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Abstract: Infinities and singularities pose a problem in physics and results in the inability to interpret
equations in some extreme conditions. Aim of this paper is to create a semi-structured complex
framework that treats infinities and singularities as evanescent waves that can be manipulated
algebraically to produce logical, consistent and experimentally verifiable results. The framework
utilizes semi-structured complex numbers (an algebra created to enable division by zero), state space
modelling and a novel characteristic wave function as components to create novel evanescent
functions that mathematically describe and interpret infinities and singularities in science equations.
The utility of the framework is demonstrated in eight use cases drawn from classical mechanics,
quantum mechanics and quantum field theory. The framework is robust enough to be used in any
science where interpretations are needed in equations where infinities and singularities may arise
during calculations.

Keywords: infinities and singularities; semi-structured complex numbers; evanescent waves;
quantum mechanics; quantum field theory

1.0. Introduction

Infinities and singularities often arise in equations and are seen as a problem in physics. They
prevent logical, consistent predictions from being made particularly in extreme conditions. Usually
these infinities and singularities arise because of division by zero, integrating across infinities or in
logarithmic functions. In physics where it is physically impossible to conduct experiments for
example at the center of a black hole or determining phenomenon at the subatomic scale predictions
need to be made from equations. However when these equation sealed infinities or singularities this
means that the equations have reached their predictive limit. Physicists have attempted to solve this
problem using ad hoc methods. For example in quantum field theory, when trying to calculate the
transitional amplitude from a group of propagators regularization and renormalization techniques
are used to eliminate infinities that arise . However these methods cannot be applied universally
across all physics. There is no universally acceptable methods for dealing with infinities and
singularities that arise in physics.

This paper aims to provide a robust universal method for dealing with infinities and
singularities that arise in physics by creating a novel framework called the Semi-structured Complex
Framework. Creating such a framework would enable predictions to be made particularly in extreme
situations where experimental data is either unavailable or very difficult to obtain. With such a
framework questions like “what's the curvature of space-time at the center of a non-rotating black
hole?” and “what's the period of a simple pendulum if there is 0 gravity” can be answered.
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To construct the semi-structured complex framework there needs to be an understanding of the
following concepts: semi-structured complex numbers, state space modeling, propagation constant
and evanescent waves.

1.1. Semi-Structured Complex Numbers

Semi-structured complex numbers are numbers that were created specifically to enable division
by zero in regular algebraic equations. Semi-structured complex number set can be defined as
follows:

A semi-structured complex number is a three-dimensional number of the general form h = x + yi +
zp; that is, a linear combination of real (1), imaginary (i) and unstructured (p) units whose coefficients x,y, z
are real numbers.

The number h is called semi-structured complex because it contains a structured complex part
(x + yi) and an unstructured part (zp). Integer powers of p yield the following cyclic results:

Given the definition of semi-structured complex numbers, it can clearly be seen that infinity
(represented by division by zero) is encoded within the number and can be dealt with algebraically.
Other important characteristics of semi-structured complex numbers is given in Table 3 in Appendix 1.

Semi-structured complex numbers can be seen as vectors in a 3-dimensional Euclidean semi-
structured complex space. This representation enables vector operations (such as addition, dot
product, inner product) to be performed on semi-structured complex numbers.

1.2. State Spaces

In physics, a state space represents all possible states of a system, often visualized as a geometric
space where each point corresponds to a unique state, and the system's evolution is described by how
these points move over time. A classic example of where state space is used to represent a physical
system is in particle spin. A particle spin is an intrinsic angular momentum. Intrinsic Angular
Momentum is a form of angular momentum, but unlike the orbital angular momentum of a rotating
object, it's an intrinsic property, meaning it's a fundamental characteristic of the particle, not
something it gains from moving around.

The spin of a particle can be represented as a 2-dimensional Euclidean state space in which
rotations in that space represent different spin states of a particle as shown in Figures 1-4.

down

G » | up

Figure 1. On the left ,electron in Original Position and on the right State space representation in Euclidian space.
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Figure 2. On the left ,electron rotated (in this case intrinsic rotation is represented by physical rotation for easy

of understanding) and on the right State space representation of rotation in Euclidian space.
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Figure 3. Spin up electron becomes spin down after one half of a rotation (or a quarter rotation in Euclidean Space).

down

Figure 4. After a full turn in actual space the electron has returned to its original position. However in Euclidean
space the electron has only done through half a turn. For this reason it is called a spin % particle.

State space representations using Euclidean type grids are often very useful in understanding
the relationship between states and understanding how one state transitions into another state. This
is one of the primary methods used in quantum mechanics where different states are represented as
complex numbers and complex numbers represent rotations in the complex state space plane. This
enables states to be treated algebraically, adding and subtracting the different components of a state.

In a similar manner since semi-structured complex numbers can be used to represent infinities
and singularities then they can be used to in a semi-structured complex Euclidean space to represent
systems that are in states that have infinities and singularities. This state space representation
reinforces the fact that such systems can be algebraically dealt with.

1.3. Propagation Constants and Wave Functions

Another essential tool needed to construct the proposed framework is what is known as a
propagation constant. Propagation constants are fundamental parameters that describe how any
wave propagates through a medium. Specifically, the propagation constant tells you how a wave
loses or gains strength (attenuates) and changes timing (phase shift) as it travels through a medium
[5]. The propagation constant is generally written as:

y=a+if (1
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Where:
p attenuation constant (in nepers per meter) — represents
how quickly the signal amplitude decreases.
a phase constant (in radians per meter) — represents how

fast the phase of the wave is changing in space.

Complex propagation constants are generally used in complex exponential wave functions to
represent decaying waves. One example of this is given in Equation (2).

P = Ae"
— Aei(a+iﬁ)t — Aeiat—ﬁt = A. e—Bt. eiat ()
Where:
Y wave function
A Amplitude of the wave
t Time of travel of the wave

In Equation (2), the term e~* indicates that the wave is decaying and the term e!#* indicates
that whilst the wave is decaying it's oscillating. Such waves are called evanescent (or decaying)
waves. Evanescent waves can be represented graphically as shown in Figure 5. In Figure 5 the wave

decays and loses energy to the surrounding medium in which it propagates.

0 [\7\\\/‘\[“/‘_/\—/\_/' i

Figure 5. Depiction of evanescent (or decaying) wave.

The dotted line in Figure 1 is called the envelope of the wave and the decreasing envelope is
measured using the et term.

