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Abstract: In this paper, solar irradiance and wind speed forecasts were performed considering time horizons 

ranging from 10 min to 60 min, under a 10 min time-step. Global horizontal irradiance (GHI) and wind speed 

were computed using four forecasting models (Random Forest, k-Nearest Neighbours, Support Vector 

Regression, and Elastic Net) to compare their performance against two alternative dynamic ensemble methods 

(windowing and arbitrating). Forecasting models and dynamic forecasting ensembles were implemented in 

Python for performance evaluation. The performance comparison between the prediction models and the 

dynamic ensemble methods was carried out by evaluating the RMSE, MAE, R² and MAPE, to evaluate whether 

the dynamic ensemble forecasting method obtained greater. According to the results obtained windowing 

dynamic ensemble method was the most efficient among the tested. For the wind speed data, by varying its 

parameter λ (from 1 to 100), a variable performance profile was obtained, where from λ =1 to λ = 74, windowing 
proved to be the most efficient, reaching maximum efficiency for λ = 19. Windowing was the best method for 
the GHI analysis, reaching its best performance for λ = 1. The efficiency gain using windowing was 0.56% when 
using the wind speed model and 1.96% for GHI. 

Keywords: wind energy; solar energy; renewable energy; machine learning; forecasting ensembles 

 

1. Introduction 

The Electricity generated by fossil fuel sources has been the main driver of climate change, 

probably over 70% of greenhouse gas emissions and over 90% of all carbon gas emissions. The 

alternative of decarbonizing the world’s electricity generation system is a trend focused on alert 

sources of renewable energy, whose generation costs are increasingly accessible [1]. 

A very undesired effect when it comes to electrical generation from alternative resources is the 

impact of intermittency generation on the electrical grid, since this generation is dependent on 

weather conditions, and one of the means to eliminate or reduce its uncertainties is the availability 

prediction of these resources [2]. 

The influences of atmospheric factors on the generation of electrical energy from solar 

and wind sources are usually the main problem in the generation of smart grids, where large-scale 

generation plants need to be integrated into the electrical grid, which directly affects planning, 

investment, and decision-making purposes. Forecast models can minimize that problematic through 

machine learning models [3]. 

The benefits of optimizing the forecast of generation from wind and solar sources using models 

is also an economic factor, as it gives greater security to the electricity sector through the 

improvement of renewable energy purchase contracts [4]. 
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A 14-year-long data set was explored in [5], containing daily values of meteorological variables. 

It was used to train three artificial neural networks (ANNs) in several time horizons to predict the 

global solar radiation for Fortaleza, in the Brazilian Northeastern region. The accuracy of the 

predictions was considered excellent according to its normalized root-mean-squared error (nRMSE) 

values and good relative to mean absolute percentage error (MAPE) values. 

The variability of mathematical prediction models has individual importance inherent to each 

one of the methods employed and, in this scenario, dynamic ensemble models emerge, which present 

potential better performance when compared to individual models, since they seek maximum 

optimization by considering the best of the individual models. This approach is currently very 

successfully used in research and industrial areas. Several dynamic ensemble methods have been 

developed for forecasting energy generation from renewable sources in which they use the presence 

of well-known forecast models such as random forest regression (RF), support vector regression 

(SVR), and k-nearest neighbors (kNN), which are applied to integrate optimizations for use in 

dynamic ensemble methods [6]. 

The Support Vector Machine was first developed for classification models and is largely 

discussed [7,8], in recent approaches [9] to develop a novel method for the maximum power point 

tracking of a photovoltaic panel and in [10], where it is discussed the solar radiation estimation by 

five different machine learning approaches. 

The KNN method predicts a new sample using the K-closest samples. Recently this approach 

has been used in [11], where Virtual Meteorological Masts use calibrated numerical data to provide 

precise wind estimates during all phases of a wind energy project to reproduce optimal site-specific 

environmental conditions. 

Most studies have focused on accurate wind power forecasting, where random fluctuations and 

uncertainties involved are considered. The study in [12] proposes a novel ultra-short-term 

probabilistic wind power forecasting using an error correction modeling by the random forest 

approach. 

The Elastic Net is a regularized regression method that linearly combines the penalties of the 

LASSO and Ridge methods. In [13] the study uses forecast combinations that are obtained by 

applying regional data from Germany for both solar photovoltaic and wind through the Elastic Net 

model, with cross-validation and rolling window estimation, in the context of renewable energy 

forecasts. 

The state-of-the-art uses dynamic ensemble methods in a meta-learning approach such as 

arbitrating, which combines the output of experts according to predictions of the loss they will incur, 

and also windowing approaches, which have parameterizations for adjusting the degree of data to 

be considered [14]. 

In [15], the global climate model (GCM) is studied to improve a near-surface wind speed (WS) 

simulation through 28 coupled model intercomparison using dynamical components. 

In [16], a hybrid transfer learning model based on a convolutional neural network and a gated 

recurrent neural network is proposed to predict short-term canyon wind speed with fewer 

observation data. The method uses a time sliding window to extract time series from historical wind 

speed data and temperature data of adjacent cities as the input of the neural network. 

