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Abstract: Identification of plants is a challenging task which aims to identify the family, genus, and species 

level according to morphological features. Automated deep learning-based computer vision algorithms are 

widely used for identifying plants and can help users to narrow down the possibilities. However, numerous 

morphological similarities between and within species make the classification difficult. In this paper, we tested 

a custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch 

framework to classify plants. We used a large dataset of 88K and 16K images for classifying plants at genus 

and species levels respectively. Our results show that for classifying plants at the genus level, ViT models 

perform better compared to CNN-based models ResNet50 and ResNet-RS-420, and other state-of-the-art CNN-

based models suggested in previous studies on a similar dataset. The ViT model achieved top accuracy of 83.3% 

for classifying plants at the genus level. ViT models also perform better for classifying plants at the species 

level compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show 

that the correct set of augmentation techniques plays an important role in classification success. 

Keywords: plant recognition; image processing; convolution neural network; vision transformer; 

classification 

 

1. Introduction 

Plants are one of the most essential life forms on Earth and play a significant role in maintaining 

healthy ecosystems. In order to obtain information about the uses of any plant, users must first 

identify the plant, by matching the physical characteristics to a specific name (either scientific latin 

name or common name). Knowing one or more discriminating features of an unknown plant (e.g., 

shape, color, petal, sepal length) helps in identifying the candidate species. Identification of plants 

using key features is difficult for people who don’t have specific knowledge of plants and even for 

specialists such as botanist, agroforestry managers, and scientist to identify plants correctly at 

different hierarchical levels [1]. Variation of key characters among species and even within species, 

are some of the challenges for identifying plants manually. Hence, automated species identification 

can be used for the identification of plants [2]. Automated plant classification is an important research 

area in computer vision. It is a fine-grained classification task concerned with the identification of 

plants at various hierarchical levels, such as family, genus, or species level [3]. A user can take a 

picture of the plant using a camera or mobile device and then analyze it with a plant identification 

model to identify the plant or a list of possible candidate plants at various hierarchical levels. The 

identification problem faces several challenges due to inter-class similarities among plant families. 

Another problem is huge intra-class variations in color, background, occlusion, shape, and 

illumination within the same plant class such as family, genus, or species. Several studies have been 

conducted to address the plant classification problem using deep learning-based algorithms and have 

been able to accomplish significant success in classifying plants [2,4,5].  Compared to traditional 

machine learning algorithms where features were manually selected and extracted, deep learning-
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based algorithms automatically detect increasingly higher-level features from data [6]. Several works 

have shed light on plant identification using deep neural networks, which significantly improved the 

accuracy of large-scale plant classification tasks. Various Convolutional Neural Network (CNN) 

models have been proposed and implemented for plant identification tasks and achieved better 

performance compared to other artificial neural networks (ANN) and CNN-based models suggested 

in prior research [7,8].  Transformer-based architecture has become de facto in natural language 

processing (NLP) tasks, its application in computer vision attains significantly good performance 

compared to state-of-the-art convolution neural networks. Vision transformer models have achieved 

better performance than other CNN-based models for fine-grained image classification tasks [9]. 

Training both the CNN and Vision transformer models to contain millions of parameters requires 

large amounts of data to properly constrain the optimization. The requirement for extensive 

computational resources for training these models motivates to use of transfer learning with pre-

trained networks [10–12].  While the transformer models have become the de facto standard in NLP 

applications, their applications in computer vision tasks remain limited but have been rising recently. 