These waves can usually be described as dampened. There are three types of dampening: light
dampening, hard dampening and critically dampened. The wave form of these three types of
dampening are shown in Figure 6.
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Figure 6. Types of Dampening,.

The type of dampening experienced by a wave can easily be interpreted from the propagation
constant representing the wave. Table 1 illustrates how the form of the propagation constant can
indicate the type of dampening being dealt with. In Table 1, i is the complex unit.

Table 1. Type of propagation constants and meaning.

Damping Type  Equation Phase Attenuation  Description

form Constant Constant
The wave form does not experience
Undampened a a+0 =0 damping but oscillates (and propagates)
with a constant amplitude
Under-
a+ fi a+0 p+0 Waveform oscillates and decays slowly.
dampened
p hasa Wave form does not oscillate but decays
Critically
pi a=0 repeated  very quickly returning to equilibrium as
Dampened
root quickly as possible without oscillating
Over- Waveform does not oscillate the system
dampened f hastwo has more damping than critical, so it
a+ pi a=0
(hard distinct root returns to equilibrium slowly and
dampening) without oscillation.

Semi-structured complex numbers, semi-structured complex state space, and evanescent waves
(represented by the propagation constant) are simple tools that can be used to construct a method for
dealing with singularities and infinities in physics.

1.4. Major Contributions

Given the importance of having a logical, consistent way of dealing with infinities and
singularities in physics, this paper aims to do the following;:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Develop a semi-structured complex framework consisting of a 3D Euclidean semi-structured complex
state space, and a characteristic evanescent wave equation as a universal method for resolving infinities and
singularities that may arise in physics.

In the process of achieving the aim the paper makes the following major contributions:

1. Developed and demonstrated the utility of the semi-structured complex framework
consisting of a 3D Euclidean semi-structured complex space and a newly defined propagation
constant.

2. Developed and demonstrated the utility of a new type of Hamiltonian matrix whose elements
represent the transition energies of a quantum state to determine the propagation constant of the
final quantum state.

3. Use the characteristic decay wave equation from this semi-structured complex framework to
develop a new form of the Schrodinger equation that can be used to determine the wave equation
of a quantum state that can be described by an evanescent wave. The new form of the equation

is:

d
—(t) = HY(t
Where
p Unstructured unit
Y(t) State represented by evanescent waves

4. Resolve the singularities arising in quantum field theory when attempting to calculate the
transition amplitude from propagators created from Feynman diagrams. This is done in a purely
logical, consistent, algebraic way without the need for regularization and renormalization
techniques.

The rest of this paper is dedicated to showing how achieving the aim resulted in the major
contributions mentioned.

2.0. Characterising the Semi-Structured Complex Framework

The semi-structured complex framework consists of two parts: the semi-structured complex
Euclidean space and the characteristic equation for an evanescent (or decaying) wave.

2.1. The Semi-Structured Complex Euclidean Space

The propagation constant of a decay wave can be represented by a semi-structured complex
number h = x +yi+zp. This semi-structured complex number can be visualized in a semi-
structured complex Euclidean space as a three component vector (x,y, z), where “x” is the coefficient
of the real part, “y” is the coefficient of the imaginary part and “z” the coefficient of the semi-
structured part. The purpose of semi-structured complex Euclidean space is to enable evanescent
waves to be understood as vectors and to use vector operations to combine or manipulate these

waves.

2.2. Propagation Constant and the Characteristic Evanescent Wave Equation

For the purposes of this framework a special property is defined for the propagation constant.
This property is expressed in Equation (4).
Yp=a+pf=a—-pp (4)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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First note that the propagation constant is defined using the unstructured unit p and not the
imaginary unit i. This is to allow infinity to be algebraically represented in the propagation constant.
Secondly note that the property defined in Equation (4) indicates that the direction of the propagation
constant along the unstructured axis (that is the axis where p is the unit) is not important. This
property suggests that in the semi-structured complex framework state space a + pf and a —pf
represent the same physical state.

This is not an unusual property and is commonly employed in state space models (for example
in state space spinor models) that are commonly used to represent quantum mechanical states.

One of the most important features of this new propagation equation is that we need to redefine
what a and g are. To do this, it is necessary to use a wave equation of the form shown in Equation (5).

by = e Plpe-00) .

This equation is very similar to a plane wave equation except that the propagation constant
replaces the plane wave number k and —p replaces i. In classical physics a propagation constant
can replace the wave number k in a plane wave equation. This replacement indicated that the wave
is travelling in a medium in which some of its energy is lost as it propagates through the medium. In
such a case the propagation constant becomes complex. However, in this case the propagation
constant becomes semi-structured to indicate that evanescence occurs during the propagation.
Equation (5) can be converted into a plane wave equation shown in Equation (6).

B, = Ae~P(rpx=o0)
Wy = AeP(@t=vpx)
P, = AeP(wt=[a-pBlx)

Y, = AeP(wt—ax+pBx)

— pwt—pax—LFx
Y, = Ae

¢p — Ae—[)’xepwt—pax

wp — Ae—ﬁxep(wt—ax)

d)p — Sep(wt—ax)
(6)
Where S = Ae™F*

Clearly, from Equation (6), S becomes the attenuation constant. Equation (6) not only
adequately describes a wave but also enables singularities and infinities to be represented as a wave
(through the unstructured unit p). Hence the complete characteristic wave equation for the semi-
structured complex framework is given as

¢p — Ae—[)’xep(wt—ax)

where y, =a+pf =a—pp (N

Table 2 gives a description of the physical systems represented by different values of a and £.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Table 2. Type of propagation constants and meaning.

Damping Type Equation form  Phase Attenuation Description
Constant ~ Constant
The wave form does not experience damping but
Undampened Yp=a a+0 p=0 oscillates (and propagates) with a constant
amplitude
Underdampened Yp=a+pp a+0 =0 Waveform oscillates and decays slowly.
Wave form does not oscillate but decays very
Critically B hasa
Y» = Bp a=0 quickly returning to equilibrium as quickly as
Dampened repeated root
possible without oscillating
Waveform does not oscillate the system has more
Overdampened B has two
Yy = Bp a=0 damping than critical, so it returns to equilibrium
(hard dampening) distinct root

slowly and without oscillation.

These descriptions will help interpret equations involving infinities and singularities.

