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Abstract: The higher-order interactions in complex systems are gaining attention. Extending the
classic bounded confidence model where an agent’s opinion update is the average opinion of its
peers, this paper proposes a higher-order version of the bounded confidence model. Each agent
organizes a group opinion discussion among its peers. Then, the discussion’s result influences all
participants’ opinions. Since an agent is also the peer of its peers, the agent actually participates
in multiple group discussions. We assume the agent’s opinion update is the average over multiple
group discussions. The opinion dynamics rules can be arbitrary in each discussion. In this work, we
experiment with two discussion rules: centralized and decentralized. We show that the centralized
rule is equivalent to the classic bounded confidence model. The decentralized rule, however, can pro-
mote opinion consensus. In need of modeling specific real-life scenarios, the higher-order bounded
confidence is convenient to combine with other higher-order dynamics, from the contagion process
to evolutionary dynamics.
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1. Introduction

Opinion dynamics, being one of the essential branches of sociophysics, studies the
statistical physics of collective opinion evolution driven by microscopic rules of individu-
als [1]. Opinion dynamics models can be broadly classified into two categories concerning
the opinion space [2]: the discrete opinion space [3-11], and the continuous opinion space
[12-16]. The models based on discrete opinion space usually assume two opposing opin-
ions in the system (e.g., +1, -1, or A, B, efc.). The classic discrete opinion dynamics models
include the voter model [3-5], the Sznajd model [6-8], and the Galam model [9-11]. An-
other class of models is based on continuous opinion space, where an individual’s opinion
is measured by a real number between 0 and 1, inclusive. One of the most classic models
with continuous opinion space is the DeGrootian model [2,12-14]. Then, it was not un-
til researchers introduced the bounded confidence into the continuous opinion dynamics,
that the well-known Deffuant-Weisbuch (DW) model [15] and Hegselmann-Krause (HK)
model [16] were born. We consider the HK model a mean-field approximation to the DW
model, and refer to both as the classic bounded confidence model.

The bounded confidence model assumes that an agent (i.e., an individual) only ac-
cepts opinions that do not differ from its own by more than a critical value. This critical
value is labeled as the bounded confidence. This work denotes the bounded confidence
by r. Suppose there are N agents in the system. The opinion of agent i at time step ¢ is
denoted by x;(t). In the classic HK model, an agent’s opinion update is the average of all

acceptable opinions:
1
x(t+1) = N Y. x(t) @
1

jEN;(t)

where, N;(t) = {j||xi(t) — x;(t)] <7, j=1,2,...,N}. The opinion updates of all agents
are synchronous. Letting the system evolve according to Eq. (1), we can obtain a sta-
bility opinion profile. The opinion profile switches from consensus to polarization and
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fragmentation as the bounded confidence r decreases, intuitively elucidating the so-called =
“information cocoon.” 33

A variety of mathematical tools have been used to investigate the properties of the
bounded confidence model, by which the convergence [17,18], the pattern formation [19], s
the entropy [20], and the control theory [21] in the bounded confidence model have been
studied. Other works focus on innovations in the model itself. Some of them introduced =
various new factors [22-32], such as the opinion leader [22], the memory [23], the expres- =
sion and private opinion [24], the fuzzy inference [25], the stubbornness [26-28], and the
noise [22,29-32], to the classic bounded confidence model. Others consider different pos- 4
sibilities of evolutionary mechanisms of the system [26,33-38], such as the heterogeneous
bounded confidence [26,33,34], the heterogeneous pressure [35,36], and the circular opin-
ion space [37,38]. One of the most important topics in the bounded confidence model is 4
how to promote the opinion consensus. In this regard, some works have investigated the
conditions of consensus formation [39,40]. Other works introduced new factors or mech- s
anisms, such as the external activation [41], and the combination of pairwise and group 4
interactions [42], with the aim of promoting opinion consensus. a

