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Abstract

Many places in Southern Africa experience seasonal flooding, but the intensity and predictability of
these events have changed significantly over the past few decades. These increasingly severe and
unpredictable floods affect rivers and low-lying areas the most. The Okavango Delta, the fifth largest
Ramsar site in the world and UNESCO World Heritage site, has experienced a series of large floods
since 2007, with particularly high inundation between 2009 and 2012. This study assesses the
technical accuracy of flood forecasts and evaluates their relevance and integration into Community-
based Risk Management (CBRM) strategies, particularly in flood-prone areas of Ngamiland District.
Through geospatial analysis, soil physical and chemical analysis, literature review, and key
stakeholder interviews, this research aims to bridge the gap between scientific flood prediction and
community-level preparedness, ultimately contributing to more inclusive and effective early warning
systems.

Keywords: community-based risk management; flood forecast accuracy; okavango delta; soil
physics; soil chemistry

1. Introduction

1.1. Introduction

Flooding is defined as a temporary condition of partial or complete inundation of normally dry
land areas from the overflow of inland or tidal waters or from the unusual and rapid accumulation
or runoff of surface waters from any source (UNISDR,2009). Floods are the most frequent types of
natural disasters in the world. They pose a threat to both rural and urban areas, especially now that
the climate and land use patterns are changing quickly. According to the Centre for Research on the
Epidemiology of Disasters [CRED] & United Nations Office for Disaster Risk Reduction [UNDRR],
(2015), from 1994 to 2013, flooding was the most frequent natural disaster, accounting for 43% of all
recorded natural events and impacting almost 2.5 billion individuals worldwide. Low-income
communities and developing countries are the most affected because they adapt slowly and have no
or too few early warning systems (UNDRR, 2020). In sub-Saharan Africa, this problem is made worse
by weak institutions and unequal access to technology.

Many places in southern Africa receive seasonal floods, but the size and effects of these floods
have become less predictable and more severe over the last few decades, affecting rivers and
lowlands the most (NASA Earth Observatory, 2008). The 2018-2019 Cyclone Idai that caused
devastating floods in Mozambique and Zimbabwe (Tevera, Musasa, & Simelane, 2021) and the 2024
unprecedented flooding in West and Central Africa asserts this. Botswana is mostly a semi-arid
country and could be perceived as not prone to flooding. However, the Okavango Delta, both a
RAMSAR and UNESCO World Heritage site, experiences flooding.
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Flooding in the Delta, driven by the rainy season in the highlands of Angola, is both a normal
physical process and a disaster for the people who live within its constantly changing extent. The
annual floods are a regular occurrence, with some people even practicing flood recession agriculture
(Molapo farming) close to or in the floodplains of river channels where soils are moistened by the
seasonal floods or the draining of water into low-lying ground (King, Shinn, Crews, & Young, 2016).
The flooding event that occurred in the Okavango Delta from 2009 to 2011, however, showed how
the local government was unprepared, resource allocation and community coping mechanisms were
overstretched. Although regional meteorological and hydrological patterns and above-average
rainfall events in the catchment areas of Angola were known, the translation of this data into timely
and actionable flood forecasts “tended to be generic, with little hydrological data usage, and flood
plans were rarely updated,” as pointed out by Motsholapheko et al. (2013). During the flooding,
thousands of people were forced to leave their homes, their crops failed and some fell sick due to
drinking dirty water (Mmopelwa, Kgathi, & Molefhe, 2011).

Satellite images and geospatial techniques and tools are now being used increasingly to map,
monitor and predict floods in most countries (Garcia-Pintado & Neal, 2023) such as the United States,
India, Bangladesh, Namibia and Botswana although Botswana is still somewhat emerging in this
regard. In Botswana geospatial techniques and tools are still underdeveloped and underutilized. In
addition, most flood risk reduction efforts have used centralized models, which often disregard the
knowledge of people who have been and are most likely to be affected. This research champions a
shift toward community-based risk management (CBRM), as an integral part of disaster risk
management that needs to be integrated with remote sensing acquired data and GIS-based flood-
extent mapping. “Community-based disaster risk management arrangements (CBDRMAs) have the
potential to fill the gap between household-level and national-level strategies for risk management”
(Bhattamishra & Barrett, 2010). By centering the voices and insights of those most at risk, while
leveraging the precision of geospatial data, the study seeks to explore how people-centered methods
can enhance both community preparedness and resilience. The 2009-2011 Okavango flooding events
serve as a recent historical unprecedented incident and additionally provides a lens through which
to explore the possibilities of merging traditional knowledge, environmental and hydro-
meteorological reality with the common people at the center. Therein lies the opportunity to connect
scientific modelling with grassroots community engagement to develop more resilient, locally-
anchored, actionable and efficient flood risk management systems.

1.2. Statement of The Problem

Flooding in the Okavango Delta, Botswana, particularly the Ngamiland District, is a recurring
challenge, causing significant disruptions to people’s livelihoods, essential infrastructure, and the
stability of ecosystems. The severe flooding in 2009, 2010 and 2011, among the most extreme
recordedin the region, have highlighted the area’s vulnerability to hydrological extremes (Thito,
Wolski, and Murray-Hudson, 2016).

Despite advancements in flood forecasting and prediction through the application of remote
sensing, Geographic Information Systems (GIS), and hydrological models, a prominent disconnect
persists between technical flood predictions and community-level risk preparedness. Thakadu,
Kolawole, & Sommer (2017) observed that although communities generally trust flood risk
messaging, the timing and applicability of such information are often inadequate for facilitating
effective responses. Furthermore, while flood inundation maps derived from remote sensing show
high accuracy (Thito et al., 2016), their practical utility in guiding local actions remains insufficiently
explored.

