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Abstract: In this paper, solar irradiance and wind speed forecasts were performed considering time horizons
ranging from 10 min to 60 min, under a 10 min time-step. Global horizontal irradiance (GHI) and wind speed
were computed using four forecasting models (Random Forest, k-Nearest Neighbours, Support Vector
Regression, and Elastic Net) to compare their performance against two alternative dynamic ensemble methods
(windowing and arbitrating). Forecasting models and dynamic forecasting ensembles were implemented in
Python for performance evaluation. The performance comparison between the prediction models and the
dynamic ensemble methods was carried out by evaluating the RMSE, MAE, R? and MAPE, to evaluate whether
the dynamic ensemble forecasting method obtained greater. According to the results obtained windowing
dynamic ensemble method was the most efficient among the tested. For the wind speed data, by varying its
parameter A (from 1 to 100), a variable performance profile was obtained, where from A =1 to A =74, windowing
proved to be the most efficient, reaching maximum efficiency for A = 19. Windowing was the best method for
the GHI analysis, reaching its best performance for A = 1. The efficiency gain using windowing was 0.56% when
using the wind speed model and 1.96% for GHIL

Keywords: wind energy; solar energy; renewable energy; machine learning; forecasting ensembles

1. Introduction

The Electricity generated by fossil fuel sources has been the main driver of climate change,
probably over 70% of greenhouse gas emissions and over 90% of all carbon gas emissions. The
alternative of decarbonizing the world’s electricity generation system is a trend focused on alert
sources of renewable energy, whose generation costs are increasingly accessible [1].

A very undesired effect when it comes to electrical generation from alternative resources is the
impact of intermittency generation on the electrical grid, since this generation is dependent on
weather conditions, and one of the means to eliminate or reduce its uncertainties is the availability
prediction of these resources [2].

The influences of atmospheric factors on the generation of electrical energy from solar
and wind sources are usually the main problem in the generation of smart grids, where large-scale
generation plants need to be integrated into the electrical grid, which directly affects planning,
investment, and decision-making purposes. Forecast models can minimize that problematic through
machine learning models [3].

The benefits of optimizing the forecast of generation from wind and solar sources using models
is also an economic factor, as it gives greater security to the electricity sector through the
improvement of renewable energy purchase contracts [4].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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A 14-year-long data set was explored in [5], containing daily values of meteorological variables.
It was used to train three artificial neural networks (ANNSs) in several time horizons to predict the
global solar radiation for Fortaleza, in the Brazilian Northeastern region. The accuracy of the
predictions was considered excellent according to its normalized root-mean-squared error (nRMSE)
values and good relative to mean absolute percentage error (MAPE) values.

The variability of mathematical prediction models has individual importance inherent to each
one of the methods employed and, in this scenario, dynamic ensemble models emerge, which present
potential better performance when compared to individual models, since they seek maximum
optimization by considering the best of the individual models. This approach is currently very
successfully used in research and industrial areas. Several dynamic ensemble methods have been
developed for forecasting energy generation from renewable sources in which they use the presence
of well-known forecast models such as random forest regression (RF), support vector regression
(SVR), and k-nearest neighbors (kNN), which are applied to integrate optimizations for use in
dynamic ensemble methods [6].

The Support Vector Machine was first developed for classification models and is largely
discussed [7,8], in recent approaches [9] to develop a novel method for the maximum power point
tracking of a photovoltaic panel and in [10], where it is discussed the solar radiation estimation by
five different machine learning approaches.

The KNN method predicts a new sample using the K-closest samples. Recently this approach
has been used in [11], where Virtual Meteorological Masts use calibrated numerical data to provide
precise wind estimates during all phases of a wind energy project to reproduce optimal site-specific
environmental conditions.

Most studies have focused on accurate wind power forecasting, where random fluctuations and
uncertainties involved are considered. The study in [12] proposes a novel ultra-short-term
probabilistic wind power forecasting using an error correction modeling by the random forest
approach.

The Elastic Net is a regularized regression method that linearly combines the penalties of the
LASSO and Ridge methods. In [13] the study uses forecast combinations that are obtained by
applying regional data from Germany for both solar photovoltaic and wind through the Elastic Net
model, with cross-validation and rolling window estimation, in the context of renewable energy
forecasts.

The state-of-the-art uses dynamic ensemble methods in a meta-learning approach such as
arbitrating, which combines the output of experts according to predictions of the loss they will incur,
and also windowing approaches, which have parameterizations for adjusting the degree of data to
be considered [14].

In [15], the global climate model (GCM) is studied to improve a near-surface wind speed (WS)
simulation through 28 coupled model intercomparison using dynamical components.

