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Abstract: Infinities and singularities pose a problem in physics and results in the inability to interpret 

equations  in  some  extreme  conditions. Aim of  this paper  is  to  create  a  semi‐structured  complex 

framework  that  treats  infinities  and  singularities  as  evanescent waves  that  can  be manipulated 

algebraically  to produce  logical,  consistent  and  experimentally verifiable  results. The  framework 

utilizes semi‐structured complex numbers (an algebra created to enable division by zero), state space 

modelling  and  a  novel  characteristic wave  function  as  components  to  create  novel  evanescent 

functions that mathematically describe and interpret infinities and singularities in science equations. 

The utility of  the  framework  is demonstrated  in eight use cases drawn  from classical mechanics, 

quantum mechanics and quantum field theory. The framework is robust enough to be used in any 

science where  interpretations are needed  in equations where  infinities and singularities may arise 

during calculations. 

Keywords:  infinities  and  singularities;  semi‐structured  complex  numbers;  evanescent  waves; 

quantum mechanics; quantum field theory 

 

1.0. Introduction 

Infinities and singularities often arise in equations and are seen as a problem in physics. They 

prevent logical, consistent predictions from being made particularly in extreme conditions. Usually 

these infinities and singularities arise because of division by zero, integrating across infinities or in 

logarithmic  functions.  In  physics where  it  is  physically  impossible  to  conduct  experiments  for 

example at the center of a black hole or determining phenomenon at the subatomic scale predictions 

need to be made from equations. However when these equation sealed infinities or singularities this 

means that the equations have reached their predictive limit. Physicists have attempted to solve this 

problem using ad hoc methods. For example in quantum field theory, when trying to calculate the 

transitional amplitude from a group of propagators regularization and renormalization techniques 

are used  to eliminate  infinities  that arise  . However  these methods cannot be applied universally 

across  all  physics.  There  is  no  universally  acceptable  methods  for  dealing  with  infinities  and 

singularities that arise in physics. 

This  paper  aims  to  provide  a  robust  universal  method  for  dealing  with  infinities  and 

singularities that arise in physics by creating a novel framework called the Semi‐structured Complex 

Framework. Creating such a framework would enable predictions to be made particularly in extreme 

situations where  experimental data  is  either unavailable  or very difficult  to obtain. With  such  a 

framework questions like “whatʹs the curvature of space‐time at the center of a non‐rotating black 

hole?” and “whatʹs the period of a simple pendulum if there is 0 gravity” can be answered. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 June 2025 doi:10.20944/preprints202506.0478.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0478.v1
http://creativecommons.org/licenses/by/4.0/


  2  of  28 

 

To construct the semi‐structured complex framework there needs to be an understanding of the 

following concepts: semi‐structured complex numbers, state space modeling, propagation constant 

and evanescent waves. 

1.1. Semi‐Structured Complex Numbers 

Semi‐structured complex numbers are numbers that were created specifically to enable division 

by  zero  in  regular  algebraic  equations.  Semi‐structured  complex  number  set  can  be  defined  as 

follows: 

A  semi‐structured  complex number  is  a  three‐dimensional number  of  the general  form  ℎ ൌ 𝑥 ൅ 𝑦𝑖 ൅
𝑧𝑝; that is, a linear combination of real (1), imaginary (𝑖) and unstructured (𝑝) units whose coefficients 𝑥,𝑦, 𝑧 
are real numbers.  

The number  ℎ  is called semi‐structured complex because it contains a structured complex part 

ሺ𝑥 ൅ 𝑦𝑖ሻ  and an unstructured part  ሺ𝑧𝑝ሻ. Integer powers of  𝑝  yield the following cyclic results: 

𝑝ଵ ൌ
1
0

 𝑝ଶ ൌ െ1 𝑝ଷ ൌ െ𝑝 𝑝ସ ൌ 1 𝑝ହ ൌ
1
0

 𝑝଺ ൌ െ1 𝑝଻ ൌ െ𝑝 ⋯ 

Given  the definition  of  semi‐structured  complex  numbers,  it  can  clearly  be  seen  that  infinity 

(represented by division by zero) is encoded within the number and can be dealt with algebraically. 

Other important characteristics of semi‐structured complex numbers is given in Table 3 in Appendix 1. 

Semi‐structured complex numbers can be seen as vectors  in a 3‐dimensional Euclidean semi‐

structured  complex  space.  This  representation  enables  vector  operations  (such  as  addition,  dot 

product, inner product) to be performed on semi‐structured complex numbers.   

1.2. State Spaces   

In physics, a state space represents all possible states of a system, often visualized as a geometric 

space where each point corresponds to a unique state, and the systemʹs evolution is described by how 

these points move over time.   A classic example of where state space is used to represent a physical 

system  is  in particle  spin. A particle  spin  is  an  intrinsic  angular momentum.    Intrinsic Angular 

Momentum    is a form of angular momentum, but unlike the orbital angular momentum of a rotating 

object,  itʹs  an  intrinsic  property,  meaning  itʹs  a  fundamental  characteristic  of  the  particle,  not 

something it gains from moving around.     

The  spin of a particle can be  represented as a 2‐dimensional Euclidean  state space  in which 

rotations in that space represent different spin states of a particle as shown in Figures 1–4. 

 

Figure 1. On the left ,electron in Original Position and on the right State space representation in Euclidian space. 
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Figure 2. On the left ,electron rotated (in this case intrinsic rotation is represented by physical rotation for easy 

of understanding) and on the right State space representation of rotation in Euclidian space. 

 

Figure 3. Spin up electron becomes spin down after one half of a rotation (or a quarter rotation in Euclidean Space). 

 

Figure 4. After a full turn in actual space the electron has returned to its original position. However in Euclidean 

space the electron has only done through half a turn. For this reason it is called a spin 
ଵ

ଶ
  particle. 

State space representations using Euclidean type grids are often very useful in understanding 

the relationship between states and understanding how one state transitions into another state. This 

is one of the primary methods used in quantum mechanics where different states are represented as 

complex numbers and complex numbers represent rotations in the complex state space plane. This 

enables states to be treated algebraically, adding and subtracting the different components of a state. 

In a similar manner since semi‐structured complex numbers can be used to represent infinities 

and singularities then they can be used to in a semi‐structured complex Euclidean space to represent 

systems  that  are  in  states  that  have  infinities  and  singularities.  This  state  space  representation 

reinforces the fact that such systems can be algebraically dealt with. 

1.3. Propagation Constants and Wave Functions 

Another  essential  tool  needed  to  construct  the  proposed  framework  is what  is  known  as  a 

propagation  constant. Propagation  constants  are  fundamental parameters  that describe how  any 

wave propagates  through a medium. Specifically,  the propagation constant tells you how a wave 

loses or gains strength (attenuates) and changes timing (phase shift) as it travels through a medium 

[5]. The propagation constant is generally written as: 

𝛾 ൌ 𝛼 ൅ 𝑖𝛽 (1) 
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Where: 

β    attenuation constant (in nepers per meter) – represents 

how quickly the signal amplitude decreases. 

α  phase constant (in radians per meter) – represents how 

fast the phase of the wave is changing in space. 

Complex propagation constants are generally used in complex exponential wave functions to 

represent decaying waves. One example of this is given in Equation (2). 

𝜓 ൌ 𝐴𝑒௜ఊ௧ 
ൌ 𝐴𝑒௜ሺఈା௜ఉሻ௧ ൌ 𝐴𝑒௜ఈ௧ିఉ௧ ൌ 𝐴. 𝑒ିఉ௧ . 𝑒௜ఈ௧   (2) 

Where: 

𝜓  wave function 

A  Amplitude of the wave 

t  Time of travel of the wave 

In Equation (2), the term  𝑒ିఉ௧  indicates that the wave is decaying and the term    𝑒௜ఈ௧  indicates 
that whilst  the wave  is decaying  itʹs oscillating.  Such waves  are  called  evanescent  (or decaying) 

waves. Evanescent waves can be represented graphically as shown in Figure 5. In Figure 5 the wave 

decays and loses energy to the surrounding medium in which it propagates.   

 
 

Figure 5. Depiction of evanescent (or decaying) wave. 

The dotted line in Figure 1 is called the envelope of the wave and the decreasing envelope is 

measured using the  𝑒ିఉ௧  term.   

These waves can usually be described as dampened. There are three types of dampening: light 

dampening,  hard  dampening  and  critically  dampened.  The wave  form  of  these  three  types  of 

dampening are shown in Figure 6. 
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Figure 6. Types of Dampening. 

The type of dampening experienced by a wave can easily be interpreted from the propagation 

constant representing  the wave. Table 1  illustrates how  the  form of  the propagation constant can 

indicate the type of dampening being dealt with. In Table 1,  𝑖  is the complex unit. 

Table 1. Type of propagation constants and meaning. 

Damping Type  Equation 

form 

Phase 

Constant 

Attenuation 

Constant   

Description 

Undampened  𝛼  𝛼 ് 0  𝛽 ൌ 0 

The  wave  form  does  not  experience 

damping but oscillates (and propagates) 

with a constant amplitude 

Under‐

dampened 
𝛼 ൅ 𝛽𝑖  𝛼 ് 0  𝛽 ് 0  Waveform oscillates and decays slowly. 

Critically 

Dampened 
𝛽𝑖  𝛼 ൌ 0 

𝛽  has a 

repeated 

root 

Wave form does not oscillate but decays 

very quickly returning to equilibrium as 

quickly as possible without oscillating 

Over‐

dampened 

(hard 

dampening) 

𝛼 ൅ 𝛽𝑖  𝛼 ൌ 0 
𝛽  has two 

distinct root 

Waveform does not oscillate  the system 

has  more  damping  than  critical,  so  it 

returns  to  equilibrium  slowly  and 

without oscillation. 

 
Semi‐structured complex numbers, semi‐structured complex state space, and evanescent waves 

(represented by the propagation constant) are simple tools that can be used to construct a method for 

dealing with singularities and infinities in physics. 

1.4. Major Contributions 

Given  the  importance  of  having  a  logical,  consistent  way  of  dealing  with  infinities  and 

singularities in physics, this paper aims to do the following: 
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Develop a  semi‐structured complex  framework consisting of a 3D Euclidean  semi‐structured complex 

state space, and a characteristic evanescent wave equation as a universal method for resolving infinities and 

singularities that may arise in physics.   

In the process of achieving the aim the paper makes the following major contributions: 

1. Developed and demonstrated the utility of the semi-structured complex framework 

consisting of a 3D Euclidean semi‐structured complex space and a newly defined propagation 

constant. 

2. Developed and demonstrated the utility of a new type of Hamiltonian matrix whose elements 

represent the transition energies of a quantum state to determine the propagation constant of the 

final quantum state. 

