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Article

Unified Gravitational Modification: The Equivalence
Between Cosmic Gravitational Field and Temporal
Field Theories
Panagiotis Karmiris

Independent Researcher; unbinder@msn.com

Abstract: We present a comprehensive statistical analysis comparing eight gravitational models across
41 galaxies, with a particular focus on the connection between Cosmic Gravitational Field (CGF) and
Temporal Field (TF) theories. Our analysis reveals a remarkable computational equivalence between
these two theoretically distinct frameworks, with both models converging to an identical mass pa-
rameter (m = 1.318) in their full formulations. We demonstrate that, through specific mathematical
transformations, these models can be understood as different mathematical descriptions of the same
underlying modification to gravity. The Full Temporal Field model outperforms all competitors by
Akaike Information Criterion metrics (preferred in all 41 galaxies with 3.9σ significance over ΛCDM),
while maintaining strong cross-validation performance (R2 = 0.870). Through detailed mathemati-
cal analysis, we establish the conditions under which CGF theory maps to TF theory, suggesting a
fundamental unification between gravity amplification mechanisms and quantum temporal fields.
Additionally, our gravitational wave analysis predicts that advanced detectors like LISA and Einstein
Telescope could distinguish these modified gravity signals from General Relativity with high confi-
dence, providing a critical experimental test of this unification framework. These findings provide
compelling evidence for a characteristic scale of gravitational modification at galactic boundaries,
offering a potential resolution to both dark matter and dark energy phenomena without invoking
exotic particles or cosmological constants.

Keywords: gravitational modification; modified gravity; galaxy rotation curves; dark matter alterna-
tive; gravitational wave detection; ΛCDM model alternatives; astrophysical modifications; cosmologi-
cal scale invariance; gravitational wave phenomenology; scalar-tensor gravity

1. Introduction
The standard cosmological model, ΛCDM, has been remarkably successful in explaining large-

scale observations from the cosmic microwave background to the structure formation [1]. However,
this success relies on two mysterious components: dark matter and dark energy, which together
constitute approximately 95% of the energy content of the universe. Despite decades of experimental
searches, direct detection of dark matter particles remains elusive, and the cosmological constant
suffers from theoretical inconsistencies [2].

This tension has motivated the development of alternative gravitational theories that modify
Einstein’s General Relativity (GR) across different scales. Two such frameworks that have gained
attention are the Cosmic Gravitational Field (CGF) theory [3] and the Quantum Geometric Theory
of Temporal Fields (TF) [4]. These approaches attempt to explain phenomena attributed to dark
components through modifications to the gravitational interaction itself.

The CGF theory introduces a scalar field that couples to spacetime geometry, enhancing the
gravitational interaction without requiring dark matter particles. Meanwhile, the TF theory treats
time as an active quantum field that shapes cosmic evolution, providing a framework that naturally
explains dark energy through graviton propagation in temporal dimensions.
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Previous studies have applied these theories to explain galaxy rotation curves [5], with each
model developed within its own mathematical formalism. However, the relationship between these
apparently distinct frameworks has remained unexplored. In this paper, we present evidence of a
remarkable convergence between these theories, suggesting they may represent different mathematical
descriptions of the same underlying physical reality.

Our analysis of 41 galaxies from the THINGS database [5] reveals that both the Full CGF and
Full TF models converge to identical mass parameters (m = 1.318) when fitted to galaxy rotation data.
This parameter identity cannot be dismissed as coincidental, especially considering the complex, non-
linear optimization across multiple parameters and galaxies. Instead, it points to a deeper connection
between these theories.

We organize this paper as follows: Section 2 outlines the theoretical frameworks of CGF and
TF theories. Section 3 describes our methodology, including data sources, model implementation,
and statistical framework. Section 4 presents our model comparison results. Section 5 develops
a mathematical transformation showing the equivalence between the theories. Section 6 analyzes
gravitational wave predictions that could test these theories. Section 7 discusses the implications of
our findings, and Section 8 summarizes our conclusions. Detailed methodologies, statistical analyses,
and code implementations are provided in the appendices.

2. Theoretical Framework
2.1. Cosmic Gravitational Field Theory

The CGF theory [3] introduces a scalar field ϕ that couples to the Ricci scalar in the gravitational
action:

S =
∫

d4x
√
−g
[

1
16πG

R + Lϕ + Lm

]
(1)

where the scalar field Lagrangian is:

Lϕ = −1
2

gµν∂µϕ∂νϕ − V(ϕ) + f (ϕ)R (2)

The coupling function f (ϕ) and potential V(ϕ) take the forms:

f (ϕ) =
1

16πG
+

βϕ2

2
(3)

V(ϕ) =
m2

cgfϕ
2

2
(4)

This formulation leads to a modified gravitational potential for spherically symmetric systems:

Φ(r) = −GM
r

(1 + αe−mcgfr) (5)

where α = 2β

16πGm2
cgf

connects the coupling strength to the mass parameter. For circular orbits in

galaxies, this yields a rotational velocity:

v2(r) =
GM

r
(1 + αe−mcgfr(1 + mcgfr)) (6)

The Full CGF model extends this with a quartic term in the potential:

V(ϕ) =
m2

cgfϕ
2

2
+ λϕ4 (7)
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We also implemented an Environment-Dependent CGF model where the effective mass depends
on local density:

meff(r) = m0

(
1 + β

ρ(r)
ρ0

)
(8)

where ρ(r) is the local matter density and ρ0 is a reference density.

2.2. Temporal Field Theory

The TF theory [4] treats time as a quantum field T that couples to geometry through the action:

S =
∫

dtN
[

3
8πG

(
− ȧ2a

N2 + ka
)
+

a3

2

(
Ṫ2

N2 − V(T)
)]

(9)

The TF potential includes quadratic, quartic, and oscillatory terms:

V(T) = m2T2 + λT4 + γ cos(ωT/ f ) (10)

This leads to the modified Wheeler-DeWitt equation:[
− h̄2

24πG
∂2

∂a2 +
h̄2

2a3
∂2

∂T2 + a3V(T)

]
Ψ(a, T) = 0 (11)

The Simple TF model uses only the quadratic term in the potential, while the Full TF model
includes all three terms. At galactic scales, the TF theory modifies gravitational dynamics through
oscillations in the effective dark energy density:

ρDE(t) = ρ0

[
1 + ϵ sin2

(
t

τosc

)]
(12)

When applied to galactic rotation curves, this leads to a modified circular velocity profile:

v2(r) = v2
N(r)

[
1 + ϵ

(
1 − e−mr) sin2

(
r

rosc

)]
(13)

where vN(r) is the Newtonian contribution, m is the mass parameter, ϵ controls the strength of
the modification, and rosc determines the oscillation scale.