As we mentioned previously, in the classic bounded confidence model, an agent’s
opinion update is directly the average opinion of its peers. In other words, in the frame- 4
work of the classic bounded confidence model, it is not straightforward to consider higher- s
order dynamics. This is an important entry point, since higher-order dynamics beyond s
pairwise interactions can model real-life scenarios in a more intuitively way and have s
been revealed for non-trivial phenomena that do not exist in pairwise interactions [43—45]. s
With these attractive advantages, higher-order interactions have been introduced intoa s
wide range of complex systems, from contagion process [46—48] to evolutionary games s
[49-51], by means of hypergraphs or simplicial complexes. In particular, opinion dynam- s
ics with higher-order interactions have sprouted [53-56]. Neuh’auser et al. [53] studied s
opinion consensus dynamics by multibody interactions and found the resulting dynamics s
can cause shifts away from the average system state. Sahasrabuddhe et al. [54] further s
explored consensus dynamics on hypergraphs based on sociological theories and inves- e
tigated relevant dynamics on real-world structures. Hickok et al. [55] studied Deffuant- &
Weisbuch bounded confidence model on hypergraphs and found agents can jump from
one opinion cluster to another in a single time step, which is impossible in bounded confi- &
dence models with pairwise interactions. In addition, Horstmeyer and Kuehn [56] inves- e
tigated a coevolutionary voter model on simplicial complexes. 65

The work mentioned above on opinion dynamics was carried out on higher-order
networks in a strict way, but did not relate the concept of higher-order interactions to &
the bounded confidence directly. The theoretical concept of “higher-order bounded confi-
dence” has corresponding realistic scenarios; for example, when opinion discussions can e
happen among a group of people instead of two-by-two, a person may want to joinina
discussion because her opinion is close to the discussion’s organizer. As a result, sheis =
involved in the group opinion discussion even if the opinions of some participants arenot =
close to her. 73

Considering both the theoretical and practical importance, this work tries to provide
the introduction of higher-order dynamics with bounded confidence. Similar algorithms
can be found in many previous multidisciplinary fields, but let us employ a simple one
to analog, the multiplayer evolutionary games (e.g., the public goods game [52]). In mul- =
tiplayer games, each focal agent organizes a game among its neighbors and itself. Mean-
while, its neighbors also perform the same action. As a result, each agent actually par-
ticipates in multiple games organized by its neighbors and itself (see Fig. 1, left). In this
regard, the common algorithm is to average the results obtained by these multiple games. &
In this work, we analog this algorithm to the bounded confidence model. While the multi- &
player games are based on constant networks, the peers that an agent interacts with in the &
bounded confidence model are determined by the opinion distance, which varies at each &
time step. Here, the homogeneity of bounded confidence ensures that the “peer network” &
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is always undirected (i.e., interactions are always mutual, see Fig. 1, right). Therefore, we &
can perform the following analogous migration of the higher-order interaction algorithm. &
First, each agent organizes a group opinion discussion among its peers. Second, since the
peers perform the same action, each agent participates in multiple opinion discussions or- s
ganized by its peers. Finally, the opinion update of an agent is the average over the results  «
obtained from these multiple discussions. oL

2r

2r

-

0@ =% @ @ @ 00

xll(t) X5 I(t) X3 I(t) Xy I(t) xsl(t)

0 1

Games on higher-order networks Opinion dynamics with higher-order bounded confidence

Figure 1. Schematic of the analogy, from games on higher-order networks (left), to opinion dynamics
with higher-order bounded confidence (right). Left: five agents on a regular square lattice. The
purple agent organizes a multiplayer game among the five agents (its nearest neighbors), while also
participates in the games organized by the other four agents. Right: five agents on a continuous one-
dimensional opinion space. The purple agent organizes a group opinion discussion among the blue,
purple, and red agents within its bounded confidence, while also participates in the discussions
organized by the blue and red agents.