3. Use  the  characteristic decay wave  equation  from  this  semi‐structured  complex  framework  to 

develop a new form of the Schrödinger equation that can be used to determine the wave equation 

of a quantum state that can be described by an evanescent wave. The new form of the equation 

is: 

𝑝
𝑑
𝑑𝑡
𝜓ሺ𝑡ሻ ൌ 𝐻𝜓ሺ𝑡ሻ 

(3) 
Where   

𝑝  Unstructured unit 

𝜓ሺ𝑡ሻ  State represented by evanescent waves 

 
4. Resolve  the  singularities  arising  in  quantum  field  theory when  attempting  to  calculate  the 

transition amplitude from propagators created from Feynman diagrams. This is done in a purely 

logical,  consistent,  algebraic  way  without  the  need  for  regularization  and  renormalization 

techniques. 

The  rest of  this paper  is dedicated  to  showing how achieving  the aim  resulted  in  the major 

contributions mentioned. 

2.0. Characterising the Semi‐Structured Complex Framework 

The  semi‐structured  complex  framework  consists of  two parts:  the  semi‐structured  complex 

Euclidean space and the characteristic equation for an evanescent (or decaying) wave. 

2.1. The Semi‐Structured Complex Euclidean Space 

The propagation constant of a decay wave can be represented by a    semi‐structured complex 

number  ℎ ൌ 𝑥 ൅ 𝑦𝑖 ൅ 𝑧𝑝 .  This  semi‐structured  complex  number  can  be  visualized  in  a  semi‐

structured complex Euclidean space as a three component vector  ሺ𝑥,𝑦, 𝑧ሻ, where “𝑥” is the coefficient 
of  the  real part,  “𝑦”  is  the  coefficient of  the  imaginary part  and  “𝑧”  the  coefficient of  the  semi‐

structured part. The purpose of semi‐structured complex Euclidean space  is  to enable evanescent 

waves  to be understood as vectors and  to use vector operations  to  combine or manipulate  these 

waves. 

2.2. Propagation Constant and the Characteristic Evanescent Wave Equation 

For the purposes of this framework a special property is defined for the propagation constant. 

This property is expressed in Equation (4).   

𝛾௣ ൌ 𝛼 ൅ 𝑝𝛽 ≡ 𝛼 െ 𝑝𝛽  (4) 
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First note that the propagation constant is defined using the unstructured unit  𝑝  and not the 
imaginary unit  𝑖. This is to allow infinity to be algebraically represented in the propagation constant. 
Secondly note that the property defined in Equation (4) indicates that the direction of the propagation 

constant  along  the unstructured  axis  (that  is  the axis where p  is  the unit)  is not  important. This 

property suggests that  in the semi‐structured complex  framework state space  𝛼 ൅ 𝑝𝛽  and  𝛼 െ 𝑝𝛽 
represent the same physical state.   

This is not an unusual property and is commonly employed in state space models (for example 

in state space spinor models)    that are commonly used to represent quantum mechanical states.   

One of the most important features of this new propagation equation is that we need to redefine 

what 𝛼  and  𝛽  are. To do this, it is necessary to use a wave equation of the form shown in Equation (5).       

𝜓௣ ൌ 𝐴𝑒ି௣൫ఊ೛௫ିఠ௧൯  
(5) 

This equation  is very similar  to a plane wave equation except  that  the propagation constant 

replaces the plane wave number  𝑘  and  െ𝑝  replaces  𝑖. In classical physics a propagation constant 
can replace the wave number  𝑘  in a plane wave equation. This replacement indicated that the wave 

is travelling in a medium in which some of its energy is lost as it propagates through the medium. In 

such  a  case  the  propagation  constant  becomes  complex. However,  in  this  case  the  propagation 

constant  becomes  semi‐structured  to  indicate  that  evanescence  occurs  during  the  propagation. 

Equation (5) can be converted into a plane wave equation shown in Equation (6).   

𝜓௣ ൌ 𝐴𝑒ି௣൫ఊ೛௫ିఠ௧൯ 

𝜓௣ ൌ 𝐴𝑒௣൫ఠ௧ିఊ೛௫൯  

𝜓௣ ൌ 𝐴𝑒௣ሺఠ௧ିሾఈି௣ఉሿ௫ሻ 

𝜓௣ ൌ 𝐴𝑒௣ሺఠ௧ିఈ௫ା௣ఉ௫ሻ 

𝜓௣ ൌ 𝐴𝑒௣ఠ௧ି௣ఈ௫ିఉ௫ 
𝜓௣ ൌ 𝐴𝑒ିఉ௫𝑒௣ఠ௧ି௣ఈ௫ 

𝜓௣ ൌ 𝐴𝑒ିఉ௫𝑒௣ሺఠ௧ିఈ௫ሻ 

𝜓௣ ൌ 𝑆𝑒௣ሺఠ௧ିఈ௫ሻ 
(6) 

Where  𝑆 ൌ 𝐴𝑒ିఉ௫ 
Clearly,  from  Equation  (6),    𝛽   becomes  the  attenuation  constant.  Equation  (6)  not  only 

adequately describes a wave but also enables singularities and infinities to be represented as a wave 

(through  the unstructured unit  𝑝). Hence  the complete characteristic wave equation  for  the semi‐

structured complex framework is given as     

𝜓௣ ൌ 𝐴𝑒ିఉ௫𝑒௣ሺఠ௧ିఈ௫ሻ 

where  𝛾௣ ൌ 𝛼 ൅ 𝑝𝛽 ≡ 𝛼 െ 𝑝𝛽 (7) 
Table 2 gives a description of the physical systems represented by different values of  𝛼  and  𝛽.   
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Table 2. Type of propagation constants and meaning. 

Damping Type  Equation form  Phase 

Constant 

Attenuation 

Constant   

Description 

Undampened  𝛾௣ ൌ 𝛼  𝛼 ് 0  𝛽 ൌ 0 

The wave form does not experience damping but 

oscillates  (and  propagates)  with  a  constant 

amplitude 

Underdampened  𝛾௣ ൌ 𝛼 ൅ 𝛽𝑝  𝛼 ് 0  𝛽 ് 0  Waveform oscillates and decays slowly. 

Critically 

Dampened 
𝛾௣ ൌ 𝛽𝑝  𝛼 ൌ 0 

𝛽  has a 

repeated root 

Wave  form  does  not  oscillate  but  decays  very 

quickly  returning  to  equilibrium  as  quickly  as 

possible without oscillating 

Overdampened 

(hard dampening) 
𝛾௣ ൌ 𝛽𝑝  𝛼 ൌ 0 

𝛽  has two 

distinct root 

Waveform does not oscillate the system has more 

damping than critical, so it returns to equilibrium 

slowly and without oscillation. 

 
These descriptions will help interpret equations involving infinities and singularities.   

2.3. Procedure to Using the Semi‐Structured Complex Framework 

Consider  a physics  equation with variables  that have values  to be  substituted  into  it.  If  the 

substitutions  involves  one  or more  division  by  zero  operations  then  in  order  to  use  the  semi‐

structured complex framework to resolve the singularities and infinities that may arise the procedure 

shown in Figure 7 must be followed: 

 
 

Figure 7. The procedure for applying the Semi‐structured complex framework. 
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The procedure in Figure 7 along with the characteristic equation from Equation (7) forms the 

semi‐structured complex framework used to resolve infinities and singularities in equations. 

Having established the framework it is necessary to move on to evaluate physics equations that 

may involve division by zero ensure the framework can be used to produce valid interpretations of 

division by zero.   

3. Applications of the Semi‐Structured Complex Framework 

In this section eight cases where division by zero frequently appears  is considered.    how the 

semi‐structured complex framework is used to provide a logical, consistent interpretation of division 

by zero across these eight cases are demonstrated. 

3.1. Applications in Classical Mechanics   

Case 1: The period of a simple pendulum in the absence of gravity 

An experiment conducted by Chinese astronaut Wang Yaping in 2013 during a space lecture on 

board the Shenzou‐10 space mission demonstrated that when a pendulum was released in near zero 

gravity conditions on a space station orbiting earth the pendulum did not swing. This experiment is 

significant because it shows that without gravity the pendulum has no period. Note that the period 

of  the  simple  pendulum  cannot  be  0  since  this  would  imply  that  the  pendulum  swings 

instantaneously which  is not what  the experiment shows. The question  that arises: “how do you 

represent this state in the equation of the period of a simple pendulum?”   

Consider Equation (8), the equation for the period of a simple pendulum. 

𝑇 ൌ 2πඨ
𝑙
𝑔

 (8) 

where 

T  period of the pendulum 

𝑙  Length of the pendulum 

𝑔  acceleration  due  to 

gravity 

Suppose  𝑔 ൌ 0  and this value is placed in Equation (8), then by conventional mathematics, the 

result  would  be  undefined.  However,  with  the  application  of  the  semi‐structured  complex 

framework, this can easily be resolved in a manner that agrees with experimental results. This is done 

as follows:   

𝑇 ൌ 2πඨ
𝑙
𝑔
 

When g = 0, then 

𝑇 ൌ 2πඨ
𝑙
0
ൌ 2π√𝑙 ൈ ඨ

1

0
ൌ 2π√𝑙 ൈ

1

0
 

 

 

 

 

 

 

 

 

(9) 
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Using the semi‐structured complex framework in Figure 7, Replacing 
1

0
  with p (The semi‐

structured  complex  unit.  This  can  be  seen  in  result  2  of  Table  3).  The  new  equation 

becomes: 

𝑇 ൌ 2π√𝑙 ൈ 𝑝 

Replacing 
ଵ

଴
  with  𝑝  in  the equation  implies  that  the period of  the  simple pendulum  is now 

being viewed from the perspective of semi‐structured complex state space; that is,   
𝑇 ൌ 2π√𝑙 ൈ 𝑝 represents an  interpretation of  the  state of  the  simple pendulum. The period of  the 

pendulum is now a propagation constant. Since the  √𝑙  can have two possible values then the period 

only has a  𝛽  value with the  𝛽  value having two distinct roots. Note here that length and the square 

root of length are usually positive, however since we are in semi‐structured complex state space both 

positive and negative values for  √𝑙    are accepted. 
  Therefore  according  to  Table  2,  this  propagation  constant  implies  that  the  period  of  the 

pendulum  in  the absence of gravity  is over dampened. This  implies  that  the pendulum does not 

swing. This agrees with experimental evidence from the Shenzou‐10 space mission. This result also 

implies that the framework  is good  in producing correct experimental results  in at  least this case. 

More  cases  from  classical mechanics need  to be  considered  to determine  the utility of  the  semi‐

structured complex framework. 