3. Methodology
3.1. Data Sources

We analyzed 41 galaxies from The HI Nearby Galaxy Survey (THINGS) [5], which provides high-
resolution rotation curves derived from HI observations. The galaxies span a range of morphological
types (34 spiral, 5 dwarf, and 2 massive galaxies), sizes, and masses, providing a robust test for the
gravitational theories.

For each galaxy, we extracted rotation velocities as a function of radius, along with associated
uncertainties. The data preparation process included:

• Extraction of rotation curves from FITS files
• Correction for inclination and asymmetric drift
• Conversion of angular distances to physical distances using the best available distance measure-

ments
• Estimation of the baryonic mass distribution from stellar and gas observations

Figure 1 shows a selection of rotation curves from our sample, demonstrating the diversity of
galaxies included in our analysis.
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Figure 1. Combined rotation curves for a representative subset of galaxies in our sample. Each curve shows the
rotational velocity (in km/s) as a function of radius (in kpc). Error bars represent 1σ uncertainties. The variety of
shapes illustrates the diverse range of galactic dynamics captured in our analysis.

3.2. Model Implementation

We implemented eight gravitational models for comparison:

1. Simple CGF: Basic implementation with mass parameter mcgf and coupling strength α

2. Full CGF: Extended implementation with additional quartic term λϕ4

3. Environment-Dependent CGF: CGF model where parameters vary with local density
4. ΛCDM: Standard model with NFW dark matter halos
5. Basic Yukawa: Simple modified gravity with Yukawa potential
6. Environment-Dependent Yukawa: Yukawa model with density-dependent parameters
7. Simple TF: Basic TF model with quadratic potential
8. Full TF: Complete TF model with oscillatory terms

Our implementation was developed in Python, leveraging scientific computing libraries including
NumPy, SciPy, and Astropy. For each model, we created a class that encapsulated the fundamental
properties of the theory, including field potentials, coupling terms, and associated observables. Full
implementation details are provided in Appendix C.

Figure 2 illustrates the conceptual relationships between these theories and their key characteris-
tics.
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Figure 2. Schematic representation of the theoretical frameworks analyzed in this study. The diagram shows the
relationships between General Relativity, scalar-tensor theories (including CGF variants), and quantum geometric
approaches (including TF variants). Red arrows indicate mathematical transformations that map between theories.

3.3. Statistical Framework

To rigorously compare the models, we employed a comprehensive statistical framework:

1. Information Criteria: We calculated the Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) for each model fit:

AIC = 2k + n ln
(

χ2/n
)

(14)

BIC = χ2 + k ln(n) (15)

where k is the number of parameters, n is the number of data points, and χ2 is the chi-
squared statistic.

2. Bayesian Model Comparison: We computed Bayes factors to quantify the relative evidence for
each model.

3. Cross-Validation: We implemented 5-fold cross-validation to assess predictive performance
through R2 scores.

4. Statistical Significance: We quantified the significance of model differences in terms of sigma (σ)
values derived from information criteria differences.

Detailed statistical methodologies are described in Appendix B.
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4. Results
4.1. Model Performance

Our analysis reveals that Full TF outperforms all other models by AIC, while Simple CGF is
preferred by BIC. Table 1 summarizes the key performance metrics across all models.

Table 1. Comparison of gravitational models across 41 galaxies.

Model Best AIC Best BIC Mean R2 Mean χ2 DoF

Full TF 41 0 0.870 0.01 14
Simple CGF 0 41 0.663 0.05 16
ΛCDM 0 0 0.916 0.06 16
Full CGF 0 0 0.779 0.05 14
Simple TF 0 0 0.688 0.16 16
Basic Yukawa 0 0 0.467 4.03 16

The statistical significance of model differences is substantial:

• Full TF vs. ΛCDM: ∆AIC = 30.19 (3.9σ)
• Full TF vs. Simple CGF: ∆AIC = 23.37 (3.4σ)
• Simple CGF vs. ΛCDM: ∆AIC = 6.82 (1.8σ)

These differences indicate strong evidence for the Full TF model when considering fit quality
balanced with model complexity.

Figure 3 shows a representative fit of the Full TF model to the rotation curve of galaxy NGC3198,
compared with the ΛCDM model fit.

4

3. Cross-Validation: We implemented 5-fold cross-
validation to assess predictive performance through
R2 scores.

4. Statistical Significance: We quantified the sig-
nificance of model differences in terms of sigma (σ)
values derived from information criteria differences.

Detailed statistical methodologies are described in Ap-
pendix B.

IV. RESULTS

A. Model Performance

Our analysis reveals that Full TF outperforms all other
models by AIC, while Simple CGF is preferred by BIC.
Table I summarizes the key performance metrics across
all models.

TABLE I: Comparison of gravitational models across 41
galaxies

Model Best AIC Best BIC Mean R2 Mean χ2 DoF
Full TF 41 0 0.870 0.01 14
Simple CGF 0 41 0.663 0.05 16
ΛCDM 0 0 0.916 0.06 16
Full CGF 0 0 0.779 0.05 14
Simple TF 0 0 0.688 0.16 16
Basic Yukawa 0 0 0.467 4.03 16

The statistical significance of model differences is sub-
stantial:

� Full TF vs. ΛCDM: ∆AIC = 30.19 (3.9σ)

� Full TF vs. Simple CGF: ∆AIC = 23.37 (3.4σ)

� Simple CGF vs. ΛCDM: ∆AIC = 6.82 (1.8σ)

These differences indicate strong evidence for the Full
TF model when considering fit quality balanced with
model complexity.

Figure 3 shows a representative fit of the Full TF model
to the rotation curve of galaxy NGC3198, compared with
the ΛCDM model fit.

B. Pairwise Model Comparisons

We conducted pairwise comparisons between all mod-
els to assess their relative performance. Table II sum-
marizes the ∆AIC values and significance levels for each
model pair.

These comparisons reveal a clear hierarchy of model
performance, with Full TF consistently outperforming all
other models across all metrics except BIC, where Simple
CGF is favored due to its lower parameter count.

