

1 Article

2 New findings in the study of the pathogenesis of 3 urethral pain syndrome

4 Olga Streltsova ¹, Anton Kuyarov ¹, Muhhamad Shuaib Abdul Malik Molvi ¹, Svetlana Zubova ²,
5 Valery Lazukin ¹, Ekaterina Tararova ³ and Elena Kiseleva ^{1,*}

6 ¹ Privalzhsky Research Medical University, 603950, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia;
7 strelzova_uro@mail.ru; kuyarov.anton@mail.ru; msmolvi@mail.ru; valery-laz@yandex.ru;
8 kiseleva84@gmail.com

9 ² N.A. Semashko Nizhny Novgorod Regional Clinical Hospital, 603126, 190 Rodionova St., Nizhny
10 Novgorod, Russia; zubova.svetlana.65@yandex.ru

11 ³ Nizhny Novgorod Regional Oncology Dispensary, 603126, 190 Rodionova St., Nizhny Novgorod, Russia;
12 tararova-ea@mail.ru

13 * Correspondence: kiseleva84@gmail.com; Tel.: +7-920-059-0536 (E.K.)

14

15 **Abstract:** Urethral pain syndrome (UPS) is still a pathology in which the diagnosis is formulated as
16 a "diagnosis of exclusion". The exact pathogenetic mechanisms are not yet fully understood and
17 clear recommendations for the prevention and treatment of UPS are absent. The goal of the study
18 was to assess the condition of the tissues in the female urethra in UPS, by using transvaginal
19 ultrasound (TVUS) and cross-polarization optical tomography (CP OCT). TVUS showed an
20 expansion in the diameter of the internal lumen of the urethra, especially in the proximal region
21 compared with the norm. Compression elastography revealed areas with increased stiffness
22 (presence of fibrosis) in urethral and surrounding tissues. When studied with CP OCT it was
23 shown that with UPS, the structure of the tissues in most cases was changed: trophic alterations in
24 the epithelium (hypertrophy or atrophy) and fibrosis of underlying connective tissue were
25 observed. The proximal fragment of the urethra with UPS underwent changes identical to those of
26 the bladder neck. This paper showed that the introduction of new technology — CP OCT — in
27 conjunction with TVUS will allow verification of structural changes in tissues of the lower urinary
28 tract at the level of their architectonics and will help doctors understand better the basics of the UPS
29 pathogenesis.

30 **Keywords:** cross-polarization optical coherence tomography (CP OCT); ultrasound; urethral pain
31 syndrome; epithelial atrophy; epithelial hyperplasia; inflammation; fibrosis; image evaluation
32

33 1. Introduction

34 The most common reason for women to seek medical attention is dysuria, and it is believed that
35 in 40% of cases urethritis and / or urethral syndrome are involved [1]. According to the US National
36 Institutes of Health, one third of women with chronic pelvic pain (CPP) have urethral pain
37 syndrome (UPS) [2,3]. The European Association of Urology defines UPS as the occurrence of
38 chronic or recurrent episodic pain lasting for more than 6 months, and felt in the urethra, in the
39 absence of proven infection or other obvious local pathology. It is often associated with negative
40 cognitive, behavioral, sexual or emotional consequences, as well as with symptoms suggestive of
41 lower urinary tract, sexual, intestinal, or gynecological dysfunction.

42 The problem of pain in the urethra with unchanged urinalysis, the absence of any other clinical
43 manifestations, and the absence of somatically explainable causes, is complex and ultimately remain
44 unresolved, since the exact pathogenetic mechanisms are not yet fully understood [4-6]. Neither are
45 there any clear recommendations for the prevention and treatment of UPS, as a result of which the
46 only effective form of medical care, today, is symptomatic therapy — involving the continuing

47 intake of strong pain medications, antidepressants and anticonvulsants. In the methodological
48 recommendations on CPP, published under the auspices of the Moscow Department of Health
49 (dated 14 July 2016), it is noted that there is no specific accepted treatment for UPS. The approach
50 should be interdisciplinary and the treatment multimodal, with the general principles of chronic
51 pain syndrome management being applied.

52 The close embryological relationship between the urethra and the bladder makes it likely that
53 there are causes in common with the development of painful bladder syndrome [7]. According to the
54 classification of the International Association for the Study of Pain (IASP, 2019) the mechanism of
55 CPP and possible causes of its occurrence may include vascular lesions, persistent inflammatory
56 processes, or violation of the innervation of organs due to mechanical compression in the pelvic
57 region, but often the reason is not clear [8].

58 The connective tissue matrix of organs plays a key role in the occurrence and persistence of pain,
59 as shown by the works of a number of authors [9,10]. It is believed that connective tissue, as well as
60 performing its supporting, protective and trophic functions, acts as a network-wide
61 mechanosensitive signaling system — as a global unifying network [9,11].

62 Thus, it can be surmised that the above reasons for the development of CPP could well be due
63 to factors that affect the state of the connective tissue matrix of the lower urinary tract. However,
64 there are currently no methods for adequate, appropriate study of the structure of urethral tissues.
65 According to the standards for examination of patients with CPP when using the UPOINT
66 classification [12] in the urology domain, the recommended list of examinations includes keeping a
67 urination diary, cystoscopy and the use of ultrasound (US) and uroflowmetry, while for complaints
68 involving the urethra, urethroscopy is recommended. These methods allow only indirect assessment
69 of the urethral tissues. Objective evaluation and accurate diagnosis of a disease that does not cause
70 any visual changes, and results from a “diagnosis of exclusion” when using standard instrumental
71 research methods, is important for understanding the pathogenetic aspects of the disease. In this
72 work, we used traditional diagnostic methods, including US and uroflowmetry, and the
73 non-traditional method of cross-polarization optical tomography (CP OCT) to study changes in the
74 functioning of organs and its structure in UPS in comparison with the norm, and assessed the role of
75 background diseases in the development of UPS.

76 In general, OCT is similar to ultrasonic technique, except for using light instead of sound and is
77 centered on interferometry in the near-infrared range of wavelength (700–1300 nm) [13,14]. It
78 measures the time delay and amplitude of backscattered light. The aim of the OCT technology is to
79 perform a real-time, *in vivo*, optic biopsy, with direct label-free visualization of the histological
80 structure of the human tissues at the level of the general architectonics to a depth of 1.5 mm [15].
81 High spatial resolution (5-15 μ m) and easy performing with minimal expertise are the main
82 advantages of OCT in contrast to US. The endoscopic nature of OCT probes not only enhances
83 patient comfort and safety but also makes it especially suitable for assessing narrow tubular organs
84 as well as using standard guidewires for examining deeply located objects in the body [16].