In [17] is explored the Multi-GRU-RCN, an ensemble model to get significant information such 

as precipitation and solar irradiation through short-time cloud motion predictions from a cloud 

image. The ensemble modeling used in [18] integrates wind and solar forecasting methodologies 

applied to two locations with different latitudes and climatic profiles. The obtained results reduce the 

forecast errors and can be useful in optimizing the planning for using intermittent solar and wind 

resources in the electrical matrices. 

A proposed new ensemble model in [19] was based on Graph Attention Network (GAT) and 

GraphSAGE to predict wind speed in a bi-dimensional approach using a Dutch dataset considering 

several time horizons, timelags, and weather influences. The results showed that the ensemble model 

proposed was equivalent to or outperformed all benchmarking models and had smaller error values 

than those found in reference literature. 
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Under a 5 min time-step, in [20] it was applied time horizons ranging from 5 min to 30 min in 

evaluating the solar irradiance short-term forecasts to Global Horizontal Irradiance (GHI) and Direct 

Normal Irradiance (DNI) using deep neural networks with 1-dimensional convolutional neural 

network (CNN-1D), long short-term memory (LSTM), and CNN-LSTM. The metrics used were the 

mean absolute error (MAE), mean bias error (MBE), root-mean-squared error (RMSE), relative root 

mean squared error (rRMSE), and coefficient of determination (R²). The best accuracy was obtained 

for a horizon of 10 min, improving 11.15% on this error metric compared to the persistence model. 

In front of this, the main contribution of this article is to demonstrate the influence of dynamic 

ensemble arbitrating and windowing methods on machine learning methods traditionally used for 

predicting electrical generation. We also present their greater efficiency, using data of interest for 

energy production with input variable of wind speed and solar irradiance, used, respectively, for 

both wind and solar farms. We have followed this approach because of its advantage in exploring 

dynamic ensemble methods, since these seek the best pre-existing efficiency for generating a unique 

and more effective predictability model. 

2. Location and data 

In this paper, two data types were used to carry out the analysis, which were acquired from 

solarimetric and anemometric station located in Petrolina – PE. The data were collected from the 

SONDA network (National Organization of Environmental Data System) [21], which was a joint 

collaboration of several institutions and was created for the implementation of physical infrastructure 

and human resources, aiming at raising and improving the database of solar and wind energy 

resources in Brazil. 

In Table 1, information on the solarimetric and anemometric station can be found, and its 

location on the map is shown in Figure 1. 

 

Figure 1. Map of the Northeast of Brazil. The Petrolina measurement site is highlighted [26]. 
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Table 1. Geographic coordinates, altitude in relation to the sea level, measurement intervals, and 

measurement periods of the data collected from the Petrolina station. MI and MP stand for, 

respectively, “measurement interval” and “measurement period”. 

Type Lat. (◦) Long. (◦) Alt. (m) MI (min) MP 

Anemometric 

09° 04’ 08" S 40° 19’ 11" O 387 10 

01/Jan/2007 to 

12/Dec/2010 

Solarimetric 
01/Jan/2010 to 

12/Dec/2010 

2.1. Wind speed data 

The wind speed data was obtained in m/s from a meteorological station, which has anemometric 

sensors at altitudes of 25 m and 50 m from the ground. The highest altitude was chosen for this study, 

aiming to reduce the effects of the terrain and closer to the altitudes currently in practice for wind 

turbines [22]. 

2.2. Irradiance data 

The Global Horizontal Irradiance (GHI) data acquired from the solarimetric station were used 

in this study, and the clear-sky coefficient was considered, in order to remove dependence on air 

mass in the irradiance values that reach the sensors [23], through the use of the clear-sky factor (Ics) 

[24], using the polinomial fit model [27]. The work [25] obtained promising results from the same 

database using two machine learning estimation models for (GHI). 

In order to obtain irradiance data independent of air mass variations, we used kt, which is 

defined by the ratio between the Global Horizontal Irradiance value (GHI) (I) and clear sky factor 

(Ics), as shown in Equation 1. 𝑘𝑡 = 𝐼𝐼𝑐𝑠 (1) 

3. Methodology 

Initially, wind speed and irradiance data were acquired and the intervals for the test and training 

sets were determined. For wind speed data, in a measurement period from 2007 to 2010, the first 

three years were used as the training data set and the last year as the test set. In order to allow the 

evaluation of the performance of the tested forecasting models and also of dynamic ensemble 

methods, a computational code was developed in Python to evaluate the output values obtained by 

the well-known Machine Learning forecasting methods: Random Forest, k- Nearest Neighbors 

(kNN), Support vector Regression (SVR), and Elastic Net. For each of the methods, the best 

performance parameters (lower Root Mean Squared Error (RMSE)) were evaluated. Right after the 

stage of acquisition and determination of the optimal parameters for each of the models, the methods 

of dynamic ensemble windowing and arbitrating were executed, from which performance metrics 

values were also obtained: Coefficient of Determination (R²), Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). These values were compared 

to evaluate the efficiency of the dynamic ensemble methods compared to other stand-alone models. 

It was also evaluated the variation of the lambda parameter for windowing, which is the length used 

for the extension of the values considered in the data forecast. The methodology used can be seen in 

Figure 2. 