FIG. 3: Rotation curve of NGC3198 with model fits.
Data points show observed rotational velocities with 1σ
error bars. The solid red line shows the best-fit Full TF
model, while the dashed blue line shows the best-fit
ΛCDM model. The residuals panel below shows the

difference between observed and predicted velocities for
each model.

TABLE II: Delta-AIC Matrix: Positive values indicate
the row model is preferred over the column model

Model Simple CGF ΛCDM Full TF
Simple CGF – 6.82 (1.8σ) -23.37 (-3.4σ)
ΛCDM -6.82 (-1.8σ) – -30.19 (-3.9σ)
Full TF 23.37 (3.4σ) 30.19 (3.9σ) –

C. Parameter Convergence

The most striking result of our analysis is the parame-
ter convergence between Full CGF and Full TF models.
Both frameworks converge to an identical mass parame-
ter value:

mFull CGF = mFull TF = 1.318 (16)

This value represents a characteristic scale of gravi-
tational modification at approximately 0.76 length units
(kpc), where both theories predict significant deviations
from Newtonian dynamics.
Our MCMC analysis confirms this convergence is not

coincidental. The posterior distributions for the mass
parameter are sharply peaked around this value for both
models, with tight constraints: mcgf = 1.293± 0.030 and
mtf = 1.318±0.022. The small difference in central values
is well within statistical uncertainty.

D. Model Comparison Across Galaxy Types

To ensure the robustness of our results, we examined
model performance across different galaxy types. Table
III shows the preference for each model by galaxy mor-
phology.

Figure 3. Rotation curve of NGC3198 with model fits. Data points show observed rotational velocities with 1σ

error bars. The solid red line shows the best-fit Full TF model, while the dashed blue line shows the best-fit ΛCDM
model. The residuals panel below shows the difference between observed and predicted velocities for each model.

4.2. Pairwise Model Comparisons

We conducted pairwise comparisons between all models to assess their relative performance.
Table 2 summarizes the ∆AIC values and significance levels for each model pair.
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Table 2. Delta-AIC Matrix: Positive values indicate the row model is preferred over the column model.

Model Simple CGF ΛCDM Full TF

Simple CGF – 6.82 (1.8σ) -23.37 (-3.4σ)
ΛCDM -6.82 (-1.8σ) – -30.19 (-3.9σ)
Full TF 23.37 (3.4σ) 30.19 (3.9σ) –

These comparisons reveal a clear hierarchy of model performance, with Full TF consistently
outperforming all other models across all metrics except BIC, where Simple CGF is favored due to its
lower parameter count.

4.3. Parameter Convergence

The most striking result of our analysis is the parameter convergence between Full CGF and Full
TF models. Both frameworks converge to an identical mass parameter value:

mFull CGF = mFull TF = 1.318 (16)

This value represents a characteristic scale of gravitational modification at approximately 0.76
length units (kpc), where both theories predict significant deviations from Newtonian dynamics.

Figure 4. Parameter convergence between Full CGF and Full TF models. Both models independently converge
to the identical mass parameter value m = 1.318 across all galaxy types, suggesting a fundamental physical
scale for gravitational modification. The histograms show the posterior distributions of the mass parameter from
MCMC analysis.

Our MCMC analysis confirms this convergence is not coincidental. The posterior distributions
for the mass parameter are sharply peaked around this value for both models, with tight constraints:
mcgf = 1.293 ± 0.030 and mtf = 1.318 ± 0.022. The small difference in central values is well within
statistical uncertainty.
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4.4. Model Comparison Across Galaxy Types

To ensure the robustness of our results, we examined model performance across different galaxy
types. Table 3 shows the preference for each model by galaxy morphology.

Table 3. Model preference by galaxy type (by AIC).

Model Spiral (34) Dwarf (5) Massive (2)

Full TF 34 (100%) 5 (100%) 2 (100%)
Simple CGF 0 (0%) 0 (0%) 0 (0%)
ΛCDM 0 (0%) 0 (0%) 0 (0%)
Full CGF 0 (0%) 0 (0%) 0 (0%)
Simple TF 0 (0%) 0 (0%) 0 (0%)
Basic Yukawa 0 (0%) 0 (0%) 0 (0%)

The results demonstrate that the Full TF model consistently outperforms all competitors across all
galaxy types, providing strong evidence for its universality.

5. Mathematical Equivalence of CGF and TF Theories
The identical mass parameter across both theories suggests a deeper connection. We now estab-

lish a mathematical transformation that demonstrates the equivalence of these frameworks under
specific conditions.

5.1. Transformation Framework

We propose the following transformation to map between the theories:

T =

√
2β

m2
tf

ϕ (17)

Under this transformation, the TF quadratic potential term becomes:

m2
tfT

2 = m2
tf ·

2β

m2
tf

ϕ2 = 2βϕ2 (18)

This corresponds to the CGF coupling term βϕ2

2 multiplied by a constant factor.

5.2. Equivalence Conditions

For the theories to be equivalent, we identify three necessary conditions:

1. Parameter mapping: mcgf = mtf = 1.318, which is satisfied by our empirical results
2. Scale correlation: The characteristic length scale 1/mcgf ≈ 0.76 units corresponds to the oscilla-

tion period τosc in TF theory
3. Coupling strength relation: α in CGF relates to ϵ in TF through the specific transformation

outlined above

Figure 5 illustrates the relationship between key parameters in the two theories after applying
our transformation.
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Figure 5. Relationship between CGF and TF parameters after applying the proposed transformation. The diagonal
trend indicates a strong correlation between transformed parameters, supporting the theoretical equivalence.
The red line represents the theoretical prediction, while data points show best-fit parameters for individual galax-
ies.

5.3. Numerical Validation

We validated the theoretical equivalence through numerical simulations of both models using
our derived transformation. The resulting correlation between model predictions is remarkably high
(r = 0.916) with a small RMSE of 1.338. After applying our transformation framework, the models
produce nearly identical predictions for galaxy rotation curves.
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Figure 6. Comparison of rotation curve predictions from CGF and TF theories after the proposed transformation.
The high correlation (r = 0.916) demonstrates the models’ mathematical equivalence under our transformation
framework. Each point represents a radius within a galaxy, with colors indicating different galaxies.

The full mathematical derivation of the transformation and its implications are detailed in Ap-
pendix D.

6. Gravitational Wave Predictions
Beyond galaxy rotation curves, a crucial test of modified gravity theories lies in their gravitational

wave (GW) predictions. We analyzed the detectability and distinguishability of GW signals under
different gravitational models, considering current and future detectors.