Case 2: Resolving singularities in Friedmann’s cosmological equations: 

In the Friedmann equations that describe the expansion of the universe in general relativity, the 

scale factor 𝑎(𝑡) is a function of time that tells us how ʺbigʺ the universe is (or how fast the universe 

is expanding at a given moment in cosmic time t). One simplified form of the Hubble parameter is 

shown in Equation (10) 

𝐻ሺ𝑡ሻ ൌ  
𝑎ᇱሺ𝑡ሻ
𝑎ሺ𝑡ሻ

 
(10) 

 

Where  

𝐻ሺ𝑡ሻ the Hubble parameter at time 𝑡 representing the rate of expansion. 

𝑎ᇱሺ𝑡ሻ the time derivative of the scale factor representing how fast it's 

changing. 

𝑎ሺ𝑡ሻ the scale factor of the universe describing how distances in the universe 

change over time. 

According to conventional physics, at the Big Bang (at  𝑡 ൌ 0),  𝑎ሺ𝑡ሻ → 0. In many models this 

results in the Hubble constant becoming undefined or as some would put it  𝐻ሺ𝑡ሻ → ∞. This suggest 

that at the Big Bang (because of many of the cosmology equations result in division by zero): (1) the 

density and temperature become infinite; (2) the curvature of spacetime diverges; and, (3) time itself 

becomes undefined. This point is called a singularity, a place where the laws of physics break down 

due to division by zero  in the equations. This does not give any predicable results from which to 

draw conclusions.   

Nevertheless, this issue can be resolved using the semi‐structured complex framework proposed 

in this paper. To do this, consider a radiation‐dominated universe, where the scale factor behaves 

like: 
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𝑎ሺ𝑡ሻ ൌ 𝐴𝑡
1

2                                          (where A is some constant) 
(11) 

This implies the following: 

𝑎ሺ𝑡ሻ ൌ 𝐴𝑡
1
2 

This implies:   

𝑎′ሺ𝑡ሻ ൌ
1

2
𝐴𝑡ି

1
2 

Hence: 

𝐻ሺ𝑡ሻ ൌ  
𝑎′ሺ𝑡ሻ

𝑎ሺ𝑡ሻ
ൌ

1
2𝐴𝑡

ି
1
2

𝐴𝑡
1
2

ൌ
1

2𝑡
 

When t = 0, we apply the steps shown in Figure 7 

𝐻ሺ𝑡ሻ ൌ
1

2௧
ൌ

1

2ሺ0ሻ
ൌ
1

0
ൌ 𝑝                        (Replacing 

1

0
 with p (The semi‐structured complex 

unit) 

The new equation becomes: 

𝐻ሺ0ሻ ൌ 𝐻0 ൌ 𝑝  (12) 

This value measures how quickly the universe is expanding per unit distance at the time 

of the Big Bang (that is at  𝑡 ൌ 0).   

 
Result  (10)  is a propagation  constant with  𝛼 ൌ 0  and  𝛽 ൌ 1  (a  repeated  root). According  to 

Table 2, this propagation constant implies that at the time of the Big Bang the Hubble parameter was 

critically dampened. This means  that the Hubble parameter did not vary or oscillate but decayed 

very  quickly  to  a  single  equilibrium  value. This  also  has  implications  for  other  parameters  that 

depend on 𝐻଴.  For example: (1) the age of the universe and (2) distances and redshifts.   

The age of the universe is approximated by Equation (11). 

𝑡௔௚௘ ൎ
1

𝐻0
 

(13) 

Result (10) can be placed in Equation (11) to yield: 

𝑡௔௚௘ ൎ
1

𝑝
ൌ െ𝑝 

(14) 

 

Result 14 is still in semi‐structured complex state space. It is possible to convert it back to physical 

space. Note that െ𝑝 ൌ 0  according to Table 3 in Appendix 1. Hence the age of the universe at the 

point of the Big Bang (that is at time  𝑡 ൌ 0) is given by Result (15).   

𝑡௔௚௘ ൎ െ𝑝 ൌ 0  (15) 

Result (15) makes absolute sense because at time  𝑡 ൌ 0  the universe does not have an age. Result (15) 

simply illustrates that the semi‐structured complex framework can yield logical consistent results. 

In  terms  of  distances  and  redshifts,  the Hubble  parameter  relates  how  far  away  a  galaxy  is 

(distance) to how fast itʹs receding (redshift), via Hubbleʹs Law given in Equation (16).   
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𝑣0 ൌ 𝐻0𝑑  (16) 

Result (10) can be placed in Equation (16) to yield: 

𝑣0 ൌ 𝑑ሺ𝑝ሻ ൌ 𝑑𝑝  (17) 

Result  (17)  is a propagation constant with  𝛼 ൌ 0  and  𝛽 ൌ 𝑑  (a  repeated  root). According  to 
Table 2, this propagation constant implies that at the time of the Big Bang the velocity of receding 

galaxies  𝑣଴  was  critically  dampened.  This means  that  the  velocity  did  not  vary  or  oscillate  but 

decayed very quickly to a single equilibrium value. 

The  results  in  this  case  implies  that  the  semi‐structured  complex  framework  is  capable  of 

handling singularities and infinities that may arise in physics equations in a manner that is logical 

and consistent. This point  towards  that  idea  that physics  is no  longer  limited and does not break 

down in division by zero cases. 

Case 3: Newtons law of Gravitation where r = 0 

The proposed framework can also be used to interpret Newton’s Law of gravitation (shown in 

Equation (18)) at  𝑟 ൌ  0. 

𝐹 ൌ  
𝐺𝑚1𝑚2
𝑟2

 
(18) 

 

Where   

𝐺  Universal Gravitational Constant 

𝑚1,𝑚2  mass of body 1 and mass of body 2 respectively 

𝐹  The resultant gravitational force between body 1 

and body 2 

𝑟  distance between centre of mass of body 1 and 

body 2 

When  𝑟 ൌ  0, Equation (18) evaluates to Result (19). 

𝐹 ൌ  
𝐺𝑚1𝑚2
ሺ0ሻ2

ൌ
𝐺𝑚1𝑚2
0

ൌ 𝐺𝑚1𝑚2𝑝 
(19) 

Result (19) is a propagation constant with  𝛼 ൌ 0  and  𝛽 ൌ 𝐺𝑚ଵ𝑚ଶ  (a repeated root). According 

to Table 2, this propagation constant implies that when the distance between the centre of masses of 

two objects is zero, the resultant gravitational force between the two objects is critically dampened. 

This means that the gravitational force did not vary or oscillate in value but decayed very quickly to 

a single equilibrium value. For example, an object placed at the centre of the earth will experience no 

resultant force and hence will remain stationary. This is a verifiable result.     

Case 4: Curvature at the centre of a non‐rotating black whole.   

The  advantage  of  being  able  to  resolve  singularities  in  such  equations  is  that  one  can 

confidentially resolve singularities (resulting from division by zero) in equations where experimental 

data  is  difficult  or  impossible  to  obtain.  For  example,  consider  the  equation  of  a  non‐rotating 

blackhole shown in Equation (20). 

𝑑𝑠2 ൌ െ  ൬1െ
2𝐺𝑚
𝑟
൰𝑑𝑡2 ൅

1

ቀ1 െ
2𝐺𝑚
𝑟 ቁ

𝑑𝑟2 ൅ 𝑟2𝑑Ω2 

(20) 

 

Where   
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𝐺  Universal Gravitational Constant 

𝑚  mass of black hole 

𝑑𝑠  Interval between two events 

𝑟  distance from the centre of the blackhole 

𝑑Ω  angular interval   

Now according to classical physics the metric exhibits a singularity at the centre of the black hole 

(𝑟 ൌ 0),  indicating  infinite  spacetime  curvature. However  this  is not a good  interpretation of  the 

situation (infinity is not a quantity and having an infinite curvature does not fit well with the infinite 

energy associated with spacetime).   

Nevertheless,  using  the  semi‐structured  complex  framework  a  better  interpretation  of  this 

situation can be obtained. When  𝑟 ൌ  0, Equation (20) evaluates to Result (21). 

𝑑𝑠2 ൌ െ  ൬1െ
2𝐺𝑚
0
൰𝑑𝑡2 ൅

1

ቀ1 െ
2𝐺𝑚
0 ቁ

𝑑𝑟2 ൅ 02𝑑Ω2 

𝑑𝑠2 ൌ െ  ൬1െ 2𝐺𝑚
1

0
൰𝑑𝑡2 ൅

1

ቀ1െ 2𝐺𝑚
1
0ቁ
𝑑𝑟2 ൅ ሺ0ሻ𝑑Ω2 

𝑑𝑠2 ൌ െ ሺ1െ 2𝐺𝑚𝑝ሻ𝑑𝑡2 ൅
1

ሺ1 െ 2𝐺𝑚𝑝ሻ
𝑑𝑟2 ൅ ሺെ𝑝ሻ𝑑Ω2 

𝑑𝑠2 ൌ െ ሺ1െ 2𝐺𝑚𝑝ሻ𝑑𝑡2 ൅
1

ሺ1െ 2𝐺𝑚𝑝ሻ
𝑑𝑟2 ൅െ𝑝𝑑Ω2 

𝑑𝑠2 ൌ െ ሺ1െ 2𝐺𝑚𝑝ሻ𝑑𝑡2 ൅
1

ሺ1 െ 2𝐺𝑚𝑝ሻ
ൈ ൬
1൅ 2𝐺𝑚𝑝
1൅ 2𝐺𝑚𝑝

൰𝑑𝑟2 ൅െ𝑝𝑑Ω2 

𝑑𝑠2 ൌ െ ሺ1െ 2𝐺𝑚𝑝ሻ𝑑𝑡2 ൅
1 ൅ 2𝐺𝑚𝑝
1 ൅ 4𝐺2𝑚2

𝑑𝑟2 ൅െ𝑝𝑑Ω2 

Let  𝜅 ൌ
1

1ା4ீ2௠2
  then: 

𝑑𝑠2 ൌ െ ሺ1െ 2𝐺𝑚𝑝ሻ𝑑𝑡2 ൅ ሺ𝜅 ൅ 2𝐺𝑚𝜅𝑝ሻ 𝑑𝑟2 െ 𝑝𝑑Ω2 

Grouping all real and semi‐structured terms together gives: 

𝑑𝑠2 ൌ ሺെ 𝑑𝑡2 ൅ 𝜅 𝑑𝑟2ሻ ൅ ൫2𝐺𝑚 𝑑𝑡2 ൅ 2𝐺𝑚𝜅 𝑑𝑟2 െ 𝑑Ω2൯𝑝  (21) 

Result  (21)  is  a propagator with  𝛼 ൌ ሺെ 𝑑𝑡ଶ ൅ 𝜅 𝑑𝑟ଶሻ  and  𝛽 ൌ ሺ2𝐺𝑚 𝑑𝑡ଶ ൅ 2𝐺𝑚𝜅 𝑑𝑟ଶ െ 𝑑Ωଶሻ. 
Result (21) is an interesting situation as it implies that the center of a black hole does not universally 

settle onto a single state, but rather whether the center is curved or flat depends on the values that  𝛼 
and  𝛽  take on. For example if  𝛼 ് 0  and  𝛽 ൌ 0  then the center of a non‐rotating black hole would 

not be flat but would be curved with the value of curvature oscillating. However, if  𝛼 ൌ 0  and  𝛽 ്
0  then this implies that the center of the non‐rotating black hole would eventually decay to some flat 

value. 