Hybrid reservoir-GIS models have effectively captured broad-scale flood dynamics in the Delta
(Wolski, Savenije, Murray-Hudson & Gumbricht, 2006), and remote sensing imageries such as
MODIS and Landsat, produce relatively high accuracy and reliable flood extent mapping (Thito et
al., 2016). However, the integration of these technological methods, combining flood modelling and
inundation mapping, into community-based risk management frameworks remains limited. Many
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local communities lack access to timely, comprehensible flood forecasts and existing response
systems are often informal and poorly linked with institutional early warning systems (Thakadu,
Kolawole & Sommer 2017). This disconnect restricts the capacity of predictive tools to effectively
support proactive risk reduction strategies.

Consequently, there exists an urgent need to assess not only the technical accuracy of flood
forecasts but also their accessibility and integration within community-based risk management
strategies, particularly in the flood-prone areas of Ngamiland District.

1.3. Research Questions

i. General Research Question
To what extent have existing flood forecasting methods, techniques and tools been effective in
predicting flood events in Ngamiland, and how are these predictions integrated into
community-based risk management strategies?

ii. Specific Research Questions

1. What are the spatial characteristics of flood-prone areas in relation to soil physical
properties?

2. How do local communities perceive and respond to flood forecasts and early warning
systems?

3. What community-based risk management strategies exist and how are they aligned with
scientific predictions/forecasts

4.  How does the limited integration of local knowledge and scientific hydrological data affect
flood predictability and community preparedness in the delta and what opportunities exist
for improvement?

1.4. Research Objectives

i. General Research Objective
To evaluate the disconnect between scientific flood forecasts and their integration in community-
based risk management.

ii. Specific Research Objectives

1. To assess the predictive accuracy of remote sensing data and existing hydrological models
in estimating flood extent through literature review.

2. To analyze the influence of soil-hydrological and topographic features on flood extent in
floodplains and/or flood prone-areas.

3. To examine the level of community awareness, trust, and response to early warning
systems during the 2009-2011 flood event and identify the existing community-based risk
management strategies.

4. To explore the potential for integrating local knowledge and scientific data to create or
improve existing community-based early warning systems.

1.5. Hypotheses

Research Objective Hypothesis

General Objective: To evaluate the disconnect There is a significant disconnect between
between scientific flood forecasts and their scientific forecasts and their integration into
integration in community-based risk community-based risk management in
management. Ngamiland.

Specific Objective 2: to analyze the influence of

soil-hydrological and topographic features on  Soil properties, especially the physical, have a
flood extent in floodplains and/or flood prone-  significant influence on flood-prone areas.
areas.
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awareness, trust, and response to early warning
systems during the 2009-2011 flood event and
identify the existing community-based risk
management strategies.

early warning systems are more likely to respond
proactively and use local risk management
strategies.

Objective 4: To explore the potential for
integrating local knowledge and scientific data to
create or improve existing community-based
early warning systems.

There is a high potential for improving flood-
preparedness outcomes by integrating local
knowledge and scientific flood-forecasting tools.

1.6. Justification for the Study

This study is necessary in light of the recurrent floods in the Okavango delta and the
surrounding Ngamiland district, more especially the 2009-2011 period, which revealed significant
weaknesses in Botswana’s community preparedness and forecasting accuracy. Despite the growing
availability of hydrological and geospatial data, communities remain overly vulnerable due to weak
early warning systems, underutilization of predictive tools and a disconnect between scientific
outputs and local-level risk management strategies.

By evaluating the reliability of past flood forecasts and the extent to which local communities
integrated that information into risk management planning, this study will help to identify practical
gaps in existing systems. The research will also contribute to national resilience strategies by
suggesting ways to improve local acceptance of forecasts or hazard warnings through community-
based risk reduction approaches.

1.7. Scope of the Study

This study focuses on the Ngamiland district in north-west Botswana, particularly areas within
and adjacent to the Okavango delta floodplain, particularly the settlements of Shorobe and
Gabamocha. These locations were selected due to their distance from the Delta channels, past
exposure to flooding, and their ecological and socio-economic dependence on flood cycles such as
Molapo farming.

1.8. Operational definition of Concepts

e  Flood Forecast Accuracy: refers to how closely the forecasted values of flood parameters (such
as peak discharge, timing, or inundation extent) match the observed flood outcomes, as defined
by the World Meteorological Organization (2011). It comprises of precision and reliability of
predicting the occurrence, magnitude, timing, and duration of floods. Accurate flood forecasts
enable timely and effective response measures to mitigate the impact of flooding. In this study,
it refers to how well forecasts issued during the 2009-2011 period matched actual flood events.

e  Community-Based Disaster Risk Management (CBDRM) is an approach and process of disaster
risk management in which communities at risk are actively engaged in the identification,
analysis, treatment, monitoring and evaluation of disaster risks in order to reduce their
vulnerabilities and enhance their capacities to prevent and withstand damaging effects of
hazards (the Maldives National Disaster Management Authority (NDMA).

e  Early Warning Systems: defined by the UNDRR (2017) as an integrated system of hazard
monitoring, forecasting and prediction, disaster risk assessment, communication and
preparedness activities systems and processes that enables individuals, communities,
governments, businesses and others to take timely action to reduce disaster risks in advance of
hazardous events.

e  Hydrological Modelling: involves the use of digital tools, techniques and methodologies to
analyze data and create simulations of water movement, distribution, and quality through the
components of the hydrological cycle. These models are essential for managing water resources,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1649.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 August 2025 d0i:10.20944/preprints202508.1649.v1

5 of 24

predicting flood events, maintaining ecosystem health, designing hydraulic structures, and in
climate change studies (World Meteorological Organization, 2008).

e  Geospatial Techniques and Tools: the technologies, applications, and methods used to gather,
analyze, visualize and interpret spatial or geographical data, examples being Remote Sensing
(RS) and Global Positioning Systems (GPS) and Geographic Information Systems (GIS). These
are widely applied in flood mapping, environmental monitoring and disaster risk management
(Goodchild, 2007; Lillesand, Kiefer, & Chipman, 2015).