Vision transformer (ViT) attain excellent results compared to state-of-the-art convolutional networks 

while requiring substantially fewer computational resources to train [13]. ViT is a model used in the 

field of computer vision that employs a transformer-like architecture over patches of the image. It 

works like the transformers used in the field of natural language processing (NLP). Over the years, 

deep CNNs have been the state-of-the-art networks for image classification but ViT has shown great 

potential in achieving competitive performance for complex image classification tasks [13]. Internally, 

transformers learn by calculating the relationship between pairs of input tokens (words in the case of 

a string), termed attention in NLP tasks. In computer vision, an Image is split into various fixed-size 

patches. These image patches are used the same way as tokens and ViT calculates the relationship 

among pixels between various patches. Each of the image patches is then linearly embedded and 

patch embeddings are finally augmented with one-dimensional position embeddings. Positional 

information is introduced into the input using position embeddings, which is learned during 

training. An extra learnable “classification token” is added at the start of the sequence to the patch 

embedding.  The resulting sequence of the embedding vector is fed to the encoder part of the 

Transformer architecture. A classification head attached to the encoder output gets the value of 

learnable class embedding to perform the classification based on its state. 

This paper has three main contributions. First, a ViT with a Custom balanced loss function is 

used for handling class imbalance and improving the model performance. Second, the proposed 

combination of augmentation techniques enhances the quality of data and improves the model 

performance. Lastly, for analyzing the distribution of images captured from a near or far distance 

within classes, CNN based classification model is implemented. Near/Far image distribution helped 

in visualizing the data imbalance issue and enhancing the quality of the training dataset. It also 

helped in analyzing the performance of the proposed models on both types of distribution. Finally, 

it also helped in balancing the data when there was a significant difference in the distribution of near 

and far images by adding more images and using augmentation to include more diversity within 

classes. All these components have significantly improved the plants classification performance at 

the genus and species level which can be extended to classification at the cultivar level. Several 

augmentation techniques were used in combination for this study to enhance the model performance. 

The research proposed by Hiary et al. [23] shows the importance of image augmentation for 

improving the model performance. The authors used fine-tuned VGG-16 model to classify flower 

species for Oxford-17, Oxford-102 and the dataset consists of 612 flower images from 102 categories 

[24]. Generally, a large amount of diverse training data is required because the small-size dataset may 

easily overfit the training model. Data augmentation can address this problem and helps in 

improving the size and quality of training data. Zhong et al., [25] introduced a novel technique for 

augmentation called Random Erasing, a new augmentation technique to improve the quality and size 

of training data. Random Erasing selects a rectangular region randomly in an image and erases 

random pixel values. This improves the robustness of the models and has better generalization 

capabilities. 
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CNN (ResNet50 and ResNet-RS-420) and transformer (ViT) based models were used for this 

study. Images are acquired using digital cameras, mobile phones or other equipment by the Royal 

Horticultural Society (RHS), UK. Images are then pre-processed, and augmentation techniques [14] 

are applied to enhance the size and quality of training data. After that, the area of interest was 

segmented, and the features were extracted. Based on the extracted features, plants are classified at 

the genus or species level. An automated flower classification task is a difficult task because of the 

considerable number of similarities among various flower species and due to intra-class variation. 

More differences in the background, viewpoint, occlusion, flower image scale, indoor-outdoor 

lighting conditions, climate and season are some of the problems which make the classification of 

flowers more difficult [15]. In this research, 113 different plant genera and 53 species were considered. 

It is very difficult to differentiate these plants from a certain distance, specifically for the human eye. 

Automated image classification using a deep learning-based approach provides performance above 

the functions of the human eye and produces accurate results [16–18]. Many techniques have been 

proposed for the classification of plants. Şekeroğlu et al. [4] proposed a leaf classification system using 

a neural network to identify 27 different types of leaves and achieved a recognition rate of 97.2%. 

Deep learning-based Convolution neural networks (CNN) are quite popular and achieved 

signification success in image classification based-task in recent years [19–21]. CNN models are 

widely used for plant classification problems and achieved significantly better performance 

compared to other machine learning and ANN-based networks [7,22]. Deep learning (DL) based 

methods are widely used for plant recognition tasks with large image datasets. Heredia et al. [8] used 

a PlantNet database consisting of 250K images belonging to more than 1,500 plant species. The 

authors used the ResNet50 model and achieved significant improvement in model performance 

compared to widespread classification models on test data composed of thousands of different 

species [8]. CNN-based methods have also been used in health care such as medical image 

classification, and tumor detection [16,17]. The recently proposed transformer-based approach 

appears to be a major step toward plant identification tasks. Using the self-attention paradigm, ViT 

models can achieve better results for image classification tasks compared to CNN-based models, such 

as AlexNet, EfficientNet and ResNet without applying any convolution approaches. The research 

proposed by Conde et al. [9] on four popular fine-grained benchmarks:  CUB-200-2011, Stanford 