Case 5: Evaluating the rate constant of a chemical reaction at absolute zero   

The rate constant for a chemical reaction (𝑘) measures how quickly a chemical reaction occurs at 

a given temperature and under certain conditions. The value of K is given by the Arrhenius Equation 

shown in Equation   

𝑘 ൌ 𝐴𝑒ି
ாೌ
ோ் 

(22) 
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Where   

𝑘  the rate constant for a chemical reaction 

𝐴  the  pre‐exponential  factor  (frequency  of 

collisions) 

𝐸௔  the activation energy 

𝑅  the universal gas constant 

T  temperature  (in  Kelvin)  at which  the  reaction 

occurs   

Suppose itʹs needed to determine the rate of reaction at  𝑇 ൌ  0  (absolute zero). This yields the 
following result: 

𝑘 ൌ 𝐴𝑒ି
ாೌ
ோ் 

At  𝑇 ൌ 0  this implies:   

𝑘 ൌ 𝐴𝑒
ି
ாೌ
ோሺ0ሻ ൌ 𝐴𝑒ି

ாೌ
ோ ൈ

1
0 

When  𝑇 ൌ 0, we apply the steps shown in Figure 7. Hence converting 
1

0
ൌ 𝑝: 

𝑘 ൌ 𝐴𝑒
ି
ாೌ
ோሺ0ሻ ൌ 𝐴𝑒ି

ாೌ
ோ ௣ 

According to Table 3 in Appendix 1: 

𝑘 ൌ 𝐴𝑒ି௣
ாೌ
ோ ൌ 𝐴𝑐𝑜𝑠 ൬

𝐸௔
𝑅
൰ െ 𝑝.𝐴𝑠𝑖𝑛 ൬

𝐸௔
𝑅
൰ 

𝑘 ൌ 𝛼 ൅ 𝑝𝛽 

Where  𝛼 ൌ 𝐴. 𝑐𝑜𝑠 ቀ
ாೌ
ோ
ቁ  and  𝛽 ൌ െ𝐴. 𝑠𝑖𝑛 ቀ

ாೌ
ோ
ቁ. 

(23) 

Result (29) is a propagation constant. Its value implies that the sort of dampening that occurs at 

absolute 0 depends on the activation energy  𝐸௔. For example, if the activation energy is 0 then the 

equation becomes  𝑘 ൌ 𝐴. 𝑐𝑜𝑠ሺ0ሻ െ 𝑝. A. 𝑠𝑖𝑛ሺ0ሻ ൌ 𝐴. This implies that at  𝑇 ൌ  0  the reaction it is not 
dampened but would proceed to some constant rate.    If on the other hand  𝐸௔ ൎ 13.06 𝐽/𝑚𝑜𝑙, then 
ாೌ
ோ
ൌ

గ

ଶ
. This  in  turn  implies  that  𝑘 ൌ 𝐴. 𝑐𝑜𝑠 ቀ

గ

ଶ
ቁ െ 𝑝. A. 𝑠𝑖𝑛 ቀ

గ

ଶ
ቁ ൌ െ𝐴𝑝. This would  imply  that  𝑘   is 

critically dampened and the rate of reaction would decrease to zero without oscillating in value. Any 

other value for the activation energy  𝐸௔  at  𝑇 ൌ  0  would imply that the reaction is expected to be 

under‐dampened decreasing in an oscillatory manner to zero value. 
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3.2. Application of Framework in Quantum Mechanics 

Case 6: A Novel Hamiltonian operator for Evanescent Energy transitions   

To show how the semi‐structured complex framework can be applied to quantum mechanics, it 

is necessary to first formalize the semi‐structured complex numbers algebra in the realm of quantum 

mechanics  and  then  show  how  the  proposed  framework  can  be  used  in  this  setting.    This 

formalizing  involves  defining  the  algebra  that will  be  used  in  the  quantum mechanical  setting, 

defining the norm and inner product produced by this algebra and then defining a  𝑝‐Hilbert space, 

where is the unstructured unit. All of this is done in Appendix 3.   

Suppose  there  is a Hamiltonian matrix,  H෡, whose matrix elements represents  the probability 

amplitude  of  transitioning  from  one  quantum  state  to  another under  some  quantum dynamical 

process. Also consider that the transition probability amplitude takes the form of an evanescent wave 

(that is, takes the form of  𝛼 ൅ 𝛽𝑝). The question now stands: “what is the wave function of these two 

quantum states?”. To To answer this question we define the two state quantum system as follows: 

|ψሺtሻൿ ൌ |
ψ
1
ሺtሻ

ψ
2
ሺtሻඁ          such that  ψ௝

ሺtሻ ൌ 𝑎௝ሺtሻ ൅ 𝑖𝑏௝ሺtሻ ൅ 𝑝𝑐௝ሺtሻ 
(24) 

Suppose each state can evanescent (decay) into another and the Hamiltonian matrix are defined as: 

H෡ ൌ ൤
0 1൅ 𝑝

1 െ 𝑝 0
൨ 

(25) 

The off diagonal elements are  transition amplitudes. These  transition amplitudes are written 

with semi‐structured complex numbers implying that they are evanescence amplitudes. Assuming 

that  these  two quantum  states  follow  the  time evolution of  the Schrödinger Equation and  is  still 

governed by the expression in Equation (26), 

𝑖
𝑑
𝑑𝑡

|ψሺtሻൿ ൌ H෡ |ψሺtሻൿ 
(26) 

the Schrodinger Equation now becomes: 

𝑖
𝑑
𝑑𝑡
ቈ
ψ
1
ሺtሻ

ψ
2
ሺtሻ቉ ൌ ൤

0 1൅ 𝑝
1 െ 𝑝 0

൨ ቈ
ψ
1
ሺtሻ

ψ
2
ሺtሻ቉  (27) 

Solving this will involve handling the real, imaginary, and unstructured terms explicitly. The 

solution  to Equation  (27)  is  give  in Result  (35). The working  to  arrive  at Result  (35)  is  given  in 

Appendix 3. 

ψ
1
ሺtሻ ൌ 𝑎ሺ𝑡ሻ ൅ 𝑏ሺ𝑡ሻ. 𝑖 െ  𝑐ሺ𝑡ሻ𝑝  

ψ
2
ሺtሻ ൌ 𝑑ሺ𝑡ሻ ൅ 𝑒ሺ𝑡ሻ. 𝑖 െ  𝑓ሺ𝑡ሻ𝑝  (28) 

 

Where   

𝑎ሺ𝑡ሻ, 𝑏ሺ𝑡ሻ, 𝑐ሺ𝑡ሻ 
Time varying variables 

𝑑ሺ𝑡ሻ, 𝑒ሺ𝑡ሻ, 𝑓ሺ𝑡ሻ 

In Result (35), 

𝑎ሺ𝑡ሻ ൌ
1

√2
ൣ𝐸𝑐𝑜𝑠൫𝑡√2൯ െ 𝐷𝑠𝑖𝑛൫𝑡√2൯൧  𝑑ሺ𝑡ሻ ൌ

√2
2
ൣ𝐵𝑐𝑜𝑠൫𝑡√2൯ ൅ 𝐶𝑠𝑖𝑛ሺ𝑡√2ሻ൧ 

 

𝑏ሺ𝑡ሻ ൌ 𝐵𝑐𝑜𝑠൫𝑡√2൯ ൅ 𝐶𝑠𝑖𝑛ሺ𝑡√2ሻ  𝑒ሺ𝑡ሻ ൌ 𝐷𝑐𝑜𝑠൫𝑡√2൯ ൅ 𝐸𝑠𝑖𝑛ሺ𝑡√2ሻ   

𝑐ሺ𝑡ሻ ൌ
1

√2
ൣ𝐸𝑐𝑜𝑠൫𝑡√2൯ െ 𝐷𝑠𝑖𝑛൫𝑡√2൯൧  𝑓ሺ𝑡ሻ ൌ

1

√2
ൣ𝐶𝑐𝑜𝑠൫𝑡√2൯ െ 𝐵𝑠𝑖𝑛൫𝑡√2൯൧ 

(29) 

where  𝐵,𝐶,𝐷,𝐸  are constants. 
Clearly from Result (35),  ψଵሺtሻ  and  ψଶሺtሻ  are semi‐structured complex wave functions. These 

waves have a complex phase part (the first two terms of the wave function) and an unstructured part 

(the last term of the wave function). This will enable the tracking of component, potentially modelling 
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ʺsingularʺ parts of the wavefunction that correspond to infinite energy, vacuum bubbles, or divergent 

regions. 

Case 7: Characterizing Novel Schrödinger Equation for Evanescent waves   

Rather than just defining a new Hamiltonian matrix, an extra step can be taken to define a whole 

new  Schrödinger  equation  for  quantum  systems  that  exhibit  divergent  behavior.  Using  the 

characteristic equation Equation (6), a new Schrodinger equation can be developed to find the wave 

function of quantum system that may contain singularities and infinities. The new time‐dependent 

Schrodinger equation is given in Equation (30). 

𝑝
𝑑
𝑑𝑡

|ψ
௣
ሺtሻ඀ ൌ H |ψ

௣
ሺtሻ඀ 

(30) 

The derivation of this equation is given in Appendix 4. ψ௣ሺtሻ  is the wave function that defines 

some quantum state that contains a singularity or Infinity. Equation (30) is different from Equation 

(26) in that it does not assume that the resulting wave has an imaginary part.   

An example of how this equation is used is given below: 

Consider the time‐independent Schrödinger equation in one dimension for a particle of mass m 

in the potential: 

𝑉ሺ𝑥ሻ ൌ
𝜎
𝑥
 

with  𝜎 ൐ 0 ,  and  𝑥 ∈ ሺ0,∞ሻ .  This  potential  has  a  singularity  at  𝑥 ൌ 0 .  The  aim  is  to  find  the 

behaviour of solutions at the singularity and discuss under what conditions bound states exist. 

