁 𝜏𝑛 893 
 894 
This time window generally sets the temporal resolution of the resulting data products. On the case of 895 
the STFT, the analysis window can be referred to as the window of integration. In other words, the 896 
integration window 𝑇𝑛 is defined as a multiple 𝑀𝑁 of the pseudo period. This window immediately 897 
constrains the lowest frequency 𝑓𝑚𝑖𝑛 that can be represented and the resolution of a spectral 898 
representation, 899 

𝑓𝑚𝑖𝑛 =
1

𝑇𝑛

 900 

 901 
The upper bandwidth of the analysis window can be set by the Nyquist frequency, which is half of the 902 
sampling frequency of the digital time series. In practice the upper bandwidth is close to one quarter of 903 
Nyquist. Although this representation is simple and tidy, it is not particularly informative. A more useful 904 
representation of how the window duration is the number of wavelet oscillations in the window, which 905 
can be represented by the quality factor 𝑄𝑁  of the wave function. As presented in Appendix C, the 906 
relation between the scale multiplier 𝑀𝑁 and the quality factor can be estimated by the ½  power (-3dB, 907 
or half bit) points on the power spectrum, 908 

𝑀𝑁 = 2√𝑙𝑛2 𝑄𝑁 909 
 910 
The wavelet admissibility condition for the for this wavelet is equivalent to the zero mean, or 911 
 912 

𝑀𝑁
2  ≫ 1 913 

 914 
which is essentially met by the standard bands presented in Table 1. Although traditionally the Nth 915 
octave frequencies are represented by the geometric mean of the band edge frequencies (Appendix A), 916 
in the evaluation of spectral power losses it is important to use the arithmetic mean for 𝑓𝑛 which would 917 
be centered in the bandwidth ∆𝑓𝑛  in linear frequency space. Since the ratios of the arithmetic and 918 
geometric means are constant and set by the band order N, the geometric scaling is still preserved. 919 
 920 
The canonical form for computational evaluation is: 921 

Ψ𝑛(𝑥 − 𝑥′) =
1

𝜋
1

4⁄

1

√𝓈𝑛

𝑒𝑥𝑝 {−
1

2
[
𝑥 − 𝑥′

𝓈𝑛

]

2

} 𝑒𝑥𝑝 {𝑖𝑀𝑁 [
𝑥 − 𝑥′

𝓈𝑛

]} 922 

 923 
The second b-type form has a different structure 924 

𝜓𝑛(𝑥)  =  Ψ𝑥′,𝑛(𝑥)(4𝜋)−
1
4 𝓈𝑛

−
1
2   925 

 926 

𝜓𝑛(𝑥 − 𝑥′) = (2𝜋)−
1
2 𝓈𝑛

−1 𝑒𝑥𝑝 {−
1

2
[
𝑥 − 𝑥′

𝓈𝑛

]

2

} 𝑒𝑥𝑝 {𝑖2𝜋
 𝑓𝑛

 𝑓𝑠

(𝑥 − 𝑥′)} 927 

applying 928 

𝓈𝑛 =  𝓈0 2
𝑛
𝑁 ,   929 

yields  930 

𝜓𝑛(𝑥 − 𝑥′) = (π 2𝓈𝑜
2)−

1

2 [𝑠𝑛]−1 𝑒𝑥𝑝 {−
1

2𝓈𝑜
2 [

𝑥−𝑥′

𝑠𝑛
]

2

} 𝑒𝑥𝑝 {𝑖
𝑀𝑁

𝓈0
[

𝑥−𝑥′

𝑠𝑛
]}  931 

which has the form 932 
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𝜓𝑁(𝜇) =
1

√𝜋𝑏
 𝑒𝑥𝑝 {−

𝜇2

𝑏
} 𝑒𝑥𝑝 {𝑖

𝑀𝑁

𝓈0

 𝜇} 933 

𝜓𝑛(𝜇) =
1

𝑠𝑛

𝜓𝑁 (
𝜇 − 𝜇′

𝑠𝑛

) 934 

with 935 

𝑠𝑛 =
𝓈𝑛

𝓈0

 = 2
𝑛
𝑁 ,   𝑛 ≥ 0,            𝓈0 = 𝑀𝑁

 𝑓𝑠𝜏0

2𝜋
 936 

𝑏 = 2𝓈𝑜
2 = 2 [𝑀𝑁

 𝑓𝑠𝜏0

2𝜋
]