In the data pre-processing, a recursive approach of Lagged Average values for kt and ν time 
series was applied: this feature is given by the vector L(t) with components calculated using Equation 

(2). 𝐿𝑖(𝑡) = 1𝑁 ∑ x(𝑡)𝑡∈]𝑡−𝑖𝛿−𝑇,𝑡−(𝑖−1)𝛿−𝑇]   (2) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 August 2023                   doi:10.20944/preprints202308.0693.v1

https://doi.org/10.20944/preprints202308.0693.v1


 5 

 

 

Figure 2. Diagram of the data flow for the applied methodology. 

3.1. Windowing method 

The diversity of the models makes the forecast analysis rich and complex, since each model has 

strong points and other weaknesses, in the sense that from this combination, the best results can be 

treated and considered to obtain more accurate forecasts. To perform this combination, it is necessary 

to know how to estimate at which points certain specific models perform better. 

Windowing [14] is a dynamic ensemble model, where weights are calculated based on the 

performance of each individual model, evaluated in a data window referring to immediately 

previous data. The size of this window is parameterized by the λ value. This means that the weights 

of each model are re-evaluated at each time step, and then they are classified to catalogue only the 

best performance results, generating a hybrid model. 

3.2. Arbitrating method 

Arbitrating [28] uses the metalearning method strategy to learn and predict the classifiers. In 

this study it regards the weights based on each model’s performance for a given time step. At each 

simulation instant, the most reliable model is selected and included in the prediction process. 

3.3. Machine learning prediction models and dynamic ensemble method parameters 

In the data training stage, GridSearch was used with 5-fold cross validation. The search 

parameters are shown in Table 2. 

Table 2. Search parameters and grid values applied to the tested methods. 

Method Search parameter Grid values 

Random Forest maxdepth [2, 5, 7, 9, 11, 13, 15, 21, 35] 

KNN nearest neighbours k 1 ≤ k ≤ 50, k integer 

SVR 
penalty term C [0.1, 1, 10, 100, 1000] 

coefficient λ [1, 0.1. 0.01, 0.001, 0.0001] 

Elastic Net regularization term λ  [1, 0.1. 0.01, 0.001, 0.0001] 

Windowing Λ [1, 3, 6, 12, 25, 50, 100] 
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Arbitrating * 

*: By using a meta-heuristic methodology, the initial parameter was not needed. 

3.4. Performance Metrics Comparison Criteria 

As the purpose of this work is to evaluate the performance of dynamic ensemble methods 

against other methods, performance metrics had to be determined to allow it. The metrics used were 

those of Equations 3, 4, 5 and 6. 

• Coefficient of Determination (R²) 

𝑅 = 1 − ∑ (𝑦𝑖 − 𝑦𝑖̂)𝑁𝑖=1∑ (𝑦𝑖 − 𝑦𝑖̅)𝑁𝑖=1  (3) 

• Root Mean Squared Error (RMSE) 

𝑅𝑀𝑆𝐸 = √∑(𝑦𝑖̂ − 𝑦𝑖)𝑁
𝑖=1  (4) 

• Mean Absolute Error (MAE) 

𝑅𝑀𝑆𝐸 = 1𝑁 ∑|𝑦𝑖̂ − 𝑦𝑖|𝑁
𝑖=1  (5) 

• Mean absolute percentage error (MAPE) 

𝑀𝐴𝑃𝐸 = 1𝑛 ∑ |𝑦𝑖 − 𝑦𝑖̂𝑦𝑖 |𝑛
𝑖=1  (6) 

4. Results and Discussion 

Discussions are carried out around the results generated regarding the analysis of efficiency 

metrics for the machine learning methods discussed here, in an attempt to determine which 

method/parameters obtains the best performance in the application for wind speed and solar 

irradiance data. 

4.1. Wind Speed Predictions 

During the search for best-performance methods, the optimized parameters for each of the tested 

methods needed to be known. This allows the elaboration of the dynamic ensemble, which is built 

upon the merging of the best-performance results at each time step and for all the methods in 

question. The optimal parameters found for each of the time horizons are shown in Table 3. 

Table 3. Best parameters for each machine learning method. 

Method Parameter t+10 t+20 t+30 t+60 

Random Forest 
best_max_depth 7 

best_n_estimators 20 

KNN best_n_neighbors 49 

SVR 
best_ C 1 

best_epsilon 0.1 1 0.1 

Elastic Net best_l1_ratio  1 

Efficiency evaluations for each of the forecasting methods were based on performance metrics 

evaluations for each time horizon under study (t+10, t+20, t+30 and t+60). Initially, for all time 
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horizons, windowing proved to be the most efficient method. Then, a fine-tuning evaluation was 

performed based on the variation of the windowing parameter to assess its influence on performance. 

The predominance of better performance for windowing in all time horizons and its comparisons can 

be seen in Table 4 and Figure 3. 

Table 4. Comparison of RMSE values, using different methods for different time horizons and 

windowing ʎ parameter variation. The best results for each time horizon are in bold. 