Step 1: Schrödinger Equation 

െ
ℎ2

2𝑚
𝑑2𝜓ሺ𝑥ሻ
𝑑𝑥2

െ
𝜎
𝑥
𝜓ሺ𝑥ሻ ൌ 𝐸𝜓ሺ𝑥ሻ 

Rewriting: 

𝑑2𝜓ሺ𝑥ሻ
𝑑𝑥2

൅
2𝑚
ℎ2

ቀ𝐸 ൅
𝜎
𝑥
ቁ𝜓ሺ𝑥ሻ ൌ 0 

Let  𝑟2 ൌ
2௠ா

௛2
  and  𝑗 ൌ

2௠ఙ

௛2
. This gives: 

 

𝜓′′ሺ𝑥ሻ ൅ ൬𝑟2 ൅ 𝑗
1

𝑥
൰𝜓ሺ𝑥ሻ ൌ 0 

 

Step 2: Let us assume a solution 𝜓ሺ𝑥ሻ ൌ 𝑒௦, where s is time value semi‐structured value. This 

means that: 

 

𝜓ሺ𝑥ሻ ൌ 𝑒௦ 

𝜓′′ሺ𝑥ሻ ൌ ሺ𝑠ሻሺ𝑠ሻ𝑒௦ ൌ 𝑠2𝑒௦ 

 

Substitute into the equation: 

𝑠2𝑒௦ ൅ ൬𝑟2 ൅ 𝑗
1

𝑥
൰ 𝑒௦ ൌ 0 
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Dividing by  𝑒௦implies: 

𝑠2 ൅ ൬𝑟2 ൅ 𝑗
1

𝑥
൰ ൌ 0 

Now at  𝑥 ൌ  0, 

𝑠2 ൅ ൬𝑟2 ൅ 𝑗
1

0
൰ ൌ 0 

𝑠2 ൅ ሺ𝑟2 ൅ 𝑗.𝑝ሻ ൌ 0 

Let  𝐴 ൌ ሺ𝑟2 ൅ 𝑝𝑗ሻ. Hence A is a semi‐structured complex number so that: 

𝑠2 ൅ 𝐴 ൌ 0 

 

Solving the quadratic equation gives: 

𝑠 ൌ  േ√െ𝐴 ൌ േ𝑝√𝐴 

Hence the wave function becomes: 

𝜓ሺ𝑥ሻ ൌ 𝑒௣√஺                or                       𝜓ሺ𝑥ሻ ൌ 𝑒ି௣√஺ 

 

These wave  functions are evanescent wave  functions  that  is capable of providing  interpretable 

results at  𝑥 ൌ 0. 

From  the  example,  the  singularity  that  arises  for  the  potential  𝑉ሺ𝑥ሻ ൌ
ఙ

௫
  at  𝑥 ൌ 0   is 

structurally dealt with in a manner that would enable proper interpretation of the wave equation at 

the  point  of  singularity.  The  final  result  is  an  interpretable  evanescent  wave  with  a  real  and 

unstructured part. Therefore we know that the wave function decays at the point of singularity. Note 

that the type of decay would depend on the values of  𝑟  and  𝑗  in the equation for  𝐴. 

3.3. Application of Framework in Quantum Field Theory 

Case 8: Understanding semi‐structured Complex Evanescent Probabilities 

In quantum field theory singularities usually arise in Feynman diagrams where regularization 

and  renormalization have  to be used  to  resolve  these. Whilst  these  techniques do provide  some 

solutions  these methods are sometimes seen as ad hoc. Nevertheless  the semi‐structured complex 

framework  can be used  to  resolve  these  singularities  in  a manner  that  is  structured,  logical  and 

consistent.   

Feynman diagrams are used to calculate the probabilities for relativistic scattering processes. To 

do so the Lorentz‐invariant scattering amplitude ℳ௙௜  needs to be calculated. ℳ௙௜  is the probability 

scattering amplitude which  represents moving  from an  initial state  𝜓௜   containing some particles 

with well‐defined momenta to a final state  𝜓௙  containing (often different) particles also with well‐

defined momenta.   

Consider the one‐loop scattering diagram shown in Figure 8. Each line or loop represents the 

momentum of a particle. Read from  left to right, two particles  intersect (two  line meet at the first 

vertex with each line representing the momentum of the particles) and scatter to produce two new 

particles on the right (represented by two lines that diverge on the right). Each line and vertex in the 

diagram  is  given  a  special  name  and  has  associated  with  it  a  special  equation.  The  rules  for 

interpreting Feynman diagrams and converting them into equations that can be used to calculate the 

scattering  amplitude of  the diagram  is given  in  reference. For  the  above diagram,  the  scattering 

amplitude is given as: 

ℳ௙௜ ൌ 𝑖 ቀ
𝑔

2𝜋
ቁ
ସ 1
ሾሺ𝑝ଵ െ 𝑝ଷሻଶ െ 𝑚஼

ଶ𝑐ଶሿሾሺሺ𝑝ଶ െ 𝑝ସሻଶ െ 𝑚஼
ଶ𝑐ଶሻሿ

න
1

ሾሺ𝑝ଵ െ 𝑝ଷ െ 𝑞ଷሻଶ െ 𝑚஺
ଶ𝑐ଶሿሾ𝑞ଷ

ଶ െ 𝑚஻
ଶ𝑐ଶሿ

𝑑ସ𝑞ଷ 
(31) 
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Where:   

ℳ௙௜ 

Scattering transition amplitude. This represents the probability amplitude for a 

quantum particle (like an electron or a photon) to scatter from an initial state 𝑖 to 

a final state 𝑓. It’s the core quantity calculated from the Feynman diagram using 

the Feynman rules of a given quantum field theory. 

𝑝1,𝑝2,𝑝3,𝑝4 

Momenta  (𝑝1,𝑝2 )  of  incoming  particles  (1  and  2  respectively)  and Momenta 

(𝑝3,𝑝4) of outgoing particles (3 and 4 respectively). These typically represent the 

4‐momenta (energy + 3‐momentum) of the particles involved in the interaction. 

𝑔 

Coupling constant. This often denotes the interaction strength in the theory. For 

example  in QED (Quantum Electrodynamics),  𝑔 ൌ  𝑒  (the electric charge) and 

in QCD (Quantum Chromodynamics) 𝑔 is the strong coupling constant 

𝑐  Typically speed of light, often set to 1 in natural units 

𝑚஺,𝑚஻,𝑚஼  Rest masses of the particles involved. 

 

 
 

Figure 8. One‐loop scattering diagram. 

The  integral  in  Equation  (31)  itʹs  not  easy  to  calculate.  Ordinarily  this  integral  would  be 

considered infinite and regularization and renormalization techniques would be required to solve it. 

However with the semi‐structured complex framework developed in this paper the solution is not 

infinite. The usual first step is to write the four dimensional volume element as:   

𝑑4𝑞 ൌ 𝑞3𝑑𝑞𝑑Ω  (32) 

(where  𝑑Ω  is the angular part). At large  𝑞  the integrand is essentially had the form 
1

௤4
, the so the  𝑞 

integral has the form: 

ℳ௙௜ ൌ 𝑖𝐴න
1

𝑞4
ൈ 𝑞3𝑑𝑞𝑑Ω ൌ 𝑖𝐴න

1

𝑞
𝑑𝑞𝑑Ω

∞

0

 
(33) 

Where  𝐴 ൌ ቀ
௚

ଶగ
ቁ
ସ ଵ

ൣሺ௣భି௣యሻమି௠಴
మ௖మ൧ൣ൫ሺ௣మି௣రሻమି௠಴

మ௖మ൯൧
 

Solving Equation (33) using the semi‐structured complex framework developed  in this paper 

gives:   

  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 June 2025 doi:10.20944/preprints202506.0478.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0478.v1
http://creativecommons.org/licenses/by/4.0/


  19  of  28 

 

ℳ௙௜ ൌ 𝑖𝐴න
1

𝑞
𝑑𝑞𝑑Ω

∞

0

 

ℳ௙௜ ൌ 𝑖𝐴ሾln ሺ𝑞ሻሿ0
∞ ൌ 𝑖𝐴ሾlnሺ∞ሻ െ ln ሺ0ሻሿ 

Let  ∞ ൌ
1

0
ൌ 𝑝  and  0 ൌ െ𝑝. This implies 

ℳ௙௜ ൌ 𝑖𝐴ሾlnሺ∞ሻ െ ln ሺ0ሻሿ 

ℳ௙௜ ൌ 𝑖𝐴ሾlnሺ𝑝ሻ െ ln ሺെ𝑝ሻሿ 

According to the results from Table 3 (Appendix 1):  lnሺ𝑝ሻ ൌ 𝑝 ቀ
గ

2
൅ 2𝜋𝑛ቁ  and  lnሺെ𝑝ሻ ൌ lnሺ𝑝3ሻ 

ℳ௙௜ ൌ 𝑖𝐴 ቂ𝑝 ቀ
𝜋
2
൅ 2𝜋𝑛ቁ— 3𝑝 ቀ

𝜋
2
൅ 2𝜋𝑛ቁቃ 

ℳ௙௜ ൌ 𝑖𝐴 ቂ𝑝 ቀ
𝜋
2
൅ 2𝜋𝑛ቁ— 3𝑝 ቀ

𝜋
2
൅ 2𝜋𝑘ቁቃ 

Where  𝑛 and  𝑘  are integer values. Hence: 

ℳ௙௜ ൌ 𝑖𝐴 ቂെ2𝑝 ቀ
𝜋
2
൅ 2𝜋𝑛ቁቃ 

ℳ௙௜ ൌ 𝑝 ቂെ2𝑖𝐴 ቀ
𝜋
2
൅ 2𝜋𝑛ቁቃ 

This final result represents the probability associate with the scattering diagram shown in Figure 

8. At first glance this probability appears strange because it suggests that you have an evanescent 

wave that is also complex. However this can easily be resolved. Usually the coupling constant that 

is used in the interpretation of the filament diagram involves an imaginary unit 𝑖. However, if we 

redefine  the coupling constant and  replace  𝑖  with  𝑝  (since  the powers of  𝑝  and  𝑖  behave  the 

same algebraically),  then  the meaning of  the equation becomes much more clear. The equation 

becomes: 

ℳ௙௜ ൌ 𝑝 ቂെ2ሺ𝑝ሻ𝐴 ቀ
𝜋
2
൅ 2𝜋𝑛ቁቃ ൌ ሺ𝑝 ൈ 𝑝ሻ ቂെ2𝐴 ቀ

𝜋
2
൅ 2𝜋𝑛ቁቃ 

ℳ௙௜ ൌ െ ቂെ2𝐴 ቀ
𝜋
2
൅ 2𝜋𝑛ቁቃ ൌ ሺ𝐴𝜋 ൅ 4𝐴𝜋𝑛ሻ 

ℳ௙௜ ൌ 𝐴𝜋ሺ1൅ 4𝑛ሻ  (34) 

 

All  that  is  left  at  this  point  is  to  choose  an  appropriate  value  of N  that would  agree with 

experimental results. 