2

 937 

Note that since 938 

𝑏 = 8𝑙𝑛2 (
 𝑓𝑠

Δ𝜔0

)
2

 939 

the “bandwidth” 𝑏 is inversely proportional to the actual bandwidth of the highest frequency. 940 

 941 

Appendix C. The Q of the Quantum Wavelet 942 
 943 

The power spectral density of the Gabor wavelet is: 944 

Ψ̂2
𝑛(𝑓) = [4𝜋𝓈𝑛

2]
1

2⁄  𝑒𝑥𝑝 {−𝑀𝑁
2 [

𝑓 − 𝑓𝑛

𝑓𝑛

]
2

}, 945 

 946 
Ψ̂2

𝑢,𝑛(𝑓𝑛  ±  ∆𝑓𝑛/2)

Ψ̂2
𝑢,𝑛(𝑓𝑛)

=  𝑒𝑥𝑝 {−𝑀𝑁
2 [

∆𝑓𝑛

2𝑓𝑛

]
2

} = 𝑒𝑥𝑝 {− [
𝑀𝑁

2𝑄𝑁

]
2

} =
1

𝑌
 947 

 948 
Where Y is the fractional power loss. There exist various definitions of the quality factor of a system. This 949 
paper defines 𝑄𝑁  by 1/2 of the spectral power relative to the peak spectral power, where 𝑌 = 2 . 950 
Therefore, for the Gabor wavelet, 951 
 952 

𝑀𝑁 = 2√𝑙𝑛2 𝑄𝑁 953 
 954 
Consider the decay of the spectrum relative with distance 𝛿 from the peak frequency 955 
 956 

Ψ̂2
𝑢,𝑛(𝑓𝑛 +  𝛿∆𝑓𝑛/2)

Ψ̂2
𝑢,𝑛(𝑓𝑛)

 = 𝑒𝑥𝑝 {− [
𝛿𝑀𝑁

2𝑄𝑁

]
2

} = 𝑒𝑥𝑝 {−[𝛿√𝑙𝑛2]
2

} = 2−𝛿2
 957 

 958 
The loss in dBs and binary bits can be expressed as 959 
 960 

𝑑𝐵 =  10 ∗ 𝑙𝑜𝑔10(2−𝛿2
) =  −𝛿210 ∗ 𝑙𝑜𝑔10(2) ≈ −3𝛿2 961 

𝑏𝑅 =  
1

2
𝑙𝑜𝑔2(2−𝛿2

) =  
−𝛿2

2
 962 

 963 
There is a loss of 3dB, 12dB, 27dB, and 48dB, and a binary power loss of ½ , 2, 4.5, and 8 fbits, for integer 964 
multiples of the bandedge 𝛿 = 1, 2, 3, 4, respectively. 965 

It is worth considering an alternate definition for the quality factor of an oscillator. Consider the time 966 
required for the amplitude to drop to 1/e of its peak value. In the case of the Quantum wavelet this is set 967 
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by the Gaussian envelope, and this particular definition is best suited for the real part of the wavelet 968 
which is symmetric about the origin. By applying this definition, 969 
 970 

𝑒𝑥𝑝 {−
1

2
[

𝑥

𝓈𝑛

]
2

} = 𝑒𝑥𝑝 {−
1

2
[
𝑓𝑠𝜏𝑒

𝓈𝑛

]
2

} = 𝑒𝑥𝑝 {−
1

2
[
𝜔𝑛𝜏𝑒

𝑀𝑁

]
2

} = 𝑒𝑥𝑝{−1} 971 

 972 

𝜏𝑒 =
√2

𝜋

𝑇𝑛

2
≈ 0.45

𝑇𝑛

2
 973 

 974 
Since the wavelet is symmetric, this states that the portion of the wavelet contained within 2𝜏𝑒  of the 975 
window has an amplitude above 1/e of the peak. The quality factor associated with this type of oscillator 976 
is  977 

 𝑄𝑒 =
𝜔𝑛𝜏𝑒

2
=

𝑀𝑁

√2
 978 

 979 
and comparison with the half power point quality factor shows 980 
 981 

 𝑄𝑒 = √2𝑙𝑛2  𝑄𝑁   ≈ 1.1774 𝑄𝑁 982 
 983 
and they are sufficiently close to each other to be equivalent for descriptive purposes. The time duration 984 
of the quantum wavelet is defined by 985 
 986 