Time horizon ʎ RF KNN SVR Elastic Net Windowing Arbitrating 

t+10 min 

1 

0.69458 0.71040 0.69396 0.69828 

0.69263 

0.69447 

3 0.69180 

6 0.69114 

12 0.69041 

19 0.69007 

25 0.69040 

50 0.69226 

74 0.69402 

100 0.69431 

t+20 min 

1 

0.88310 0.89332 0.88372 0.88554 

0.86817 

0.88315 

3 0.87353 

6 0.87563 

12 0.87699 

25 0.87803 

50 0.87889 

100 0.87960 

t+30 min 

1 

0.99469 0.99859 0.99130 0.99660 

0.97497 

0.99091 

3 0.98017 

6 0.98333 

12 0.98583 

25 0.98702 

50 0.98832 

100 0.98902 

t+60 min 

1 

1.18092 1.19527 1.17764 1.18281 

1.15150 

1.18156 

3 1.15647 

6 1.16170 

12 1.16685 

25 1.16987 

50 1.17254 

100 1.17455 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 August 2023                   doi:10.20944/preprints202308.0693.v1

https://doi.org/10.20944/preprints202308.0693.v1


 8 

 

 

Figure 3. Windowing λ parameter variation influence in RMSE for different time horizons in wind 

speed data analysis for all the studied time horizons. 

Elastic Net is a penalized linear regression model that is a combination of Ridge and Lasso 

regression into a single algorithm and uses best_l1_ratio as a penalty parameter during the training 

step, being 0 for Ridge and 1 value for Lasso regression. From Table 3, the parameter obtained the 

value of 1, which means that Lasso regression was used in its entirety. 

As with the evaluation carried out by the RMSE, the values of R², MAE and MAPE were also 

assessed. Once the best performance was found for the windowing ensemble method, an in-depth 

analysis was performed based on the variation of its parameter ʎ to assess the influence on its internal 

performance. Since the time horizon that presented the best performance was t+10, this was the focus 

of the analysis, as shown in Figures 4–7. The detailed data for all the horizons is shown in Tables 5–
7. 

 

Figure 4. Windowing λ parameter influence on RMSE value for the time horizon t+10. 
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Figure 5. Windowing λ parameter influence in MAE value for the time horizon t+10. 

 

Figure 6. Windowing λ parameter influence in R² value for the time horizon t+10. 

 

Figure 7. Windowing λ parameter influence in MAPE value for the time horizon t+10. 
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Table 5. Comparison of MAE values, using different methods in different time horizons and 

windowing λ parameter variation. The best results for each time horizon are in bold. 

Time horizon ʎ RF KNN SVR Elastic Net Windowing Arbitrating 

t+10   min 

1 

0.51592 0.53216 0.51438 0.51853 

0.51384 

0.51711 

3 0.51366 

6 0.51328 

12 0.51276 

19 0.51272 

25 0.51301 

50 0.51441 

74 0.51574 

100 0.51603 

t+20   min 

1 

0.65845 0.66882 0.66040 0.65990 

0.64663 

0.65936 

3 0.65140 

6 0.65332 

12 0.65435 

25 0.65554 

50 0.65637 

100 0.65695 

t+30   min 

1 

0.74250 0.74735 0.74125 0.74347 

0.72594 

0.74097 

3 0.73105 

6 0.73402 

12 0.73625 

25 0.73732 

50 0.73846 

100 0.73902 

t+60   min 

1 

0.89496 0.90753 0.89179 0.89589 

0.86784 

0.89570 

3 0.87277 

6 0.87826 

12 0.88307 

25 0.88580 

50 0.88813 

100 0.88963 

Table 6. Comparison of R² values, using different methods in different time horizons and windowing 

λ parameter variation. The best results for each time horizon are in bold. 

Time horizon ʎ RF KNN SVR Elastic Net Windowing Arbitrating 

t+10 min 

1 

0.84248 0.83522 0.84275 0.84079 

0.84336 

0.84252 

3 0.84373 

6 0.84403 

12 0.84436 

19 0.84451 

25 0.84436 

50 0.84353 

74 0.84273 

100 0.84260 

t+20 min 

1 

0.74534 0.73941 0.74498 0.74393 

0.75388 

0.74531 
3 0.75083 

6 0.74963 

12 0.74885 
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25 0.74825 

50 0.74776 

100 0.74736 

t+30 min 

1 

0.67690 0.67436 0.67909 0.67566 

0.68958 

0.67935 

3 0.68626 

6 0.68423 

12 0.68262 

25 0.68186 

50 0.68102 

100 0.68057 

t+60 min 

1 

0.54443 0.53329 0.54695 0.54297 

0.56685 

0.54393 

3 0.56310 

6 0.55914 

12 0.55522 

25 0.55291 

50 0.55087 

100 0.54933 

Table 7. Comparison of MAPE values, using different methods in different time horizons and 

windowing λ parameter variation. The best results for each time horizon are in bold. 