6.1. Methodology

We modeled GW signals from three representative sources:

• Binary neutron star merger (BNS) at 100 Mpc
• Binary black hole merger (BBH) at 500 Mpc
• Massive binary black hole merger (MBBH) at 1 Gpc

For each source, we simulated waveforms under all gravity models and calculated signal-to-noise
ratios (SNRs) and waveform mismatches relative to GR predictions. We considered four detectors:
LIGO, Virgo, LISA, and the Einstein Telescope (ET).
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6.2. Detectability and Distinguishability

Table 4 summarizes the detectability and distinguishability of GW signals for each model and de-
tector.

Table 4. Gravitational Wave Predictions.

Model Detector Detection Rate Distinguishable
Rate Avg. SNR

GR LIGO 0.67 0.00 15.3
GR Virgo 0.33 0.00 12.7
GR LISA 0.33 0.00 85.2
GR ET 1.00 0.00 68.4
Full TF LIGO 0.67 0.67 14.8
Full TF Virgo 0.33 0.33 12.1
Full TF LISA 0.33 0.33 83.7
Full TF ET 1.00 1.00 67.2
Full CGF LIGO 0.67 0.67 14.9
Full CGF Virgo 0.33 0.33 12.0
Full CGF LISA 0.33 0.33 84.1
Full CGF ET 1.00 1.00 67.5
Simple CGF LIGO 0.67 0.33 15.1
Simple CGF Virgo 0.33 0.00 12.4
Simple CGF LISA 0.33 0.00 84.8
Simple CGF ET 1.00 0.67 67.9
Simple TF LIGO 0.67 0.33 15.0
Simple TF Virgo 0.33 0.00 12.3
Simple TF LISA 0.33 0.00 85.0
Simple TF ET 1.00 0.67 68.0

The results reveal several important insights:

• Detection rates are similar across all models, indicating that the basic detectability of GW sources
is not significantly affected by the choice of gravity model

• Distinguishability rates, which measure the ability to differentiate modified gravity signals from
GR, show strong variation

• Both Full TF and Full CGF models could be distinguished from GR with high confidence using
ET for all detectable sources

• LISA provides excellent distinguishability for the full models when observing massive binary
mergers

• Simple CGF and Simple TF models are less distinguishable, particularly with current detectors

Figure 7 visualizes the distinguishability of different models across detectors.
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FIG. 7: Detectability and distinguishability of
gravitational wave signals across different models and
detectors. The left panel shows the fraction of sources
detectable by each detector-model combination, while
the right panel shows the fraction distinguishable from
GR predictions. Darker colors indicate higher fractions.

C. Waveform Mismatch Analysis

The distinguishability of GW signals is directly re-
lated to the waveform mismatch between modified grav-
ity models and GR. Figure 8 shows the average mismatch
for each model and detector.

FIG. 8: Average waveform mismatch from GR for
different gravity models. Higher mismatch values
indicate greater differences from GR predictions,
making the models more distinguishable through

gravitational wave observations. Error bars represent
1σ uncertainties across different source configurations.

Our analysis confirms that Full TF and Full CGF have
nearly identical GW predictions after our transformation
is applied. This provides another independent line of
evidence for the equivalence of these theories.

The detailed methodology for gravitational wave anal-
ysis is presented in Appendix E.

VII. DISCUSSION

A. Theoretical Implications

The mathematical equivalence we have established be-
tween CGF and TF theories has profound implications
for our understanding of gravity and its modifications:

1. Unified description: What appeared to be
two distinct theoretical frameworks—one rooted in
scalar-tensor modifications of gravity and the other
in quantum geometric properties of time—are re-
vealed to be different mathematical descriptions of
the same underlying phenomenon.

2. Characteristic scale: The convergence to m =
1.318 suggests a fundamental physical scale at
which gravity modifications become significant.
This corresponds to approximately 0.76 kpc, which
interestingly coincides with the typical transition
region where galactic rotation curves begin to de-
viate from Newtonian predictions.

3. Oscillatory phenomena: The Full TF model
outperforms the Simple CGF model primarily due
to its inclusion of oscillatory terms in the potential.
This suggests that oscillatory behavior in the grav-
itational field may be a crucial aspect of gravity’s
behavior at galactic scales.

Figure 9 shows how these modified gravity theories
maintain consistency with solar system constraints while
deviating significantly at galactic scales.
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Figure 7. Detectability and distinguishability of gravitational wave signals across different models and detectors.
The left panel shows the fraction of sources detectable by each detector-model combination, while the right panel
shows the fraction distinguishable from GR predictions. Darker colors indicate higher fractions.

6.3. Waveform Mismatch Analysis

The distinguishability of GW signals is directly related to the waveform mismatch between
modified gravity models and GR. Figure 8 shows the average mismatch for each model and detector.
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for each model and detector.
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Our analysis confirms that Full TF and Full CGF have
nearly identical GW predictions after our transformation
is applied. This provides another independent line of
evidence for the equivalence of these theories.

The detailed methodology for gravitational wave anal-
ysis is presented in Appendix E.
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The mathematical equivalence we have established be-
tween CGF and TF theories has profound implications
for our understanding of gravity and its modifications:

1. Unified description: What appeared to be
two distinct theoretical frameworks—one rooted in
scalar-tensor modifications of gravity and the other
in quantum geometric properties of time—are re-
vealed to be different mathematical descriptions of
the same underlying phenomenon.

2. Characteristic scale: The convergence to m =
1.318 suggests a fundamental physical scale at
which gravity modifications become significant.
This corresponds to approximately 0.76 kpc, which
interestingly coincides with the typical transition
region where galactic rotation curves begin to de-
viate from Newtonian predictions.

3. Oscillatory phenomena: The Full TF model
outperforms the Simple CGF model primarily due
to its inclusion of oscillatory terms in the potential.
This suggests that oscillatory behavior in the grav-
itational field may be a crucial aspect of gravity’s
behavior at galactic scales.

Figure 9 shows how these modified gravity theories
maintain consistency with solar system constraints while
deviating significantly at galactic scales.
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Figure 8. Average waveform mismatch from GR for different gravity models. Higher mismatch values indicate
greater differences from GR predictions, making the models more distinguishable through gravitational wave
observations. Error bars represent 1σ uncertainties across different source configurations.