In [16], a hybrid transfer learning model based on a convolutional neural network and a gated
recurrent neural network is proposed to predict short-term canyon wind speed with fewer
observation data. The method uses a time sliding window to extract time series from historical wind
speed data and temperature data of adjacent cities as the input of the neural network.

In [17] is explored the Multi-GRU-RCN, an ensemble model to get significant information such
as precipitation and solar irradiation through short-time cloud motion predictions from a cloud
image. The ensemble modeling used in [18] integrates wind and solar forecasting methodologies
applied to two locations with different latitudes and climatic profiles. The obtained results reduce the
forecast errors and can be useful in optimizing the planning for using intermittent solar and wind
resources in the electrical matrices.

A proposed new ensemble model in [19] was based on Graph Attention Network (GAT) and
GraphSAGE to predict wind speed in a bi-dimensional approach using a Dutch dataset considering
several time horizons, timelags, and weather influences. The results showed that the ensemble model
proposed was equivalent to or outperformed all benchmarking models and had smaller error values
than those found in reference literature.
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Under a 5 min time-step, in [20] it was applied time horizons ranging from 5 min to 30 min in
evaluating the solar irradiance short-term forecasts to Global Horizontal Irradiance (GHI) and Direct
Normal Irradiance (DNI) using deep neural networks with 1-dimensional convolutional neural
network (CNN-1D), long short-term memory (LSTM), and CNN-LSTM. The metrics used were the
mean absolute error (MAE), mean bias error (MBE), root-mean-squared error (RMSE), relative root
mean squared error (rRMSE), and coefficient of determination (R?). The best accuracy was obtained
for a horizon of 10 min, improving 11.15% on this error metric compared to the persistence model.

In front of this, the main contribution of this article is to demonstrate the influence of dynamic
ensemble arbitrating and windowing methods on machine learning methods traditionally used for
predicting electrical generation. We also present their greater efficiency, using data of interest for
energy production with input variable of wind speed and solar irradiance, used, respectively, for
both wind and solar farms. We have followed this approach because of its advantage in exploring
dynamic ensemble methods, since these seek the best pre-existing efficiency for generating a unique
and more effective predictability model.

2. Location and data

In this paper, two data types were used to carry out the analysis, which were acquired from
solarimetric and anemometric station located in Petrolina — PE. The data were collected from the
SONDA network (National Organization of Environmental Data System) [21], which was a joint
collaboration of several institutions and was created for the implementation of physical infrastructure
and human resources, aiming at raising and improving the database of solar and wind energy
resources in Brazil.

In Table 1, information on the solarimetric and anemometric station can be found, and its
location on the map is shown in Figure 1.
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Figure 1. Map of the Northeast of Brazil. The Petrolina measurement site is highlighted [26].
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Table 1. Geographic coordinates, altitude in relation to the sea level, measurement intervals, and
measurement periods of the data collected from the Petrolina station. MI and MP stand for,
respectively, “measurement interval” and “measurement period”.

Type Lat. (°) Long. () Alt.(m) MI (min) MP

Anemometric 01/Jan/2007 to
09°04’ 08"S  40°19' 11" O 387 10 12/Dec/2010

Solarimetric 01/Jan/2010 to
12/Dec/2010

2.1. Wind speed data

The wind speed data was obtained in m/s from a meteorological station, which has anemometric
sensors at altitudes of 25 m and 50 m from the ground. The highest altitude was chosen for this study,
aiming to reduce the effects of the terrain and closer to the altitudes currently in practice for wind
turbines [22].

2.2. Irradiance data

The Global Horizontal Irradiance (GHI) data acquired from the solarimetric station were used
in this study, and the clear-sky coefficient was considered, in order to remove dependence on air
mass in the irradiance values that reach the sensors [23], through the use of the clear-sky factor ()
[24], using the polinomial fit model [27]. The work [25] obtained promising results from the same
database using two machine learning estimation models for (GHI).

In order to obtain irradiance data independent of air mass variations, we used ki, which is
defined by the ratio between the Global Horizontal Irradiance value (GHI) (I) and clear sky factor
(Ls), as shown in Equation 1.

k, 1)

3. Methodology

Initially, wind speed and irradiance data were acquired and the intervals for the test and training
sets were determined. For wind speed data, in a measurement period from 2007 to 2010, the first
three years were used as the training data set and the last year as the test set. In order to allow the
evaluation of the performance of the tested forecasting models and also of dynamic ensemble
methods, a computational code was developed in Python to evaluate the output values obtained by
the well-known Machine Learning forecasting methods: Random Forest, k- Nearest Neighbors
(kNN), Support vector Regression (SVR), and Elastic Net. For each of the methods, the best
performance parameters (lower Root Mean Squared Error (RMSE)) were evaluated. Right after the
stage of acquisition and determination of the optimal parameters for each of the models, the methods
of dynamic ensemble windowing and arbitrating were executed, from which performance metrics
values were also obtained: Coefficient of Determination (R?), Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). These values were compared
to evaluate the efficiency of the dynamic ensemble methods compared to other stand-alone models.
It was also evaluated the variation of the lambda parameter for windowing, which is the length used
for the extension of the values considered in the data forecast. The methodology used can be seen in
Figure 2.