The structure of this paper is described below. While the rules followed by a single o
group opinion discussion could be arbitrary, Sec. 2 gives two basic rules: centralized and
decentralized. The former is equivalent to the classic HK model, while the latter leads o
to “higher-order” interactions. In Sec. 3, we explore the role of decentralized discussion o
in promoting the opinion consensus, compared to the classic HK model. In Sec. 4, we o
review the higher-order bounded confidence framework and discuss potential future de- o
velopment. %

2. Model 99

Consider a system of N agents. At time step ¢, each agenti = 1,2,..., N holds an w0
opinion x;(t). Suppose the opinion is represented by a continuous real number between 1
0and 1: 0 < x;(t) < 1. For each agent, we denote a peer set N;(t) = {j||x;(t) — xj(t)] < 1
r, j = 1,2,...,N}, where r represents the bounded confidence. We assume an agent i 10
only interacts with its peer agents in N;(#), whose opinions are not more than r away from 10
agent i. 105

The interactions are higher-order. At time step t, we go through the N agents. Each 10
focal agent i organizes a group opinion discussion among its peers j € N;(t). The opinions 1o
of all participants x;(t) can influence the discussion’s outcome. We denote the discussion’s 10
outcome by 0;(t) = f(x(t)|j € N;(t)). The discussion dynamics rule, denoted by f, can 1
be arbitrary. The N agents organize their discussions synchronously. 110

Note that an agent is also the peer of its peers. In this way, an agent i should par-
ticipate in |N;(t)| discussions at each time step, where |N;(t)| denotes the number of el-
ements in the set N;(#). We assume each discussion works in the opinion updates of all
participants, and the opinion update of each agent is the average over all discussions it
participates in. That is, for an agent i, the opinion update is

1
xi(t+l> = Nl( )]eNZZ(t) Oj(t) (2)
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The N agents update their opinions synchronously. m
In this work, we further give 0;(t) a concrete form. In general, 0;(t) could be any
function as the opinions of j’s peers k, 0j(t) = f(x(t)|k € Nj(t)). For example, Eq. (2)
degenerates to the classic HK model, if we give 0;(t) = x;(t). In this case, the discussion
organized by agent j is “centralized,” because the organizer j directly adopts its own opin-
ion as the discussion’s outcome. Other than the “centralized” one, let us propose another
rule—the “decentralized.” Literally, if the discussion is decentralized, the discussion’s
outcome is the average opinion over all participants. To sum up,

xj(t), if agent jis centralized,

Oj(t) = L Z xi(t), if agent jis decentralized . @)
Rg(t) keN;(t)

We classify agent types by centralized and decentralized, who only organize central- 1.2
ized & decentralized discussions, respectively. We denote the fraction of decentralized s
agents in the population by &, while 1 — « is the fraction of centralized agents. The type of 14
an agent does not change with time. 115

3. Results and discussion 116

In the simulation, we fix N = 1000. Att = 0, we randomly set each agent’s initial s
opinion x;(0) between 0 and 1, inclusive. Among the N agents, the decentralized agents 1
totaling «N are randomly designated, and the remaining (1 — a)N are centralized. Then, 1
we simulate the system according to the rules established in Sec. 2. 120

Figure. 2 shows each agent’s opinion x;() as a function of time step tata = 1 (all 1
agents are decentralized). Within finite time steps, the opinions in the system converge 12
to clusters and no longer change with ¢; that is, the system achieves stability. When the 1
system achieves stability, the opinion profile is fragmentation, polarization, and consensus 12
atr = 0.05, r = 0.15, and r = 0.25, respectively, similar to the classic HK model [16]. 125

10 15
t

(b) r =0.15

Figure 2. Each agent’s opinion x;(t),i = 1,2,..., N, as a function of time step ¢ at « = 1 and different
r. (@) r = 0.05. (b) r = 0.15. (c) r = 0.25.