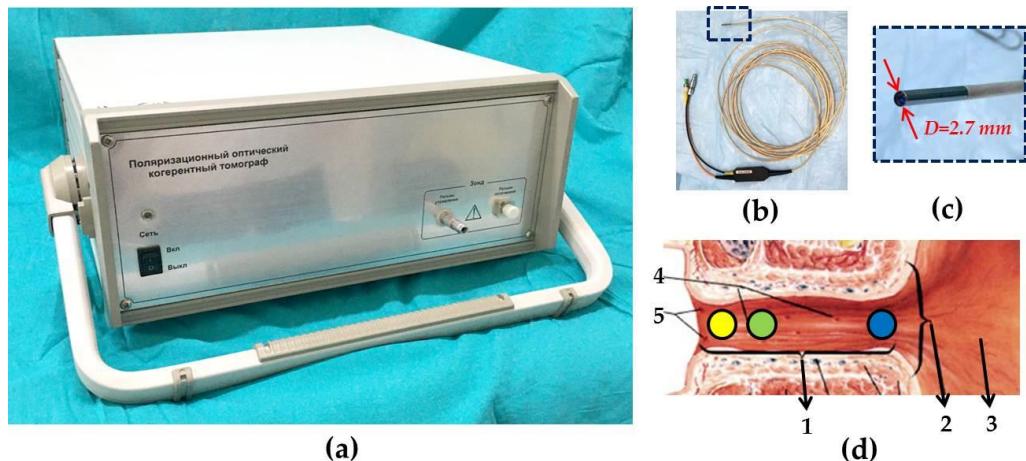
85 CP OCT is a functional extension of OCT that enables the detection of changes in the state of
86 polarization of light caused by birefringence and coupling between two polarization states due to
87 scattering in the random media (cross-scattering) [17]. As a result, two types of images are obtained
88 simultaneously: in the initial (co-) polarization and orthogonal (cross-) polarization, which allow
89 assessing isotropic (cells) and anisotropic (collagen and elastic fibers of connective tissue) structures
90 separately [18,19]. This is important in cases when precise observation only connective tissue
91 structures are needed.

92 The goal of the study was to assess the condition of the tissue in the female urethra in UPS, by
93 using non-traditional methods for this pathology – transvaginal compression ultrasound (TVUS)
94 and CP OCT.

95 2. Materials and Methods

96 2.1. Patients

97 Fifty five patients with established UPS («UPS» group) received treatment in the urology
98 department of the N.A. Semashko Nizhny Novgorod Regional Clinical Hospital between 2014 and
99 2019. In these, there were no clinical manifestations of an inflammatory process in the lower urinary
100 tract. In all patients: 1) anamnesis was taken to identify the presence of any previously transferred
101 concomitant pathology; 2) laboratory tests of blood and urine were carried out; 3) a physical
102 examination was performed with the patient positioned on a gynecological chair: the state of the
103 external opening of the urethra was assessed, palpation of the urethra and the walls of the vagina was
104 performed in order to identify the presence of any myofascial aspect in the disease; 4) uroflowmetry
105 was performed; 5) cystoscopy was carried out under anesthesia to exclude the presence of interstitial
106 cystitis. On top of clinical and laboratory evaluation, 30 of the 55 patients underwent TVUS: 24 of them
107 with UPS together with 6 normal controls (women with no complaints regarding the presence of
108 pathology of the genitourinary system) («N» group). White-light cystoscopy in combination with CP
109 OCT study was performed in 47 of the 55 women: in 33 with UPS and 14 with stones of the upper
110 urinary tract but without pyelonephritis, in whom the urethra was accepted as being normal («N»
111 group).


112 This study was approved by the review board of the Privolzhsky Research Medical University.
113 Informed consent to participate in the study was obtained from the participants.

114 2.2. *Transvaginal ultrasound*

115 TVUS was performed using a Philips Epiq5 system. The sensor was inserted directly into the
116 vagina, allowing visualization of the state of the bladder neck and urethra (assessment of their
117 structure, the condition of their walls, the width of the internal lumen) and detecting abnormalities
118 in the structure of the urethra compared with the norm. This was also the first study in which
119 patients with UPS underwent compression elastography of the adjacent urethral tissues.
120 Compression elastography is a technique that displays the relative deformation of tissues in the form
121 of their color mapping in real time [20]. When the tissue is subjected to an external force
122 (deformation), the harder/denser areas of the tissue exhibit relatively less compression than the
123 softer areas. In our study, on the ultrasound elastographic images, the adjustment scale was set to
124 display the harder areas in blue, with the softer areas appearing in red.

125 2.3. *CP OCT study and image analysis*

126 Time-domain device "Polarization-sensitive optical coherence tomograph OCT-1300U"
127 (BioMedTech LLC, Nizhny Novgorod, Russia) (Fig. 1a), that provides two image acquisition in co-
128 and cross- polarizations was used in the study [17, 21]. The device approved for clinical use (product
129 license №FCP 2012/13479 of 30 May 2012) and has replaceable endoscopic probe (Fig. 1b, 1c). It has
130 the following characteristics: the radiation source is a superluminescent diode, of operating
131 wavelength 1310 nm, spectrum width 100 nm, axial resolution 15 μ m, lateral resolution 25 μ m and
132 radiation power at the object 3 mW. OCT image size in each polarization is 1.8 \times 1.3 mm (width \times
133 height), image acquisition time is 2 sec. Due to the presence of a flexible endoscopic probe with an
134 outer diameter of 2.7 mm, the examination of the urethral tissue could be carried out simultaneously
135 with cystoscopy through a standard endoscope. Our group's application of the CP OCT method to
136 the study of the female urethral wall in patients with UPS, is a global 'first' [22].

137 **Figure 1.** CP OCT device and areas under study shown on a diagram of the female urethra. (a) CP
 138 OCT device; (b) Flexible endoscopic forward-looking CP OCT probe; (c) Enlarged tip of the probe
 139 from (b). (d) Drawing of the urethra where it transitions to the bladder. Here, the circles indicate the
 140 locations from which CP OCT images were obtained in the proximal (blue), middle (green) and distal
 141 parts of the urethra (yellow) [23]. 1 – urethra, 2 - neck of urinary bladder, 3 - triangle of urinary
 142 bladder, 4 - lacunae and openings of urethral ducts, 5 - openings of paraurethral Skene's ducts.

143 From 4 to 13 images were obtained from each patient: of the bladder neck and three regions of the
 144 urethra (Fig. 1 d) at the 6 o'clock position corresponding to a conventional clockface; and, if possible,
 145 with other additional images of the urethra in the three directions (9h, 12h, 3h of the clockface). In the
 146 "UPS"/"N" groups, 169/58 CP OCT images were obtained, of which there were 43/16 CP OCT images of
 147 the bladder neck, as the section closest to the urethra and therefore potentially involved in processes
 148 occurring in the proximal urethra and 126/42 CP OCT images of the urethra (its proximal 41/14,
 149 middle 40/12 and distal 45/16 regions) (Table 1).

150 **Table 1.** Distribution of the CP OCT images by patient's groups and parts of the urethra.