In the data pre-processing, a recursive approach of Lagged Average values for ki and v time
series was applied: this feature is given by the vector L(t) with components calculated using Equation

Q).

1
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Figure 2. Diagram of the data flow for the applied methodology.

3.1. Windowing method

The diversity of the models makes the forecast analysis rich and complex, since each model has
strong points and other weaknesses, in the sense that from this combination, the best results can be
treated and considered to obtain more accurate forecasts. To perform this combination, it is necessary
to know how to estimate at which points certain specific models perform better.

Windowing [14] is a dynamic ensemble model, where weights are calculated based on the
performance of each individual model, evaluated in a data window referring to immediately
previous data. The size of this window is parameterized by the A value. This means that the weights
of each model are re-evaluated at each time step, and then they are classified to catalogue only the
best performance results, generating a hybrid model.

3.2. Arbitrating method

Arbitrating [28] uses the metalearning method strategy to learn and predict the classifiers. In
this study it regards the weights based on each model’s performance for a given time step. At each
simulation instant, the most reliable model is selected and included in the prediction process.

3.3. Machine learning prediction models and dynamic ensemble method parameters
In the data training stage, GridSearch was used with 5-fold cross validation. The search

parameters are shown in Table 2.

Table 2. Search parameters and grid values applied to the tested methods.

Method Search parameter Grid values
Random Forest maxdepth [2,5,7,9,11,13,15, 21, 35]
KNN nearest neighbours k 1<k <50, k integer
SVR penalty term C [0.1, 1, 10, 100, 1000]
coefficient A [1,0.1.0.01, 0.001, 0.0001]
Elastic Net regularization term A [1,0.1. 0.01, 0.001, 0.0001]

Windowing A [1, 3,6,12,25,50,100]
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Arbitrating *

*: By using a meta-heuristic methodology, the initial parameter was not needed.

3.4. Performance Metrics Comparison Criteria

As the purpose of this work is to evaluate the performance of dynamic ensemble methods
against other methods, performance metrics had to be determined to allow it. The metrics used were
those of Equations 3, 4, 5 and 6.

e  Coefficient of Determination (R?)

N O
R=1- 2= ) @
i=1 (Vi = %)
e  Root Mean Squared Error (RMSE)
RMSE = (4)
e  Mean Absolute Error (MAE)
1 N
RMSE =5 ) 1, =i )
i=1
e  Mean absolute percentage error (MAPE)
n
AN 5’\1|
mars =2 [ ©)

i=1

4. Results and Discussion

Discussions are carried out around the results generated regarding the analysis of efficiency
metrics for the machine learning methods discussed here, in an attempt to determine which
method/parameters obtains the best performance in the application for wind speed and solar
irradiance data.

4.1. Wind Speed Predictions

During the search for best-performance methods, the optimized parameters for each of the tested
methods needed to be known. This allows the elaboration of the dynamic ensemble, which is built
upon the merging of the best-performance results at each time step and for all the methods in
question. The optimal parameters found for each of the time horizons are shown in Table 3.

Table 3. Best parameters for each machine learning method.

Method Parameter t+10 t+20 t+30 t+60
Random Forest best_max'_depth 7
best_n_estimators 20
KNN best_n_neighbors 49
best_ C 1
SVR =
best_epsilon 0.1 1 0.1
Elastic Net best_l1_ratio 1

Efficiency evaluations for each of the forecasting methods were based on performance metrics
evaluations for each time horizon under study (t+10, t+20, t+30 and t+60). Initially, for all time
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horizons, windowing proved to be the most efficient method. Then, a fine-tuning evaluation was

performed based on the variation of the windowing parameter to assess its influence on performance.

The predominance of better performance for windowing in all time horizons and its comparisons can
be seen in Table 4 and Figure 3.

Table 4. Comparison of RMSE values, using different methods for different time horizons and

windowing A parameter variation. The best results for each time horizon are in bold.