Cars, Stanford Dogs, and FGVC7 Plant Pathology have used a multi-stage ViT framework and 

achieved better performance compared to CNN-based models.  Given the huge amount of training 

data and computational resources, ViT has shown better performance compared to CNN models in 

image classification tasks [13].  Based on the literature review, we have used CNN and ViT-based 

models for the proposed research because these models have shown better performance for 

classifying plants and flowers in the past.  

2. Methods 

This research consisted of four main steps, which are image pre-processing, augmentation, 

feature extraction and classification. First, the plant images were acquired by the Royal Horticultural 

Society (RHS) and combined with two open-source datasets, PlantCLEF2015 and iNaturalist. The 

images were pre-processed using augmentation techniques to improve the quality of the training 

data. The processed image features were extracted using CNN or ViT models. Finally, the extracted 

features were trained, and the plant classification was performed using CNN or ViT. We also used 

image augmentation and sampling techniques to balance the distribution of the near and far captured 

images to improve the model performance. 

2.1. Data Collection 

PlantCLEF dataset focuses on 1,000 different herb, tree and fern species centered in France and 

neighboring countries. It contains 113,205 pictures belonging to 1,000 species. PlantCLEF dataset has 

information about the plants at different hierarchical levels (family, genus, or species). iNaturalist 

dataset contains around 1 million images for 4,271 plant species. Figure 1 illustrates the distribution 

of the RHS dataset for 113 genera and 53 species. Figures 2 and 3 illustrate the distribution of 
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PlantCLEF and iNaturalist images used for classifying plants at genus and species level respectively. 

After combining the three datasets, we selected 113 genera and 53 species representing 88K images 

and 16K images, respectively. Figure 4 illustrates the distribution of genera and species of the 

combined dataset. The datasets were highly imbalanced, with some species containing a far greater 

number of images than others. 

 

Figure 1. (a) RHS genera distribution.  (b) RHS species distribution. 

 

Figure 2. (a) PlantCLEF genera distribution.  (b) PlantCLEF species distribution. 

 

Figure 3. (a) iNaturalist genera distribution.  (b) iNaturalist species distribution. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 August 2023                   doi:10.20944/preprints202308.1330.v1

https://doi.org/10.20944/preprints202308.1330.v1


 5 

 

Figure 4. (a) Combined dataset genera distribution.  (b) Combined dataset species distribution. 

2.2. Image pre-processing 

As a data preprocessing method, Image augmentation plays an important role in improving the 

model performance for deep learning-based networks. We used a variety of augmentation techniques 

in combination with each other to add more information and increase the dataset diversity. Several 

augmentation techniques, such as Resizing, Color jitter, Gaussian blur, greyscale, Random 

perspective, Random Rotation, Random Cropping, Sharpness and Grey Scale as shown in Figure 5, 

are used in combination. Images are resized to 384x384 pixels, and the center is cropped to 224x224 

pixels after doing empirical testing with various combination of pixel values. Several combinations 

of different augmentation methods are tried with various hyperparameter values, and then the best 

values are chosen by empirical testing to improve the model performance. Augmentation methods 

help in adding more diversity to the dataset. Image Augmentation also helped in handling class 

imbalance where there are a smaller number of images. 

A CNN-based model was implemented for classifying near or far-captured images labelled 

manually which helps in seeing the distribution of near and far-captured images for each class. The 

model was trained on a subset of the PlantCLEF dataset containing approximately 12,000 images.  

Images of plants were classified as either near-captured or far-captured images. The images were 

normalized to make the computation efficient.  To improve the model performance, we 

implemented a transfer learning-based pre-trained VGG16 model for classifying near or far-captured 

images. 