2.3. Procedure to Using the Semi-Structured Complex Framework

Consider a physics equation with variables that have values to be substituted into it. If the

substitutions involves one or more division by zero operations then in order to use the semi-

structured complex framework to resolve the singularities and infinities that may arise the procedure

shown in Figure 7 must be followed:

If there are is
division by zeros in the
equation simplify the
equation as far as
possible then, replace
ALL zeros in the
equation with —p

0|

Simplify exponents
and logarithms with
division by zero. Note
that:

9 If there are any

zeros that result after
the calculation. Do not

(X)"= eP In(x)

In(p) = p(%+ 21m)

convert them unless

they result in division
by zero in which case
then return to Step 1.

Put the new
equation in the form
a + pf where a is the
phase constant and 8
is the attenuation
constant of the
propagation constant.

o |

e—

The resulting equation
can then be

interpreted using Table
2.

0 .

The resulting
equation can then be
visualized using the
evanescent (decay)
wave equation:

l/}p — Ae—/.?xep(wt—ax)

Figure 7. The procedure for applying the Semi-structured complex framework.
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The procedure in Figure 7 along with the characteristic equation from Equation (7) forms the
semi-structured complex framework used to resolve infinities and singularities in equations.

Having established the framework it is necessary to move on to evaluate physics equations that
may involve division by zero ensure the framework can be used to produce valid interpretations of
division by zero.

3. Applications of the Semi-Structured Complex Framework

In this section eight cases where division by zero frequently appears is considered. how the
semi-structured complex framework is used to provide a logical, consistent interpretation of division
by zero across these eight cases are demonstrated.

3.1. Applications in Classical Mechanics

Case 1: The period of a simple pendulum in the absence of gravity

An experiment conducted by Chinese astronaut Wang Yaping in 2013 during a space lecture on
board the Shenzou-10 space mission demonstrated that when a pendulum was released in near zero
gravity conditions on a space station orbiting earth the pendulum did not swing. This experiment is
significant because it shows that without gravity the pendulum has no period. Note that the period
of the simple pendulum cannot be 0 since this would imply that the pendulum swings
instantaneously which is not what the experiment shows. The question that arises: “how do you
represent this state in the equation of the period of a simple pendulum?”

Consider Equation (8), the equation for the period of a simple pendulum.

l
T =2m |[— (8)
9

where

T period of the pendulum
l Length of the pendulum
g acceleration due to

gravity

Suppose g = 0 and this value is placed in Equation (8), then by conventional mathematics, the
result would be undefined. However, with the application of the semi-structured complex
framework, this can easily be resolved in a manner that agrees with experimental results. This is done
as follows:

T =2m |-
g
When g =0, then

l 1 1
T =2m 6-27‘(\/7)( 6—27'(\/Zx6

©)
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Using the semi-structured complex framework in Figure 7, Replacing % with p (The semi-

structured complex unit. This can be seen in result 2 of Table 3). The new equation

becomes:

T=27'(\/Z><p

Replacing % with p in the equation implies that the period of the simple pendulum is now

being viewed from the perspective of semi-structured complex state space; that is,

T = 2my/1 X p represents an interpretation of the state of the simple pendulum. The period of the
pendulum is now a propagation constant. Since the VI can have two possible values then the period
only hasa f value with the f value having two distinct roots. Note here that length and the square
root of length are usually positive, however since we are in semi-structured complex state space both
positive and negative values for VI are accepted.

Therefore according to Table 2, this propagation constant implies that the period of the
pendulum in the absence of gravity is over dampened. This implies that the pendulum does not
swing. This agrees with experimental evidence from the Shenzou-10 space mission. This result also
implies that the framework is good in producing correct experimental results in at least this case.
More cases from classical mechanics need to be considered to determine the utility of the semi-
structured complex framework.

Case 2: Resolving singularities in Friedmann’s cosmological equations:

In the Friedmann equations that describe the expansion of the universe in general relativity, the
scale factor a(t) is a function of time that tells us how "big" the universe is (or how fast the universe
is expanding at a given moment in cosmic time t). One simplified form of the Hubble parameter is
shown in Equation (10)

H(t) = a'(t)
a(t) (10)
Where
H(t) the Hubble parameter at time t representing the rate of expansion.
a'(t) the time derivative of the scale factor representing how fast it's
changing.
a(t) the scale factor of the universe describing how distances in the universe

change over time.

According to conventional physics, at the Big Bang (at t = 0), a(t) — 0. In many models this
results in the Hubble constant becoming undefined or as some would put it H(t) — . This suggest
that at the Big Bang (because of many of the cosmology equations result in division by zero): (1) the
density and temperature become infinite; (2) the curvature of spacetime diverges; and, (3) time itself
becomes undefined. This point is called a singularity, a place where the laws of physics break down
due to division by zero in the equations. This does not give any predicable results from which to
draw conclusions.

Nevertheless, this issue can be resolved using the semi-structured complex framework proposed
in this paper. To do this, consider a radiation-dominated universe, where the scale factor behaves
like:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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!
a(t) = At2 (where A is some constant) (11
This implies the following:
1
a(t) = At2
This implies:
, 1 1
=—At2
a (t) 7 t
Hence:
. I i
a() 4t2 1
Atz
When t =0, we apply the steps shown in Figure 7
_1_ 1 _1_ o -
H(t) = T (Replacing 5 with p (The semi-structured complex
unit)
The new equation becomes:
H(0) =Hy=p (12)

This value measures how quickly the universe is expanding per unit distance at the time

of the Big Bang (that is at t = 0).

Result (10) is a propagation constant with @ =0 and f =1 (a repeated root). According to
Table 2, this propagation constant implies that at the time of the Big Bang the Hubble parameter was
critically dampened. This means that the Hubble parameter did not vary or oscillate but decayed
very quickly to a single equilibrium value. This also has implications for other parameters that
depend on H,. For example: (1) the age of the universe and (2) distances and redshifts.

The age of the universe is approximated by Equation (11).

1
fage ¥ (13)
Result (10) can be placed in Equation (11) to yield:
tage ® z =-P
12 (14)

Result 14 is still in semi-structured complex state space. It is possible to convert it back to physical
space. Note that —p = 0 according to Table 3 in Appendix 1. Hence the age of the universe at the
point of the Big Bang (that is at time t = 0) is given by Result (15).

tage ® —p =0 (15)
Result (15) makes absolute sense because at time ¢t = 0 the universe does not have an age. Result (15)
simply illustrates that the semi-structured complex framework can yield logical consistent results.