Group	Number of patients	Number of CP OCT images	Average number of CP OCT images created from 1 patient	Number of CP OCT images of each location			
				Bladder neck	Distal urethra	Medium urethra	Proximal urethra
UPS	33	169	5.12	43	41	40	45
Norm	14	58	4.14	16	14	12	16
Total	47	227	4.63	59	55	52	61

151
 152 A visual assessment of the CP OCT images of the bladder neck and urethra was performed by
 153 two respondents. The objects of interest were the epithelium and the state of the connective tissue
 154 structures of the urethra in patients with UPS, relative to the normal state of these structures. In the
 155 epithelium, the thickness was assessed as: normal, thickening (hyperplasia), or thinning (atrophy);
 156 in the connective tissue stroma, attention was paid to the presence of any element in the images
 157 corresponding to an inflammatory process: 1) lack of clarity of the border between the first
 158 (epithelial) and the second (connective tissue) layers, 2) the absence of horizontal ordering of the
 159 structures characteristic of the norm, 3) the presence of any indistinctness in their images, which
 160 would correspond to cellular tissue infiltration [22,24].

161 After an independent blind visual assessment of the CP OCT images, the «UPS» group was
 162 divided into 2 age subgroups: patients under 50 and those over 50.

163 **3. Results**164 *3.1. The role of background diseases in the development of UPS*

165 An analysis of concomitant pathology in patients with UPS, identified by their history is
 166 presented in Table 2.

167 **Table 2.** Concomitant pathology and the source of its occurrence in the group of patients with
 168 UPS (n = 55).

Nº	Organ system with pathology	n-abs. (%)	Genesis of pathology	n-abs. (%)
1.	Gynecological	39 (70.9)	Hormonal	37 (94.8)
			Inflammatory	30 (76.9)
			Surgical interventions on the pelvic organs	12 (30.7)
2.	Respiratory	37 (67.2)	Upper (nose, nasal cavity, pharynx, larynx)	32 (86.4)
			Lower (trachea, bronchi, lungs)	5 (13.5)
			Psycho-emotional sphere	23 (41.8)
3.	Neurological	35 (63.6)	Central nervous system	10 (18.2)
			Peripheral nervous system	42 (76.4)
			Psycho-emotional sphere	23 (41.8)
4.	Urological	24 (43.6)	Inflammatory	10 (41.6)
			Non-inflammatory	17 (70.8)
5.	Gastroenterological	18 (32.7)	Inflammatory diseases of the stomach, duodenum, biliary tract	38 (69.0)
			Bowel disease	21 (38.2)
6.	Cardiovascular	9 (16.3)	Arterial hypertension	5 (55.5)
			Other	4 (44.5)
Total cases of pathology		162		

169 From Table 2 it follows that the predominant area of comorbidity was gynecological (70.9%).
 170 Hormonal abnormalities (94.8%) were found in 24 sexually active women in the pre-menopausal
 171 period, as well as in 13 women of the menopausal period; inflammatory diseases of the female
 172 genital area of bacterial and viral etiology was also present (76.9%).

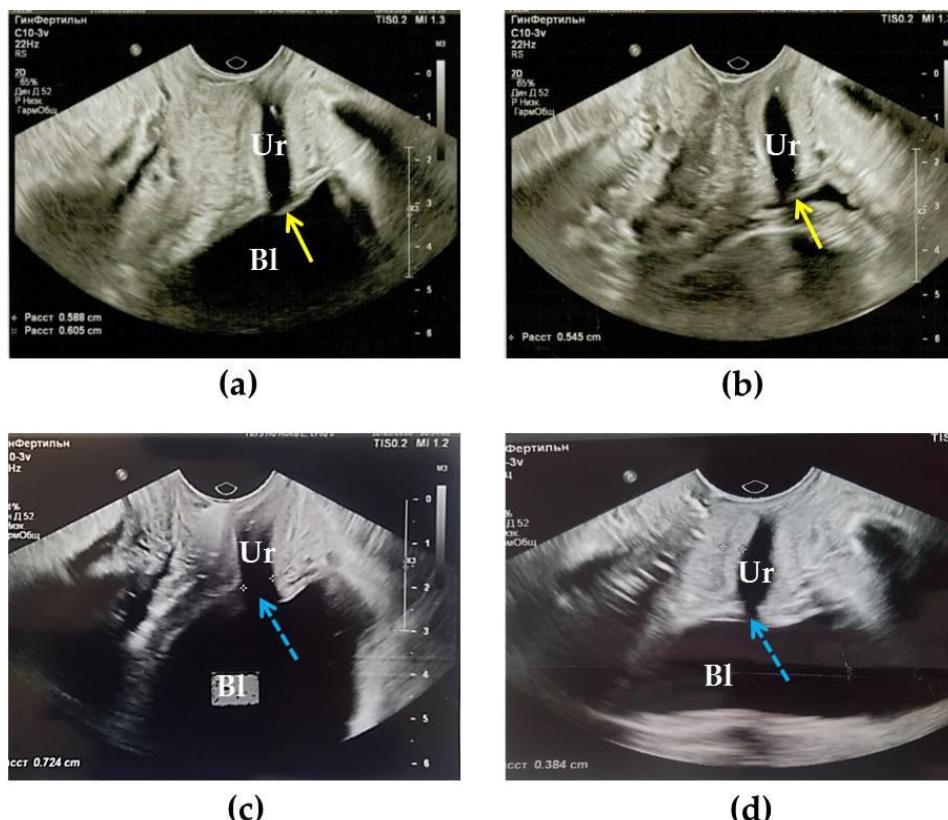
173 Anamnesis of upper respiratory tract pathology, more common in adolescence, was recorded in
 174 67.2% of women, of whom the bulk of patients (64.9%) reported frequent viral diseases or herpes
 175 infection.

176 The premorbid background in patients with UPS was neurological pathology (63.6%), and these
 177 are diseases associated with the involvement of the peripheral nervous system and, as is important,
 178 with the state of the psycho-emotional sphere.

179 Each patient suffering from UPS had 2.94 (162/55) cases of comorbidity. Thus, the role of other
 180 factors in the presence of foci of chronic infection in the body, and a decrease in immune defense
 181 factors, as a comorbid background for the development of UPS, cannot be denied, since the presence
 182 in the patients' history of inflammatory diseases of the respiratory tract, gastrointestinal tract,
 183 urological and gynecological organs was revealed.

184 *3.2. Results of cystoscopic examination*

185 In 32.7% of cases (18 out of 55), clinical manifestations of UPS was combined with urinary pain
 186 syndrome. Low-volume (less than 300 ml) urination was reordered. The number of urinations
 187 exceeded 12 per day. Pains over the womb were present. During cystoscopy in patients of the «UPS»
 188 group, the bladder mucosa was unchanged — shiny, pale pink, while, in 16 cases (29.0%), there was
 189 a slight hyperemia in the bladder neck. A picture corresponding to interstitial cystitis — the presence
 190 of glomerulations in the mucous membrane of the bladder after the hydrodistension procedure, was
 191 found in 23.6% (n = 13).