𝑇𝑛 = 𝑀𝑁 𝜏𝑛 = 2√𝑙𝑛2  𝑄𝑁𝜏𝑛 987 
 988 
where  𝑄𝑁 ≈  𝑄𝑒  can be interpreted as the number of oscillations in a little less than half of the total 989 
window 𝑇𝑛 with amplitude above 1/e of the maximum amplitude. The remaining half of the window is 990 
useful to allow the wavelet to settle down and meet the desirable condition of a vanishing first moment. 991 
 Practical implementations of Gabor wavelets and their variants often have to make some 992 
compromises in the application of the wavelet duration 𝑇𝑛, in particular if the window is required to be 993 
a power of two. Direct integration of the wavelet power over the window 𝑇𝑛  shows that it contains 994 
99.999% of all the power. Integration over 2𝜏𝑒 will be insufficient. However, there exists a third quality 995 
factor defined by 996 
 997 

𝑒𝑥𝑝 {−
1

2
[
𝜔𝑛𝜏𝜋

𝑀𝑁

]
2

} = 𝑒𝑥𝑝{−𝜋} 998 

where  999 

 𝑄𝜋 =
𝜔𝑛𝜏𝜋

2
 1000 

 𝑄𝜋 = √𝜋  𝑄𝑒 ≈ 1.7724 𝑄𝑒 1001 
 1002 

 𝜏𝜋 = √𝜋  𝜏𝑒 = √
2

𝜋

𝑇𝑛

2
≈ 0.7978

𝑇𝑛

2
 1003 

 1004 
In other words, 2𝜏𝜋 encompasses ~80% of the window, and integration of the wavelet power over 2𝜏𝜋 1005 
returns 99.96% of the total power. Therefore 2𝜏𝜋 = 0.8𝑇𝑛  may be a reasonable lower bound for the 1006 
wavelet duration. This is further considered in the next Appendix. 1007 
 1008 
Appendix D. The Gabor Box 1009 
 1010 
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Gabor introduced the time-frequency uncertainty principle in his landmark paper[1]. It is not 1011 
possible to observe for all time and reach zero frequency. It is also impossible to sample infinitely fast 1012 
and reach infinite frequency. All observations require a restriction in the observation time and the 1013 
observation rate, and this places hard limits on the observable bandwidth of a process. The fundamental 1014 
discretization interval scale invokes the Gabor uncertainty principle, which states the time and period of 1015 
a signal cannot be known exactly but can be contained inside the box defined by the temporal and 1016 
frequency variance of the probability distribution of the wave function. 1017 

This section follows the generalized mathematical formalism of [13], Section 2.3.2, Uncertainty 1018 
Principle. As in [13] and [7] the Fourier Transform pair used in this work is 1019 

𝑓(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡
∞

−∞

𝑑𝑡 1020 

𝑓(𝑡) =
1

2𝜋
∫ 𝑓(𝜔)𝑒𝑗𝜔𝑡∞

−∞
𝑑𝜔 , 1021 

where 𝑓(𝜔) and 𝑓(𝑡) may be complex. The Parseval-Plancherel identity asserts that 1022 
 1023 

‖𝑓‖2 = ∫ |𝑓(𝑡)|2
∞

−∞

𝑑𝑡 =
1

2𝜋
∫ |𝑓(𝜔)|

2
∞

−∞

𝑑𝜔 =  
1

2𝜋
‖𝑓‖

2
 1024 

 1025 
where 1026 

|𝑓|2 = 𝑓 ∙ 𝑓∗ 1027 
 1028 

and the asterix denotes complex conjugation. A related identity the for product is routinely used in 1029 
Fourier and Wavelet analyses and the application of filter banks. 1030 

 1031 

∫ 𝑓(𝑡)𝑔∗(𝑡)
∞

−∞

𝑑𝑡 =
1

2𝜋
∫ 𝑓(𝜔)𝑔̂∗(𝜔)

∞

−∞

𝑑𝜔 1032 

 1033 
The Gabor uncertainty principle constrains uncertainty to Gabor box defined by the variance in time 1034 

and frequency. It is equivalent to the Heisenberg uncertainty principle for position and momentum 1035 
extended to time and frequency, or space and wavenumber. Let a one-dimensional signal of interest be 1036 
represented by a wave function 𝑓(𝑡). The probability density that a signal can be localized in time at a 1037 
given time 𝑡 is 1038 