Abbreviations and Acronyms

e  EO: Earth Observation

e  GIS: Geographic Information System

e  SMI: Soil Moisture Index

e  SWIR: Short Wave Infrared (band)

e  MODIS: Moderate Resolution Imaging Spectroradiometer (Imagery)

2. Literature Review

2.1. Introduction

Tiwari, Deo, and Adamowski (2021) define flood forecasting as the estimation of future water
levels or flows at a single or multiple sites of a river system for different lead times. The United
Nations (2006), in turn, defines early warning systems as “an integrated system of hazard monitoring,
forecasting and prediction, disaster risk assessment, communication and preparedness activities,
systems and processes that enable individuals, communities, governments, businesses and others to
take timely action to reduce disaster risks in advance of hazardous events.” The UNDRR (2009)
similarly defines early warning as “the provision of timely and effective information through
identified institutions, that allows individuals that may be exposed to a hazard to take action to avoid
or reduce their risk and prepare for effective response.” Flood forecasting, thereby, is a necessary part
of flood management, given that no preventative or defense measures can be completely effective.
This literature review critically explores global, regional and local perspectives on flood risk
prediction, soil-based flood vulnerability, and community-based disaster risk reduction. The review
highlights theoretical contributions, empirical findings and metrological approaches while
identifying key gaps that this study addresses.

2.2. Empirical and Theoretical Perspectives

L Global and Regional Perspectives on Flood Prediction and Vulnerability
Flood risk prediction has evolved with advances in hydrological modelling, remote sensing and
machine learning techniques (Sharma & Machiwal, 2017). Globally, systems integrating soil
hydrology, rainfall intensity and terrain analysis have improved short-term forecasts (Rahman,
Ahmed & Haque, 2021). At regional level, sub-Saharan Africa has seen an increasing use of
geospatial tools in modelling flood extent and vulnerability (CRED & UNDRR, 2015).
Hillel (2004) showed that soil characteristics such as texture, porosity and moisture retention
play a critical role in determining flood susceptibility. Additionally, Mercer, et al. (2012), showed
that high bulk density and low infiltration rates increase surface runoff, particularly in flood-
prone areas.

1L Flooding in the Okavango Delta: Local Experiences and Studies
The Okavango Delta experiences seasonal flooding shaped by upstream rainfall in the Republic
of Angola and the distributary dynamics of the delta’s channels. Flood events between the years
2009 and 2011 had significant socio-economic impacts, especially in Ngamiland district
(Mmolawa et al., 2011, Motsholapheko et al.,, 2013). These studies found that community
resilience was often restricted by limited access to early warnings and inadequate preparedness.
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Modeling efforts such as those by Wolski et al. (2006, 2007) and Tuito e al. (2016) demonstrated
how integrating hydrodynamic models with satellite data can improve inundation mapping and
prediction. However, their models often overlooked local soil characteristics, which significantly
influence flood dynamics at micro level.

11 Community Based Flood Risk Reduction
Community engagement in flood preparedness has proven effective in regions with high
uncertainty in hydrological forecasting. Mercer et al. (2012) advocates for integrating local
knowledge with scientific data for robust risk communication. In Botswana, Shinn (2018) and
Takadzwa et al. (2017) emphasized the value of participatory methods for social-ecological
adaptation, though the translation of forecasts into community-level action remains inexistent.
Rahman et al. (2021) demonstrated in South Asia that community-based early warning systems
(CBEWS) are only effective when communities understand, trust and respond to warnings. This
reinforces Brown et al.’s (2019) observation in the Zambezi Basin that strong institutional
frameworks are needed for early warning systems (EWS) to succeed in Africa.

1v. Flood Modeling and Inundation Mapping
Globally, flood modeling has evolved in response to increasing flood frequency and severity.
Models such as LISFLOOD-FP, HEC-RAS and SWAT have been widely applied to simulate
flood inundation dynamics and support early warning systems. Earth observation (EO) data,
particularly from MODIS, Sentinel-1 and Landsat satellites, has become central in these efforts,
offering both cost effective and regularly updated data on flood extent, depth and duration
(Schumann & Bates, 2018, Tarpanelli et al., 2017).
However, in many low and middle-income regions, including sub Saharan Africa, flood models
often suffer from coarse resolution, sparse ground calibration data, and weak institutional links
with local disaster preparedness systems (Ward et al., 2015). This gap reveals the need for
context-specific, smaller-scale modeling approaches that balance scientific accuracy with
practical applicability for local stakeholders.
In Botswana, the Okavango Delta more specifically, early work by Wolski et al. (2006,2007) laid
the groundwork for flood modelling using a hybrid reservoir-GIS approach that considered
river inflow, local rainfall, evapotranspiration and topography. These models were instrumental
in demonstrating the non-linear hydrological behavior of the delta. More recently, Marthews et
al. (2022) applied the global JULES-CaMa-Flood framework to simulate flooding across major
tropical wetlands. Their findings revealed that while such models could represent broad
seasonal trends, they struggled to reflect local-scale dynamics such as channel overflow and
distribution shifting. The authors emphasized the need for locally calibrated models to improve
flood predictability in Botswana’s wetland regions.
While these developments in technology offer valuable insights into flood mapping and
prediction, a persistent gap exists between EO-derived flood intelligence and the risk
communication systems available to local communities. This study aims to address that gap by
grounding flood analysis in both high-resolution EO data and local field-based knowledge,
including community interviews and soil assessments. This integrated approach supports more
accurate, equitable and usable flood forecasting in complex, data-scarce environments.