Time horizon

RF

KNN

SVR

Elastic Net

Windowing

Arbitrating

t+10 min

100

0.69458 0.71040 0.69396

0.69828

0.69263

0.69180

0.69114

0.69041

0.69007

0.69040

0.69226

0.69402

0.69431

0.69447

t+20 min

0.88310 0.89332 0.88372

0.88554

0.86817

0.87353

0.87563

0.87699

0.87803

0.87889

0.87960

0.88315

t+30 min

0.99469 0.99859 0.99130

0.99660

0.97497

0.98017

0.98333

0.98583

0.98702

0.98832

0.98902

0.99091

t+60 min

g N[ = 2laN|= Sla|N =
O“”’N’c”“’”“ 8‘0“”’“"@“’”“ 8‘°’°"“‘°‘°”“

100

1.18092

1.19527

1.17764

1.18281

1.15150

1.15647

1.16170

1.16685

1.16987

1.17254

1.17455

1.18156
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Figure 3. Windowing A parameter variation influence in RMSE for different time horizons in wind
speed data analysis for all the studied time horizons.

Elastic Net is a penalized linear regression model that is a combination of Ridge and Lasso
regression into a single algorithm and uses best_I1_ratio as a penalty parameter during the training
step, being 0 for Ridge and 1 value for Lasso regression. From Table 3, the parameter obtained the
value of 1, which means that Lasso regression was used in its entirety.

As with the evaluation carried out by the RMSE, the values of R?, MAE and MAPE were also
assessed. Once the best performance was found for the windowing ensemble method, an in-depth
analysis was performed based on the variation of its parameter A to assess the influence on its internal
performance. Since the time horizon that presented the best performance was t+10, this was the focus
of the analysis, as shown in Figures 4-7. The detailed data for all the horizons is shown in Tables 5—-
7.

0,695
0,694
0,693

0,692

RMSE

0,691
0,69

0,689
1 3 6 12 19 25 50 74 100

Figure 4. Windowing A parameter influence on RMSE value for the time horizon t+10.
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Figure 5. Windowing A parameter influence in MAE value for the time horizon t+10.
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Figure 6. Windowing A parameter influence in R? value for the time horizon t+10.
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Figure 7. Windowing A parameter influence in MAPE value for the time horizon t+10.
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Table 5. Comparison of MAE values, using different methods in different time horizons and
windowing A parameter variation. The best results for each time horizon are in bold.

Time horizon £ RF KNN SVR ElasticNet =~ Windowing  Arbitrating
0.51384
0.51366
0.51328
0.51276
0.51592  0.53216 0.51438 0.51853 0.51272 0.51711
0.51301
0.51441
74 0.51574
100 0.51603
1 0.64663
3 0.65140
6 0.65332
t+20 min 12 0.65845 0.66882 0.66040 0.65990 0.65435 0.65936
25
50

t+10 min

N[O = | =

0.65554

0.65637

100 0.65695

1 0.72594

3 0.73105

6 0.73402
30 min 12 074250 074735 074125  0.74347 0.73625 0.74097
25
50

0.73732

0.73846

100 0.73902

0.86784

0.87277

0.87826
t+60 min 12 0.89496 0.90753 0.89179 0.89589 0.88307 0.89570

25 0.88580

50 0.88813

100 0.88963

Table 6. Comparison of R? values, using different methods in different time horizons and windowing
A parameter variation. The best results for each time horizon are in bold.

Time horizon £ RF KNN SVR ElasticNet =~ Windowing  Arbitrating

1 0.84336
3 0.84373
6 0.84403
12 0.84436
t+10min 19 0.84248 0.83522 0.84275  0.84079 0.84451 0.84252
25 0.84436
50 0.84353
74 0.84273
100 0.84260
1 0.75388
, 3 0.75083
b20min  — 074534 073041 074498 074393 073963 0.74531

12 0.74885
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25 0.74825
50 0.74776
100 0.74736
1 0.68958
3 0.68626
6 0.68423
t+30min 12 0.67690 0.67436 0.67909  0.67566 0.68262 0.67935
25 0.68186
50 0.68102
100 0.68057
1 0.56685
3 0.56310
6 0.55914
t+60min 12 054443 053329 054695  0.54297 0.55522 0.54393
25 0.55291
50 0.55087
100 0.54933

Table 7. Comparison of MAPE values, using different methods in different time horizons and
windowing A parameter variation. The best results for each time horizon are in bold.

Time horizon £ RF KNN SVR  ElasticNet Windowing Arbitrating

1 0.21040
3 0.21122
6 0.21092
12 0.21040

t+10 min 19 021277  0.25360  0.20257 0.21848 0.21022 0.21634
25 0.21075
50 0.21179
74 0.21246
100 0.21234
1 0.31280
3 0.31558
6 0.31658

t+20 min 12 0.31534  0.33823  0.34178 0.31206 0.31745 0.32577
25 0.31906
50 0.31990
100 0.32101
1 0.36711
3 0.36968
6 0.37245

t+30 min 12 0.38089  0.39786  0.37520 0.37064 0.37227 0.38499
25 0.37367
50 0.37352
100 0.37538
1 0.50552
3 0.50730
. 6 0.51189

t+60 min 12 0.52320  0.53567  0.51731 0.51284 051289 0.52440
25 0.51480

50 0.51571
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100 0.51872

When we check the influence of the A parameter on the windowing method performance, it was
found that from A =74 it is no longer the most efficient method, where SVR becomes the best one, due
to its lowest RMSE value. Anyway, it is important to highlight that the best performance value for
the windowing method, which is the best performance overall, was found for A=19. The performance
comparison between the two methods can be seen in Figure 8.