Below, we define the system achieves stability if |x;(t) — x;(t — 1)| < 0.0001, Vi = 1
1,2,...,N. We set the following statistical quantities to measure the system’s property at s
Stability: 128

¢ Pc, the frequency of consensus in multiple runs. In a run, if there is only one opinion 12
cluster left in the system (e.g., Fig. 2(c)), we say the system achieves consensus. 130
* 1, the lower bounded confidence above which the system may consistently achieve 1
consensus (i.e., Pc < 1, Vr < ry, and Pc = 1, 3Ir > rq). Similarly, ry, the upper 1
bounded confidence below which the system cannot achieve consensus (i.e., Pc =0, 1
Vr < rg,and Pc > 1, dr > rg). 134
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* N, the number of opinion clusters. For example, in Fig. 2(a), (b), and (c), we have 1
Nc =7, Nc = 2 and Nc = 1, respectively. Nc = 1 means the system achieves 1
consensus. 137

*  Cmax, the relative size of the largest opinion cluster. We find the opinion cluster with 13
the highest number of agents and divide it by N. Obviously, this quantity yields 1z
1/N < Chpax < 1. 140

e p[x;(T*)], the distribution of stability opinions. We divide the range between 0 and  1a
1 into 100 equal parts, and denote Ax = 1/100 = 0.01. If nAx < x;(T*) < (n+ 1=
1)Ax, we add 1 to the distribution function at the nth part (n = 1,2,...,100). After s
going throughi =1,2,..., N, we divide the result in each part by N, and acquire the 1

normalized opinion distribution. 145
e T*, the convergence time. If |x;(t) — x;(t —1)] < 0.0001, i = 1,2,...,N, then, we s
denote T* = t. 17
All the statistical quantities are the average over 10° independent runs. 148

In Fig. 3, we study the frequency of consensus Pc. Figure 3(a) shows P¢ as a function 1
of the bounded confidence r at different . When a« = 0, the results are the same as the 10
classic HK model. It is seen that as r increases, Pc gradually increases from 0 to 1 in the 1
interval 0.15 < r < 0.25. The curves at different & show the same pattern. However, 1
the larger the a, the larger the Pc value of the corresponding curve at each point. To 1
validate this, Fig. 3(b) shows P as a function of « at different r selected from the interval 15
0.15 < r < 0.25. It can be seen that Pc always increases with an increase in «, which 15
means the more decentralized agents in the system, the greater the frequency of complete 15

consensus is. 157
1 1 -
O R =—— (b) ¢ .
| |[—o—a=02
08 ol 0.8
a=0.6
06 a=08 0.6
N —*—a=1 . »
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[} & o o &g 0

o 02 04 06 08 1

r «
Figure 3. (a) The frequency of consensus Pc as a function of the bounded confidence r at different «.
(b) The frequency of complete consensus Pc as a function of the fraction of decentralized agents « at
different r.

A further approach to Fig. 3 is studying the critical point where the opinion consensus s
emerges. Figure 4 shows the lower bounded confidence r; (above which the system may 15
consistently achieve consensus) and the upper bounded confidence ry (below which the 1o
system cannot achieve consensus) as a function of a. Since the data points are scattered, 1
a linear fit is performed to reveal the trend of the data. It is revealed that either 7y or 71 12
decreases with an increase in «. This illustrates that, the larger the &, on the one hand, the 1
earlier the P starts to increase from 0 to 1, and on the other hand, the earlier the P- ends 1
the change from 0 to 1, finally reaching 1. Decentralized agents can advance the critical 16
point of opinion consensus emergence. 166

More generally, we can study the number of opinion clusters Nc when stability. Fig- 1
ure 5(a) demonstrates N¢ as a function of r at different a. Similar to the results of P, the 16
function N¢ at different a share the same pattern. As r increases, Nc decreases, and the 1
trend always presents a “steplike” behavior at different x. The breakpoints are distributed 1
in 0.15 < r < 0.2, where “sharp steps” appear. The position of breakpoints is consistent 1
with rg (see the panel inside Fig. 5(a)), foretelling that opinion consensus will emerge as 1
r continues to increase. In addition, we notice that the larger the «, the smaller the Nc 17
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0.1