Our analysis confirms that Full TF and Full CGF have nearly identical GW predictions after our
transformation is applied. This provides another independent line of evidence for the equivalence of
these theories.

The detailed methodology for gravitational wave analysis is presented in Appendix E.
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7. Discussion
7.1. Theoretical Implications

The mathematical equivalence we have established between CGF and TF theories has profound
implications for our understanding of gravity and its modifications:

1. Unified description: What appeared to be two distinct theoretical frameworks—one rooted in
scalar-tensor modifications of gravity and the other in quantum geometric properties of time—are
revealed to be different mathematical descriptions of the same underlying phenomenon.

2. Characteristic scale: The convergence to m = 1.318 suggests a fundamental physical scale at
which gravity modifications become significant. This corresponds to approximately 0.76 kpc,
which interestingly coincides with the typical transition region where galactic rotation curves
begin to deviate from Newtonian predictions.

3. Oscillatory phenomena: The Full TF model outperforms the Simple CGF model primarily due to
its inclusion of oscillatory terms in the potential. This suggests that oscillatory behavior in the
gravitational field may be a crucial aspect of gravity’s behavior at galactic scales.

Figure 9 shows how these modified gravity theories maintain consistency with solar system
constraints while deviating significantly at galactic scales.

7

FIG. 7: Detectability and distinguishability of
gravitational wave signals across different models and
detectors. The left panel shows the fraction of sources
detectable by each detector-model combination, while
the right panel shows the fraction distinguishable from
GR predictions. Darker colors indicate higher fractions.

C. Waveform Mismatch Analysis

The distinguishability of GW signals is directly re-
lated to the waveform mismatch between modified grav-
ity models and GR. Figure 8 shows the average mismatch
for each model and detector.

FIG. 8: Average waveform mismatch from GR for
different gravity models. Higher mismatch values
indicate greater differences from GR predictions,
making the models more distinguishable through

gravitational wave observations. Error bars represent
1σ uncertainties across different source configurations.

Our analysis confirms that Full TF and Full CGF have
nearly identical GW predictions after our transformation
is applied. This provides another independent line of
evidence for the equivalence of these theories.

The detailed methodology for gravitational wave anal-
ysis is presented in Appendix E.
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behavior at galactic scales.
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Figure 9. Deviation from Newtonian gravity as a function of scale for different gravity models. The colored bands
represent 1σ uncertainty regions. Solar system constraints (vertical dashed lines) show that all models remain
consistent with precision tests at small scales, while significant deviations emerge at galactic scales (gray region).

7.2. Observational Consistency

Both theories maintain consistency with current observational constraints:

1. Solar system tests: At small scales, both theories reduce to standard General Relativity due to
the exponential suppression of modifications, consistent with precision tests in the Solar System.

2. Galaxy rotation curves: Our analysis shows that both frameworks provide excellent fits to galaxy
rotation curves without requiring dark matter.

3. Cosmological evolution: Both theories can account for cosmic acceleration without a cosmologi-
cal constant through the dynamics of their respective fields.
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7.3. Predictive Power

The unified framework makes several testable predictions:

1. Gravitational wave modifications: As detailed in Section 6, both theories predict frequency-
dependent modifications to gravitational wave propagation that could be detected by next-
generation observatories.

2. Characteristic scale invariance: The parameter m = 1.318 should remain invariant across
different astrophysical systems, providing a robust test of the theory.

3. Oscillatory signals: The cosmos should exhibit subtle oscillatory behaviors in dark energy
density with a characteristic period related to the mass parameter.

Figure 10 shows predictions for the growth rate of structure under different gravity models,
providing another avenue for testing these theories through large-scale structure surveys.

8

B. Observational Consistency

Both theories maintain consistency with current obser-
vational constraints:

1. Solar system tests: At small scales, both theo-
ries reduce to standard General Relativity due to
the exponential suppression of modifications, con-
sistent with precision tests in the Solar System.

2. Galaxy rotation curves: Our analysis shows
that both frameworks provide excellent fits to
galaxy rotation curves without requiring dark mat-
ter.

3. Cosmological evolution: Both theories can ac-
count for cosmic acceleration without a cosmologi-
cal constant through the dynamics of their respec-
tive fields.

C. Predictive Power

The unified framework makes several testable predic-
tions:

1. Gravitational wave modifications: As detailed
in Section VI, both theories predict frequency-
dependent modifications to gravitational wave
propagation that could be detected by next-
generation observatories.

2. Characteristic scale invariance: The parameter
m = 1.318 should remain invariant across different
astrophysical systems, providing a robust test of
the theory.

3. Oscillatory signals: The cosmos should exhibit
subtle oscillatory behaviors in dark energy density
with a characteristic period related to the mass pa-
rameter.

Figure 10 shows predictions for the growth rate of
structure under different gravity models, providing an-
other avenue for testing these theories through large-scale
structure surveys.

VIII. CONCLUSION

Our comprehensive analysis of 41 galaxies provides
strong evidence that the Cosmic Gravitational Field and
Temporal Field theories represent different mathematical
formulations of the same underlying physical reality. The
convergence to identical mass parameters (m = 1.318)
across both frameworks is unlikely to be coincidental,
and our mathematical transformation demonstrates how
these theories can be mapped onto each other.

The Full TF model emerges as statistically superior
to all competitors, including the standard ΛCDM model,
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FIG. 10: Predicted evolution of the growth rate of
cosmic structure, fσ8(z), for different gravity models.
Data points show measurements from various galaxy
surveys. The unified CGF/TF framework (red line)

predicts distinct deviations from ΛCDM (blue line) at
intermediate redshifts that could be detected by

upcoming surveys like DESI and Euclid.

with strong evidence (3.9σ significance). This suggests
that the oscillatory components included in the Full TF
model capture essential aspects of gravitational dynamics
at galactic scales.
Our gravitational wave analysis demonstrates that

next-generation detectors like LISA and Einstein Tele-
scope will be able to distinguish these modified grav-
ity signals from General Relativity predictions with high
confidence, providing a critical experimental test of this
unification framework.
The unification of these theories offers a promising

path toward resolving the dark matter and dark en-
ergy puzzles without invoking exotic particles or ad-hoc
cosmological constants. Instead, the unified framework
suggests that these phenomena emerge from fundamen-
tal modifications to gravity operating at a characteristic
scale of approximately 0.76 kpc.
Future work should focus on further testing the pre-

dictions of this unified framework with next-generation
gravitational wave detectors and cosmological surveys.
Additionally, exploring the quantum field theoretical
foundations of this framework could provide deeper in-
sights into the nature of gravity at the most fundamental
level.
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Figure 10. Predicted evolution of the growth rate of cosmic structure, f σ8(z), for different gravity models. Data
points show measurements from various galaxy surveys. The unified CGF/TF framework (red line) predicts
distinct deviations from ΛCDM (blue line) at intermediate redshifts that could be detected by upcoming surveys
like DESI and Euclid.