0,69500
0,69400

0,69300

0,69200 -SVR

—8— Windowing

0,69100
0,69000

0,68300

Figure 8. Parameter A variance effect in method performance. SVR result is shown for reference.

4.2. Irradiance Predictions

During the search for best-performance methods, the optimized parameters of each of these
methods needed to be known to allow the elaboration of the dynamic ensemble, which is built from
merging the best-performance results at each instant and for each of the methods in question. The
optimal parameters for each time horizon are shown in Table 8.

Table 8. Best parameters for each machine learning method.

Method Parameter t+10 t+20 t+30 t+60
Random Forest best_max._depth >
best_n_estimators 20
KNN best_n_neighbors 37 49 48
1
SVR best_ C 0
best_epsilon 0.1
Elastic Net best_11_ratio 1

Efficiency evaluation for each of the solar irradiance forecasting methods were based on
performance metrics for each time horizon under study (t+10, t+20, t+30 and t+60). Again, windowing
proved to be the most efficient method for all time horizons, with the best method being found for
the t+10 time horizon, having the lowest RMSE value, using its parameterizations with A = 50 initially.
Then, fine-tuning was performed based on the variation of the windowing parameter to assess its
influence on performance. The predominance of better performance for windowing in all time
horizons and its comparisons can be seen in Table 9 and Figure 9.
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Table 9. Comparison of RMSE values, using different methods in different time horizons and
windowing A parameter variation. The best results for each time horizon are in bold.

Time horizon £ RF KNN SVR Elastic Net Windowing Arbitrating
1 72.73186
3 72.93221
6 73.29363
t+#10 min 12 75.02000 75.26000 74.19000  74.98000 73.21035 74.01000
25 73.24620
50 73.48055
100 73.69330
1 80.07000
3 80.63000
6 81.19000
t+#20 min 12 90.94000 83.50000 84.45000  84.53000 81.87000 83.19000
25 82.56000
50 82.11000
100 82.57000
1 86.25000
3 87.00000
6 87.75000
t+30 min 12 90.15000 90.50000 91.49000  93.49000 88.33000 89.70000
25 88.95000
50 88.70000
100 89.01000
1 105.51000
3 106.62000
6 107.76000
t+60 min 12 112.05000 112.13000 112.76000  118.08000 108.89000 111.13000
25 109.32000
50 110.12000
100 110.30000
73,8
73,6
73,4
w
g 73,2
o
73
72,8
72,6
1 3 6 12 25 50 100
A

Figure 9. Windowing A parameter variation influence in RMSE for all the studied time horizons in
solar irradiation data analysis.
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Just like the evaluation carried out by the RMSE, the values of R?, MAE, and MAPE were also
analyzed. After the best performance was found for the windowing method, an in-depth analysis
was performed based on the variation of its parameter A to assess the influence on its internal
performance. Since the time horizon that presented the best performance was t+10, this was the focus

of the analysis, as shown in Figures 9-12. The detailed data for all tested time horizons is shown in
Tables 10-12.

Figure 10. Windowing A parameter influence in RMSE value in time horizon t+10.

Table 10. Comparison of R? values, using different methods in different time horizons and
windowing A parameter variation. The best results for each time horizon are in bold.

Time horizon RF KNN SVR Elastic Net =~ Windowing  Arbitrating
0.92184
0.92141
0.92062
0.92000  0.92000 0.92000 0.92000 0.92080 0.92000
0.92073
0.92022
0.91976
0.91000
0.91000
0.90000
0.88000  0.90000 0.90000 0.90000 0.90000 0.90000
0.90000
0.90000
0.90000
0.89000
0.89000
0.89000
0.88000 0.88000 0.88000 0.87000 0.89000 0.88000
0.89000
0.88000
100 0.89000
0.85000
0.84000
0.84000
0.83000 0.83000 0.82000 0.51223 0.84000 0.83000
0.83000
50 0.83000
100 0.83000

t+10 min

—_
o
o

t+20 min

—_
o
o

t+30 min

QTN =

t+60 min
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Figure 11. Windowing A parameter influence in R? value in time horizon t+10.

Table 11. Comparison of MAE values, using different methods in different time horizons and

windowing A parameter variation. The best results for each time horizon are in bold.