«

Figure 4. The lower bounded confidence 1, above which the system may consistently achieve con-
sensus (i.e.,, Pc < 1,Vr < ry,and Pc =1, dr > rq), as a function of «. The upper bounded confidence
1o, below which the system cannot achieve consensus (i.e., Pc =0, Vr < rg, and Pc > 1, 3r > 1), as
a function of «. The “data” derives from simulation, while the “fitting” derives from fitting a linear
function to “data” using the least squares method.

value of the corresponding curve at each point. Figure 5(b) further shows N¢ as a function 17
of « at different r, which tells N¢ always decreases with an increase in «; that is, more s

decentralized agents lead to fewer opinion clusters in the system. 176

10° 22
(a) (b) )

102 1.8 1
= =16

10 14}

121
10° 1

0 005 01 015 02 025 03
T «
Figure 5. (a) The number of opinion clusters N as a function of the bounded confidence r at differ-
ent a. (b) The number of opinion clusters N¢ as a function of the fraction of decentralized agents «
at different r.

Let us dig into more details. We show the relative size of the largest opinion cluster 1
Cmax as a function of r in Fig. 6(a). With an increase in r, the largest opinion cluster’s rela- 17
tive size Cmax increases, indicating greater consensus in the system, because more agents 1
gather in the largest opinion cluster. At a larger &, the Ciyax value of the corresponding 10
curve is greater; that is, decentralized agents facilitate the agents in the system to gather 1
in the largest opinion cluster, forming opinion consensus. The “steplike” behavior can 1
also be observed in the function Cmayx, and the sharp steps appear in 0.15 < 7 < 0.2. The 1
position of breakpoints is also consistent with those in Fig. 5, where opinion consensus  1s4
starts to emerge, implying that there is indeed a correlation between the relative size of 1
the largest opinion cluster and the degree of opinion consensus. It is also worth noting 1
that in the “step-like” stage, « has non-monotonous effects on Cmax, as seen in Fig. 6(b), 1
which is different from most situations observed in Fig. 6(a). Such non-trivial marginal s
phenomena may be worth exploring in the future. 189

Furthermore, Fig. 7 presents the distribution of stability opinions p[x;(T*)] atr = 0.2, 10
which provides more details than a relative size of the largest opinion cluster. In Fig. 7(a),
a« = 0. From Fig. 3 and Fig. 5, we have Pc ~ 0.11 and N¢ ~ 1.89. The distribution 1
of stability opinions is mainly polarized, as shown on the two sides in Fig. 7(a). The 1
consensus brings about the less central distribution reached cases. In Fig. 7(b), « = 1. We = 10
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Figure 6. (a) The relative size of the largest opinion cluster Cmax as a function of the bounded
confidence r at different a. (b) The relative size of the largest opinion cluster Cnax as a function of
the fraction of decentralized agents « at different r.

have Pc ~ 0.88 and N¢ ~ 1.12 from Fig. 3 and Fig. 5, respectively; opinion consensus 1o
takes the big lead. It can be seen from Fig. 7(b) that the distribution on both sides is 19
already sparse, and the opinions are mainly concentrated in the central area, x;(T*) ~ 0.5. 1o
Comparing Fig. 7(a) and (b), we say that more decentralized agents guide the stability 10

opinions toward the central area in opinion space, promoting the opinion consensus. 199

0.25 0.25

(a) (b)
0.2}

=045} =0.15
& )
<01y £

0.05 | I I|| 0.05

0
0 02 04 06 08 1 0 02 04 06 08 1
zi(T") zi(T7)

Figure 7. The distribution of stability opinions p[x;(T*)] at r = 0.2 and different a. (a) a = 0. (b)
a = 1. The results are the average of 10° independent runs.