In terms of distances and redshifts, the Hubble parameter relates how far away a galaxy is

(distance) to how fast it's receding (redshift), via Hubble's Law given in Equation (16).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Vy = Hod (16)
Result (10) can be placed in Equation (16) to yield:
vy =d(p) =dp 17)

Result (17) is a propagation constant with @ =0 and f =d (a repeated root). According to
Table 2, this propagation constant implies that at the time of the Big Bang the velocity of receding
galaxies v, was critically dampened. This means that the velocity did not vary or oscillate but
decayed very quickly to a single equilibrium value.

The results in this case implies that the semi-structured complex framework is capable of
handling singularities and infinities that may arise in physics equations in a manner that is logical
and consistent. This point towards that idea that physics is no longer limited and does not break
down in division by zero cases.

Case 3: Newtons law of Gravitation where r=0

The proposed framework can also be used to interpret Newton’s Law of gravitation (shown in
Equation (18)) at r = 0.

Fe Gm12m2
r (18)

Where
G Universal Gravitational Constant

my,m, mass of body 1 and mass of body 2 respectively

F The resultant gravitational force between body 1
and body 2

r distance between centre of mass of body 1 and
body 2

When r = 0, Equation (18) evaluates to Result (19).

Fe Gmm, Gmm,

©F ~ o0 Gmamp (19)

Result (19) is a propagation constant with @ = 0 and f = Gm;m, (a repeated root). According
to Table 2, this propagation constant implies that when the distance between the centre of masses of
two objects is zero, the resultant gravitational force between the two objects is critically dampened.
This means that the gravitational force did not vary or oscillate in value but decayed very quickly to
a single equilibrium value. For example, an object placed at the centre of the earth will experience no
resultant force and hence will remain stationary. This is a verifiable result.

Case 4: Curvature at the centre of a non-rotating black whole.

The advantage of being able to resolve singularities in such equations is that one can
confidentially resolve singularities (resulting from division by zero) in equations where experimental
data is difficult or impossible to obtain. For example, consider the equation of a non-rotating
blackhole shown in Equation (20).

2Gm e
r ) t +(1_26m
T
(20)

dr? + r2dQ?

dsz=—(1—

Where

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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G Universal Gravitational Constant

m mass of black hole

ds Interval between two events

r distance from the centre of the blackhole
dQ angular interval

Now according to classical physics the metric exhibits a singularity at the centre of the black hole
(r = 0), indicating infinite spacetime curvature. However this is not a good interpretation of the
situation (infinity is not a quantity and having an infinite curvature does not fit well with the infinite
energy associated with spacetime).

Nevertheless, using the semi-structured complex framework a better interpretation of this
situation can be obtained. When r = 0, Equation (20) evaluates to Result (21).

2Gm
0

1
) de? + dr? + 02dQ’

(-5

dsz=—<1—

1
ds? = — (1 —26m 5) de? + dr? + (0)dQ?

1
(1-26m3)
ds? = — (1 —2Gmp)dt® + 1 ey (—p)dQ)’
(1 —-2Gmp)
2 (71— 2 2, _ 2
ds® = — (1 —2Gmp)dt + = 26mp) dr- + —pdQ
1+2Gmp
2 (71— 2 2. _ 2
ds® = — (1 —2Gmp)dt +(1—ZGmp)x (1+26mp)dr + —pdQ
1+2Gmp )
ds? = — (1- 26mp)dt2 + md?‘z + —pdQ)
— 1 .
Let k& = ——— then:

ds? = — (1 —2Gmp)dt? + (k + 2Gmkp) dr? — pdQ)’
Grouping all real and semi-structured terms together gives:
ds? = (— dt? + k dr?) + (2Gm dt? + 2Gmxk dr? — dQ*)p (21)

Result (21) is a propagator with a = (—dt? + k dr®) and B = (2Gm dt* + 2Gmx dr? — dQ?).
Result (21) is an interesting situation as it implies that the center of a black hole does not universally
settle onto a single state, but rather whether the center is curved or flat depends on the values that «
and f take on. For exampleif @ # 0 and f = 0 then the center of a non-rotating black hole would
not be flat but would be curved with the value of curvature oscillating. However, if « =0 and f #
0 then this implies that the center of the non-rotating black hole would eventually decay to some flat
value.

Case 5: Evaluating the rate constant of a chemical reaction at absolute zero

The rate constant for a chemical reaction (k) measures how quickly a chemical reaction occurs at
a given temperature and under certain conditions. The value of K is given by the Arrhenius Equation
shown in Equation

Eq
k = Ae RT 22)
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Where

k the rate constant for a chemical reaction

A the pre-exponential factor (frequency of
collisions)

E, the activation energy

R the universal gas constant

T temperature (in Kelvin) at which the reaction
occurs

Suppose it's needed to determine the rate of reaction at T = 0 (absolute zero). This yields the
following result:

_Eq
k = Ae RT

At T = 0 this implies:
—Eq_ Eq 1
k=Ae RO = Ae"RD

When T = 0, we apply the steps shown in Figure 7. Hence converting (1—) =p:

—La_ Eq
k = Ae RO = Ae"R?
According to Table 3 in Appendix 1:

Eq E E
=Ae PR =A (—“)— .Asi (—“)
k e cos R p.Asin R

k=a+pp

Where a = A.cos (%“) and B = —A.sin (%“) 23)

Result (29) is a propagation constant. Its value implies that the sort of dampening that occurs at
absolute 0 depends on the activation energy E,. For example, if the activation energy is 0 then the
equation becomes k = A.cos(0) — p.A.sin(0) = A. This implies that at T = 0 the reaction it is not
dampened but would proceed to some constant rate. If on the other hand E, = 13.06 J/mol, then
% = g This in turn implies that k = A.cos (g) —p.A.sin (g) = —Ap. This would imply that k is
critically dampened and the rate of reaction would decrease to zero without oscillating in value. Any
other value for the activation energy E, at T = 0 would imply that the reaction is expected to be

under-dampened decreasing in an oscillatory manner to zero value.
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3.2. Application of Framework in Quantum Mechanics

Case 6: A Novel Hamiltonian operator for Evanescent Energy transitions

To show how the semi-structured complex framework can be applied to quantum mechanics, it
is necessary to first formalize the semi-structured complex numbers algebra in the realm of quantum
mechanics and then show how the proposed framework can be used in this setting. This
formalizing involves defining the algebra that will be used in the quantum mechanical setting,
defining the norm and inner product produced by this algebra and then defining a p-Hilbert space,
where is the unstructured unit. All of this is done in Appendix 3.