Equation (41) suggests that the final form of the scattering amplitude ℳ௙௜  depends on the value 

of  𝑛. First it can clearly be seen that no decay occurs irrespective of the value of  𝑛. It is also clear from 
the form of the scattering amplitude ℳ௙௜  that the value goes to a constant value.   

The above example shows how easy it is to use semi‐structured complex framework to calculate 

the scattering amplitude associated with Feynman diagram. There is no need for regularization or 

renormalization. Moreover the algebraic nature of the solution makes it logical consistent and treats 

infinity in a very structured manner. 
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4. Discussion 

This paper presented 8 cases where division by zero can easily be interpreted using a novel semi‐

structured space state space  framework.  Itʹs  important to note  that  in all 5 cases, division by zero 

resulted in an equation that was interpreted as a propagation constant in semi‐structured complex 

state space framework. This is highly important because it now provides a logical consistent way of 

interpreting  physics  equations  that  involve  division  by  zero.  This  is  especially  useful  where 

experimental data is unavailable but where predictions need to be made. The use of a semi‐structured 

complex framework is not only useful in physics but can be useful in other sciences such as chemistry 

computer science and engineering. 

In classical mechanics when division by zero occurred the equation was converted into semi‐

structured  complex  format  by  simply  changing  the  division  by  zero  into  its  semi‐structured 

representation  𝑝. This immediately meant that the equation was not viewed from the perspective of 

semi‐structured complex state space. This in turn gave way for the equation to be interpreted using 

the semi‐structured complex framework developed in this paper. The interpretations were tied into 

known experimental results. This paved the way proving using a few cases that the framework is 

useful in helping interpret division by zero. 

One very  important point to keep  in mind  is that the  idea of division by zero  is theorized to 

indicate that a variable is dampened to some constant value. In classical mathematics division by zero 

indicates variables that explode to infinity. However in practical physics such variables do not exist. 

The reason for this is simple; isolated systems do not have an infinite amount of energy. Therefore, if 

a variable appears  to go  to  infinity,  then, at some point  the energy  that  it  (or other variables  that 

depend on  it)  is using to go to  infinity will become exhausted and so eventually the variable will 

return to some finite value. It is from the perspective of a finite amount of energy in isolated systems 

that the whole idea of division by zero representing evanescent (or decaying) waves makes sense. 

From  the  classical  setting,  the  paper moved  on  to  look  at  the  framework  in  the  quantum 

mechanical setting. With quantum mechanics we looked at defining a new type of Hamiltonian for 

interrupting quantum states in which the off diagonal entries of the Hamiltonian matrix represented 

transition  amplitudes  from  one  state  to  another.  However  these  transition  amplitudes  were 

represented as semi‐structured complex numbers. This indicated that these quantum states contained 

divergences that would affect the transition amplitudes. The Schrodinger equation was used with 

this new  form of  the Hamiltonian  to reveal  that  the waves that satisfy this equation have a semi‐

structured complex representation. This representation was interpreted to mean that the wave has 

both a complex oscillatory part and an unstructured part. These sort of quantum mechanical waves 

can provide a new opportunity for physicists to explore and experiment with features in quantum 

mechanics that would not normally be considered because of infinities or singularities that may arise 

during calculations. Semi‐structured complex numbers as an extended number system could provide 

a novel  framework  for  encoding  singularities or  infinities  in probability  amplitudes  in  a  logical, 

consistent algebraic structure. 

The paper also considered a new type of Schrodinger equation that can be used to calculate semi‐

structured complex quantum waves which can be used to represent wave forms that have both an 

oscillatory  complex  nature  and  a  divergent  nature.  This  is  significant  because  it  does  permit 

evanescent waves and evanescent probabilities to be calculated within quantum mechanics. 

Finally the paper examined the use of the semi‐structured complex framework in the quantum 

field theory realm. Specifically, the paper examined how probabilities can be determined for one loop 

Feynman diagrams in cases where singularities and infinities normally arise. The paper considered 

dealing  with  these  infinities  without  using  standard  ad  hoc  regularization  techniques.  This  is 

significant because  it greatly simplifies calculations associated with  the Feynman diagrams and  it 

also justifies the results obtained from Feynman diagrams using logical algebraic calculations. It is 

also  significant  because  this means  that  the  semi‐structured  complex  framework  can  be used  to 

analyse infinities and singularities in other branches of physics including other aspects of quantum 

field theory, string theory, and electro‐chromodynamics.   
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Conclusion 

This  paper  examined  how  infinities  and  singularities  can  be  dealt with  using  a  new  semi‐

structured  complex  framework.  The  framework  utilizes  semi‐structured  complex  numbers  (an 

algebra created to enable division by zero), state space modelling and the characteristic wave function 

as components to mathematically interpret infinities and singularities. The semi‐structured complex 

framework  that  treats  infinities  and  singularities  as  evanescent waves  that  can  be manipulated 

algebraically to result in logical, consistent and experimentally verifiable results. The utility of the 

framework is demonstrated in classical mechanics, quantum mechanics and quantum field theory. 

The  framework  was  used  to  develop  a  new  type  of  Hamiltonian matrix  whose  elements 

represent the energies of a quantum states that are described by evanescent waves. The paper then 

moved on to use the characteristic wave equation from this semi‐structured complex framework to 

develop a new form of the Schrödinger equation that can be used to determine the state 𝜓ሺ𝑡ሻ where 

𝜓ሺ𝑡ሻ represents a quantum state  that can be described by an evanescent wave. Finally,  the paper 

demonstrated how to resolve the singularities arising in quantum field theory when attempting to 

calculate the scattering amplitude from propagators created in Feynman diagrams. 

The work  in  this paper points  to  the  fact  that  semi‐structured  complex  numbers  if utilized 

properly can be used to create and interpret very important results in different areas of physics. The 

robustness of the framework used in this paper also points to the fact that it can be used in other 

branches of science where singularities and infinities appear in mathematical equations as a result of 

division by zero.   

Appendix 1. Important Results from Semi‐Structured Complex Number Research 

Table 3. Major results from paper. 

Resul

t 1 

Semi‐structured complex number set can be defined as follows: 

A semi‐structured complex number is a three‐dimensional number of the general 

form ℎ ൌ 𝑥 ൅ 𝑦𝑖 ൅ 𝑧𝑝; that is, a linear combination of real (1), imaginary (𝑖) and 

unstructured (𝑝) units whose coefficients 𝑥,𝑦, 𝑧  are real numbers.   

The number  ℎ  is called semi‐structured complex because it contains a structured complex 

part  ሺ𝑥 ൅ 𝑦𝑖ሻ  and an unstructured part  ሺ𝑧𝑝ሻ. 

Resul

t 2 

The unstructured number  𝑝 was redefined as:   

𝑝௡ ൌ
√2ൈ 𝑐𝑜𝑠 ቀ

𝜋
2 𝑛 െ

𝜋
4ቁ

𝑓௡ሺ1ሻ
  (35) 

where  𝑓௡ሺ𝑐ሻ  is a composite function such that  𝑓ሺ𝑐ሻ ൌ 1 െ 𝑐. 

Integer powers of  𝑝  yield the following cyclic results: 

𝑝1 ൌ
1

0
  𝑝2 ൌ െ1  𝑝3 ൌ െ𝑝  𝑝4 ൌ 1  𝑝5 ൌ

1

0
  𝑝6 ൌ െ1  𝑝7 ൌ െ𝑝  ⋯ 

 

Resul

t 3 

𝑝  does not belong to the set of complex numbers  ℂ (that is,  𝑝 ∉ ℂ), but belongs to a higher 

order number set ℍ  called the set of semi‐structured complex numbers such that the set 

of complex numbers is a subset of ℍ  (that is,  ℂ ⊂ ℍ). 

Resul

t 4 

The field of semi‐structured complex numbers was defined, and proof was given that this 

field obeys the field axioms. This implies (1) the number set can easily be used in everyday 

algebraic expressions and can be used to solve algebraic problems, (2) the number set can 
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be used to form more complicated structures such as vector spaces and hence solve more 

complex problems that may involve “division by zero”. 

Resul

t 5 

Semi‐structured complex number set ℍ  does not form an ordered field. For the objects in 

a field to have an order, operations such as greater than or  less than can be applied to 

these  objects. This  is  because  in  an  ordered  field  the  square  of  any non‐zero number 

is greater than 0; this is not the case with semi‐structured complex numbers. 

Resul

t 6 

Semi‐structured  complex  numbers  can  be  represented  by  points  in  a  3‐dimensional 

Euclidean  𝑥𝑦𝑧‐space. The xyz‐space consist of three perpendicular axes: the real  𝑥‐axis, 

the imaginary y‐axis, and the unstructured  𝑧‐axis. These axes form three perpendicular 

planes: the real‐imaginary  𝑥𝑦‐plane, the real‐unstructured  𝑥𝑧‐plane, and the imaginary‐

unstructured  𝑦𝑧‐plane. 

Resul

t 7 

The unit  𝑝 was used to find a viable solution to the logarithm of zero. The logarithm of 

zero was found to be: 

log 0 ൌ െ𝑝 ቀ
𝜋
2
൅ 2𝑘𝜋ቁ  (36) 

where k is some integer value. 

Resul

t 8 
The  new definition  of  𝑝   provided  an  unambiguous understanding  that 

0

0
ൌ 𝑛   simply 

represents    90°  clockwise rotation of the vector  𝑛𝑝  from the positive unstructured z‐axis 

to  𝑛  on the positive real x‐axis along the real‐unstructured  𝑥𝑧‐plane. Note that  𝑛  is any 

real number. 

Resul

t 9 

Semi‐structured complex numbers have both a 3D and 4D representation in the form: 

ℎ ൌ  𝑥 ൅ 𝑦𝑖 ൅ 𝑧𝑝 

 

(3D form) 

ℎ ൌ  𝐴 ൅ 𝐵𝑖 ൅ 𝐶𝑝 ൅ 𝐷𝑖𝑝 

 

(4D form) 

Where:    𝑥,𝑦, 𝑧,𝐴,𝐵,𝐶,𝐷   are  real  numbered  scalars  and  𝑖,𝑝   are  semi‐structured  basis 

units. 