Time horizon ʎ RF KNN SVR Elastic Net Windowing Arbitrating 

t+10   min 

1 

0.21277 0.25360 0.20257 0.21848 

0.21040 

0.21634 

3 0.21122 

6 0.21092 

12 0.21040 

19 0.21022 

25 0.21075 

50 0.21179 

74 0.21246 

100 0.21234 

t+20   min 

1 

0.31534 0.33823 0.34178 0.31206 

0.31280 

0.32577 

3 0.31558 

6 0.31658 

12 0.31745 

25 0.31906 

50 0.31990 

100 0.32101 

t+30   min 

1 

0.38089 0.39786 0.37520 0.37064 

0.36711 

0.38499 

3 0.36968 

6 0.37245 

12 0.37227 

25 0.37367 

50 0.37352 

100 0.37538 

t+60   min 

1 

0.52320 0.53567 0.51731 0.51284 

0.50552 

0.52440 

3 0.50730 

6 0.51189 

12 0.51289 

25 0.51480 

50 0.51571 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 August 2023                   doi:10.20944/preprints202308.0693.v1

https://doi.org/10.20944/preprints202308.0693.v1


 12 

 

100 0.51872 

When we check the influence of the ʎ parameter on the windowing method performance, it was 

found that from ʎ = 74 it is no longer the most efficient method, where SVR becomes the best one, due 

to its lowest RMSE value. Anyway, it is important to highlight that the best performance value for 

the windowing method, which is the best performance overall, was found for ʎ = 19. The performance 

comparison between the two methods can be seen in Figure 8. 

 

Figure 8. Parameter λ variance effect in method performance. SVR result is shown for reference. 

4.2. Irradiance Predictions 

During the search for best-performance methods, the optimized parameters of each of these 

methods needed to be known to allow the elaboration of the dynamic ensemble, which is built from 

merging the best-performance results at each instant and for each of the methods in question. The 

optimal parameters for each time horizon are shown in Table 8. 

Table 8. Best parameters for each machine learning method. 

Method Parameter t+10 t+20 t+30 t+60 

Random Forest 
best_max_depth 5 

best_n_estimators 20 

KNN best_n_neighbors 37 49 48 

SVR 
best_ C 0.1 

best_epsilon 0.1 

Elastic Net best_l1_ratio  1 

Efficiency evaluation for each of the solar irradiance forecasting methods were based on 

performance metrics for each time horizon under study (t+10, t+20, t+30 and t+60). Again, windowing 

proved to be the most efficient method for all time horizons, with the best method being found for 

the t+10 time horizon, having the lowest RMSE value, using its parameterizations with ʎ = 50 initially. 

Then, fine-tuning was performed based on the variation of the windowing parameter to assess its 

influence on performance. The predominance of better performance for windowing in all time 

horizons and its comparisons can be seen in Table 9 and Figure 9. 
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Table 9. Comparison of RMSE values, using different methods in different time horizons and 

windowing λ parameter variation. The best results for each time horizon are in bold. 

Time   horizon ʎ RF KNN SVR Elastic Net Windowing Arbitrating 

t+10   min 

1 

75.02000 75.26000 74.19000 74.98000 

72.73186 

74.01000 

3 72.93221 

6 73.29363 

12 73.21035 

25 73.24620 

50 73.48055 

100 73.69330 

t+20   min 

1 

90.94000 83.50000 84.45000 84.53000 

80.07000 

83.19000 

3 80.63000 

6 81.19000 

12 81.87000 

25 82.56000 

50 82.11000 

100 82.57000 

t+30   min 

1 

90.15000 90.50000 91.49000 93.49000 

86.25000 

89.70000 

3 87.00000 

6 87.75000 

12 88.33000 

25 88.95000 

50 88.70000 

100 89.01000 

t+60   min 

1 

112.05000 112.13000 112.76000 118.08000 

105.51000 

111.13000 

3 106.62000 

6 107.76000 

12 108.89000 

25 109.32000 

50 110.12000 

100 110.30000 

 

Figure 9. Windowing λ parameter variation influence in RMSE for all the studied time horizons in 

solar irradiation data analysis. 
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Just like the evaluation carried out by the RMSE, the values of R², MAE, and MAPE were also 

analyzed. After the best performance was found for the windowing method, an in-depth analysis 

was performed based on the variation of its parameter ʎ to assess the influence on its internal 

performance. Since the time horizon that presented the best performance was t+10, this was the focus 

of the analysis, as shown in Figures 9–12. The detailed data for all tested time horizons is shown in 

Tables 10–12. 

Figure 10. Windowing λ parameter influence in RMSE value in time horizon t+10. 

Table 10. Comparison of R² values, using different methods in different time horizons and 

windowing λ parameter variation. The best results for each time horizon are in bold. 

Time   horizon λ RF KNN SVR Elastic Net Windowing Arbitrating 

t+10   min 

1 

0.92000 0.92000 0.92000 0.92000 

0.92184 

0.92000 

3 0.92141 

6 0.92062 

12 0.92080 

25 0.92073 

50 0.92022 

100 0.91976 

t+20   min 

1 

0.88000 0.90000 0.90000 0.90000 

0.91000 

0.90000 

3 0.91000 

6 0.90000 

12 0.90000 

25 0.90000 

50 0.90000 

100 0.90000 

t+30   min 

1 

0.88000 0.88000 0.88000 0.87000 

0.89000 

0.88000 

3 0.89000 

6 0.89000 

12 0.89000 

25 0.89000 

50 0.88000 

100 0.89000 

t+60   min 

1 

0.83000 0.83000 0.82000 0.51223 

0.85000 

0.83000 

3 0.84000 

6 0.84000 

12 0.84000 

25 0.83000 

50 0.83000 

100 0.83000 
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Figure 11. Windowing λ parameter influence in R² value in time horizon t+10. 