 

Figure 5. Examples of Image Augmentation techniques. 

Figure 6 illustrates the near/far image distribution for the proposed dataset consisting of 113 

genera after combining the RHS, PlantCLEF and iNaturalist datasets. Near/Far image distribution for 

53 species after combining all three datasets is illustrated in Figure 7. 
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Figure 6. Near/far images distribution for plant genera. 

 

Figure 7. Near/far images distribution for plant species. 

2.3. Convolution Neural Network 

Custom pre-trained InceptionV3, ResNet50 and ResNet420 were used for this study. Figure 8 

shows the CNN-based plant classification system for this research. We used cross validation 

technique to check the model performance on validation dataset. We tried multiple experiments with 

different CNN-based networks (InceptionV3, ResNet50, and ResNet420) using images belonging to 

39 genera, where each class had at least 100 images. In experiment 1, we used 10,128 images belonging 

to 39 genera. Pre-trained InceptionV3 network with a cross-entropy loss function is used for 

identifying plants. The model was fine-tuned by adding custom layers using the TensorFlow 

framework to make it more suitable for the plant's classification task. In experiment 2, the pre-trained 

ResNet50 model on the ImageNet database with cross-entropy loss function is used. Augmentation 

techniques have been applied to the proposed dataset and used for feature extraction using CNN 

followed by a classification task to identify plants at the genus or species level. PyTorch framework 

is used for model implementation and training. In experiment 3, we combined our original dataset 

with open-source PlantCLEF and iNaturalist datasets to improve the data size and quality. During 

the first two experiments, we did not cover much variation within classes to cover the overall 
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information. Therefore, transfer learning based fine-tuned ResNet50 model is used for classifying 334 

genera with at least 100 images in each class. Approximately 220K images for 334 genera after 

augmentation were used for training the model. The fine-tuned ResNet50 model with PyTorch 

framework on the augmented dataset is used for model building and training purposes. In 

experiment 4, We used around 88K images belonging to 113 genera with an average image count per 

class of 778. Augmentation techniques, such as Resizing, Color jitter, Gaussian blur, greyscale, 

Random perspective, Random Rotation, Random Cropping, Sharpness and Grey Scale are used for 

improving the quality of the training dataset and handling the class imbalance. After augmentation, 

the Image count has been increased to 300K images. The best hyperparameter values and a 

combination of augmentation techniques are chosen after empirical testing of the model. Custom 

SoftMax balanced loss function with the ability to handle image imbalance issues is used for model 

training [27]. Pre-trained ResNet420 model trained on the ImageNet database with custom SoftMax 

balanced loss function using PyTorch framework is fine-tuned and used for model building and 

training. Finally, Species classification is done in experiment 5, we have used around 16k images for 

53 classes before augmentation. After applying selected augmentation techniques, the image count 

has been increased to 150K images. Fine-tuned ResNet420 model with a custom balanced loss 

function is used for species classification. 

 

Figure 8. CNN-based plant classification system. 

2.4. Vision Transformer 

The ViT models were implemented using the PyTorch framework and can classify plants at 

different hierarchical levels, such as genus or species level. In experiment 6, we used around 88K 

images for 113 genera with an average image count per class of 778.  Augmentation techniques, such 

as Resizing, Color jitter, Gaussian blur, greyscale, Random perspective, Random Rotation, Random 

Cropping, Sharpness and Grey Scale were used for improving the quality of the training dataset. 

After augmentation, the Image count has been increased to 300K images. Custom SoftMax balanced 

loss function with the ability to handle image imbalance issues is used for ViT model training [27]. 

Pre-trained ViT model trained on the ImageNet database with SoftMax balanced loss function is used 

for model building. The model is then fine-tuned and trained using the last 4 blocks of the ViT model 

and two linear layers which have been added at the end of the ViT model. In experiment 7, around 

16k images belonging to 53 classes have been picked up for species classification. After applying the 

augmentation techniques mentioned in Section 2.2, the image count has been increased to 150K. 