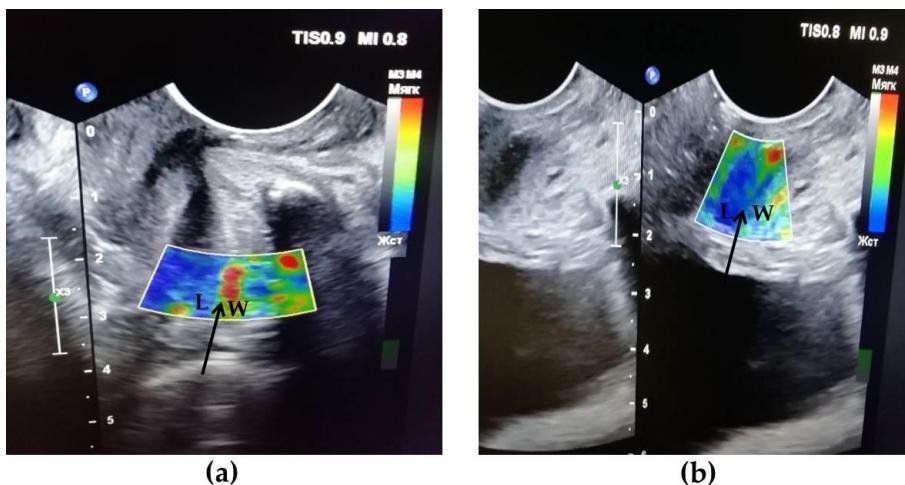

192 *3.3. Uroflowmetry results*

193 In 72.7% of cases (40 out of 55), there was a decrease in the urination rate to 13.7 ± 3.2 ml/sec in
 194 combination with low-volume urination while the normal values of the urination rate for women are
 195 23–32 ml/sec [25]. The average volume of excreted urine was 172 ± 33 ml.

196 *3.4. Results of transvaginal ultrasound research*

197 The results of TVUS studies showed that in the norma group in women, the urethra looks like a
 198 tube with a uniform lumen diameter without dilatations and contractions, which was 4.6 ± 0.6 mm,
 199 wall thickness 4.8 ± 1.1 mm. According to research by a group of authors [26] normally, the outer
 200 diameter of the urethra is 10.0 mm, the inner lumen of the urethra is closed during TVUS or 0.3 mm.
 201 According to the authors [27], who conducted a study with an intraurethral sensor, the thickness of
 202 the urethra in the proximal section was normally 3.7 mm.

203 In women with UPS (n = 24), the structural features of the urethra were revealed: the urethra
 204 was funnel-shaped (Figure 2d), opening to the bladder. The internal lumen of the urethra in the
 205 proximal segment was expanded to 5.9 ± 2.1 mm. At the same time, 44% of patients had an expansion
 206 up to 7.5 ± 0.5 mm, in 56% up to 5.5 ± 0.5 mm. The thickness of the urethral walls in our study averaged
 207 3.6 mm (from 2.4 to 6.0 mm).

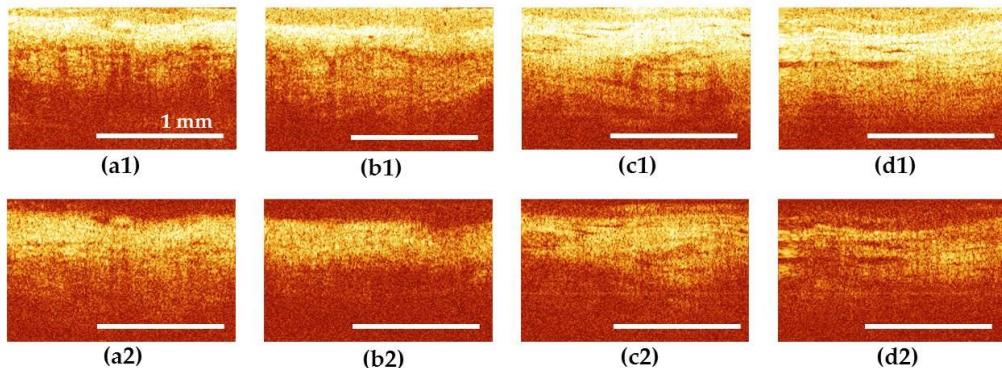


208 **Figure 2.** TVUS of the urethra and adjacent tissues in normal conditions and with UPS. (a), (b) A
 209 healthy woman 30 years of age before (a) and after (b) urination. The urethral tongue closes the
 210 opening to the urethra, as indicated by the yellow arrow; (c) Patient K., 30 years old, with a UPS
 211 disease duration of more than 10 years; (d) Patient Z., 38 years old, over 13 years of illness. In both
 212 cases, with UPS, the urethral tongue is indistinguishable; the gaping opening at the transition of the
 213 bladder into the urethra is indicated by the blue dashed arrows. Bl - bladder, Ur – urethra.

214 Thus, in all patients with UPS, an increase in the diameter of the internal lumen of the urethra,
 215 especially in the proximal region, was recorded.

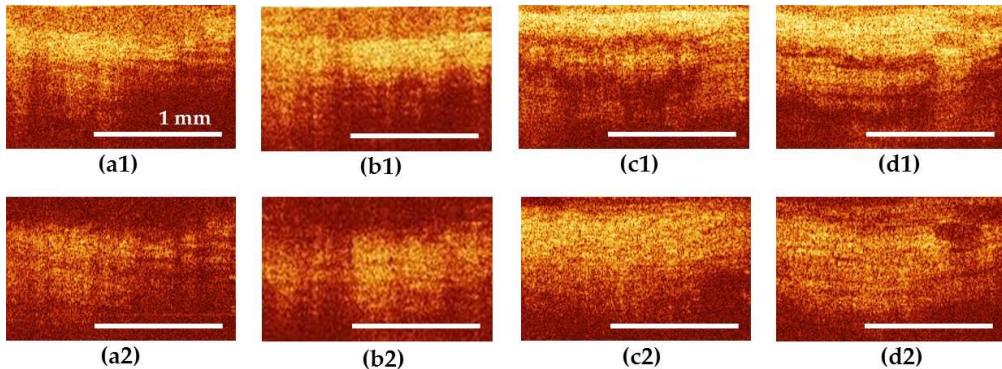
216 In 7 (29.1%) cases pathological changes were recorded in the urethral tongue, a cavernous
 217 structure that, as the bladder fills, normally increases in volume due to becoming engorged with
 218 blood and, together with the sphincter trigonalis, closes the exit from the bladder into the urethra.
 219 With the contraction of the urethra the posterior semicircle of the bladder neck is pressed against the
 220 anterior wall of the urethra and this closes its internal opening [28]. In patients with UPS, an absence
 221 of urethral tongue visualization, or the absence of its adherence to the entrance to the urethra, was
 222 revealed. No residual urine was found in patients with UPS.