V. Soil Properties and Flood Vulnerability
Soil plays an important role in flood infiltration and runoff. Studies, such as Hillel (2004) and
Wolski et al.’s (2006) work in modeling, point to the importance of analyzing physical soil
parameters. While flood extent is often mapped using hydrological and remote sensing tools,
the underlying soil physical properties play a foundational role in determining the flood
vulnerability of an area, yet they remain under-represented in most models (Hess et al., 2022,
Marthews et al., 2022). Parameters such as texture, soil structure, and moisture retention capacity
among others, critically influence how water interacts with the land surface (Hillel, 2004, Brady
& Weil, 2016).
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Soils in the Okavango delta range from sandy and well-drained dunes to clay-dominated and
water-retaining soils in the low-lying alluvial plains (Murray-Hudson et al., 2016). These
physical differences directly affect flood retention and runoff behavior. Clay soils, for instance,
tend to impede infiltration and promote water pooling, increasing the risk of prolonged surface
flooding (Rawls et al., 1993, Mikkelsen et al., 2013). Conversely, sandy soils allow rapid
percolation but may worsen subsurface water loss, reducing the soil moisture available for
vegetation and farming (Brady & Weil, 2016). Understanding soil data can help refine both flood
risk assessments and adaptation strategies such as drainage interventions and placement of
emergency infrastructure (Hillel, 2004, Mikkelsen et al., 2013).
This study seeks to bridge the gap between hydrological modeling and the ground vulnerability
assessment by combining soil sample analysis with flood maps generated from satellite imagery
and remote sensing tools and community perspectives to assess flood vulnerability.

VI Methodological Approaches in Similar Studies
Numerous studies have made important contributions to flood modeling, EO-based mapping
and vulnerability assessments, however, only a few have effectively combined all three
approaches. For instance, Wolski et al. (2017) integrated MODIS imagery with runoff
simulations to estimate Okavango flood extent but did not engage the community. Meanwhile,
Budhathoki et al. (2020) and Mufute et al. (2008) demonstrated the power of combining
geospatial mapping with participatory risk communication. Masocha et al.’s (2021) is one of the
very few studies that include soil physical characteristics to explain spatial variations in flood
impacts.
This study aims to bridge these gaps by combining EO-derived flood mapping, soil property
field analysis and community-based interviews into a multi-scalar vulnerability framework for
Ngamiland, Botswana.

2.3. Theoretical and Conceptual Framework

Flood vulnerability and community disaster preparedness are shaped by a combination of
environmental, infrastructural and social factors. This study is grounded in the Disaster Risk
Reduction (DRR) framework and the Disaster Pressure and Release (PAR) model, which
conceptualize disasters not just as natural disasters but as outcomes of societal vulnerability and
environmental hazards (Wisner et al.,, 2004). The framework illustrates how limited infiltration
capacity, weak forecasting integration, and poor risk-communication create a pressure that
eventually leads to significant community impact during flood events like those recorded in
Ngamiland, Botswana from 2009 to 2011.

Past empirical studies highlight the role of hydrological and remote sensing models in early
flood detection. Wolski, et al. (2017) for instance, demonstrated the effectiveness of MODIS and
SWAT models in predicting Okavango Delta flooding. However, these technologies are rarely
translated into formats that can be used by rural communities. This gap points out the weak interface
between science-based prediction and community based early warning systems as observed by
Brown et al. (2019) in the Zambezi basin.

The conceptual framework for this study (Figure 1) shows the interplay between the natural
environmental vulnerability (such as soil bulk density, prevalent soil type) and institutional
limitations such as inadequate warning dissemination. At the core is the lack of fully-operational
community based early warning systems, driven by the mismatch between flood prediction systems
and community-level preparedness, which increases people’s chances to being exposed and harmed
by the flood and limits risk reduction.

Additionally, soil physical properties, such as bulk density and moisture content, play a critical
role in influencing local flood vulnerability. High bulk density and moisture content can intensify
flood impact (Hillel, 2004). By integrating soil analysis, remote sensing and community interviews,
this research adopts a mixed methods approach. It will provide a holistic view of flood susceptibility
and preparedness gaps in the Okavango delta.
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Despite growing literature on Community-based Early Warning Systems, there are gaps that
remain in translating hydrological model predictions into actionable local knowledge. There is also
limited empirical data comparing soil characteristics with historical flood impacts in Botswana. This
study aims to fill these gaps by combining technical soil analysis with community narratives, thereby
contributing to both applied flood science and community-centered adaptation planning.

Changing weather patterns and Disconnect between research outputs Underdeveloped and underutilized
hydrological inflow and operational risk management Geospatial tools

Lack of clear national or district policies that explicitly support,
fund and integrate local knowledge and scientific data

¥

High exposure of communities to Limited technical and
flood damage (2009-2011) Resource Capacity at
community level

Limited community trust in Poor flood planning, Low/ limited access to an
formal flood alerts or hazard displacement, crop failure accurate, localized forecast
warnings (Molapo farmers) and property system

\ | ./

High vulnerability to flood hazard due to lack of community-
based early warning systems

Physical parameters
¥ o [slopefelevation, soil
properties)

Figure 1. Conceptual framework for showing the interaction of environmental, institutional, and socio-technical

factors influencing community vulnerability to floods in the Okavango Delta (2009-2011).