15

Time horizon A RF KNN SVR Elastic Net =~ Windowing  Arbitrating
1 72.73186
3 44.52301
6 45.00717
t+#10 min 12 48.29000 48.47000 44.16000  49.31000 45.27759 46.24000
25 45.67924
50 45.79140
10 46.16632
1 52.53000
3 53.31000
6 54.12000
t+#20 min 12 65.19000 55.63000 59.67000  58.86000 55.27000 56.20000
25 56.88000
50 55.59000
10 56.79000
1 58.14000
3 59.02000
6 59.91000
t+30 min 12 62.09000 61.58000 64.77000  67.13000 60.85000 60.91000
25 61.34000
50 61.84000
10 61.51000
1 74.59000
3 7592000
6 77.11000
t+60 min 12 81.28000 79.84000 81.44000  89.07000 78.47000 79.80000
25 79.08000
50 79.48000
10 79.63000
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MAE

54
49
44

39
1 3 6 12 25 50 100

Figure 12. Windowing A parameter influence in R? value in time horizon t+10.

Table 12. Comparison of MAPE values, using different methods in different time horizons and
windowing A parameter variation. The best results for each time horizon are in bold.

Time horizon A RF KNN SVR Elastic Net =~ Windowing  Arbitrating

1 0.20701
3 0.21027
6 0.21254
10 min 12 022000 024000 021000  0.23000 0.21364 0.22000
25 0.21444
50 0.21541
100 0.21684
1 0.25000
3 0.25000
6 0.26000
20 min 12 032000 0.28000 0.28000  0.27000 0.26000 0.27000
25 0.27000
50 0.26000
100 0.27000
1 0.27000
3 0.28000
6 0.28000
30 min 12 029000 0.30000 0.29000  0.33000 0.28000 0.29000
25 0.29000
50 0.29000
100 0.29000
1 0.32000
3 0.32000
6 0.33000
©60 min 12 034000 035000 0.34000  0.54747 0.33000 0.34000
25 0.34000
50 0.34000

100 0.34000
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0,218

0,216

0,214
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’

MAPE

0,21
0,208

0,206
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Figure 13. Windowing A parameter influence in MAPE value in time horizon t+10.

Some authors applied Elastic Net in time-varying combinations [13], using RMSE as a
performance metric. They found that, for PV forecasts, it has been reached 13.4% more precise
forecasts than the simple average and for the wind forecast, it has been reached 6.1% better forecasts.

In [18] an ensemble method was studied, which used MAPE as the comparative efficiency metric
for wind speed data, with a value of 9.345% and solar with 7.186%, which proved to be the most
efficient.

In this study, performance improvements were obtained for the most efficient method
(windowing) compared to the second most efficient for wind speed of 0,56% and, for solar irradiation,
1.86%.

4.3. Comparison with results from the literature

The performance of the windowing approach was compared with other wind forecasting
models found in the literature. It is important to disclose that a direct comparison between different
predictive models is not an easy task, once each applied approach has its own objectives,
hyperparameters, and input data [19].

The results found in literature for wind speed forecasting are compiled and presented in Table
13, where RMSE and MAE are in m/s.

Table 13. Compilation of results for wind speed forecasting.

Model Metric Value Author
RMSE
0.638 for t+60 forecasting horizon Oliveira Santos
GNNSAGE GAT MAE etal. [19]
0.458 for t+60 forecasting horizon
RMSE

0.696 average for t+10 forecasting horizon
1.445 average for t+60 forecasting horizon
MAE
ED-HGNDO-BIiLSTM 0.717 average for t+10 forecasting horizon =~ Neshat et al. [29]
0.953 average for t+60 forecasting horizon
MAPE
0.590 average for t+10 forecasting horizon
9.769 average for t+60 forecasting horizon
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Statistical model for wind speed RMSE Dowell et al.
forecasting 1.090 for t+60 forecasting horizon [30]
RMSE
0.291 average for t+10 forecasting horizon
Hybrid wind speed forecasting 0.355 average for t+30 forecasting horizon
model using area division (DAD)  0.426 average for t+60 forecasting horizon .
i Liu et al. [31]
method and a deep learning neural MAE
network 0.221 average for t+10 forecasting horizon

0.293 average for t+30 forecasting horizon
0.364 average for t+60 forecasting horizon
RMSE
0.547 for t+10 forecasting horizon
0.802 for t+20 forecasting horizon

0.895 for t+30 forecasting horizon
1.114 for t+60 forecasting horizon
Hybrid model CNN-LSTM Zhu et al. [32]
MAPE
4.385 for t+10 forecasting horizon
6.023 for t+20 forecasting horizon
7.510 for t+30 forecasting horizon
11.127 for t+60 forecasting horizon

Analyzing the results for reference [19], in which wind speed was forecasted for the Netherlands
using an ensemble approach merging graph theory and attention-based deep learning, we can
observe that the proposed windowing ensemble model is not able to surpass the results for RMSE
nor MAE for t+60 forecasting horizon. The accentuated difference between these two models can be
explained because the GNN SAGE GAT model, being developed to handle graph-like data structure,
excels in retrieving complex spatiotemporal relationships underlaying the dataset, drastically
improving its forecasting capacity when compared with other ML and DL models alike.