|𝑓(𝑡)|2

‖𝑓‖2 =
2𝜋|𝑓(𝑡)|2

‖𝑓̂‖
2 , 1039 

and the probability density that its angular frequency is 𝜔 is 1040 

|𝑓̂(𝜔)|
2

‖𝑓̂‖
2 =

|𝑓̂(𝜔)|
2

2𝜋‖𝑓‖2. 1041 

The variance in the time localization of the signal as 1042 

𝜎𝑡
2 =

1

‖𝑓‖2
∫ (𝑡 − 𝑢)2 |𝑓(𝑡)|2

∞

−∞

𝑑𝑡. 1043 

and the variance in the frequency localization of the signal as 1044 
 1045 

𝜎𝜔
2 =

1

‖𝑓‖
2 ∫ (𝜔 − 𝜉)2 |𝑓(𝜔)|

2
∞

−∞

𝑑𝜔. 1046 
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 1047 
Reference [13] uses these expressions to rederive the Heisenberg-Gabor uncertainty principle, which 1048 
states that the temporal and angular frequency variance satisfy: 1049 

𝜎𝑡
2𝜎𝜔

2 ≥
1

4
 1050 

In the special case of the Gabor-Morlet wavelet and its Quantum spawn, where the wave function 1051 
is symmetric and centered around the time-shift 𝑢 and the spectrum is symmetric relative to the peak 1052 
frequency 𝜔𝑛 , the variance for the time and frequency distribution of the signal wave function can be 1053 
readily evaluated. 1054 

𝜎𝑡
2 =

1

‖𝜓𝐻‖2
∫ (𝑡 − 𝑢)2 |𝜓𝐻(𝑡 − 𝑢)|2

∞

−∞

𝑑𝑡 =  
1

2
𝓈𝑛

2 1055 

𝜎𝜔𝑛
2 =

1

‖𝜓̂𝐻‖
2 ∫ (𝜔 − 𝜔𝑛)2 |𝜓̂𝐻(𝜔 − 𝜔𝑛)|

2
∞

−∞

𝑑𝜔 =  
1

2
𝓈𝑛

−2 1056 

 1057 

and the Gabor box defined by the variance is minimal, 1058 

𝜎𝑡
2𝜎𝜔𝑛

2 =
1

4
, 1059 

which is another reason for this wavelet’s popularity. 1060 

Consider the standard deviation for time integrated over the scaled window ϵ𝑇𝑛  1061 
 1062 

𝜎𝑡
2(ϵ) =

1

‖𝜓𝐻‖2
∫ (𝑡 − 𝑢)2 |𝜓𝐻(𝑡 − 𝑢)|2

𝑢+
𝜖𝑇𝑛

2

u−
𝜖𝑇𝑛

2

𝑑𝑡 =  
1

√𝜋
[
𝑀𝑁

𝜔𝑛

]
2

∫ 𝑥2 𝑒−𝑥2
 

ϵπ

−ϵπ

𝑑𝑥 1063 

 1064 

∫ 𝑥2 𝑒−𝑥2
 

a

−a

𝑑𝑥 =
√𝜋

2
[𝑒𝑟𝑓(a) −

2

√𝜋
𝑎 𝑒−𝑎2

] 1065 

 1066 

For ϵ ≥
3

2π
 1067 

𝜎𝑡
2(ϵ) ≅  

1

2
𝓈𝑛

2 𝑒𝑟𝑓(ϵπ) 1068 

 1069 
For ϵ = [1.0, 0.8, 0.45]   1070 

𝜎𝑡
2(ϵ) ≅  

1

2
𝓈𝑛

2  [0.9999, 0.9996, 0.9544 ] 1071 

where ϵ corresponds to integration over 𝑇𝑛, 2𝜏𝜋 ≈ 0.8𝑇𝑛, 𝑎𝑛𝑑  2𝜏𝑒 ≈ 0.45𝑇𝑛, corresponding to the full 1072 
window, the decay time associated with 𝑄𝜋 , and the e-folding time associated with 𝑄𝑒 , respectively 1073 
(Appendix D). 1074 

Next, consider the standard deviation for time integrated over the scaled window ϵ𝑇𝑛  1075 
 1076 