3. Methodology

3.1. Research Design

This study adopted a mixed method approach involving both qualitative data; review of past
research reports, official reports, face-to-face interviews, and quantitative data; remote sensing, GIS
and an analysis of soil samples. This design was suitable as it allowed for a comprehensive
understanding of flood predictability, the limitations of the flood forecasting models currently being
used in Botswana and community risk management practices in the Ngamiland region.

3.2. Population

The study population comprised of the residents of flood-affected areas in Ngamiland, including
key stakeholders such as the local leaders, and households that experienced direct impacts from the
2009-2011 flooding event. Additionally, this study considered the natural environment of flood-prone
settlements in Ngamiland, specifically focusing on the villages of Shorobe, and Gabamocha.
Institutions responsible for flood forecasting or disaster response within the country were also
included, given their critical role in flood prediction and management. This population was
purposefully selected due to their firsthand knowledge and experience regarding flood impacts,
access to flood prediction information and preparedness or response measures.
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N MAP OF THE STUDY AREA IN NGAMILAND, BOTSWANA

AFRICA

@ Gabamocha
[ water Bodies

@  Study Sites
—— trunk_roads
—— Rivers
7] Water Bodies
[ Ngamiland District

09.519 38 Kilometers
[SNRERNEE]

Figure 2. Showing the study areas in Ngamiland, Botswana.

3.3. Sampling Frame

The sampling frame for this study encompassed directly affected households (from community
records), local leaders and responsible institutional representatives (Kgosi, Kgosana and VDC
members). This approach ensured that the sample captured a broad and informed perspective on
flood impacts, prediction and management practices in the region.

3.4. Sampling and Sampling Techniques

Soil samples:

Soil samples were collected to assess variations in soil quality across different land uses and
ecological zones. Systematic transect sampling with point intercepts was the sampling design used
to capture spatial and environmental variability within the study area (sample points shown in Table
1). Using augers, thirty samples from the villages were collected at low-lying (flood-prone) zones,
slightly elevated (moderate risk) zones and upland areas (low risk). Global Positioning System (GPS)
coordinates and photographs were recorded for each sampling point.

Table 1. Soil Sample Collection Points and Their Geographic Coordinates.

Point ID Latitude Longitude

M/01 -19.762898 23.612183
M/02 -19.76288 23.610231
M/03 -19.762828 2.609059
M/04 -19.762879 23.607991
M/05 -19.784474 23.646196
M/06 -19.761711 23.605911
M/07 -19.759971 23.589081
M/08 -19.760359 23.589116
M/09 -19.759706 23.589
M/10 -19.759562 23.588717
M/11 -19.758563 23.586337
5/01 -19.763571 23.671286
5/02 -19.76204 23.669155
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5/03 -19762277 23.667103
5/04 -19.761481 23.666396
5/05 -19.761381 23.674333
5/06 -19.761261 23.674839
P/13 -19.778946 23.663702
P/14 -19.770677 23.668104
P/15 -19.771028 23.672285
P/17* -19.761192 23.677708
P/17t -19.761243 23.679253
P/18 -19.757296 23.682271
P/22 -19.768464 23.679633
P/23 -19.764147 23.682874
P/26 -19.779198 23.679412
P27 -19.775864 23.678411
P/28 -19.770731 23.682409
P/29 -19.766557 23.686373
P/30 -19.763207 23.688853

Spatial Data (Shape-files and Raster Files)

Remote sensing and GIS data was used to complement field data, support spatial analysis, and
allow for temporal comparisons. Data was sourced from reputable open-access platforms. Sources of
the data included USGS Earth Explorer and the SASSCAL Geo Portal. The data types that were
downloaded and used are Shape-files (for administrative boundaries, land use maps, ecological
zones), and Raster Files (.tif) (NDVI, precipitation and soil moisture). The selection criteria included
high spatial resolution, temporal coverage and dry vs wet season differentiation.

Interviews

Qualitative data was collected through structured interviews with stakeholders who have
knowledge or lived experience related to the research area. This enriched the study with local
perspectives, contextual understanding, and potential ground-truthing for spatial data. Participants
were selected based on: residency in the village during the 2009-2011 flooding event, age (over 30
years old) and experience with flood preparedness and response, starting with the village Chief and
Village Development Committee Chairperson. The leaders then introduced some individuals who
were affected by the floods, who in turn did the same. Thereby, the snowball sampling technique was
used to find interviewees, and interviews were collected until data saturation was reached.

Literature Review

The literature review formed the theoretical and contextual foundation of the study. Relevant
academic and grey literature was reviewed to identify gaps, refine the research questions, and
contextualize the study geographically and thematically. The sources included peer-reviewed journal
articles, policy documents, and institutional reports from databases such ResearchGate, Google
Scholar, and relevant organizational sources. Publications from the last 10-20 years that had direct
relevance to the research topic (e.g., the nature and properties of soils, flood mapping, and remote
sensing) were used.

3.5. Instrumentation

Remote Sensing and GIS methods, techniques and tools were used, mostly on the QGIS software.
For the soil sampling procedures from target areas, a soil auger, re-sealable polyethylene bags, a GPS
device and a field notebook were used. An interview guide was used for interviewing the key
informants and an interview schedule for common village residents.
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3.6. Data Collection Procedure

A consent form was handed to the potential interviewee. After explaining the purpose of the
interview and obtaining consent from the interviewee, an interview was administered for 20 — 25
minutes. English or Setswana language was used depending on the interviewees’ preferred language.
Audio recordings, with permission, and field notes were used for data recording.

For the soil samples, soil augers were used to collect 15-25cm worth of soil from the target areas,
and placed into labelled re-sealable polyethylene bags. A GPS device and a field notebook were used
to collect and record information about the sample point. Each sample bag was labelled with a sample
ID, the village name, GPS point and the area elevation. The samples were then placed in a portable
insulated storage container and transported to the ORI lab facilities where they were analyzed for
soil texture, bulk density, soil moisture content, organic matter, electric conductivity and pH.