223 Compression elastography of the urethra and adjacent tissues of patients with UPS in the
 224 proximal and middle regions showed a significant predominance of areas colored blue, indicating
 225 tissue stiffness and rigidity compared to the norm, where no blue color was observed (Fig. 3). Thus,
 226 our studies confirm the presence of fibrosis of the tissues surrounding the urethra in UPS.


227 **Figure 3.** Ultrasound elastometry in the normal condition (a) and in UPS (b). Normally, the urethral
 228 wall is softer (red color) (a) than in UPS (predominance of green and blue colors) (b). L – lumen of the
 229 urethra, W – urethral wall.

230 3.5. Results of CP OCT study

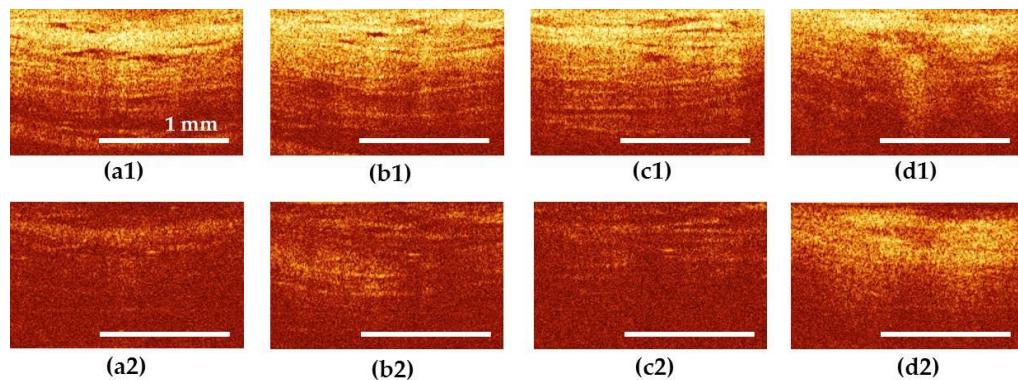
231 CP OCT images of all sections of the female urethra in norm are structural. In co-polarization
 232 images (Fig. 4 a1-d1), the epithelium is clearly visualized in all areas of interest, its border
 233 contrasting with the underlying mucous layer. The signal from the connective tissue in the
 234 cross-polarization images (Fig. 4 a2-d2) of medium intensity, has a horizontal orientation; in the
 235 middle and distal segments of the urethra, single, gland-like lacunae with clear contours can be
 236 determined. In cross-polarization, the OCT signal is determined mainly by the collagen fibers of the
 237 connective tissue layer; therefore, only this layer of the urethral wall is clearly visible in such images,
 238 and the epithelium and muscles are not visualized.


239 In the normal group, there were no changes in the visible thickness in the zones of interest (Fig.
 240 4 a1-d1). However, in women over 50 years old, a tendency of the epithelium to atrophy was
 241 revealed, which can be explained by the influence of hormonal changes. The connective tissue

242 stroma generated approximately the same signal level in the cross- channel, without any extensive
 243 dark or bright areas and occupied 40–50% of the entire image height (Fig. 4 a2–d2).

244 **Figure 4.** CP OCT images of the bladder neck (a) and three segments of normal urethra (b–d): (b)
 245 Proximal; (c) Middle; (d) Distal. The first row shows co-polarization images, the second row shows
 246 corresponding cross-polarization images.

247 Visual analysis of CP OCT in the UPS group revealed that, in terms of the characteristics of the
 248 epithelium and connective tissue, the proximal part of the urethra was more similar to the bladder
 249 neck than to the middle and distal parts of itself. Examples are shown in Figures 5 and 6.
 250



251 **Figure 5.** CP OCT images of the bladder neck (a) and three segments of the urethra (b–d) in patient I.,
 252 22 years old with UPS lasting 5 years. (b) Proximal; (c) Middle; (d) Distal parts of the urethra. The
 253 first row shows co-polarization images, the second row shows corresponding cross-polarization
 254 images.

255 Figure 5 shows an example of patient I., 22 years old with UPS lasting 5 years. Epithelial
 256 hyperplasia is visible in the bladder neck and the proximal urethra, the border of the epithelium
 257 with the underlying connective tissue layer is blurred, indicating the presence of inflammatory
 258 processes in these tissues (Fig. 5 a1, b1). The signal from the connective tissue structures in
 259 cross-polarization has a noticeable local decrease in intensity caused by the shadows of dilated blood
 260 vessels and by tissue edema (Fig. 5 a2, b2). In the middle and distal parts of the urethra, by contrast,
 261 thinning of the epithelium is noticeable (Fig. 5 c1, d1), while in the middle part, the border with the
 262 underlying connective tissue layer is clear (Fig. 5 c1). The connective tissue layer is thickened (Fig. 5
 263 c2, d2) and looks more homogeneous in structure (Fig. 5 c2) than in the non-pathogenic case (Fig. 4
 264 c2, d2). In this subgroup of patients, a thickening of the connective tissue layer in cross-polarization
 265 to occupy over 60% of the image height was observed in 44.4% (32 CP OCT images out of 72). In this
 266 case, an increase in the OCT signal was observed in all the images.

267 Figure 6 shows an example of patient E., 60 years old with UPS lasting 5 years. In the bladder
 268 neck and proximal urethra (Fig. 6 a1, b1), as well as in the rest of the urethra (Fig. 6 c1, d1), the

epithelium is atrophic; in places where it is partially preserved, the border of the epithelium with the underlying connective tissue layer is blurred (Fig. 6 a1, d1). The signal from connective tissue structures in cross-polarization is weak, presumably due to severe tissue edema (Fig. 6 a2–c2). In the distal urethra, on the other hand, the connective tissue layer exhibits cross-scattering, but appears homogeneous in structure (Fig. 6 d2) compared to normal (Fig. 4 d2). In this subgroup of patients, thickening of the connective tissue layer in cross-polarization to over 60% of the image height was observed in 46.7% (28 CP OCT images out of 60): 71.4% of them with an increase in the OCT signal (20 of 28), while 28.6 % (8 out of 28) showed a weakening of the signal.

Figure 6. CP OCT images of the bladder neck (a) and three segments of the urethra (b-d) in patient E., 60 years old with UPS lasting 5 years. (b) Proximal; (c) Middle; (d) Distal parts of the urethra. The first row shows co-polarization images, the second row shows corresponding cross-polarization images.

The results of the incidence of the bladder neck + proximal conditions are presented in Table 3. 132 CP OCT images obtained at the '6 o'clock position' from 33 patients were analyzed.

Table 3. State of the epithelium of the bladder neck and the proximal region of the urethra compared with the epithelium of the middle and distal regions at the '6 o'clock position' in patients with UPS, depending on age.