Species classification has been done using the same ViT model architecture used for genera 

classification with custom SoftMax balanced loss function and is fine-tuned for species classification. 

Figure 9 shows the ViT architecture for the plant classification task used for this study. 
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Figure 9. Diagram of Vision Transformer Architecture. 

3. Result 

3.1. Image pre-processing 

The CNN based model for classifying images as near or far achieved a validation accuracy of 

90.34% and test accuracy of 83% and overall model performance increased significantly after 

handling the near/far distribution, as shown in Table 1. 

Table 1. Near Far classification table. 

Dataset Images Count 
Classification 

Accuracy 

Custom dataset (Images taken 

from PlantCLEF database) 
~ 12k ~ 83% 

3.2. Experiments using CNNs 

In experiment 1, the fine-tuned InceptionV3 network with cross-entropy loss function achieved 

validation and testing accuracy of 76% and 35% respectively. In experiment 2, the pre-trained 

ResNet50 model on the ImageNet database with a cross-entropy loss function achieved the validation 

and test accuracy of 58% and 25% respectively. In experiment 3, the fine-tuned ResNet50 model 

achieved validation and testing accuracy of 68% and 23% respectively. In experiment 4 the fine-tuned 

ResNet420 model achieved validation and testing accuracy of 83% and 71% respectively. Lastly, in 

experiment 5, the fine-tuned pre-trained ResNet420 model with a custom balanced loss function 

achieved validation and testing accuracy of 94% and 84% respectively. A comparison of different 

experiments and techniques is illustrated in Table 2. 
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Table 2. CNN model comparison table. 

Experimen

t 
Dataset 

Genus

/ 

Specie

s 

Class 

Coun

t 

Image

s 

Count 

Augmentatio

n 

Images 

Count 

(Augmented

) 

CNN 

Model 

Epoch

s 

Trainin

g Time 

Validatio

n 

Accuracy 

Test 

accurac

y 

Test 

Accurac

y (Top 3)

1. RHS Genus 39 10k No - 
InceptionV

3 
35 

2h 30 

min 
76% 35% - 

2. RHS Genus 39 10k Yes 30k ResNet50 20 
4h 50 

min 
58% 25% - 

3. 

RHS + 

PlantCLE

F 

Genus 334 46k Yes 220K ResNet50 60 14h 68% 23% - 

4. 

RHS + 

PlantCLE

F + 

iNaturalis

t 

Genus 113 88k Yes 300K 
ResNet-RS-

420 
82 

26h 

15min 
83% 71% 83% 

5. 

RHS + 

PlantCLE

F + 

iNaturalis

t 

Species 53 16k Yes 150K ResNet-50 65 
16h 

25min  
94% 84% 92.5% 

3.3. Experiments using ViT 

In experiment 6, the fine-tuned ViT model trained on ImageNet database with custom SoftMax 

balanced loss function achieved the validation and testing accuracy of 86% and 83% respectively. 

Finally, in experiment 7, the fine-tuned ViT model with SoftMax balanced loss function achieved 

validation and testing accuracy of 96% and 92.5% respectively. The model experiment summary 

table, as illustrated in Table 3, shows the performance of different experiments using ViT performed 

in this research. The top 3 predicted results metric was also used for measuring model performance, 

where images were classified correctly if it were present in the top 3 predicted results. From the 

comparison of results illustrated in Figures 10 and 11, ViT models outperformed CNN based models. 

Table 3. ViT model performance. 

Experime

nt 
Dataset 

Genus/ 

Species 

Class 

Count 

Images 

Count 

Augmen

tation 

Images 

Count 

(Augme

ntation) 

CNN Model 
Epoch

s 

Trainin

g time 

Validatio

n 

Accuracy 

Test 

accurac

y 

Test 

Accurac

y (Top 

3) 

6. 

RHS + 

PlantCLEF + 

iNaturalist 

Genus 113 88k Yes 300K ViT 70 30h 86% 83% 92.5% 

7. 