For remote sensing, flood maps and satellite imageries for the period 2009 to 2011 were collected
from SASSCAL Geoportal and USGS Earth Explorer and analyzed using the QGIS software.

3.7. Data Processing and analysis

Soil samples

The collected soil samples were processed and analyzed in a chemical laboratory for soil texture,
bulk density, soil moisture content, organic matter, electric conductivity (EC), and pH.

Soil texture: The Hydrometer method was used, which is whereby a 50g soil sample is mixed
with 100ml dispersing solution, shook and then allowed to settle for twelve to sixteen hours. After
sixteen hours, the mixture was put in a blender for 5-10 minutes on medium speed. It was then
transferred to a 1000ml graduated cylinder and deionized water was added until the mixture reached
the 1000ml mark. The mixture was then hand-mixed using a plunger for 30-60 seconds. After mixing,
at the 40 second and 2-hour time intervals density was measured using a hydrometer. After the
readings were corrected for temperature (+0.036g/L for each degree below or above 20°C), and density
of the dispersing agent (subtracting reading of the blanks from the sample readings), the USDA soil
texture chart was used to estimate the percentage of sand, silt and clay.

Bulk density: A soil sample of known volume was collected and dried in an oven for 105°C over

24 hours. The dry soil weight and original volume was used to calculate bulk density using the
dry soil weight—weight of container

formula; bulk density = .
total soil volume

Soil moisture content: a wet soil sample was weighed, oven-dried at 105°C, then weighed again.
The difference in mass percentage divided by the dry soil mass will determine the moisture.

Organic matter content: a dry soil sample was weighed using an analytical balance, and burned
in a furnace at 550°C for four hours. They were transferred to a desiccator to cool then weighed. The
difference in the weight of the samples equaled the total organic carbon in the soil sample

EC and pH: a dried and sieved soil sample of about 20g was mixed with deionized water at a
ratio of 1:5. The mixture was then placed on the shaker and mixed for about 60 minutes, then allowed
to settle for 30 minutes. The conductivity meter was calibrated with a standard solution (1.4 dS/m
KCL solution) while the pH meter was calibrated using standard buffer solutions (pH 4, 7 and 10).
The conductivity meter electrode was dipped into the clear supernatant without disturbing the
sediment and once the EC value was stable it was recorded. For pH, the pH electrode was immersed
in the soil solution, stirred gently and once the reading was stable it was recorded. The electrode and
probe were rinsed between samples.

Remote Sensing data

Satellite imageries were pre-processed; by converting binary data to digital data (radiometric
calibration), rectifying spatial distortions in the image (geometric correction), carrying out
atmospheric correction, image enhancement, noise reduction and topographic normalization. This
data was analyzed using the QGIS software. The raster layers were then layered, and their symbology
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changed to one single-band pseudo-color. A raster calculator was then utilized to compare different
years and seasons. The image was then exported as a layout image.

Interviews

Interview responses were transcribed and cleaned up to ensure accuracy before analysis.
Thematic analysis was then applied to identify recurring patterns and themes related to flood
forecasting accuracy and community risk management, with coding and theme organization carried
out using Atlas.ti and Microsoft Excel.

3.8. Ethical Considerations

This study strictly adhered to the established ethical guidelines for conducting research
involving human participants. It recognized the need to respect participant dignity, promote
voluntary participation and ensure safe and responsible handling of all data collected.

Informed Consent: all participants received a clear explanation of the study’s purpose,
procedures and potential risks and benefits. Participation were completely voluntary and a
written consent form, available in both Setswana and English languages, was signed by the
participant before any interviews or soil sampling took place.

Respect for Cultural Protocols: the study respected local hierarchies by seeking permission and
entry through the Kgosi and Village Developments Committee (VDCs).

Minimizing Harm and Discomfort: while the research does not deal with highly sensitive issues,
participants recounting experiences of past flood events may be affected emotionally. To
mitigate this, participants were allowed to skip questions or terminate interviews at any point.
The researcher approached all interviews with empathy.

Institutional and National Ethics Approval: ethical clearance was sought from the University of
Botswana Research Ethics Committee. This research was also aligned with the Botswana
National Research Ethics Guidelines and any other protocols set by relevant institutions. A
research permit was also acquired from the Ministry of Lands and Agriculture.

4. Results

Soil Properties Across Villages

The soils across both villages were mostly sandy in texture, with loamy sand and sandy loam
dominating (Table 2). Samples from Gabamocha village showed higher organic matter and moisture
content, while Shorobe had higher bulk densities overall. The soils were generally neutral in pH and
non-saline across all sites (Table 3).

Table 2. Summary of Soil Physical and Chemical Properties for Shorobe and Gabamocha.