𝜎𝜔𝑛
2 (δ) =

1

‖𝜓̂𝐻‖
2 ∫ (𝜔 − 𝜔𝑛)2 |𝜓̂𝐻(𝜔 − 𝜔𝑛)|

2
𝜔𝑛+

𝛿∆𝜔𝑛
2

𝜔𝑛−
𝛿∆𝜔𝑛

2

𝑑𝜔 = =  
1

√𝜋
[
𝑀𝑁

𝜔𝑛

]
−2

∫ 𝑥2 𝑒−𝑥2
 

δ√𝑙𝑛2

−δ√𝑙𝑛2

𝑑𝑥 1077 

 1078 
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𝜎𝜔𝑛
2 (δ) ≅  

1

2
𝓈𝑛

−2  [𝑒𝑟𝑓(δ√𝑙𝑛2) −
2

√𝜋
(δ√𝑙𝑛2) 2−𝛿2

] 1079 

 1080 
For δ = [1, 2, 3, 4]   1081 

𝜎𝜔𝑛
2 (δ) ≅  

1

2
𝓈𝑛

−2  [0.2912, 0.8640, 0.9941, 0.9999] 1082 

 1083 
where 𝛿 corresponds to integration over ∆𝜔𝑛 , 2∆𝜔𝑛, 3∆𝜔𝑛 , 𝑎𝑛𝑑  4∆𝜔𝑛, respectively. These results show 1084 
that the Gabor box can be well approximated (>99% of the variance) by a window of duration 2𝜏𝜋 =1085 
0.8𝑇𝑛  and a bandwidth of 3∆𝜔𝑛,  and over 99.99% of the variance is contained by a Gabor box of 1086 
dimensions 𝑇𝑛 ,  4∆𝜔𝑛. In other words, third octave bands will contain over 99% of the variance within its 1087 
octave and within 80% of the full window 𝑇𝑛. 1088 

 1089 

Appendix E. The Gabor Family 1090 

 1091 

A few variations of the Gabor-Morlet wavelet are available in present-day computing environments. 1092 

One of the more familiar forms of the mother wavelet used in modern computations [27-28] is  1093 

𝜓(𝜇) =
1

√𝜋𝑏
 𝑒𝑥𝑝 {−

𝜇2

𝑏
} 𝑒𝑥𝑝{𝑖2π𝑓𝑏̅ 𝜇} 1094 

ψ𝜇′,𝑛(𝑡) =
1

𝑠𝑛

ψ (
𝜇 − 𝜇′

𝑠𝑛

) 1095 

This form is found in the Matlab “cmor” function as well as the Python Pywavelets [29] “cmorB-C” 1096 
function with 𝐶 = 𝑓𝑏̅ . The term b is referred to as the “bandwidth parameter” of the wavelet. The 1097 
Quantum wavelet has the equivalence 1098 

𝑠𝑛 =  2
𝑛
𝑁 ,   𝑛 ≥ 0,  1099 

𝜏n = 𝜏0𝑠𝑛 =
1

𝑓0

𝑠𝑛 1100 

𝑏 = 2 [𝑀𝑁

 𝑓𝑠𝜏0

2𝜋
]

2

 1101 

𝐶 = 𝑓𝑏̅ =
 𝑓0

 𝑓𝑠

=
1

 𝑓𝑠𝜏0

 1102 

Where 𝑓0, the highest center frequency, is used as the starting point. The scaled wavelet duration is 𝑀𝑁
𝑓𝑠

𝑓𝑛 
 1103 

and can be rounded to approximate the number of points for each scale.  1104 

Foster [30] expresses the abbreviated Morlet wavelet as 1105 
 1106 

𝐹(𝑧) = 𝑒𝑖𝑧−𝑐𝑧2
= 𝑒𝑥𝑝 {𝑖𝜔𝑛𝑡 −

1

2𝑀𝑁
2 𝜔𝑛

2𝑡2} 1107 

 1108 

So that 𝑧 = 𝜔𝑛𝑡 and now 𝑐 =
1

2𝑀𝑁
2  is inversely proportional to the Q of the wave function. The beauty of 1109 

Foster’s approach is that it can be used for unevenly sampled data. A modernization of this algorithms 1110 
can be found at [31]. 1111 
 1112 
Appendix F. The Analytic Function for the GT Blast Pulse 1113 
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The reconstruction coefficients of the complex Morlet CWT return the imaginary part of the 1114 
analytic signal. The complex analytic signal corresponding to the real signal 𝑔(𝜏̂) is 1115 

𝑔ℂ(𝜏̂) = 𝑔(𝜏̂) + 𝑗 ℋ[𝑔(𝜏̂)] 1116 

Where ℋ denotes the Hilbert transform, a recurrent topic in wave propagation as reflection introduces 1117 
phase shifts that are often modeled as Hilbert transforms of the original signal [32]. For example, some 1118 
of the U-shaped infrasound waveforms associated with thermospheric returns resemble the Hilbert 1119 
transform of an explosion pulse [3]. The Hilbert transform is also useful for estimating instantaneous 1120 
frequency and in the computation of the Hilbert-Huang transform [33]. 1121 