Suppose there is a Hamiltonian matrix, H, whose matrix elements represents the probability
amplitude of transitioning from one quantum state to another under some quantum dynamical
process. Also consider that the transition probability amplitude takes the form of an evanescent wave
(that is, takes the form of a + Bp). The question now stands: “what is the wave function of these two
quantum states?”. To To answer this question we define the two state quantum system as follows:

(L)) = |¢1 © such that U (t) = a;(t) + ib;(t) + pc;(t)
$,® j / ! / (24)

Suppose each state can evanescent (decay) into another and the Hamiltonian matrix are defined as:

o= [ 0 1+ p]
I-p 0 (25)
The off diagonal elements are transition amplitudes. These transition amplitudes are written
with semi-structured complex numbers implying that they are evanescence amplitudes. Assuming
that these two quantum states follow the time evolution of the Schrodinger Equation and is still
governed by the expression in Equation (26),

d _
i 10(®) = Hlv(®)

(26)
the Schrodinger Equation now becomes:
J}Mﬁz[o 1+q¢ﬁq
dt[p,®] I-p 0 1Y,® 27)

Solving this will involve handling the real, imaginary, and unstructured terms explicitly. The
solution to Equation (27) is give in Result (35). The working to arrive at Result (35) is given in
Appendix 3.

LPl(t) =a(t) +b(t).i— c(t)p
b,(®) = d(6) +e(®).i— f(Op (28)

Where
a(t), b(t), c(t)
d(t),e(t), f(t)

Time varying variables

In Result (35),
1
a(t) = NG [Ecos(tv2) — Dsin(tV2)] d(t) = g [Bcos(tV2) + Csin(tV2)]
b(t) = Bcos(tx/?) + Csin(tV2) e(t) = Dcos(t\/f) + Esin(tV2)
c(t) = % [Ecos(t\/i) — Dsin(t\/z)] fl) = % [Ccos(t\/f) - Bsin(t\/f)] (29)

where B,C,D,E are constants.

Clearly from Result (35), Y1 (t) and Y,(t) are semi-structured complex wave functions. These
waves have a complex phase part (the first two terms of the wave function) and an unstructured part
(the last term of the wave function). This will enable the tracking of component, potentially modelling
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"singular" parts of the wavefunction that correspond to infinite energy, vacuum bubbles, or divergent
regions.

Case 7: Characterizing Novel Schrodinger Equation for Evanescent waves

Rather than just defining a new Hamiltonian matrix, an extra step can be taken to define a whole
new Schrodinger equation for quantum systems that exhibit divergent behavior. Using the
characteristic equation Equation (6), a new Schrodinger equation can be developed to find the wave
function of quantum system that may contain singularities and infinities. The new time-dependent
Schrodinger equation is given in Equation (30).

d =H
P, ®) = HI, ©) 0

The derivation of this equation is given in Appendix 4. {5, (t) is the wave function that defines
some quantum state that contains a singularity or Infinity. Equation (30) is different from Equation
(26) in that it does not assume that the resulting wave has an imaginary part.

An example of how this equation is used is given below:

Consider the time-independent Schrodinger equation in one dimension for a particle of mass m

in the potential:

Ve =

with 0 >0, and x € (0,). This potential has a singularity at x = 0. The aim is to find the

behaviour of solutions at the singularity and discuss under what conditions bound states exist.

Step 1: Schrodinger Equation

h? d?
_MAVE) T - By

2m  dx? x
Rewriting:
dP(x) 2m o
W+F(E+;)¢(x) =0

2mE . 2mao . .
Let r* === and j = =5~ This gives:

W@+ (P4 ve =0

Step 2: Let us assume a solution ¥ (x) = e®, where s is time value semi-structured value. This

means that:

Yx) =e®
P (x) = (s)(s)e® = s%e®

Substitute into the equation:
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Dividing by e®*implies:
1
sz+<r2+j—)=0
x
Nowat x = 0,

1
2 2, 1Y =
s+(r +]0) 0
S+ @’ +j.p)=0

Let A = (r? + pj). Hence A is a semi-structured complex number so that:

s2+A=0
Solving the quadratic equation gives:
s= +V-A=+pJA
Hence the wave function becomes:
Y(x) = eV or P(x) = eV

These wave functions are evanescent wave functions that is capable of providing interpretable
results at x = 0.
From the example, the singularity that arises for the potential V(x) = % at x =0 is

structurally dealt with in a manner that would enable proper interpretation of the wave equation at
the point of singularity. The final result is an interpretable evanescent wave with a real and
unstructured part. Therefore we know that the wave function decays at the point of singularity. Note
that the type of decay would depend on the values of r and j in the equation for A.

3.3. Application of Framework in Quantum Field Theory

Case 8: Understanding semi-structured Complex Evanescent Probabilities

In quantum field theory singularities usually arise in Feynman diagrams where regularization
and renormalization have to be used to resolve these. Whilst these techniques do provide some
solutions these methods are sometimes seen as ad hoc. Nevertheless the semi-structured complex
framework can be used to resolve these singularities in a manner that is structured, logical and
consistent.

Feynman diagrams are used to calculate the probabilities for relativistic scattering processes. To
do so the Lorentz-invariant scattering amplitude M}; needs to be calculated. M}; is the probability
scattering amplitude which represents moving from an initial state ¥; containing some particles
with well-defined momenta to a final state Y containing (often different) particles also with well-
defined momenta.

Consider the one-loop scattering diagram shown in Figure 8. Each line or loop represents the
momentum of a particle. Read from left to right, two particles intersect (two line meet at the first
vertex with each line representing the momentum of the particles) and scatter to produce two new
particles on the right (represented by two lines that diverge on the right). Each line and vertex in the
diagram is given a special name and has associated with it a special equation. The rules for
interpreting Feynman diagrams and converting them into equations that can be used to calculate the
scattering amplitude of the diagram is given in reference. For the above diagram, the scattering
amplitude is given as:

g)4 1 1

=i 4
Mii l(2n’ [(p1 — p3)2 = m&c?][((p, — pa)? — mic?)] -f [(p1 — ps — q3)% — mic?]lq — mic?] s 31)
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Where:

Scattering transition amplitude. This represents the probability amplitude for a
quantum particle (like an electron or a photon) to scatter from an initial state i to
a final state f. It's the core quantity calculated from the Feynman diagram using
the Feynman rules of a given quantum field theory.
Momenta (p;,p,) of incoming particles (1 and 2 respectively) and Momenta
D1, D2, D3, D1 (p3, p4) of outgoing particles (3 and 4 respectively). These typically represent the
4-momenta (energy + 3-momentum) of the particles involved in the interaction.
Coupling constant. This often denotes the interaction strength in the theory. For
g example in QED (Quantum Electrodynamics), g = e (the electric charge) and
in QCD (Quantum Chromodynamics) g is the strong coupling constant
c Typically speed of light, often set to 1 in natural units

my, mg, Mc Rest masses of the particles involved.

a
N

Figure 8. One-loop scattering diagram.