TOTAL ELECTRIC BULK
SAMPLE ID CIC\)/IIS;S],ETI\‘T[;R(T’Z) ORGANIC pH CONDUCTIVITY DENSITY

CONTENT(%) (ps/cm) (g/ml)

*M/01 82.67 12.034 6.81 69.3 1.2535
*M/02 154.18 15.52 6.639 221 1.0423
*M/03 759.95 9.1 7.017 54 1.4077
*M/04 39.91 5.38 7.975 54.4 1.2669
*M/05 33.66 5.45 7.499 33.2 1.2808
*M/06 234.3 12.05 7.017 60 1.0461
*M/07 78.24 9.84 6.883 43.4 1.2309
*M/08 432.58 2312.13 6.86 63.4 0.9380
*M/09 112.59 12.24 6.685 38.1 1.1531
*M/10 75.68 9.53 6.601 39.9 1.2482
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*M/11 52.33 6.99 6.489 48.3 1.1289
~S/01 71.54 4.64 7.405 76.6 1.2863
~S/02 22.26 1.16 7.305 16.2 1.5519
~5/03 97.79 4.56 6.57 53.8 1.0030
"S/04 30.56 1.89 6.635 15.6 1.1760
~S/05 27.02 4.32 6.538 53 1.4573
~5/06 17.13 2.35 6.319 26.6 1.4204
"P/13 64.47 17.71 7.816 112.6 1.2655
"P/14 45.98 424.77 7.46 31.8 1.3140
~P/15 75.32 47.39 6.841 28.5 1.2377
~P/17 21.08 41.7 6.89 57.9 1.2759
P/17t 23.79 96.33 6.757 17.9 1.4138
~P/18 44.86 5.4 6.65 18.9 1.2498
P[22 59.78 44 6.475 27.9 1.3472
~P/23 57.63 5.54 6.532 32.8 1.3859
~P/26 23.88 3.64 6.312 16.5 1.4417
~P/27 31.06 5.45 6.591 25.4 1.3512
~P/28 42.88 5.85 6.25 18.5 1.2686
~P/29 46.24 5.44 6.289 17.6 1.4041
~P/30 57 7.24 6.373 15.3 1.4694

Legend: * Sample from Gabamocha. * Sample from Shorobe.

Table 3. 0 USDA Soil Texture Classification for Shorobe and Gabamocha Based on Sand, Silt and Clay

Percentages.

SAMPLE ID % Sand % Silt % Clay Texture Class
*M/02 52.2 31.1 16.7 Sandy clay loam
*M/04 57.3 30.4 12.3 Sandy loam
*M/05 74 19 7 Loamy sand
*M/08 53.4 19.4 27.2 Sandy loam
*M/11 70.2 29.4 0.4 Loamy sand
~P/14 66.2 21.4 12.4 Sandy loam
~P/15 53 6 41 Sandy clay loam
~P/29 53.6 24.8 21.6 Sandy loam
~5/02 75 5.4 19.6 Loamy sand
~5/05 77.6 16 6.4 Loamy sand

Legend: * Sample from Gabamocha. * Sample from Shorobe .

Elevation Data

The distribution of sample points across varying elevations, from below 920m to nearly 970m,
demonstrates spatial patterns relevant to flood risk analysis. Elevations were coded for each sampling
point, enabling direct comparison between groups of locations identified as either more susceptible
to flooding (Gabamocha, low-lying: orange bars) or less susceptible (Shorobe, higher ground: green
bars). Gabamocha elevation ranged between 915m and 943m while Shorobe had ranges 925m to
961m.
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Figure 3. Elevations Levels of Soil Sampling Locations.

SMI Data Analysis

To assess the spatial and temporal variability in soil moisture across northern Botswana, Earth
Observation (EO) data from 2008 to 2011 were analyzed. The maps in Figures 4 display soil moisture
content and its seasonal changes, comparing wet and dry seasons across selected years. These results
highlight regions experiencing increased moisture, reduced moisture, or minimal change, which are
essential indicators for understanding hydrological responses to rainfall events and potential flood
risk.

é\ DRY 2008 - WET 2008
[/

LEGEND
Il Reduced soll moisture
- Increased soil moisture

l:l Little or no change in
moisture
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Figure 4. a Showing the Comparative analysis of Soil Moisture Index in the 2008 Wet and Dry Season. b Showing
the Difference Between the Soil Moisture Index in the 2009 Wet and Dry Season. ¢ Showing the Difference
Between the Soil Moisture Index in the 2009 Wet and Dry Season. d Showing the Difference Between the Soil
Moisture Index in the 2009 Wet and Dry Season.

Interview Responses

Community Awareness and Sources of Flood Information

Interview findings revealed that 82% of the respondents’ primary sources of flooding
information in Ngamiland are local observations such as rainfall patterns and river levels and water
velocity. Only 18% reported hearing flood forecasts through radio broadcasts, although many noted
that this information was often delayed, not locally specific, exaggerated and unreliable, or not
relayed at all.

Functionality of CBWES, Timing and Responsiveness

88% of village leaders confirmed that formal early warning systems were either non-functional
or entirely absent. As one respondent noted, “we just observe the water ourselves; no one from the
government tells us anything.” Another recurring theme was the delay or absence of actionable alerts.
Leaders and the community leaders stated that by the time they received word of flooding in
surrounding areas or heard flood-warnings the impact had already begun. In the years 2011-2012,
community action was only initiated after visible flooding had already occurred.

Risk Perception and Preparedness

Risk awareness varied across villages. Communities that frequently experienced flooding,
particularly those along floodplains, expressed a sense of resignation rather than proactive
preparedness. Only 9% described any form of prior planning or evacuation plans. There was minimal
evidence of structured risk preparedness activities such as evacuation drills, pre-arranged resources
or risk communication plans.
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Disconnect Between EO-Based Forecast and Community Action

None (0%) of the interviewees were aware of or had interacted with Earth-Observation based
forecasts and models. The respondents also noted that since the official reports were usually
inaccurate, they rarely act based only on those warnings.