RHS + 

PlantCLEF + 

iNaturalist 

Species 53 16k Yes 150K ViT 50 17h 96% 92.5% 97.5% 
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Figure 10. Comparison of performance for CNN (blue) and ViT (red) models for classifying genera. 

 

Figure 11. Comparison of performance for CNN (blue) and ViT (red) models for classifying species. 

4. Discussion 

The first part of this research was evaluated by employing fine-tuned CNN models, such as 

InceptionV3, ResNet50, and ResNet-RS-420 for feature extraction followed by a classification task.  

Next, ViT models are used for classifying plants at the genera and species level. By doing the 

comparison between Tables 2 and 3, ViT models performed better compared to CNN-based models 

for the plant’s classification task. Based on the experiment results, it is seen that the correct set of 

augmentation alone or in combination plays an important role in improving the size and quality of 

training data, which helps in improving the classification performance. In terms of performance, the 

testing accuracy of ViT is 83% and 92.5% for classifying plants at genus and species level respectively. 

Proposed ViT models, fine-tuned for plant classification tasks can be an efficient automated plant 

classification since they can achieve significantly better performance than fine-tuned CNN-based 

models. Classifying near or far captured images mentioned in section 2.3 helped in seeing the 

distribution of near and far captured images for each class. During testing with unseen images, plant 

images which were misclassified, most of them were images captured from a far distance. The reason 

behind the misclassification of more images captured from far distance compared to near-captured 

images is the significant difference in image count for near and far-captured images for each class on 

which the CNN model is trained. Another reason for the misclassification of far-captured images is 

the similarity and less variance among different plant classes. Additionally, fine-tuning it with more 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 August 2023                   doi:10.20944/preprints202308.1330.v1

https://doi.org/10.20944/preprints202308.1330.v1


 11 

 

trainable layers might improve the model performance but it increases the training time and is 

computationally more expensive. Feedback approach can be used for the model retraining, as shown 

in Figure 12. Plant images can be captured from the mobile camera using the web/mobile app and 

sent to the plant classification model API. User can provide feedback in the form of comments or 

ratings, based on the top predicted results returned by plants classification API. Top predicted results 

with respective probabilities and API request Id can be stored in databases such as AWS DynamoDB, 

SQL, or any other DB schema. Based on the returned response from API, user can provide feedback 

in the form of comments or ratings which can be used for model retraining and maintenance. API 

response along with user feedback is passed to feedback API where responses are stored and 

analyzed. Retrain the model if needed based on the feedback received from feedback API. 

 

Figure 12. Diagram of model feedback and retraining approach. 

5. Conclusions 

In this work, we conclude that ViT models perform better than CNN-based models and extract 

more information about the features when classifying plants.  We also highlight that augmentation 

plays an important role in enhancing the data quality and making the network more robust and 

generalizable. A Custom CNN-based model has been implemented for classifying near or far-

captured images which helped in inferring that far-captured images are misclassified more compared 

to near ones. The experiments using the custom SoftMax balanced loss function suggested that the 

proposed loss function performed better than the most adopted cross-entropy loss for plant 

classification tasks. In future work, we would like to include more far-captured images, so that we 

have an equal distribution of near and far-captured images and improve the near/far classification 

model with more manually annotated images. We can improve the model performance by handling 

the misclassification for far-captured plant images and making it more generalizable. Proposed 

models and techniques for handling data imbalance can be extended for classifying plants at the 

cultivar level, fruit grading, plant/crop disease classification, quality assessment, flower classification 

and more. The proposed research can also be used and scaled with location attributes, such as device 

location, and country. By considering more features and narrowing down the plants based on 

location attributes, a more robust model with improved performance can be implemented. Based on 

user input provided on different plant categories such as gardening, indoor and outdoor plants, 

category-specific models can be implemented to improve the model performance. Tree-based 

approaches, such as top-down or bottom-up can be implemented for different hierarchical levels, 
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such as family, genus and species based on the use case requirements. Like the near/far distribution 

classification model used in this study, analysis of leaf, stem, or flower distribution can also 

complement the proposed research to improve the model performance. 
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