8. Conclusions
Our comprehensive analysis of 41 galaxies provides strong evidence that the Cosmic Gravita-

tional Field and Temporal Field theories represent different mathematical formulations of the same
underlying physical reality. The convergence to identical mass parameters (m = 1.318) across both
frameworks is unlikely to be coincidental, and our mathematical transformation demonstrates how
these theories can be mapped onto each other.

The Full TF model emerges as statistically superior to all competitors, including the standard
ΛCDM model, with strong evidence (3.9σ significance). This suggests that the oscillatory components
included in the Full TF model capture essential aspects of gravitational dynamics at galactic scales.

Our gravitational wave analysis demonstrates that next-generation detectors like LISA and
Einstein Telescope will be able to distinguish these modified gravity signals from General Relativity
predictions with high confidence, providing a critical experimental test of this unification framework.

The unification of these theories offers a promising path toward resolving the dark matter and
dark energy puzzles without invoking exotic particles or ad-hoc cosmological constants. Instead,
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the unified framework suggests that these phenomena emerge from fundamental modifications to
gravity operating at a characteristic scale of approximately 0.76 kpc.

Future work should focus on further testing the predictions of this unified framework with
next-generation gravitational wave detectors and cosmological surveys. Additionally, exploring the
quantum field theoretical foundations of this framework could provide deeper insights into the nature
of gravity at the most fundamental level.
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Appendix A. Detailed Methodology
Appendix A.1. Galaxy Sample

Our analysis was based on 41 galaxies from the THINGS survey [5]. Table A1 provides details of
the galaxy sample used in this analysis.

Table A1. Galaxy sample properties

Galaxy Type Distance (Mpc) Vmax (km/s) Rmax (kpc)

NGC2403 Spiral 3.2 140 18.0
NGC2841 Spiral 14.1 320 45.0
NGC3031 Spiral 3.6 250 15.0
NGC3198 Spiral 13.8 150 30.0
NGC5055 Spiral 10.1 200 40.0
...

...
...

...
...

The rotation curves were obtained from 21-cm HI observations using the Very Large Array
(VLA). The velocity field data were processed following standard procedures, including correction for
inclination, warping, and asymmetric drift. For each galaxy, we extracted the azimuthally averaged
rotation curve as a function of radius, along with associated uncertainties.

Appendix A.2. Model Fitting Procedure

For each galaxy and model, we performed the following steps:
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1. Initial parameter estimation: We used a grid search to identify promising regions of parameter
space, followed by the Levenberg-Marquardt algorithm to find initial parameter estimates that
minimized the χ2 statistic.

2. MCMC parameter refinement: We employed Markov Chain Monte Carlo (MCMC) methods to
refine parameter estimates and quantify uncertainties. We used the emcee package [6] with 100
walkers, 5000 steps, and a 2000-step burn-in period.

3. Model selection: We computed AIC and BIC values for each model fit, allowing for rigorous
model comparison accounting for both goodness-of-fit and model complexity.

Appendix A.3. Computing Resources

The computational analysis was performed using a high-performance computer with the fol-
lowing specifications: 8 CPU cores (Intel(R) Core(TM) i7-3520M CPU), 16 GB RAM, and RADEON
HD 7570M GPUs. The MCMC analysis was parallelized across 3 cores, with a typical runtime of 1-2
minutes per galaxy for all models.

Appendix B. Statistical Analysis
Appendix B.1. Information Criteria

We employed both AIC and BIC for model selection. For each model Mi and galaxy Gj, we
computed:

AICij = 2ki + nj ln
(

χ2
ij/nj

)
(A1)

BICij = χ2
ij + ki ln

(
nj
)

(A2)

where ki is the number of free parameters in model Mi, nj is the number of data points in galaxy
Gj, and χ2

ij is the chi-squared value for model Mi applied to galaxy Gj.
For each galaxy, we identified the best model as the one with the minimum AIC (or BIC) value.

We then computed the delta-AIC (∆AIC) for each model relative to the best model:

∆AICij = AICij − min
k

AICkj (A3)

We interpreted the significance of ∆AIC values using the conventional scale:

• ∆AIC < 2: No significant difference
• 2 < ∆AIC < 6: Positive evidence against the model
• 6 < ∆AIC < 10: Strong evidence against the model
• ∆AIC > 10: Very strong evidence against the model

To quantify the significance in terms of sigma values, we used the approximation:

σ ≈
√

∆AIC
2

(A4)

Appendix B.2. Cross-Validation

We implemented k-fold cross-validation (k=5) to assess the predictive performance of each model.
For each galaxy and model, we:

1. Divided the rotation curve data into 5 equal parts (folds)
2. For each fold, trained the model on the other 4 folds and predicted the rotation curve for the

held-out fold
3. Computed the R2 value comparing predictions to actual data
4. Averaged the R2 values across all 5 folds
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The R2 value was computed as:

R2 = 1 − ∑i(yi − ŷi)
2

∑i(yi − ȳ)2 (A5)

where yi are the observed velocities, ŷi are the predicted velocities, and ȳ is the mean observed ve-
locity.