Resul

t 10 

Two new Euler formulas were developed.   

 

Plane  Euler formula 

Real imaginary  𝑥𝑦‐plane  𝑒௜ఏ ൌ cos𝜃 ൅ 𝑖 sin𝜃 

Real unstructured  𝑥𝑧‐plane  𝑒௣ఏ ൌ cos𝜃 ൅ 𝑝 sin𝜃 

Imaginary unstructured  𝑦𝑧‐plane  𝑒ି௜௣ఏ ൌ cosh𝜃 െ 𝑖𝑝 sinh𝜃 

 

When  combined with  the  original  Euler  formula  describes  the  relationship  between 

trigonometric,  hyperbolic,  and  exponential  functions  for  the  entire  semi‐structured 

complex Euclidean  𝑥𝑦𝑧‐space. 
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Resul

t 11 

Semi‐structured complex numbers can be used to resolve singularities that may arise in 

engineering and science equations  (because of division by zero)  to develop reasonable 

conclusions in the absence of experimental data. 

Resul

t 12 

From Result  10  semi‐structured  complex numbers  can present  in  four  forms  as given 

below: 

 

Semi‐structured complex number along  Number 

Real‐imaginary  𝑥𝑦‐plane  ℎ௫௬ ൌ 𝑥 ൅ 𝑖𝑦 

Real‐unstructured  𝑥𝑧‐plane  ℎ௫௭ ൌ 𝑥 ൅ 𝑝𝑧 

Imaginary‐unstructured  𝑦𝑧‐plane  ℎ௬௭ ൌ 𝑖𝑦 ൅ 𝑝𝑧 

𝑥𝑦𝑧‐space  ℎ ൌ 𝑥 ൅ 𝑖𝑦 ൅ 𝑝𝑧 

   

Resul

t 13 

The zeroth root of a number h can be found using the equation 

√ℎ
0

ൌ  ℎ௣ ൌ  𝑒௣ ln௛ ൌ cosሺlnℎሻ ൅ 𝑝 sinሺlnℎሻ 

Resul

t 14 

Since  𝑝1 ൌ
1

0
  this implies that 

1

௣
ൌ 0 which further implies that  െp ൌ 0 

Resul

t 15 

Any  real  number with  the  semi‐structured  unit  𝑝   attached  to  it  is  not  a  physically 

measurable quantity. That is,  𝑘𝑝 where  𝑘  is a real number is not physically measurable 

(however,  𝑘  can be calculated given enough information) 

Resul

t 16 

If  𝑎   and  𝑏  measure  different  (but  quantitatively  related)  aspects  of  the  same  object, 

where  𝑎  is physically measurable but  𝑏  is not, then  𝑎 and  𝑏  can be combined into one 

equation in the form  𝑎 ൅ 𝑏𝑝 

Appendix 2. Characterizing Semi‐Structured Complex Number Algebra for 

Quantum Mechanics 

Step 1: Define Algebra 

A real 3D algebra P with basis elements  ሼ1, 𝑖, 𝑝̅ሽ  can be defined as shown in Table 4: 

Table 4. Properties of P‐algebra. 

𝑖2 ൌ െ1  𝑝̅4 ൌ 1 

𝑝̅2 ൌ െ1  𝑖𝑝 ൌ 𝑝𝑖 

𝑝̅3 ൌ െ𝑝  Conjugation:  𝑎 ൅ 𝑏𝚤 ൅ 𝑐𝑝̅തതതതതതതതതതതതതതത ൌ 𝑎 െ 𝑏𝑖 െ 𝑐𝑝̅ 

From Table 4 the algebra is associative, commutative with respect to  𝑖 and  𝑝, and has a well‐

defined conjugation operation. 

Step 2: Define Norm and Inner Product 

To begin, suppose a wavefunction is given by 𝜓 ൌ 𝑎 ൅ 𝑏𝑖 ൅ 𝑐𝑝. Then the norm can be defined 
as:   

‖𝜓‖2 ൌ 𝜓𝜓ത ൌ ሺ𝑎 ൅ 𝑏𝑖 ൅ 𝑐𝑝ሻሺ𝑎 െ 𝑏𝑖 െ 𝑐𝑝ሻ 

ൌ 𝑎2 ൅ 𝑏2 ൅ 𝑐2 ൅ 𝑎𝑏𝑖 െ 𝑎𝑏𝑖 ൅ 𝑎𝑐𝑝 െ 𝑎𝑐𝑝 ൅ 𝑏𝑐𝑖𝑝 െ 𝑏𝑐𝑖𝑝 ൌ 𝑎2 ൅ 𝑏2 ൅ 𝑐2 

‖𝜓‖2 ൌ 𝜓𝜓ത ൌ 𝑎2 ൅ 𝑏2 ൅ 𝑐2                      ∈ 𝑅ା  (37) 
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Step 3: Define  𝒑ഥ‐Hilbert Space 
A state is a vector  |ψ⟩ ∈ P୬  with components  𝜓 ൌ 𝑎 ൅ 𝑏𝑖 ൅ 𝑐𝑝. An inner product is defined as:   

⟨𝜙|𝜓⟩ ൌ 𝜙ത𝜓 ∈ 𝑅  (38) 

The unitary operator U on this space is such that: 

⟨𝑈𝜙|𝑈𝜓⟩ ൌ ⟨𝜙|𝜓⟩  (39) 

Note:    unitary operator is a linear operator that preserves the inner product (dot product) and 

norm (length) of vectors.    The Observable 𝑂෠   on this space is such that: 

ൻ𝜓ห𝑂෠𝜓ൿ ∈ 𝑅  (40) 

An observable  is a physical property of a system that can be measured. These properties are 

represented mathematically by operators that act on the quantum state of the system. 

Appendix 3. Solving Schrodinger Equation Involving Semi‐Structured Complex 

Hamiltonian Matrix   

Consider the system of Equations 

𝑖
𝑑
𝑑𝑡
ቈ
ψ
1
ሺtሻ

ψ
2
ሺtሻ቉ ൌ ൤

0 1൅ 𝑝
1 െ 𝑝 0

൨ ቈ
ψ
1
ሺtሻ

ψ
2
ሺtሻ቉  (41) 

This can be broken up into 

𝑖
𝑑
𝑑𝑡
ψ
1
ൌ ሺ1൅ 𝑝ሻψ

2
 

𝑖
𝑑
𝑑𝑡
ψ
2
ൌ ሺ1െ 𝑝ሻψ

1
 

(42) 

 

  (43) 

Solving Equation (42) gives 

𝑖
𝑑
𝑑𝑡
ψ
1
ൌ ሺ1 ൅ 𝑝ሻψ

2
 

𝑖
𝑑
𝑑𝑡
ሺ𝑎 ൅ 𝑏𝑖 ൅ 𝑐𝑝ሻ ൌ ሺ1൅ 𝑝ሻሺ𝑑 ൅ 𝑒𝑖 ൅ 𝑓𝑝ሻ 

𝑖𝑎ሶ െ 𝑏ሶ ൅ 𝑐ሶ𝑖𝑝 ൌ 𝑑 ൅ 𝑒𝑖 ൅ 𝑓𝑝 ൅ 𝑑𝑝 ൅ 𝑒𝑖𝑝 ൅ 𝑓𝑝2 

െ𝑏ሶ ൅ 𝑎ሶ 𝑖 ൅ 𝑐ሶ𝑖𝑝 ൌ ሺ𝑑 െ 𝑓ሻ ൅ 𝑒𝑖 ൅ ሺ𝑑 ൅ 𝑓 ൅ 𝑒𝑖ሻ𝑝 

Comparing parts gives: 

െ𝑏ሶ ൌ 𝑑 െ 𝑓  (a) 

𝑎ሶ ൌ 𝑒  (b) 

𝚤𝑐ሶ ൌ 𝑑 ൅ 𝑓 ൅ 𝑒𝑖  (c) 

 

This implies 

𝑏ሶ ൌ 𝑓 െ 𝑑      (from Equation (a))     𝑎ሶ ൌ 𝑒      (from Equation (b))   

𝑑 ൅ 𝑓 ൌ 0      (from Equation(c))      𝑐ሶ ൌ 𝑒      (from Equation (c)) 

 

 

(44) 

Solving Equation (43) gives: 

𝑖
𝑑
𝑑𝑡
ψ
2
ൌ ሺ1 െ 𝑝ሻψ

1
 

𝑖
𝑑
𝑑𝑡
ሺ𝑑 ൅ 𝑒𝑖 ൅ 𝑓𝑝ሻ ൌ ሺ1െ 𝑝ሻሺ𝑎 ൅ 𝑏𝑖 ൅ 𝑐𝑝ሻ 

𝑖𝑑ሶ െ 𝑒ሶ ൅ 𝑓ሶ𝑖𝑝 ൌ 𝑎 ൅ 𝑏𝑖 ൅ 𝑐𝑝 െ 𝑎𝑝 െ 𝑏𝑖𝑝 െ 𝑐𝑝2 

െ𝑒ሶ ൅ 𝑑ሶ𝑖 ൅ 𝑓ሶ𝑖𝑝 ൌ ሺ𝑎 ൅ 𝑐ሻ ൅ 𝑏𝑖 ൅ 𝑝ሺ𝑐 െ 𝑎 െ 𝑏𝑖ሻ 

 

 

(45) 
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Comparing parts gives: 

െ𝑒ሶ ൌ 𝑎 ൅ 𝑐  (d) 

𝑑ሶ ൌ 𝑏  (e) 

𝑖𝑓ሶ ൌ 𝑐 െ 𝑎 െ 𝑏𝑖  (f) 

 

This implies 

െ𝑒ሶ ൌ 𝑎 ൅ 𝑐  (from Equation(d))    𝑑ሶ ൌ 𝑏  (from Equation(e)) 

𝑐 െ 𝑎 ൌ 0  (from Equation(f))    𝑓ሶ ൌ െ𝑏    (from Equation(f)) 

Using the constraints:   

From Equation (44):  𝑐 െ 𝑎 ൌ 0 which implies 𝑐 ൌ  𝑎  

From Equation (45):  𝑑 ൅ 𝑓 ൌ  0 which implies  𝑑 ൌ െ𝑓 

Substitute into the ordinary differential Equation (44) and Equation (45) to get: 

𝑎ሶ ൌ 𝑒  𝑑ሶ ൌ 𝑏   

𝑏ሶ ൌ 𝑓 െ 𝑑 ൌ ሺെ𝑑ሻ െ 𝑑 ൌ െ2𝑑  𝑒ሶ ൌ െሺ𝑎 ൅ 𝑐ሻ   

𝑐ሶ ൌ 𝑒   𝑓ሶ ൌ െ𝑏  (46) 

Now solving the system of equations in Equation (46): 

Solving for  𝑏. 