The integral in Equation (31) it's not easy to calculate. Ordinarily this integral would be
considered infinite and regularization and renormalization techniques would be required to solve it.
However with the semi-structured complex framework developed in this paper the solution is not
infinite. The usual first step is to write the four dimensional volume element as:

d*q = qdqdQ (32)

1

(where dQ) is the angular part). Atlarge q the integrand is essentially had the form pr the so the q

integral has the form:

1 =1
M-ziAf—x 3d sziAf ~dqdQ
T PER gt (33)

Where A = (1)4 1

2/ [(p1=p3)2-mgc?|[((p2—pa)2-mic?)]
Solving Equation (33) using the semi-structured complex framework developed in this paper
gives:
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o

1
0o 4

My = iA[In (@)]7 = iA[In(>) — In (0)]

Let o = % =p and 0 = —p. This implies

My; = iA[In(p) — In (—p)]

According to the results from Table 3 (Appendix 1): In(p) =p (% + Znn) and In(—p) = In(p?)
My = iA [p (g + 27m) —3p (g + Znn)]

M = iA [p (g + 27‘[7’1) —3p (g + 21Tk)]

Where nand k are integer values. Hence:

My, = iA]-2p (% +2mn)]

My, = p|-2ia (g +2mn)]
This final result represents the probability associate with the scattering diagram shown in Figure
8. At first glance this probability appears strange because it suggests that you have an evanescent
wave that is also complex. However this can easily be resolved. Usually the coupling constant that
is used in the interpretation of the filament diagram involves an imaginary unit i. However, if we
redefine the coupling constant and replace i with p (since the powers of p and i behave the

same algebraically), then the meaning of the equation becomes much more clear. The equation

becomes:
My =p[-2(p)4 (g +2mn)| = (p x p) [-24 (g +2mn)]

My = — [—ZA (g + 2ﬂn)] = (Am + 4Amn)

All that is left at this point is to choose an appropriate value of N that would agree with

experimental results.

Equation (41) suggests that the final form of the scattering amplitude M}; depends on the value
of n.Firstit can clearly be seen that no decay occurs irrespective of the value of n.Itis also clear from
the form of the scattering amplitude Mj; that the value goes to a constant value.

The above example shows how easy it is to use semi-structured complex framework to calculate
the scattering amplitude associated with Feynman diagram. There is no need for regularization or
renormalization. Moreover the algebraic nature of the solution makes it logical consistent and treats
infinity in a very structured manner.
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4. Discussion

This paper presented 8 cases where division by zero can easily be interpreted using a novel semi-
structured space state space framework. It's important to note that in all 5 cases, division by zero
resulted in an equation that was interpreted as a propagation constant in semi-structured complex
state space framework. This is highly important because it now provides a logical consistent way of
interpreting physics equations that involve division by zero. This is especially useful where
experimental data is unavailable but where predictions need to be made. The use of a semi-structured
complex framework is not only useful in physics but can be useful in other sciences such as chemistry
computer science and engineering.

In classical mechanics when division by zero occurred the equation was converted into semi-
structured complex format by simply changing the division by zero into its semi-structured
representation p. This immediately meant that the equation was not viewed from the perspective of
semi-structured complex state space. This in turn gave way for the equation to be interpreted using
the semi-structured complex framework developed in this paper. The interpretations were tied into
known experimental results. This paved the way proving using a few cases that the framework is
useful in helping interpret division by zero.

One very important point to keep in mind is that the idea of division by zero is theorized to
indicate that a variable is dampened to some constant value. In classical mathematics division by zero
indicates variables that explode to infinity. However in practical physics such variables do not exist.
The reason for this is simple; isolated systems do not have an infinite amount of energy. Therefore, if
a variable appears to go to infinity, then, at some point the energy that it (or other variables that
depend on it) is using to go to infinity will become exhausted and so eventually the variable will
return to some finite value. It is from the perspective of a finite amount of energy in isolated systems
that the whole idea of division by zero representing evanescent (or decaying) waves makes sense.

From the classical setting, the paper moved on to look at the framework in the quantum
mechanical setting. With quantum mechanics we looked at defining a new type of Hamiltonian for
interrupting quantum states in which the off diagonal entries of the Hamiltonian matrix represented
transition amplitudes from one state to another. However these transition amplitudes were
represented as semi-structured complex numbers. This indicated that these quantum states contained
divergences that would affect the transition amplitudes. The Schrodinger equation was used with
this new form of the Hamiltonian to reveal that the waves that satisfy this equation have a semi-
structured complex representation. This representation was interpreted to mean that the wave has
both a complex oscillatory part and an unstructured part. These sort of quantum mechanical waves
can provide a new opportunity for physicists to explore and experiment with features in quantum
mechanics that would not normally be considered because of infinities or singularities that may arise
during calculations. Semi-structured complex numbers as an extended number system could provide
a novel framework for encoding singularities or infinities in probability amplitudes in a logical,
consistent algebraic structure.

The paper also considered a new type of Schrodinger equation that can be used to calculate semi-
structured complex quantum waves which can be used to represent wave forms that have both an
oscillatory complex nature and a divergent nature. This is significant because it does permit
evanescent waves and evanescent probabilities to be calculated within quantum mechanics.

Finally the paper examined the use of the semi-structured complex framework in the quantum
field theory realm. Specifically, the paper examined how probabilities can be determined for one loop
Feynman diagrams in cases where singularities and infinities normally arise. The paper considered
dealing with these infinities without using standard ad hoc regularization techniques. This is
significant because it greatly simplifies calculations associated with the Feynman diagrams and it
also justifies the results obtained from Feynman diagrams using logical algebraic calculations. It is
also significant because this means that the semi-structured complex framework can be used to
analyse infinities and singularities in other branches of physics including other aspects of quantum
field theory, string theory, and electro-chromodynamics.
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Conclusion

This paper examined how infinities and singularities can be dealt with using a new semi-
structured complex framework. The framework utilizes semi-structured complex numbers (an
algebra created to enable division by zero), state space modelling and the characteristic wave function
as components to mathematically interpret infinities and singularities. The semi-structured complex
framework that treats infinities and singularities as evanescent waves that can be manipulated
algebraically to result in logical, consistent and experimentally verifiable results. The utility of the
framework is demonstrated in classical mechanics, quantum mechanics and quantum field theory.