Subgroup of patients by age, years	Number of patients	Number of CP OCT images	Hyperplasia of the bladder neck + proximal urethra	Atrophy of the bladder neck + proximal urethra	Total matches	% of changes in the bladder neck + proximal urethra of the total number of patients
≤49	18	72	4	4	8	44.4% (8/18)
50≥	15	60	7	7	14	93.3% (14/15)
Total (n=33)	33	132	11	11	22	68.8% (22/33)

It was revealed that changes in the epithelium of the bladder neck and proximal urethra — hyperplasia or atrophy, which differed from the middle and distal segments of the urethra — coincided in 22 cases out of 33, representing 68.8%. Hyperplasia was identified in 34.4% of cases (n = 11) as well as atrophy in 34.4% of cases (n = 11). It is noteworthy that in women over 50 years of age (n = 15), changes in the analyzed area were more common — 93.3%, compared with women of reproductive age (n = 18) — 44.4%. It can be surmised that hormonal levels undoubtedly play a role in changing the state of the tissues of the bladder neck and urethra.

293 Of the 11 cases of hyperplasia detected in the proximal urethra, only in the case of the
294 epithelium was there also thickening in the middle and distal urethra. In other situations, atrophy
295 was recorded – 4 cases, while, in 6 the epithelium was of normal thickness. In the presence of
296 atrophy in the proximal urethra (n = 11), atrophy was recorded in the underlying regions – 5 cases,
297 while the epithelium was of normal thickness in 6 cases.

298 Thus, the CP OCT method allowed us non-invasively to determine the state of the epithelium
299 and connective tissue structures of the bladder neck and urethra *in vivo*. It was shown that with UPS,
300 the structure of the tissues in most cases is changed. In this case, the proximal fragment of the
301 urethra with UPS undergoes changes identical to those of the bladder neck.

302 4. Discussion

303 UPS is still a pathology in which the diagnosis is formulated as a "diagnosis of exclusion".
304 Despite significant global use of OCT in many fields of medicine [29–33], in urology, ours was the
305 first use of this technique for examining the urethra [22]. This paper shows that the introduction of
306 new technology – CP OCT – in conjunction with TVUS allows verification of tissue changes and
307 assessment of the structures of the connective tissue matrix of the lower urinary tract at the level of
308 their architectonics.

309 According to TVUS, in our study, women with UPS had an enlarged internal lumen of the
310 urethra in the proximal segment – on average to 5.9 ± 2.1 mm. According to the literature, with an
311 intraurethral ultrasound study performed on sectioned material, the inner diameter of the proximal
312 segment of the urethra at distances of 10, 15 and 20 mm from the neck was 3.73 mm; 4.18 mm; and
313 2.64 mm, respectively [27]. In another study, when measuring the internal diameter of the urethra
314 using TVUS in women with urinary incontinence [34], the diameter in the middle third of the
315 urethra in the control (healthy) group of patients was 4.7 ± 1.1 mm. Thus, we have recorded an
316 increase in the diameter of the internal lumen of the proximal urethral segment in all patients with
317 UPS. Normally, upon initiation of urination, the mechanism for opening the funnel-shaped
318 depression in the bladder neck is associated with contraction of the muscles of the deep triangle and
319 of muscles located anterior to the internal opening of the urethra, as well as with the simultaneous
320 contraction of the longitudinal muscle fibers of the urethra [28]. This means, we can assume the
321 presence of insufficiency of these muscle groups in UPS.

322 Trophic disorders recorded by CP OCT in the epithelium of the urethral neck and the proximal
323 segment of the urethra were more common in women over 50 years of age – in 93.3%, indicating
324 their dependence on the patient's hormonal background. The hormonal dependence of a number of
325 urinary disorders is explained in [35,36]. In these works, it was shown that in the deep layers of the
326 mucous membrane of the urethra there is a powerful venous plexus, and that this has a large
327 number of anastomoses with the venous uterovaginal plexus. At the same time, the works of Petros
328 P. and Everaerts W. [37] indicated that the epithelium of the urinary system (urothelium) acts as a
329 mechanoreceptor, using its sensitive nerve endings, and that it controls the activity of the afferent
330 nerves, so this may contribute a pathogenetic component of chronic pelvic pain, and of urethral
331 syndrome in particular.

332 Using the CP OCT method, we have previously shown that the thickness of the tissue of the
333 urethral membrane in women is dependent on age [38]. The work reported that, with UPS, there are
334 corresponding tendencies towards thinning of the epithelium and an increase in the thickness of the
335 connective tissue matrix of the bladder neck, as occurs in women without pathology of the
336 urological sphere, but that these processes proceed at a higher rate.

337 The recorded changes in the thickness of the epithelium are undoubtedly associated with the
338 state of the connective tissue matrix of the subepithelium of the structural components. The
339 compaction of the walls of the urethra and surrounding tissues that we have revealed using
340 elastometry data, as well as in our earlier CP OCT data on the state of the connective tissue matrix of
341 the urethra during UPS [22], indicate the presence of fibrosis processes both within the wall of the
342 urethra and around it, the cause of which, at present, is not clear. Our studies have previously
343 shown that the state of the urethral tissues in UPS is not normal, with changes in the urethral tissues

344 occupying an intermediate place between the norm and the changes seen in chronic bacterial
345 inflammatory processes [22].

346 Changes in the state of the connective tissue can lead to a decrease in the sensitivity of the
347 stretch receptors at the base of the bladder, affecting the functionality results [37], in particular,
348 influencing the uroflowmetry data that we obtained. The results of the uroflowmetry allow us to
349 assume the presence of functional disorders of the urethra in women with UPS. Taking into account
350 the indices of the normal values of the urination rate for women, which are 23–32 ml/sec [26], our
351 results of uroflowmetry showing 13.7 ± 3.2 ml/sec are likely to be associated with anatomical changes
352 that are not detected in standard clinical studies, or with dysfunctional and/or obstructive urination
353 due to an overactive urethra. However, it is known that the presence of symptoms of urinary
354 disorders is not a reliable marker of pathological processes [26]. We are continuing our research in
355 this direction.

356 There is reason to believe that the cause of the development of chronic inflammatory processes
357 in UPS is located in the tissues of the urethra and, accordingly, this serves as an additional stimulus
358 for the occurrence of disorders of the microcirculation, innervation, and functioning of the urethra,
359 indirectly influencing the appearance of pain. Our anamnestic data on the presence of a prevailing
360 gynecological pathology of inflammatory genesis suggest that the cause of such changes in the
361 tissues of the bladder and urethra may be viral-bacterial associations in the tissues of the organs of
362 the gynecological sphere. This aspect requires more detailed study. At present, the effect of the
363 translocation of microorganisms in the tissues of the urinary system, vagina, and intestines has been
364 proven in cases of upper urinary tract infection [39], although research in this area is ongoing.
365 Analyses of the composition of the microflora of urine and of the large intestine in cases of infection
366 of the lower urinary tract have also indirectly confirmed the presence of a translocation mechanism
367 in microorganisms [39].