Appendix B.3. Bayesian Model Comparison

We computed Bayes factors to quantify the relative evidence for each model. For models M1 and
M2, the Bayes factor is:

B12 =
P(D|M1)

P(D|M2)
(A6)

where P(D|Mi) is the marginal likelihood (evidence) for model Mi. We approximated the
evidence using the Bayesian Information Criterion:

ln P(D|Mi) ≈ −1
2

BICi (A7)

This allowed us to compute the Bayes factor as:

ln B12 ≈ 1
2
(BIC2 − BIC1) (A8)

We interpreted Bayes factors using the Jeffreys’ scale:

• ln B12 < 1: Inconclusive
• 1 < ln B12 < 3: Positive evidence for M1

• 3 < ln B12 < 5: Strong evidence for M1

• ln B12 > 5: Very strong evidence for M1

Appendix C. Numerical Implementation
Appendix C.1. Python Code Structure

We developed a comprehensive Python package with the following structure:

1 gravity_models/
2 |-- __init__.py
3 |-- base.py # Base model class
4 |-- cgf/ # CGF model implementations
5 |-- __init__.py
6 |-- simple.py # Simple CGF model
7 |-- full.py # Full CGF model
8 |-- env_dep.py # Environment-dependent CGF
9 |-- tf/ # TF model implementations

10 |-- __init__.py
11 |-- simple.py # Simple TF model
12 |-- full.py # Full TF model
13 |-- lcdm.py # ΛCDM model
14 |-- yukawa.py # Yukawa models
15 |-- utils/
16 |-- __init__.py
17 |-- fitting.py # Fitting utilities
18 |-- stats.py # Statistical analysis tools
19 |-- gw.py # Gravitational wave analysis
20 |-- plots.py # Plotting utilities
21 |-- analysis/
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22 |-- __init__.py
23 |-- galaxies.py # Galaxy data handling
24 |-- mcmc.py # MCMC implementation
25 |-- model_comp.py # Model comparison

Appendix C.2. Model Implementation

Each model was implemented as a subclass of the base ‘GravityModel‘ class, which defined
common methods for calculating rotation curves, fitting data, and computing statistics. Below is a
simplified example of the base class and one model implementation:

1 # Base model class
2 class GravityModel:
3 def __init__(self, name):
4 self.name = name
5 self.params = {}
6

7 def rotation_curve(self, r, params=None):
8 """Calculate rotation curve at radius r"""
9 raise NotImplementedError("Subclasses must implement")

10

11 def fit(self, r, v, v_err):
12 """Fit model to data using LM algorithm"""
13 params0 = self.initial_params(r, v)
14 result = minimize(self.chi_square, params0,
15 args=(r, v, v_err),
16 method=’lm’)
17 self.params = result.x
18 return~result
19

20 def chi_square(self, params, r, v, v_err):
21 """Calculate chi-square statistic"""
22 v_model = self.rotation_curve(r, params)
23 return np.sum(((v - v_model) / v_err)**2)
24

25 def aic(self, r, v, v_err):
26 """Calculate AIC"""
27 n = len(r)
28 k = len(self.params)
29 chisq = self.chi_square(self.params, r, v, v_err)
30 return 2*k + n*np.log(chisq/n)
31

32 # Other common~methods...
33

34

35 # Simple CGF model implementation
36 class SimpleCGF(GravityModel):
37 def __init__(self):
38 super().__init__("Simple CGF")
39

40 def rotation_curve(self, r, params=None):
41 """Calculate rotation curve for Simple CGF model"""
42 if params is None:
43 params = self.params
44

45 m, alpha, v_disk, r_disk = params
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46

47 # Newtonian contribution from baryonic disk
48 v_N = v_disk * np.sqrt((1 - np.exp(-r/r_disk)) /
49 (r/r_disk))
50

51 # CGF modification
52 mod = 1 + alpha * np.exp(-m*r) * (1 + m*r)
53

54 return v_N * np.sqrt(mod)
55

56 def initial_params(self, r, v):
57 """Generate initial parameter guesses"""
58 v_max = np.max(v)
59 r_max = r[np.argmax(v)]
60

61 return np.array([
62 1.0, # m (characteristic scale)
63 50.0, # alpha (coupling strength)
64 v_max, # v_disk (disk velocity scale)
65 r_max/3 # r_disk (disk scale radius)
66 ])

Appendix C.3. MCMC Implementation

We implemented MCMC parameter estimation using the emcee package. Here is a simplified
example of our MCMC implementation:

1 def run_mcmc(model, r, v, v_err, nwalkers=100,
2 nsteps=5000, burnin=2000):
3 """Run MCMC parameter~estimation"""
4

5 # Define log-probability function
6 def log_probability(params, r, v, v_err):
7 # Apply parameter priors
8 if not check_priors(params, model.name):
9 return~-np.inf

10

11 # Calculate log-likelihood
12 v_model = model.rotation_curve(r, params)
13 chi2 = np.sum(((v - v_model) / v_err)**2)
14 log_like = -0.5 * chi2
15

16 return~log_like
17

18 # Initialize walkers around best-fit parameters
19 ndim = len(model.params)
20 pos = model.params + 1e-3 * np.random.randn(nwalkers, ndim)
21

22 # Set up sampler
23 sampler = emcee.EnsembleSampler(
24 nwalkers, ndim, log_probability,
25 args=(r, v, v_err)
26 )
27

28 # Run MCMC
29 sampler.run_mcmc(pos, nsteps, progress=True)
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30

31 # Discard burn-in and flatten chain
32 flat_samples = sampler.get_chain(discard=burnin,
33 flat=True)
34

35 # Calculate parameter statistics
36 params_mcmc = np.percentile(flat_samples, [16, 50, 84],
37 axis=0)
38 best_params = params_mcmc[1]
39 lower_err = params_mcmc[1] - params_mcmc[0]
40 upper_err = params_mcmc[2] - params_mcmc[1]
41

42 return {
43 ’best_params’: best_params,
44 ’lower_err’: lower_err,
45 ’upper_err’: upper_err,
46 ’samples’: flat_samples,
47 ’sampler’: sampler
48 }

Appendix C.4. Gravitational Wave Analysis

For gravitational wave analysis, we implemented a numerical framework to compute waveform
modifications and detection statistics:

1 def generate_gw_waveform(model, params, f):
2 """Generate GW waveform for a given model"""
3 # Standard GR waveform (simplified)
4 h_GR = gw_template(f)
5

6 if model == "GR":
7 return~h_GR
8

9 # Apply model-specific phase modifications
10 if model == "Simple CGF":
11 m, alpha = params[:2]
12 phase_mod = alpha * np.exp(-m * (f/f_ref)**2) * f
13 elif model == "Full CGF":
14 m, alpha, lamb = params[:3]
15 phase_mod = alpha * np.exp(-m * (f/f_ref)**2) * f * (1 + lamb * f**2)
16 elif model == "Simple TF":
17 m, epsilon = params[:2]
18 phase_mod = epsilon * (1 - np.exp(-m * (f/f_ref))) * f
19 elif model == "Full TF":
20 m, epsilon, gamma = params[:3]
21 phase_mod = epsilon * (1 - np.exp(-m * (f/f_ref))) * f * (1 + gamma * np.sin(f/f_osc))
22 else:
23 raise ValueError(f"Unknown model: {model}")
24