Table 11. Comparison of MAE values, using different methods in different time horizons and 

windowing λ parameter variation. The best results for each time horizon are in bold. 

Time   horizon λ RF KNN SVR Elastic Net Windowing Arbitrating 

t+10   min 

1 

48.29000 48.47000 44.16000 49.31000 

72.73186 

46.24000 

3 44.52301 

6 45.00717 

12 45.27759 

25 45.67924 

50 45.79140 

10 46.16632 

t+20   min 

1 

65.19000 55.63000 59.67000 58.86000 

52.53000 

56.20000 

3 53.31000 

6 54.12000 

12 55.27000 

25 56.88000 

50 55.59000 

10 56.79000 

t+30   min 

1 

62.09000 61.58000 64.77000 67.13000 

58.14000 

60.91000 

3 59.02000 

6 59.91000 

12 60.85000 

25 61.34000 

50 61.84000 

10 61.51000 

t+60   min 

1 

81.28000 79.84000 81.44000 89.07000 

74.59000 

79.80000 

3 7592000 

6 77.11000 

12 78.47000 

25 79.08000 

50 79.48000 

10 79.63000 
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Figure 12. Windowing λ parameter influence in R² value in time horizon t+10. 

Table 12. Comparison of MAPE values, using different methods in different time horizons and 

windowing λ parameter variation. The best results for each time horizon are in bold. 

Time   horizon λ RF KNN SVR Elastic Net Windowing Arbitrating 

t+10   min 

1 

0.22000 0.24000 0.21000 0.23000 

0.20701 

0.22000 

3 0.21027 

6 0.21254 

12 0.21364 

25 0.21444 

50 0.21541 

100 0.21684 

t+20   min 

1 

0.32000 0.28000 0.28000 0.27000 

0.25000 

0.27000 

3 0.25000 

6 0.26000 

12 0.26000 

25 0.27000 

50 0.26000 

100 0.27000 

t+30   min 

1 

0.29000 0.30000 0.29000 0.33000 

0.27000 

0.29000 

3 0.28000 

6 0.28000 

12 0.28000 

25 0.29000 

50 0.29000 

100 0.29000 

t+60   min 

1 

0.34000 0.35000 0.34000 0.54747 

0.32000 

0.34000 

3 0.32000 

6 0.33000 

12 0.33000 

25 0.34000 

50 0.34000 

100 0.34000 
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Figure 13. Windowing λ parameter influence in MAPE value in time horizon t+10. 

Some authors applied Elastic Net in time-varying combinations [13], using RMSE as a 

performance metric. They found that, for PV forecasts, it has been reached 13.4% more precise 

forecasts than the simple average and for the wind forecast, it has been reached 6.1% better forecasts. 

In [18] an ensemble method was studied, which used MAPE as the comparative efficiency metric 

for wind speed data, with a value of 9.345% and solar with 7.186%, which proved to be the most 

efficient. 

In this study, performance improvements were obtained for the most efficient method 

(windowing) compared to the second most efficient for wind speed of 0,56% and, for solar irradiation, 

1.86%. 

4.3. Comparison with results from the literature 

The performance of the windowing approach was compared with other wind forecasting 

models found in the literature. It is important to disclose that a direct comparison between different 

predictive models is not an easy task, once each applied approach has its own objectives, 

hyperparameters, and input data [19]. 

The results found in literature for wind speed forecasting are compiled and presented in Table 

13, where RMSE and MAE are in m/s. 

Table 13. Compilation of results for wind speed forecasting. 

Model Metric Value Author 

GNN SAGE GAT 

RMSE 

0.638 for t+60 forecasting horizon 

MAE 

0.458 for t+60 forecasting horizon 

Oliveira Santos 

et al. [19] 

ED-HGNDO-BiLSTM 

RMSE 

0.696 average for t+10 forecasting horizon 

1.445 average for t+60 forecasting horizon 

MAE 

0.717 average for t+10 forecasting horizon 

0.953 average for t+60 forecasting horizon 

MAPE 

0.590 average for t+10 forecasting horizon 

9.769 average for t+60 forecasting horizon 

Neshat et al. [29] 
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Statistical model for wind speed 

forecasting 

RMSE 

1.090 for t+60 forecasting horizon 

Dowell et al. 