Figure 8 shows the distribution of stability opinions p[x;(T*)] as a function of parame- 20
ters; that is, the transverse profile in Fig. 8 corresponding to a given vertical coordinate can 2o
be drawn in the form of Fig. 7. Figure 8(a) shows p[x;(T*)] as a functionof rata = 1. Asr 2
increases, the system tends to consensus, and the stability opinions gradually concentrate 20
towards the center area x;(T*) ~ 0.5 rather than an evenly distribution 0 < x;(T*) < 1. At 2
a qualitative level, though all agents are decentralized, the pattern in Fig. 8(a) is the same 205
as the classic HK model [16]. Figure 8(b) shows p[x;(T*)] as a function of « at r = 0.2, in 206
which we can observe the process of decentralized agents promoting consensus. Consis- 2o
tent with Fig. 7(a) and (b), with an increase in «, the opinion distribution on the two sides 20
gradually whitens, and the one in the central area fades blue. The stability opinion profile 20
transforms from polarization to consensus. 210

Finally, we study the convergence time T* as a binary function of r and « in Fig. 9. The 2u
convergence time can also be used as a side measure of the role of decentralized agents 2
on opinion consensus. It can be seen that the relatively time-consuming areas are two 23
banded areas up and down. Looking at it vertically with r, the upper narrower band area 2w
corresponds to the region where P increases from 0 to 1 in Fig. 3. Looking horizontally at s
its variation with &, the narrower banded area gradually shifts downward as « increases, s
and its edges correspond qualitatively to rg and r; in Fig. 4. This likewise indicates that the 27
convergence time becomes larger in the process of consensus emergence (i.e., 0 < Pc < 1). s
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Figure 8. (a) The distribution of stability opinions p[x;(T*)] as a function of the bounded confidence
rata = 1. (b) The distribution of stability opinions p[x;(T*)] as a function of the fraction of decen-
tralized agents « at r = 0.2.

It is concluded from Fig. 9 that, first, decentralized agents accelerate the convergence of 29
opinions. Second, the variation pattern of T* with r does not change qualitatively with a. 22

T*
0.3 61
0.2 ‘”
~ =
0.1 21
1
00 02 04 06 08 10

(%

Figure 9. The convergence time T* as a binary function of the bounded confidence r and the fraction
of decentralized agents «.

4. Conclusion 21

As an extension to the classic bounded confidence model where agents are influenced 22
by peers through pairwise interactions, this paper introduced a possible framework of s
higher-order bounded confidence. The opinions of agents are influenced by group opin- 2
ion discussions instead of by peers directly. The microscopic rule in each group discus- s
sion can be arbitrary, and we experimented with two underlying rules: centralized and 2
decentralized. The former is equivalent to the classic HK model. From a series of statistic 27
quantities, we showed that the decentralized rule, which represents a higher-order inter- 2
action compared with the centralized one, can promote opinion consensus and accelerate 2z
opinion convergence. Not surprisingly, the decentralized rule allows the interaction with 2
opinions outside an agent’s original bounded confidence, which is somewhat equivalent 2
to enlarging the bounded confidence. 22

However, the idea borne in the model is more important than simply numerical 2
results. In this work, the focal object for interactions is not agents, but rather groups. 2
The group-based perspective to the classic bounded confidence model may bring the s
convenience of introducing other group-based dynamics into the bounded confidence s
model, such as the majority rule and other interdisciplinary dynamics. Since the func- 2
tion 0;(t) = f(x;(t)|j € Nj(t)) determining the outcome of a single discussion is open-end, 2
the possible microscopic rules to be introduced are extensive. 230
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To sum up, the “higher-order” interaction in this paper has two levels of inspiration. 2o
The first level is extending the first-order peers in opinion updating to the second-order, 2u
(i.e., the “decentralized” rule). The second level is to reconstruct the classic bounded- 2

confidence model from the group-based perspective. 243
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