The framework was used to develop a new type of Hamiltonian matrix whose elements
represent the energies of a quantum states that are described by evanescent waves. The paper then
moved on to use the characteristic wave equation from this semi-structured complex framework to
develop a new form of the Schrodinger equation that can be used to determine the state 1(t) where
Y (t) represents a quantum state that can be described by an evanescent wave. Finally, the paper
demonstrated how to resolve the singularities arising in quantum field theory when attempting to
calculate the scattering amplitude from propagators created in Feynman diagrams.

The work in this paper points to the fact that semi-structured complex numbers if utilized
properly can be used to create and interpret very important results in different areas of physics. The
robustness of the framework used in this paper also points to the fact that it can be used in other
branches of science where singularities and infinities appear in mathematical equations as a result of
division by zero.

Appendix 1. Important Results from Semi-Structured Complex Number Research

Table 3. Major results from paper.

Resul  Semi-structured complex number set can be defined as follows:
t1 A semi-structured complex number is a three-dimensional number of the general
form h = x + yi + zp; that is, a linear combination of real (1), imaginary (i) and
unstructured (p) units whose coefficients x,y,z are real numbers.
The number h is called semi-structured complex because it contains a structured complex

part (x + yi) and an unstructured part (zp).

Resul The unstructured number p was redefined as:
t2 \/EXCOS(%H—%)

n

Pe= Fr(l)

where f™(c) is a composite function such that f(c) =1 —c.

(35)

Integer powers of p yield the following cyclic results:

Resul p does not belong to the set of complex numbers C (thatis, p & C), but belongs to a higher
t3 order number set H called the set of semi-structured complex numbers such that the set

of complex numbers is a subset of H (thatis, C c H).

Resul  The field of semi-structured complex numbers was defined, and proof was given that this
t4 field obeys the field axioms. This implies (1) the number set can easily be used in everyday

algebraic expressions and can be used to solve algebraic problems, (2) the number set can
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be used to form more complicated structures such as vector spaces and hence solve more

complex problems that may involve “division by zero”.

Resul  Semi-structured complex number set H does not form an ordered field. For the objects in
t5 a field to have an order, operations such as greater than or less than can be applied to
these objects. This is because in an ordered field the square of any non-zero number

is greater than 0; this is not the case with semi-structured complex numbers.

Resul  Semi-structured complex numbers can be represented by points in a 3-dimensional
té Euclidean xyz-space. The xyz-space consist of three perpendicular axes: the real x-axis,
the imaginary y-axis, and the unstructured z-axis. These axes form three perpendicular
planes: the real-imaginary xy-plane, the real-unstructured xz-plane, and the imaginary-

unstructured yz-plane.

Resul  The unit p was used to find a viable solution to the logarithm of zero. The logarithm of

t7 zero was found to be:
s
log0 = —p (E + an) (36)

where k is some integer value.

Resul

t8

The new definition of p provided an unambiguous understanding that g= n simply

represents 90  clockwise rotation of the vector np from the positive unstructured z-axis
to n on the positive real x-axis along the real-unstructured xz-plane. Note that n is any

real number.

Resul  Semi-structured complex numbers have both a 3D and 4D representation in the form:

t9 h=x+yi+2zp (3D form)

h= A+Bi+Cp+Dip (4D form)

Where: x,y,z,A4,B,C,D are real numbered scalars and i,p are semi-structured basis

units.

Resul Two new Euler formulas were developed.

t10
Plane Euler formula
Real imaginary xy-plane e =cos +isinf
Real unstructured xz-plane eP? = cos 0 + psin6
Imaginary unstructured yz-plane e™?% = cosh 6 — ipsinh 6

When combined with the original Euler formula describes the relationship between
trigonometric, hyperbolic, and exponential functions for the entire semi-structured

complex Euclidean xyz-space.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.0478.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 June 2025 d0i:10.20944/preprints202506.0478.v1

23 of 28

Resul  Semi-structured complex numbers can be used to resolve singularities that may arise in
t11 engineering and science equations (because of division by zero) to develop reasonable

conclusions in the absence of experimental data.

Resul ~ From Result 10 semi-structured complex numbers can present in four forms as given

t12 below:

Semi-structured complex number along Number
Real-imaginary xy-plane hyy =x + iy
Real-unstructured xz-plane hy, =x+pz
Imaginary-unstructured yz-plane hy, =iy + pz
Xyz-space h=x+iy+pz

Resul  The zeroth root of a number h can be found using the equation

t13 Vh= kP = ePnh = cos(Inh) + psin(In h)

Resul

" Since p! = % this implies that % = 0 which further implies that —p =0
t

Resul Any real number with the semi-structured unit p attached to it is not a physically
t 15 measurable quantity. That is, kp where k is a real number is not physically measurable

(however, k can be calculated given enough information)

Resul If a and b measure different (but quantitatively related) aspects of the same object,
t16 where a is physically measurable but b is not, then aand b can be combined into one

equation in the form a + bp

Appendix 2. Characterizing Semi-Structured Complex Number Algebra for
Quantum Mechanics

Step 1: Define Algebra
A real 3D algebra P with basis elements {1,i,p} can be defined as shown in Table 4:

Table 4. Properties of P-algebra.

iz = —1 ﬁ4 = 1
p?=-1 ip = pi
pP=-p Conjugation: a + bt +cp = a — bi — cp

From Table 4 the algebra is associative, commutative with respect to i and p, and has a well-
defined conjugation operation.

Step 2: Define Norm and Inner Product

To begin, suppose a wavefunction is given by ¥ = a + bi + cp. Then the norm can be defined
as:

lpll> = Y = (a + bi + cp)(a — bi — cp)
= a’ + b? + ¢? + abi — abi + acp — acp + bcip — bcip = a® + b> + ¢?

IWI1> = ¥ = a® + b? + 2 €R* (37)
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Step 3: Define p-Hilbert Space
A state is a vector |{/) € P" with components ¥ = a + bi + cp. An inner product is defined as:

(plpy = €R (38)
The unitary operator U on this space is such that:
(UplUY) = (@) (39)

Note: unitary operator is a linear operator that preserves the inner product (dot product) and
norm (length) of vectors. The Observable 0 on this space is such that:

(w|Ooy) e R (40)

An observable is a physical property of a system that can be measured. These properties are
represented mathematically by operators that act on the quantum state of the system.