368 It is known that the close anatomical connection of the bladder, urethra and vagina provides
369 associated functional mechanisms for the urination process. A component of this mechanism is
370 illustrated by the fact that in the distal urethra the circular fibers of the striated sphincter are
371 transformed into loop structures, the ends of which are woven into the framework of the anterior
372 vaginal wall [35]. According to the anamnesis, hormonal disorders, inflammatory diseases and
373 surgical interventions on the pelvic organs, which could result in dysfunction of the muscles of the
374 urethra and vagina, were found in 70.9% of patients with UPS who were interviewed. At the same
375 time, it is known that functional disorders, on their own, can generate pain [40]. The results of our
376 study indicated that a reason for the development of pain and chronic dysuria in patients with UPS
377 may be failure of the structures of the internal urethral sphincter. This sphincter is formed by the
378 muscles of the external muscular layer of the bladder that pass into the urethra in the bladder neck
379 region, forming spiral structures, occupying about 20% of its length. In the present study on TVUS,
380 29.1% of women were found to have an insufficiency of structures, namely the urethral tongue, in
381 the area of this sphincter. This fact requires further research.

382 Thus, it has been shown that there are many factors that cause persistent long-term pain in the
383 urethral region, or that contribute to the intensification of pain, some of which have yet to be studied.
384 Given the non-obviousness of the causes of UPS, new research protocols and additional imaging and
385 diagnostic methods are required for a comprehensive examination of such patients, without
386 focusing only on their pathologies in the urological field.

387 5. Conclusions

388 For the first time in the case of UPS, the layered structure of the urethral wall was investigated
389 *in vivo* using CP OCT to assess some of the pathogenetic aspects of the development and progression
390 of this disease. The CP OCT method covers the range of possibilities of traditional cystoscopy and
391 allows information to be obtained about the state of the urethral tissues that cannot be adequately
392 assessed during cystoscopic examination alone. The predominant changes in the tissues of the
393 urethra are fibrosis of the subepithelial structures and trophic changes in the epithelial layer. In 68.8%
394 of cases, the “behavior” of the tissues of the proximal segment of the urethra coincided with changes

395 in the bladder neck. The importance of the *in vivo* acquisition and operative analysis possible with
396 CP OCT in combination with TVUS data in patients with UPS is beyond doubt.

397 Deep objective analysis of tissues can reveal the basis of pathogenesis. Real-time visualization
398 of structural changes in the tissues of the urethra (epithelium, connective tissue, muscle layer,
399 vasculature, paraurethral glands) is important because it influences the final diagnosis,
400 understanding of the pathogenesis of the disease and treatment tactics. An analysis of the
401 comorbidities of patients with UPS showed that inflammatory gynecological diseases can become a
402 premorbid background/one of the triggering mechanisms for the development of UPS.

403 **Author Contributions:** Conceptualization, O.S. and E.K.; methodology, E.T.; software, M.M. and V.L.;
404 investigation, O.S., A.K., M.M., S.Z. and E.T.; data curation, V.L.; writing—original draft preparation, O.S., A.K.
405 and E.K., S.Z.; writing—review and editing, O.S., A.K. and E.K.; funding acquisition, O.S. All authors have read
406 and agreed to the published version of the manuscript.

407 **Funding:** This research was funded by Russian Foundation for Basic Research, grant number 19-07-00395.

408 **Acknowledgments:** The authors would like to thank Dr. Grigory V. Gelikonov and Dr. Valentin M. Gelikonov
409 (Institute of Applied Physics of the RAS, Russia) for the provision of the CP OCT device and its technical
410 support during the research.

411 **Conflicts of Interest:** The authors declare no conflict of interest.

412 References

- 413 1. Rothberg, M.B.; Wong J.B. All Dysuria Is Local A Cost-effectiveness Model for Designing Site-specific
414 Management Algorithms. *J. Gen. Intern. Med.* **2004**, *19*, 433-443.
- 415 2. Cho, S.T. Urethral Pain Syndrome Really Part of Bladder Pain Syndrome? *Urogenit. Tract Infect.* **2017**, *12*,
416 22-27.
- 417 3. Phillip, H.; Okewole, I.; Chilaka V. Enigma of urethral pain syndrome: why are there so many ascribed
418 etiologies and therapeutic approaches? *Int. J. Urol.* **2014**, *21*, 544-548.
- 419 4. Kaur, H.; Arunkalaivanan, A.S. Urethral pain syndrome and its management. *Obstet. Gynecol. Surv.* **2007**,
420 *62*, 348-351.
- 421 5. Elsenbruch, S.; Hauser, W.; Janig, W. [Visceral pain]. *Schmerz.* **2015**, *29*, 496–502.
- 422 6. Fall, M.; Baranowski, A.P.; Elneil, S.; Engeler, D.; Hughes, J.; Messelink, E.J.; Williams, A.D.C. EAU
423 Guidelines on Chronic pelvic pain syndrome. *Europ. Urol.* **2010**, *57*, 35-48.
- 424 7. Persu, C.; Cauni, V.; Gutue, S.; Blaj, I.; Jinga, V.; Geavlete, P. From interstitial cystitis to chronic pelvic pain.
425 *J. Med. Life.* **2010**, *3*, 167-174.
- 426 8. Aziz, Q.; Giamberardino, M.A.; Barke, A.; Korwisi, B.; Baranowski, A.P.; Wesselmann, U.; Treede, R.D.
427 The IASP Classification of Chronic Pain for ICD-11: Chronic secondary visceral pain. *Pain.* **2019**, *160*, 69-76.
- 428 9. Stecco, C. *Functional Atlas of the Human Fascial System*, 1st ed.; Elsevier Inc: Churchill Livingstone, US, **2014**,
429 p. 384.
- 430 10. Muiznieks, L.D.; Keeley, F.W. Molecular assembly and mechanical properties of the extracellular matrix:
431 A fibrous protein perspective. *Biochim. Biophys. Acta.* **2013**, *1832*, 866-875.
- 432 11. Langevin, H.M. Connective tissue: a body-wide signaling network? *Med. Hypotheses.* **2006**, *66*, 1074-1077.
- 433 12. Shoskes, D.A.; Nickel, J.C.; Kattan, M.W. Phenotypically directed multimodal therapy for chronic
434 prostatitis/chronic pelvic pain syndrome: a prospective study using UPOINT. *Urology.* **2010**, *75*, 1249-1253.
- 435 13. Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.;
436 Gregory, K.; Puliafito C.A.; Fujimoto, J.G. Optical coherence tomography. *Science.* **1991**, *254*, 1178-1181.
- 437 14. Drexler, W.; Liu, M.; Kumar, A.; Kamali, T.; Unterhuber, A.; Leitgeb, R.A. Optical coherence tomography
438 today: speed, contrast, and multimodality. *J. Biomed. Opt.* **2014**, *19*, 071412.
- 439 15. Lamirel, C. Optical Coherence Tomography. In *Encyclopedia of the Neurological Sciences* 2nd ed.; Aminoff,
440 M.J., Daroff, R.B., Eds.; Academic Press: Waltham, USA, **2014**; pp. 660-668.
- 441 16. Gora, M.J.; Suter, M.J.; Tearney, G.J.; Li, X. Endoscopic optical coherence tomography: technologies and
442 clinical applications [Invited]. *Biomed. Opt. Express.* **2017**, *8*, 2405-2444.
- 443 17. Gelikonov, V.M.; Gelikonov, G.V. New approach to cross-polarized optical coherence tomography based
444 on orthogonal arbitrarily polarized modes. *Laser Phys. Let.* **2006**, *3*, 445-451.