[30] 

Hybrid wind speed forecasting 

model using area division (DAD) 

method and a deep learning neural 

network 

RMSE 

0.291 average for t+10 forecasting horizon 

0.355 average for t+30 forecasting horizon 

0.426 average for t+60 forecasting horizon 

MAE 

0.221 average for t+10 forecasting horizon 

0.293 average for t+30 forecasting horizon 

0.364 average for t+60 forecasting horizon 

Liu et al. [31] 

Hybrid model CNN-LSTM 

RMSE 

0.547 for t+10 forecasting horizon 

0.802 for t+20 forecasting horizon 

0.895 for t+30 forecasting horizon 

1.114 for t+60 forecasting horizon 

 

MAPE 

4.385 for t+10 forecasting horizon 

6.023 for t+20 forecasting horizon 

7.510 for t+30 forecasting horizon 

11.127 for t+60 forecasting horizon 

Zhu et al. [32] 

Analyzing the results for reference [19], in which wind speed was forecasted for the Netherlands 

using an ensemble approach merging graph theory and attention-based deep learning, we can 

observe that the proposed windowing ensemble model is not able to surpass the results for RMSE 

nor MAE for t+60 forecasting horizon. The accentuated difference between these two models can be 

explained because the GNN SAGE GAT model, being developed to handle graph-like data structure, 

excels in retrieving complex spatiotemporal relationships underlaying the dataset, drastically 

improving its forecasting capacity when compared with other ML and DL models alike. 

In reference [29], the authors proposed a wind forecasting for a location in Sweden, with a model 

based on a bi-directional recurrent neural network, a hierarchical decomposition technique, and an 

optimisation algorithm. When compared with their results, the windowing model proposed in this 

paper offer improvement over the reference results for t+10 forecasting horizon by 1% and by 20% 

for t+60. Analysing MAE and MAPE, the windowing indicates improvement over these metrics for 

t+10 and t+60, increasing by 28% the MAE value for t+10, and 9% for t+60. Regarding MAPE, the 

improvement is 64% for t+10 and 95% for t+60. 

In the work of Liu et al. [31], other deep learning-based predictive model was proposed. It used 

a hybrid approach composed of data area division to extract historical wind speed information, and 

an LSTM layer optimized by a genetic algorithm to process the temporal aspect of the dataset to 

forecast wind speed in Japan. Compared to this reference, the windowing model showed no 

improvement for wind speed forecasting. However, the windowing approach offers competitive 

forecasting for the assessed time windows, being in the same order of magnitude as the ones in the 

reference. In work [32], the authors proposed the employment of another hybrid forecasting 

architecture composed of CNN and LSTM deep learning models for wind speed estimation in the 

USA. Their results, when compared against the windowing methodology, are very similar for all 

forecasting horizons, showing that both windowing and CNN-LSTM offer good results for wind 

speed estimation for these time intervals. 

In Dowell et al. [30], a statistical model for estimation of future wind speed values in the 

Netherlands was proposed. For the available t+60 time horizon we observe that, again, the forecasted 

wind speed for the reference and proposed windowing models are very similar, deeming both 

models as valuable tools for wind speed forecasting. 

For GHI forecasting, the results found in the literature are presented in Table 14. 
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Table 14. Compilation of results for GHI forecasting. 

Model Metric Value Author 

CNN-1D 

RMSE (R2) 

36.24 (0.98) for t+10 forecasting horizon 

39.00 (0.98) for t+20 forecasting horizon 

38.46 (0.98) for t+30 forecasting horizon 

Marinho et al. [20] 

MEMD-PCA-GRU 
RMSE (R2) 

31.92 (0.99) for t+60 forecasting horizon 
Gupta and Singh [35] 

Physical-based forecasting model 

RMSE 

75.91 for t+30 forecasting horizon 

89.81 for t+60 forecasting horizon 

MAE 

48.85 for t+30 forecasting horizon 

57.01 for t+60 forecasting horizon 

Yang et al. [36] 

Physical-based forecasting model 
RMSE 

114.06 for t+60 forecasting horizon 

Kallio-Meyers et al. 

[37] 

Deep learning transformer-based 

forecasting model 

MAE 

34.21 for t+10 forecasting horizon 

43.64 for t+20 forecasting horizon 

49.53 for t+30 forecasting horizon 

Liu et al. [33] 

In work [20], the deep learning standalone model of CNN was applied to estimate future GHI 

values in the USA. Comparing the GHI forecasting results achieved by windowing with this 

reference, we observe that the proposed model was not able to provide superior forecasting 

performance. However, the windowing results are still competitive since both approaches were able 

to reach elevated coefficient of determination values for all the assessed forecasting horizons, with a 

slight advantage for the deep learning model.  

In reference [35], the authors combined principal component analysis (PCA) with multivariate 

empirical model decomposition (MEMD) and gated recurrent unit (GRU) to predict GHI in India. In 

their methodology, the PCA extracted the most relevant features from the dataset after it was filtered 

by the MEMD algorithm. Lastly, the future irradiance was estimated by the deep learning model of 

GRU. Compared to their approach, the windowing model could not improve the GHI forecasting 

considering t+60 time window. Also, the reference model MEMD-PCA-GRU provided elevated R2 

value of 99%, showing clearly superior performance over the proposed ensemble model. 

Compared with the physical-based forecasting models proposed in [36] and [37], we can 

conclude that windowing can achieve similar results for time horizons of t+30 and t+60. In [36], 

authors used the FY-4A-Heliosat method for satellite imagery to estimate GHI in China. Although 

the windowing model could not improve the GHI forecasting for t+30 and t+60 time windows, the 

proposed model is able to return relevant results for irradiance estimation in both cases. The second 

physical-based model proposed in [37] was applied to estimate GHI in Finland. In their methodology, 

the Heliosat method is again employed, together with geostationary weather data from satellite 

images. Compared to their proposed approach, the windowing model can improve the GHI 

forecasting for t+60 in 8%, providing significant advance in the irradiance estimation. 