Appendix 3. Solving Schrodinger Equation Involving Semi-Structured Complex
Hamiltonian Matrix

Consider the system of Equations

. d LPl(t)]_[ 0 1+p] ¢1(t)]

Yaclo,®| Tli-p 0 Ju,m (41)
This can be broken up into
2 =
laq)] =1+ p)qu (42)
cd 1
ldtqu - ( p)q)l (43)
Solving Equation (42) gives
.d
i, = 1+,
. d . .
la(a-i- bi+cp)=({1+p)(d+ei+fp)
ia—b+cip=d+ei+fp+dp+eip + fp?
—b+ai+cip=(d—f)+ei+(d+f+eip
Comparing parts gives:
~b=d-f (@
a=e (b)
wc=d+f+ei (c)
This implies
b=f-d (fromEquation (a)) a=e (from Equation (b))
d+f=0 (from Equation(c)) ¢=e (from Equation (c)) (44)
Solving Equation (43) gives:
.d
laq)z =(1- p)lpl
d
ia(d +ei+ fp) =(1—p)(a+bi+cp)
id—é+ fip=a+ bi + cp — ap — bip — cp?
—é+di+ fip = (a+c) + bi + p(c — a — bi) (45)
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Comparing parts gives:
—é=a+c (d)
d= (e)
if =c—a-—bi 63)
This implies
—é =a+ ¢ (from Equation(d)) d = b (from Equation(e))
¢ —a =0 (from Equation(f)) f =-b (from Equation(f))
Using the constraints:
From Equation (44): ¢ —a = 0 which impliesc = a
From Equation (45): d + f = 0 which implies d = —f
Substitute into the ordinary differential Equation (44) and Equation (45) to get:
a=e d=b
b=f-d=(-d)—d=-2d é=—(a+c)
c=e f=-b (46)

Now solving the system of equations in Equation (46):
Solving for b.
b=-2d

b=-2d=-2b->b+2b=0
Hence

b(t) = Bcos(tx/?) + Csin(tV2)
Where B and C are constants
Solving for d.

. 1.
b=-2d >d= Eb
Therefore

d(t) = g [Bcos(tV2) + Csin(tV2)]

Solving for f.
f=-b
f= —[Bcos(t\/E) + Csin(t\/z)]

f() = % [Ccos(tV2) — Bsin(tV2)]

Solving for e.

é=—(a+c)
é=—(a+¢)
é=—(e+e)

e=—-2e—-é+2e=0
e(t) = Dcos(tV2) + Esin(tV2)
Where D and E are constants

Solving for a.
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a= Dcos(tx/z) + Esin(tV2)
Integrating for a:
a(t) = % [Ecos(tx/f) - Dsin(t\/i)]
Solving for c:
c=e
¢ = Dcos(tx/?) + Esin(tV2)
Integrating for c:
c(t) = % [Ecos(tx/?) — Dsin(t\/?)]
Hence:
b, ®) =a®)+ib(®) — c(®)p
b, =d@®) +i.e(®— f(Op (47)
Where
a(®), b(t), c(®)
Time varying variables

d(t),e(t), f(¥)

and

_ V2) — Dsin(t? V2 .
a(t) = \/E[Ecos(t 2) = Dsin(tv2)] d(t) = T[Bcos(tﬁ) + Csm(tx/?)]
b(t) = Bcos(tx/?) + Csin(tV2) e(t) = Dcos(tx/z) + Esin(tV2)
1 . 1 o
c(t) = E[Ecos(t\/i) — Dsm(tx/ﬁ)] f) = 7 [Ccos(t\/z) Bsm(t\/i)] (48)

Where B,C,D,E are constants

Appendix 4. Derivation of New Schrodinger Equation

To derive the time-dependent Schrodinger equation for a single non-relativistic particle in one
dimension:

Step 1: Start from the characteristic wave equation given in Equation (6):
Wy, = AeP(0t=ypx) (5)
This is an evanescent wave, representing a decaying quantum system. This can be rewritten as:
W, = AeP(@t=vpx)
Y, = AeP(wt=[a-pBlx)
ll)p — Aep(wt—ax+p,[>’x)
IIJ,, — Aepwt—pax—ﬁx
l,bp — Ae—ﬁxepwt—pax
ll/p — Ae—ﬁxep(wt—ax)
ll/p — Sep(wt—ax) (5)
Where S = Ae™F*

Hence in the propagation constant y, =a —pf, a is the phase constant and £ is the
attenuation constant.

Now consider:

de Broglie relation for Momentum: hk (8

=
Il
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Planck-Einstein relation Energy: E=hw (h)

Where p is momentum. The arrow is place above this p to differentiate momentum from the
semi-structured complex number p.

Step 2: Derive the momentum operator

Take the spatial derivative of the wavefunction:

op 0
- p(wt-ax)) — _ plwt-ax) — _
o~ ox (Se ) pa X Se pay (49)
Multiply both sides by p#:
oy
ph——-=phx—pay
oY
ph——-=phXx —pay
oy
Phyy = hap (50)
Since the wave number and phase constant are essentially the same thing, that is k = «, this
implies:
h 9 = hayp = hkyp =p
pho—1 = hayp = hlap = pyp 51)
Hence:
- — h—
P=Phox (52)
Step 2: Derive the energy operator
Take the time derivative of the wavefunction:
op 0
_r_ - p(wt—ax)) — p(wt—ax) —
Frier (Se ) pw X Se pwyp (53)
Multiply both sides by —p#:
oy
—pfla = —ph X pwp
h W _ hwyp = E
pho, = how =Ey (54)
Hence:
E=—pnh 0
- TP (55)

These operator definitions can be used in the Schrodinger equation, commutation relations, and
nearly all of quantum mechanics.
Step 4: Classical total energy (Hamiltonian)
From classical mechanics, the total energy of a particle is:
®)’
E=—+V
om TV (56)

To promote this to an operator equation in quantum mechanics by substituting the operators:

532
Ey= [% + V(x)] Y 57)

Substituting the expressions for momentum and energy into equation givens:
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0 h2 2
“Phav = [‘ﬁ@+ V@]l” (58)
This is the Time-Dependent Schrédinger Equation in semi-structured form.
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