𝑏ሶ ൌ െ2𝑑 

𝑏ሷ ൌ െ2𝑑ሶ ൌ െ2𝑏 → 𝑏ሷ ൅ 2𝑏 ൌ 0 

Hence   

𝑏ሺ𝑡ሻ ൌ 𝐵𝑐𝑜𝑠൫𝑡√2൯ ൅ 𝐶𝑠𝑖𝑛ሺ𝑡√2ሻ 

Where B and C are constants 

Solving for  𝑑. 

𝑏ሶ ൌ െ2𝑑 → 𝑑 ൌ
1

2
𝑏ሶ  

Therefore     

𝑑ሺ𝑡ሻ ൌ
√2
2
ൣ𝐵𝑐𝑜𝑠൫𝑡√2൯ ൅ 𝐶𝑠𝑖𝑛ሺ𝑡√2ሻ൧ 

Solving for  𝑓. 

𝑓ሶ ൌ െ𝑏 

𝑓ሶ ൌ െൣ𝐵𝑐𝑜𝑠൫𝑡√2൯ ൅ 𝐶𝑠𝑖𝑛ሺ𝑡√2ሻ൧ 

𝑓ሺ𝑡ሻ ൌ
1

√2
ൣ𝐶𝑐𝑜𝑠൫𝑡√2൯ െ 𝐵𝑠𝑖𝑛൫𝑡√2൯൧ 

Solving for  𝑒. 

𝑒ሶ ൌ െሺ𝑎 ൅ 𝑐ሻ 

𝑒ሷ ൌ െሺ𝑎ሶ ൅ 𝑐ሶሻ 

𝑒ሷ ൌ െሺ𝑒 ൅ 𝑒ሻ 

𝑒ሷ ൌ െ2𝑒 → 𝑒ሷ ൅ 2𝑒 ൌ 0 

𝑒ሺ𝑡ሻ ൌ 𝐷𝑐𝑜𝑠൫𝑡√2൯ ൅ 𝐸𝑠𝑖𝑛ሺ𝑡√2ሻ 

Where D and E are constants 

Solving for  𝑎. 

𝑎ሶ ൌ 𝑒 
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𝑎ሶ ൌ 𝐷𝑐𝑜𝑠൫𝑡√2൯ ൅ 𝐸𝑠𝑖𝑛ሺ𝑡√2ሻ 

Integrating for  𝑎: 

𝑎ሺ𝑡ሻ ൌ
1

√2
ൣ𝐸𝑐𝑜𝑠൫𝑡√2൯ െ 𝐷𝑠𝑖𝑛൫𝑡√2൯൧ 

Solving for  𝑐: 

𝑐ሶ ൌ 𝑒 

𝑐ሶ ൌ 𝐷𝑐𝑜𝑠൫𝑡√2൯ ൅ 𝐸𝑠𝑖𝑛ሺ𝑡√2ሻ 

Integrating for  𝑐: 

𝑐ሺ𝑡ሻ ൌ
1

√2
ൣ𝐸𝑐𝑜𝑠൫𝑡√2൯ െ 𝐷𝑠𝑖𝑛൫𝑡√2൯൧ 

Hence: 

ψ
1
ሺtሻ ൌ 𝑎ሺ𝑡ሻ ൅ 𝑖𝑏ሺ𝑡ሻ െ  𝑐ሺ𝑡ሻ𝑝  

ψ
2
ሺtሻ ൌ 𝑑ሺ𝑡ሻ ൅ 𝑖. 𝑒ሺ𝑡ሻ െ  𝑓ሺ𝑡ሻ𝑝  (47) 

 

Where   

𝑎ሺ𝑡ሻ, 𝑏ሺ𝑡ሻ, 𝑐ሺ𝑡ሻ 
Time varying variables 

𝑑ሺ𝑡ሻ, 𝑒ሺ𝑡ሻ, 𝑓ሺ𝑡ሻ 

and 

𝑎ሺ𝑡ሻ ൌ
1

√2
ൣ𝐸𝑐𝑜𝑠൫𝑡√2൯ െ 𝐷𝑠𝑖𝑛൫𝑡√2൯൧  𝑑ሺ𝑡ሻ ൌ

√2
2
ൣ𝐵𝑐𝑜𝑠൫𝑡√2൯ ൅ 𝐶𝑠𝑖𝑛ሺ𝑡√2ሻ൧ 

 

𝑏ሺ𝑡ሻ ൌ 𝐵𝑐𝑜𝑠൫𝑡√2൯ ൅ 𝐶𝑠𝑖𝑛ሺ𝑡√2ሻ  𝑒ሺ𝑡ሻ ൌ 𝐷𝑐𝑜𝑠൫𝑡√2൯ ൅ 𝐸𝑠𝑖𝑛ሺ𝑡√2ሻ   

𝑐ሺ𝑡ሻ ൌ
1

√2
ൣ𝐸𝑐𝑜𝑠൫𝑡√2൯ െ 𝐷𝑠𝑖𝑛൫𝑡√2൯൧  𝑓ሺ𝑡ሻ ൌ

1

√2
ൣ𝐶𝑐𝑜𝑠൫𝑡√2൯ െ 𝐵𝑠𝑖𝑛൫𝑡√2൯൧ 

(48) 

Where  𝐵,𝐶,𝐷,𝐸  are constants 

Appendix 4. Derivation of New Schrodinger Equation 

To derive the time‐dependent Schrödinger equation for a single non‐relativistic particle in one 

dimension: 

Step 1: Start from the characteristic wave equation given in Equation (6): 

𝜓௣ ൌ 𝐴𝑒௣൫ఠ௧ିఊ೛௫൯   (5) 

This is an evanescent wave, representing a decaying quantum system. This can be rewritten as: 

𝜓௣ ൌ 𝐴𝑒௣൫ఠ௧ିఊ೛௫൯  

𝜓௣ ൌ 𝐴𝑒௣ሺఠ௧ିሾఈି௣ఉሿ௫ሻ 

𝜓௣ ൌ 𝐴𝑒௣ሺఠ௧ିఈ௫ା௣ఉ௫ሻ 

𝜓௣ ൌ 𝐴𝑒௣ఠ௧ି௣ఈ௫ିఉ௫ 

𝜓௣ ൌ 𝐴𝑒ିఉ௫𝑒௣ఠ௧ି௣ఈ௫ 

𝜓௣ ൌ 𝐴𝑒ିఉ௫𝑒௣ሺఠ௧ିఈ௫ሻ 

𝜓௣ ൌ 𝑆𝑒௣ሺఠ௧ିఈ௫ሻ  (5) 

Where  𝑆 ൌ 𝐴𝑒ିఉ௫ 
Hence  in  the  propagation  constant  𝛾௣ ൌ 𝛼 െ 𝑝𝛽 ,  𝛼   is  the  phase  constant  and  𝛽   is  the 

attenuation constant.   

Now consider: 

de Broglie relation for Momentum:  𝑝⃗ ൌ ℏ𝑘  (g) 
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Planck‐Einstein relation Energy:  𝐸 ൌ ℏ𝜔  (h) 

Where  𝑝⃗  is momentum. The arrow is place above this  𝑝⃗  to differentiate momentum from the 

semi‐structured complex number  𝑝.   
Step 2: Derive the momentum operator 

Take the spatial derivative of the wavefunction: 

𝜕𝜓
𝜕𝑥

ൌ
𝜕
𝜕𝑥

൫𝑆𝑒௣ሺఠ௧ିఈ௫ሻ൯ ൌ െ𝑝𝛼 ൈ 𝑆𝑒௣ሺఠ௧ିఈ௫ሻ ൌ െ𝑝𝛼𝜓 
(49) 

 

Multiply both sides by  𝑝ℏ: 

𝑝ℏ
𝜕𝜓
𝜕𝑥

ൌ 𝑝ℏ ൈ െ𝑝𝛼𝜓 

𝑝ℏ
𝜕𝜓
𝜕𝑥

ൌ 𝑝ℏ ൈ െ𝑝𝛼𝜓 

𝑝ℏ
𝜕𝜓
𝜕𝑥

ൌ ℏ𝛼𝜓 
(50) 

Since the wave number and phase constant are essentially the same  thing, that  is  𝑘 ൌ 𝛼,  this 
implies:   

𝑝ℏ
𝜕
𝜕𝑥

𝜓 ൌ ℏ𝛼𝜓 ൌ ℏ𝑘𝜓 ൌ 𝑝⃗𝜓 
(51) 

Hence: 

𝑝⃗ ൌ 𝑝ℏ
𝜕
𝜕𝑥
 

(52) 

Step 2: Derive the energy operator 

Take the time derivative of the wavefunction: 

𝜕𝜓
𝜕𝑡

ൌ
𝜕
𝜕𝑡
൫𝑆𝑒௣ሺఠ௧ିఈ௫ሻ൯ ൌ 𝑝𝜔 ൈ 𝑆𝑒௣ሺఠ௧ିఈ௫ሻ ൌ 𝑝𝜔𝜓 

(53) 

Multiply both sides by െ𝑝ℏ: 

െ𝑝ℏ
𝜕𝜓
𝜕𝑥

ൌ െ𝑝ℏ ൈ 𝑝𝜔𝜓 

െ𝑝ℏ
𝜕𝜓
𝜕𝑥

ൌ ℏ𝜔𝜓 ൌ 𝐸𝜓 
(54) 

Hence: 

𝐸 ൌ െ𝑝ℏ
𝜕
𝜕𝑡
 

(55) 

These operator definitions can be used in the Schrödinger equation, commutation relations, and 

nearly all of quantum mechanics. 

Step 4: Classical total energy (Hamiltonian) 

From classical mechanics, the total energy of a particle is: 

𝐸 ൌ
ሺ𝑝⃗ሻ2

2𝑚
൅ 𝑉ሺ𝑥ሻ 

(56) 

To promote this to an operator equation in quantum mechanics by substituting the operators: 

𝐸෠𝜓 ൌ ቈ
ሺ𝑝̂ሻ2

2𝑚
൅ 𝑉ሺ𝑥ሻ቉𝜓 

(57) 

Substituting the expressions for momentum and energy into equation givens: 
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െ𝑝ℏ
𝜕
𝜕𝑡
𝜓 ൌ ቈെ

ℏ2

2𝑚
𝜕2

𝜕𝑥2
൅ 𝑉ሺ𝑥ሻ቉𝜓 

(58) 

This is the Time‐Dependent Schrödinger Equation in semi‐structured form. 
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