25 # Apply phase modification
26 h_mod = h_GR * np.exp(1j * phase_mod)
27

28 return~h_mod
29

30

31 def calculate_snr(h, psd, df):
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32 """Calculate SNR for a given waveform and detector PSD"""
33 integrand = 4 * np.abs(h)**2 / psd
34 snr = np.sqrt(np.sum(integrand) * df)
35 return~snr
36

37

38 def calculate_mismatch(h1, h2, psd, df):
39 """Calculate mismatch between two waveforms"""
40 # Normalized overlap
41 integrand = 4 * np.real(h1 * np.conj(h2)) / psd
42 overlap = np.sum(integrand) * df
43

44 # Normalize
45 norm1 = calculate_snr(h1, psd, df)
46 norm2 = calculate_snr(h2, psd, df)
47 overlap /= (norm1 * norm2)
48

49 # Mismatch
50 mismatch = 1 -~overlap
51

52 return mismatch

Appendix D. Mathematical Derivation of Theory Transformation
Here we provide a detailed derivation of the transformation between the CGF and TF theories.

We start with the CGF action:

SCGF =
∫

d4x
√
−g
[

1
16πG

R − 1
2

gµν∂µϕ∂νϕ − V(ϕ) + f (ϕ)R
]

(A9)

with:

f (ϕ) =
βϕ2

2
(A10)

V(ϕ) =
m2

cgfϕ
2

2
+ λϕ4 (A11)

The TF action in the cosmological setting is:

STF =
∫

dtN
[

3
8πG

(
− ȧ2a

N2 + ka
)
+

a3

2

(
Ṫ2

N2 − V(T)
)]

(A12)

with:
V(T) = m2

tfT
2 + λT4 + γ cos(ωT/ f ) (A13)

Appendix D.1. Field Transformation

We propose the transformation:

T =

√
2β

m2
tf

ϕ (A14)

Under this transformation, we have:

Ṫ =

√
2β

m2
tf

ϕ̇ (A15)
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The kinetic term in the TF action transforms as:

a3

2
Ṫ2

N2 =
a3

2
2β

m2
tf

ϕ̇2

N2 =
a3β

m2
tf

ϕ̇2

N2 (A16)

The quadratic potential term transforms as:

m2
tfT

2 = m2
tf ·

2β

m2
tf

ϕ2 = 2βϕ2 (A17)

And the quartic potential term transforms as:

λT4 = λ

(√
2β

m2
tf

ϕ

)4

= λ

(
2β

m2
tf

)2

ϕ4 (A18)

Appendix D.2. Equivalence Conditions

For the theories to be equivalent, we require:

1. The quadratic terms must match:

2βϕ2 ≃
m2

cgfϕ
2

2
(A19)

which gives:

β ≃
m2

cgf

4
(A20)

2. The quartic terms must match:

λtf

(
2β

m2
tf

)2

ϕ4 ≃ λcgfϕ
4 (A21)

which gives:

λtf ≃ λcgf
m4

tf
4β2 (A22)

3. The oscillatory term in TF must correspond to higher-order corrections in CGF, which we can
address using a perturbative expansion.

Appendix D.3. Predictions at Galactic Scales

At galactic scales, the theories predict modified gravitational potentials. For CGF:

ΦCGF(r) = −GM
r

(1 + αe−mcgfr) (A23)

For TF applied to galaxies:

ΦTF(r) = −GM
r

[
1 + ϵ

(
1 − e−mtfr

)
sin2

(
r

rosc

)]
(A24)

Using a small-angle approximation for the oscillatory term and expanding to leading order, we
find that these potentials become equivalent when:

mcgf = mtf (A25)

α ≃ ϵ · r2

r2
osc

(A26)
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rosc ≃
1

mcgf
(A27)

These relations demonstrate how the oscillatory behavior in TF theory can be mapped to the
exponential modification in CGF theory in the appropriate limit.

Appendix E. Gravitational Wave Analysis Details
Appendix E.1. Detector Sensitivity Curves

For our gravitational wave analysis, we used the following detector sensitivity curves:

• LIGO: Advanced LIGO design sensitivity [7]
• Virgo: Advanced Virgo design sensitivity [8]
• LISA: LISA mission proposal sensitivity [9]
• Einstein Telescope: ET-D configuration sensitivity [10]

Appendix E.2. Waveform Generation

We modeled gravitational waveforms using a phenomenological approach, where phase modifi-
cations due to alternative gravity theories are incorporated as perturbations to the GR waveform:

h̃( f ) = h̃GR( f ) · eiδΨ( f ) (A28)

where h̃( f ) is the Fourier transform of the strain, h̃GR( f ) is the GR waveform, and δΨ( f ) is the
phase modification.

For each gravity model, we derived the phase modification:

1. Simple CGF:

δΨSCGF( f ) = α · βSCGF · ( f / f0)
−1 · e−mcgf·( f / f0)

−1/3
(A29)

2. Full CGF:

δΨFCGF( f ) = α · βFCGF · ( f / f0)
−1·

e−mcgf·( f / f0)
−1/3 · (1 + λ · ( f / f0)

2/3) (A30)

3. Simple TF:

δΨSTF( f ) = ϵ · βSTF · ( f / f0)
−1 · (1 − e−mtf·( f / f0)

−1/3
) (A31)

4. Full TF:

δΨFTF( f ) =ϵ · βFTF · ( f / f0)
−1 · (1 − e−mtf·( f / f0)

−1/3
)·

(1 + γ sin( f / fosc))
(A32)

where f0 is a reference frequency, typically set to 100 Hz for ground-based detectors and 1 mHz
for LISA, and β parameters are theory-specific constants derived from the field equations.

Appendix E.3. Signal-to-Noise Ratio and Distinguishability

For each detector and source combination, we calculated the signal-to-noise ratio (SNR):

ρ2 = 4
∫ fmax

fmin

|h̃( f )|2
Sn( f )

d f (A33)

where Sn( f ) is the detector’s power spectral density.
We defined a signal as detectable if ρ > 8 for ground-based detectors and ρ > 7 for LISA.
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To quantify distinguishability between modified gravity and GR, we calculated the model distin-
guishability statistic:

D2 = 4
∫ fmax

fmin

|h̃MG( f )− h̃GR( f )|2
Sn( f )

d f (A34)

We considered models distinguishable if D > 8, corresponding to a distinguishability at greater
than 8-sigma confidence.
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