Let 𝒈(𝝉̂) represent the GT pulse, 1122 

𝑔(𝜏̂) = (1 − 𝜏̂),     0 ≤ 𝜏̂ ≤ 1 1123 

𝑔(𝜏̂) =
1

6
(1 − 𝜏̂)(1 + √6 − 𝜏̂)

2
,    1 < 𝜏̂ ≤ 1 + √6 . 1124 

The Hilbert transform of the canonical GT blast pulse is rather unwieldy, but can be evaluated from 1125 

𝑔ℋ(𝜏̂) = ℋ[𝑔(𝜏̂)] = 𝒫 
1

𝜋
∫

𝑔(𝑥)

𝑡 − 𝑥
𝑑𝑥

∞

−∞

 1126 

Where the 𝓟 in front of the integral denotes the Chaucy principal value. Multiple integration by parts 1127 
over the interval of the GT pulse yields 1128 

𝑔ℋ(𝜏̂) =
1

𝜋
[1 + (1 − 𝜏̂)𝑙𝑛(−𝜏̂) − (1 − 𝜏̂)𝑙𝑛(1 − 𝜏̂)],           0 ≤ 𝜏 ≤ 1 1129 

𝑔ℋ(𝜏̂) =
1

6𝜋

(𝑎 − 1)

6
[𝑎(2𝑎 + 5) − 1 + 6𝜏̂2 − 3𝜏̂(1 + 3𝑎)]                 1130 

+ 
1

6𝜋
[(𝜏̂ − 1)(𝑎 − 𝜏̂)2][𝑙𝑛(𝑎 − 𝜏̂) − 𝑙𝑛(1 − 𝜏̂)],    1 < 𝜏 ≤ 𝑎 = 1 + √6 .  1131 

Since 1132 

lim
𝑥→0

𝑥 𝑙𝑛(𝑥) = 0 , lim
𝑥→0

𝑥2 𝑙𝑛(𝑥) = 0  1133 

The solutions are well behaved near the zero crossings. However, there are some issues in this solution. 1134 
First, there are the two troublesome implicitly complex terms. The first is 1135 

𝑙𝑛(−𝜏̂) = 𝑙𝑛(𝜏̂) + 𝑗𝜋, 0 ≤ 𝜏 ≤ 1 1136 

where 𝑙𝑛(𝜏̂) tends to negative infinity at 𝜏̂ = 0. The second tricky term is 1137 

𝑙𝑛(1 − 𝜏̂) = 𝑙𝑛(𝜏̂ − 1) + 𝑗𝜋, 1 < 𝜏 ≤ 1 + √6   1138 

The complex terms are awkward; fortunately, multiplication and division by zero can be readily avoided 1139 
numerically by adding the smallest floating point value (float epsilon) to arguments in logarithmic 1140 
computations so it is possible to evaluate the real part of the solution. Another inconvenience is the 1141 
discontinuity in 𝑔ℋ and its slope as 𝜏̂ → 1. Rewriting the first term as  1142 

𝑔ℋ(𝜏̂)𝜏̂<1 =
1

𝜋
[1 + (1 − 𝜏̂)𝑙𝑛(𝜏̂) − (1 − 𝜏̂)𝑙𝑛(1 − 𝜏̂)] + 𝑗(1 − 𝜏̂),           𝜏̂ → 1 𝑓𝑟𝑜𝑚 𝑏𝑒𝑙𝑜𝑤 1143 

𝑔ℋ(𝜏̂ → 1) =
1

𝜋
 1144 
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Evaluating the second term yields  1145 

𝑔ℋ(𝜏̂ = 1) =
1

𝜋

√2

√3
=

1

𝜋
[1 −

√3 − √2

√3
] ,           𝜏̂ → 1 𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒 1146 

These deficiencies are suboptimal, and not altogether surprising given that the waveform [7] did not 1147 
design integrability into the GT pulse. Fortunately, these inadequacies are deemed computationally 1148 
irrelevant by using the numerical convolution provided by the SciPy [25] signal.hilbert, which returns 1149 
the analytic function for an input real signal. The comparison between the unfiltered synthetic theoretical 1150 
analytic signals, the CWT reconstruction, and the numerical Hilbert transform are presented in the 1151 
figures in the main text.  1152 
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