In reference [29], the authors proposed a wind forecasting for a location in Sweden, with a model
based on a bi-directional recurrent neural network, a hierarchical decomposition technique, and an
optimisation algorithm. When compared with their results, the windowing model proposed in this
paper offer improvement over the reference results for t+10 forecasting horizon by 1% and by 20%
for t+60. Analysing MAE and MAPE, the windowing indicates improvement over these metrics for
t+10 and t+60, increasing by 28% the MAE value for t+10, and 9% for t+60. Regarding MAPE, the
improvement is 64% for t+10 and 95% for t+60.

In the work of Liu et al. [31], other deep learning-based predictive model was proposed. It used
a hybrid approach composed of data area division to extract historical wind speed information, and
an LSTM layer optimized by a genetic algorithm to process the temporal aspect of the dataset to
forecast wind speed in Japan. Compared to this reference, the windowing model showed no
improvement for wind speed forecasting. However, the windowing approach offers competitive
forecasting for the assessed time windows, being in the same order of magnitude as the ones in the
reference. In work [32], the authors proposed the employment of another hybrid forecasting
architecture composed of CNN and LSTM deep learning models for wind speed estimation in the
USA. Their results, when compared against the windowing methodology, are very similar for all
forecasting horizons, showing that both windowing and CNN-LSTM offer good results for wind
speed estimation for these time intervals.

In Dowell et al. [30], a statistical model for estimation of future wind speed values in the
Netherlands was proposed. For the available t+60 time horizon we observe that, again, the forecasted
wind speed for the reference and proposed windowing models are very similar, deeming both
models as valuable tools for wind speed forecasting.

For GHI forecasting, the results found in the literature are presented in Table 14.
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Table 14. Compilation of results for GHI forecasting.

Model Metric Value Author
RMSE (R?)
CNN-1D 36.24 (0.98) for t+10 forecasting horizon Marinho et al. [20]

39.00 (0.98) for t+20 forecasting horizon
38.46 (0.98) for t+30 forecasting horizon
RMSE (R?)

31.92 (0.99) for t+60 forecasting horizon
RMSE
75.91 for t+30 forecasting horizon
89.81 for t+60 forecasting horizon
MAE
48.85 for t+30 forecasting horizon
57.01 for t+60 forecasting horizon

MEMD-PCA-GRU Gupta and Singh [35]

Physical-based forecasting model Yang et al. [36]

. . RMSE Kallio-Meyers et al.
Physical-based forecasting model 114.06 for t+60 forecasting horizon [37]
MAE
Deep learning transformer-based 34.21 for t+10 forecasting horizon

Liu et al. [33
forecasting model 43.64 for t+20 forecasting horizon fu etal. [33]

49.53 for t+30 forecasting horizon

In work [20], the deep learning standalone model of CNN was applied to estimate future GHI
values in the USA. Comparing the GHI forecasting results achieved by windowing with this
reference, we observe that the proposed model was not able to provide superior forecasting
performance. However, the windowing results are still competitive since both approaches were able
to reach elevated coefficient of determination values for all the assessed forecasting horizons, with a
slight advantage for the deep learning model.

In reference [35], the authors combined principal component analysis (PCA) with multivariate
empirical model decomposition (MEMD) and gated recurrent unit (GRU) to predict GHI in India. In
their methodology, the PCA extracted the most relevant features from the dataset after it was filtered
by the MEMD algorithm. Lastly, the future irradiance was estimated by the deep learning model of
GRU. Compared to their approach, the windowing model could not improve the GHI forecasting
considering t+60 time window. Also, the reference model MEMD-PCA-GRU provided elevated R?
value of 99%, showing clearly superior performance over the proposed ensemble model.

Compared with the physical-based forecasting models proposed in [36] and [37], we can
conclude that windowing can achieve similar results for time horizons of t+30 and t+60. In [36],
authors used the FY-4A-Heliosat method for satellite imagery to estimate GHI in China. Although
the windowing model could not improve the GHI forecasting for t+30 and t+60 time windows, the
proposed model is able to return relevant results for irradiance estimation in both cases. The second
physical-based model proposed in [37] was applied to estimate GHI in Finland. In their methodology,
the Heliosat method is again employed, together with geostationary weather data from satellite
images. Compared to their proposed approach, the windowing model can improve the GHI
forecasting for t+60 in 8%, providing significant advance in the irradiance estimation.