445 18. Gladkova, N.; Kiseleva, E.; Robakidze, N.; Balalaeva, I.; Karabut, M.; Gubarkova, E.; Feldchtein, F.
446 Evaluation of oral mucosa collagen condition with cross-polarization optical coherence tomography. *J.
447 Biophotonics*. **2013**, *6*, 321-329.

448 19. Kiseleva, E.; Kirillin, M.; Feldchtein, F.; Vitkin, A.; Sergeeva, E.; Zagaynova, E.; Gladkova, N. Differential
449 diagnosis of human bladder mucosa pathologies *in vivo* with cross-polarization optical coherence
450 tomography. *Biomed. Optic. Express*. **2015**, *6*, 1464-1476.

451 20. Prado-Costa, R.; Rebelo, J.; Monteiro-Barroso, J.; Preto, A.S. Ultrasound elastography: compression
452 elastography and shear-wave elastography in the assessment of tendon injury. *Insights Imaging*. **2018**, *9*,
453 791-814.

454 21. Gelikonov, V.M.; Gelikonov, G.V. Fibreoptic methods of cross-polarisation optical coherence tomography
455 for endoscopic studies. *IEEE J. Quantum Electron.* **2008**, *38*, 634-640.

456 22. Kiseleva, E.B.; Moiseev, A.A.; Kuyarov, A.S.; Molvi, M.A.; Gelikonov, G.V.; Maslennikova, A.V.; Streltsova,
457 O.S. In vivo assessment of structural changes of the urethra in lower urinary tract disease using
458 cross-polarization optical coherence tomography. *J. Innov. Opt. Health Sci.* **2020**, 2050024.

459 23. Netter, F.H. *Atlas of human anatomy*, 6th ed.; Elsevier Inc: Philadelphia, USA, **2014**, pp. 339-400.

460 24. Kiseleva, E.; Gladkova, N.; Streltsova, O.; Kirillin, M.; Maslennikova, A.; Dudenkova, V.; Sergeeva, E.
461 Cross-polarization OCT for *in vivo* diagnostics and prediction of bladder cancer. In *Bladder
462 cancer—management of NMI and muscle-invasive cancer*. M. Ather., Eds.; InTech: Rijeka, Croatia, **2017**; pp.
463 43-61.

464 25. Afraa, T.A.; Mahfouz, W.; Campeau, L.; Corcos, J. Normal lower urinary tract assessment in women: I.
465 Uroflowmetry and post-void residual, pad tests, and bladder diaries. *Int. Urogynecol. J.* **2012**, *23*, 681-685.

466 26. Makrushina, N.V.; Fastykovskaya, E.D. Ultrasound diagnosis of pelvic floor muscle insufficiency in
467 women. *Siberian Med. J. (Tomsk)*. **2012**, *27*, 91-96.

468 27. Schaer, G.N.; Schmid, T.; Peschers, U.; Delancey, J.O. Intraurethral ultrasound correlated with urethral
469 histology. *Obstet. Gynecol.* **1998**, *91*, 60-64.

470 28. Jung, J.; Ahn, H.K.; Huh, Y. Clinical and functional anatomy of the urethral sphincter. *Int. Neurourol. J.*
471 **2012**, *16*, 102-106.

472 29. Wang, Y.; Liu, S.; Lou, S.; Zhang, W.; Cai, H.; Chen, X. Application of optical coherence tomography in
473 clinical diagnosis. *J. X-ray Sci. Technol.* **2019**, *27*, 995-1006.

474 30. Carrasco-Zevallos, O.M.; Viehland, C.; Keller, B.; Draelos, M.; Kuo, A.N.; Toth, C.A.; Izatt, J.A. Review of
475 intraoperative optical coherence tomography: technology and applications. *Biomed. Opt. Express*. **2017**, *8*,
476 1607-1637.

477 31. Freund, J.E.; Buijs, M.; Savci-Heijink, C.D.; de Bruin, D.M.; de la Rosette, J.J.; van Leeuwen, T.G.; Laguna,
478 M.P. Optical coherence tomography in urologic oncology: a comprehensive review. *SN Compr. Clin. Med.*
479 **2019**, *1*, 67-84.

480 32. Kirillin, M.Y.; Motovilova, T.; Shakhova, N.M. Optical coherence tomography in gynecology: a narrative
481 review. *J. Biomed. Opt.* **2017**, *22*, 121709.

482 33. Olsen, J.; Holmes, J.; Jemec, G.B.E. Advances in optical coherence tomography in dermatology—a
483 review. *J. Biomed. Opt.* **2018**, *23*, 040901.

484 34. Oliveira, F.R.; Ramos, J.G.L.; Martins-Costa, S. Translabial ultrasonography in the assessment of urethral
485 diameter and intrinsic urethral sphincter deficiency. *J. Ultrasound Med.* **2006**, *25*, 1153-1158.

486 35. Petros, P.P.E.; Ulmsten, U.I. An integral theory and its method for the diagnosis and management of
487 female urinary incontinence. *Scand. J. Urol. Nephrol. Suppl.* **1993**, *153*, 1-93.

488 36. Petros, P.E.P.; Ulmsten, U.I. An integral theory of female urinary incontinence: experimental and clinical
489 considerations. *Acta Obstet. Gynecol. Scand. Suppl.* **1990**, *153*, 7-31.

490 37. Petros, P. The female pelvic floor. Functions, dysfunctions and their treatment in accordance with the
491 integral theory. 3ed ed.; Springer, **2010**, p. 352.

492 38. Streltsova, O.S.; Kiseleva, E.B.; Molvi M.A.; Lazukin V.F. Structural features of the urethra in patients with
493 urethral pain syndrome. *Exper. Clin. Urol.* **2019**, *3*, 170-177.

494 39. Naboka, Y.L.; Gudima, I.A.; Dzhalagonya, K.T.; Chernitskaya, M.L.; Ivanov, S.N. Urine and colon
495 microbiota in patients with recurrent uncomplicated lower urinary tract infection. *Urol. Herald.* **2019**, *7*,
496 59-65.

497 40. Crofford, L.J. Chronic Pain: Where the Body Meets the Brain. *Trans. Am. Clin. Climatol. Assoc.* **2015**, *126*,
498 167-83.