In work [33], the authors used the state-of-the-art transformer deep learning architecture 

together with sky images [34] to GHI estimation in the USA. Analyzing their results and the ones 

provided by the windowing method, we observe that the transformer-based model reaches the best 

GHI forecasting values for RMSE in all the assessed time windows. 

After the comparison of the ensemble windowing approach with reference models found in the 

literature, we see that wind speed prediction is often competitive and usually improves wind speed 

prediction for the assessed forecasting horizons. The results for wind speed prediction using the 

ensemble model corroborate the results found in the literature, where the ensemble approach often 

reaches state-of-the-art forecasting in time-series prediction applications [18,38–40]. Their improved 
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performance comes from the combination of weaker predictive models to improve their overall 

forecasting capacity, also reducing the ensembled model’s variance [41,42]. 

However, the proposed dynamic ensembled approach faced increased difficulty when 

determining future GHI values. This may be an indication that the irradiance forecasting is a more 

complex non-linear natural phenomenon, requiring improved extraction of spatiotemporal 

information from the dataset. Since the proposed ensemble model does not have a deep learning 

model in its architecture it cannot properly identify and extract spatiotemporal information 

underlying the dataset, lacking in providing better irradiance estimation. Deep learning model can 

often excel in this type of task, as proved in the results from Table 14. Extensive literature can be 

found regarding improvements of time-series forecasting problems when complex and deep 

approaches are employed [19,20,43,44]. 

5. Conclusions 

This work proposes to evaluate the performance of two ML methods of dynamic ensemble, 

using wind speed and solar irradiance data separately as inputs. Initially, wind speed and irradiance 

data from the same meteorological station were collected, the time horizons to be studied were 

determined (t+10 min, t+20 min, t+30 min and t+60 min), then a recursive approach of Lagged 

Average values was applied to evaluate the models’ predictors. 

ML methods well known in other energy forecasting works and applied to wind and irradiance 

data were selected to compare efficiency with two other methods that use a dynamic ensemble 

approach (windowing and arbitrating). The programming code in Python was developed to catalog 

the optimal efficiency parameters of each previously known model, based on error metrics and 

coefficient of determination. The dynamic ensemble methods (windowing and arbitrating), based on 

the optimal parameters of each previously calibrated models (Random Forest, k-Nearest Neighbors, 

Support Vector Regression, and Elastic Net), generated a single model with greater efficiency for both 

wind and solar irradiance data. 

For forecasting wind speed data, the most efficient method was found to be windowing for all 

time horizons, when evaluated by the criterion of the lowest RMSE value, and specifically for the 

time horizon t+10, as evidenced in Figure 3. The greater efficiency was found in an interval of 1 to 74 

for the ʎ parameter, reaching maximum performance for the value ʎ = 19, as seen in Figure 8, which 

suggests that the windowing parameterization directly influences the method's performance.  

For the solar irradiation forecasting, the most efficient method was also windowing and the t+10 

min time horizon reached the lowest RMSE value. Differently from what was found for the wind 

speed data, a greater linearity in the trend was perceived from the ʎ windowing parameter variation 

graph when analyzing its RMSE values. Looking for the ʎ interval under study, the best performance 

value (using RMSE criteria) of ʎ = 1 was found, as can be seen in Figure 10. 

Using wind speed data, the efficiency gain of the most efficient model (windowing for the time 

horizon t+10 min and ʎ = 19, see Table 4), when compared to the second highest efficiency (SVR) was 

0.56%, when using the lowest value RMSE metric. A similar trend could be observed for the model 

using solar irradiance data. The efficiency increase, comparing the most efficient model (windowing 

for the time horizon t+10 min and ʎ = 1, see Table 9) to the second highest efficiency (Arbitrating) was 

about 1.72%, and when compared to the third most efficient method (SVR), it was about 1.96%.  

Also, extensive comparisons with spatiotemporal models found in the literature show that the 

dynamic ensemble model for wind speed often provides superior forecasting performance for the 

assessed time horizons, deeming the proposed approach as a valuable tool for wind speed estimation. 

Regarding irradiance forecasting, the dynamic ensemble architecture proposed in this study could 

not surpass the deep learning-based models, which showed superior spatiotemporal identification, 

and consequently better estimated GHI values. However, the proposed windowing approach can 

provide competitive results and superior GHI forecasting when compared to physics-based 

predictive models.  

For future works, the dynamic ensemble architecture can be improved with the addition of more 

complex machine learning models, such as deep learning and graph-based approaches. This may 
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boost the windowing forecasting capacity for GHI and wind speed estimation once it will be able to 

benefit from spatiotemporal data information underlying the dataset. The development of an 

ensemble model able to provide accurate and precise estimations can then be employed in the 

development of real-time forecasting applications, helping the evaluation of wind and solar farm 

installation.  
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