In work [33], the authors used the state-of-the-art transformer deep learning architecture
together with sky images [34] to GHI estimation in the USA. Analyzing their results and the ones
provided by the windowing method, we observe that the transformer-based model reaches the best
GHI forecasting values for RMSE in all the assessed time windows.

After the comparison of the ensemble windowing approach with reference models found in the
literature, we see that wind speed prediction is often competitive and usually improves wind speed
prediction for the assessed forecasting horizons. The results for wind speed prediction using the
ensemble model corroborate the results found in the literature, where the ensemble approach often
reaches state-of-the-art forecasting in time-series prediction applications [18,38—40]. Their improved

doi:10.20944/preprints202308.0693.v1
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performance comes from the combination of weaker predictive models to improve their overall
forecasting capacity, also reducing the ensembled model’s variance [41,42].

However, the proposed dynamic ensembled approach faced increased difficulty when
determining future GHI values. This may be an indication that the irradiance forecasting is a more
complex non-linear natural phenomenon, requiring improved extraction of spatiotemporal
information from the dataset. Since the proposed ensemble model does not have a deep learning
model in its architecture it cannot properly identify and extract spatiotemporal information
underlying the dataset, lacking in providing better irradiance estimation. Deep learning model can
often excel in this type of task, as proved in the results from Table 14. Extensive literature can be
found regarding improvements of time-series forecasting problems when complex and deep
approaches are employed [19,20,43,44].

5. Conclusions

This work proposes to evaluate the performance of two ML methods of dynamic ensemble,
using wind speed and solar irradiance data separately as inputs. Initially, wind speed and irradiance
data from the same meteorological station were collected, the time horizons to be studied were
determined (t+10 min, t+20 min, t+30 min and t+60 min), then a recursive approach of Lagged
Average values was applied to evaluate the models” predictors.

ML methods well known in other energy forecasting works and applied to wind and irradiance
data were selected to compare efficiency with two other methods that use a dynamic ensemble
approach (windowing and arbitrating). The programming code in Python was developed to catalog
the optimal efficiency parameters of each previously known model, based on error metrics and
coefficient of determination. The dynamic ensemble methods (windowing and arbitrating), based on
the optimal parameters of each previously calibrated models (Random Forest, k-Nearest Neighbors,
Support Vector Regression, and Elastic Net), generated a single model with greater efficiency for both
wind and solar irradiance data.

For forecasting wind speed data, the most efficient method was found to be windowing for all
time horizons, when evaluated by the criterion of the lowest RMSE value, and specifically for the
time horizon t+10, as evidenced in Figure 3. The greater efficiency was found in an interval of 1 to 74
for the A parameter, reaching maximum performance for the value A =19, as seen in Figure 8, which
suggests that the windowing parameterization directly influences the method's performance.

For the solar irradiation forecasting, the most efficient method was also windowing and the t+10
min time horizon reached the lowest RMSE value. Differently from what was found for the wind
speed data, a greater linearity in the trend was perceived from the A windowing parameter variation
graph when analyzing its RMSE values. Looking for the A interval under study, the best performance
value (using RMSE criteria) of A =1 was found, as can be seen in Figure 10.

Using wind speed data, the efficiency gain of the most efficient model (windowing for the time
horizon t+10 min and £ = 19, see Table 4), when compared to the second highest efficiency (SVR) was
0.56%, when using the lowest value RMSE metric. A similar trend could be observed for the model
using solar irradiance data. The efficiency increase, comparing the most efficient model (windowing
for the time horizon t+10 min and £ =1, see Table 9) to the second highest efficiency (Arbitrating) was
about 1.72%, and when compared to the third most efficient method (SVR), it was about 1.96%.

Also, extensive comparisons with spatiotemporal models found in the literature show that the
dynamic ensemble model for wind speed often provides superior forecasting performance for the
assessed time horizons, deeming the proposed approach as a valuable tool for wind speed estimation.
Regarding irradiance forecasting, the dynamic ensemble architecture proposed in this study could
not surpass the deep learning-based models, which showed superior spatiotemporal identification,
and consequently better estimated GHI values. However, the proposed windowing approach can
provide competitive results and superior GHI forecasting when compared to physics-based
predictive models.

For future works, the dynamic ensemble architecture can be improved with the addition of more
complex machine learning models, such as deep learning and graph-based approaches. This may
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boost the windowing forecasting capacity for GHI and wind speed estimation once it will be able to
benefit from spatiotemporal data information underlying the dataset. The development of an
ensemble model able to provide accurate and precise estimations can then be employed in the
development of real-time forecasting applications, helping the evaluation of wind and solar farm
installation.
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