Literature Review

Predictive Accuracy of Remote Sensing Approaches

Thito et al. (2016) attained high predictive accuracy in inundation extent mapping of the
Okavango delta using a dynamic thresholding method applied to MODIS SWIR bands (MOD09Q1,
MOD11A1). Their approach obtained an overall accuracy of 99.4% and a Kappa coefficient of 80% for
the period 2001-2012, showing a maximum inundation extent during 2010-2012. Recent studies by
Inman and Lyons (2020) utilized the superior spatial resolution of Landsat imagery (30m) in
conjunction with Google Earth Engine to produce high-resolution inundation maps for the period
1990-2019. Their results showed accuracy levels between 91.5%-98.1%. However, Landsat products
generally estimated lower total area (approximately 692 km"2 less) compared to MODIS, primarily
due to the increased number of mixed pixels that occur when using broad spatial resolution imagery.
Mfundisi et al. (2023) combined RapidEye, Sentinel-2 and SRTM DEM data to delineate the 2011 high
flood line in the Okavango basin. They integrated NDWI classification with topographic validation,
and the flood-prone areas they mapped corresponded closely to known settlement and flood
recession agriculture areas. These findings highlight the potential of using diverse tools and
techniques of remote sensing for detailed risk mitigation.

Predictive Accuracy of Hydrological Models

Wolski et al. (2006) simulated 34 years of flood dynamics, including 15 years of inundation area
data, using semi-distributed reservoir/GIS models. The EF5 hydrological forecasting framework,
operational for the Okavango upstream at Rundu, Namibia, achieved strong validation statistics
using TRMM rainfall and GIS-derived inputs (Wolski et al., 2020). This highlights the growing
potential for very accurate operational flood forecasting using Earth observation and open-access
hydrological data.

5. Discussion

Physical and Chemical Soil Properties

The comparison between Gabamocha and Shorobe highlights distinct differences in soil physical
and chemical properties, likely linked to land use, topography and flood exposure.

- Soil Texture and Flooding Implications

Gabamocha’s higher clay content in certain areas, (e.g., M/08) may enhance temporary water
retention, making it more susceptible to waterlogging in low-lying areas. Shorobe soils, while
sandier, had a sample (P/15) with 41% clay, suggesting isolated zones of potential high flood-
water retention.

- Organic Matter and Moisture Retention

Gabamocha had higher organic matter and moisture levels, especially in M/08 and M/03,
pointing to possible organic matter accumulation due to prolonged flooding or vegetation
decay. Lower bulk densities in these samples support the idea of looser, more porous soils that
retain more water. Shorobe, on the other hand, displayed higher bulk density values and lower
organic matter content overall, indicating more compacted soils that favor faster surface water
runoff and less water storage during flooding.

- Soil pH and Salinity Status
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Both villages showed favorable pH conditions for plant growth (6.3-7.9), and EC values below
250uS/cm, indicating non-saline soils suitable for most crops and natural vegetation. No
significant soil salinity concerns were identified in either site.

Elevation Data

The elevation data clearly distinguishes two villages: one represented by orange bars (Shorobe)
and the other by green bars (Gabamocha). Notably, Gabamocha has a relatively recent history of
flooding while Shorobe has not experienced significant flood events.

Gabamocha (Flood-Prone)

This area features generally lower elevation points compared to Shorobe. Lower elevation
enables the accumulation of surface water, reducing the rate of runoff and increasing the risk of
saturation during water inflow. The community’s historical accounts of flooding support these
physical characteristics, a relationship confirmed by global and regional analysis indicating that
accurate high-resolution elevation data is important for understanding and modelling flood hazards
(Blackwell et al., 2024).

Shorobe (Low Flood Risk)

This region comprises of relatively higher elevation sampling points. Elevated terrain enhances
surface drainage and limits the amount of water retained within soils after precipitation, reducing
flood risk. The historical absence of flooding in this village is consistent with the observed elevation
profile, reflecting the pattern in which elevation reduces exposure to flood impacts (Towey & Kemter,
2024).

The contrast between these two villages illustrates how even small differences in elevation and
have significant impacts on flood vulnerability. The relationship between elevation and soil moisture
is significant: lower sites, especially with higher preceding soil moisture, tend to be more flood prone,
as was seen in the case of Gabamocha in 2011-2012. Recent modelling studies, such as those by Ran
et al. (2022), have shown that flood peak flows are heightened when both rainfall and preceding soil
moisture are high, a relationship that is prominent in lower-elevation catchments (Ran et al., 2022).

EO Data

The EO-derived soil moisture index maps (Figures 2) illustrate inter-annual and seasonal
variations in soil moisture across northern Botswana between 2008 and 2011. The observed changes
in moisture content, categorized into reduced, increased or minimal change, reveal spatial
heterogeneity in surface moisture, which has a large influence on runoff generation and flood
potential.

Focusing on the area within the Botswana boundary (outlined in orange), well-defined spatial
patterns are showing. During the wet seasons, particularly in 2008 and 2011, the northwestern and
central regions of Botswana exhibit increased soil moisture, signaling saturation-prone zones. Likely
influenced by topography, drainage networks and soil types and textures, these areas are more
responsive to rainfall events, leading to heightened runoff and elevated flood potential. Conversely,
in the south and eastern regions of Botswana, most of the area shows little or no change in soil
moisture, indicating a relatively stable hydrological regime or possible water retention in deeper soil
layers.

The 2010 dry season stands out, as a part of Northern Botswana experienced reduced soil
moisture, likely a result of prolonged dry conditions, which can decrease infiltration efficiency during
subsequent rains. Drought conditions or reduced soil moisture can lead to hydrophobic soil surfaces,
initially reducing infiltration and altering runoff responses when rains return (Seneviratne et al,,
2010).
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Such discrepancies may partly explain the disconnect between model-based flood forecasts and
CBEWS alerts. Models often rely on large-scale precipitation and static soil assumptions and may
overestimate flood risk in areas which appear saturated on average, while underestimating risk in
locally sensitive zones flagged by communities. CBEWS, grounded in local experience and real-time
observations, often capture minute environmental cues such as rising water levels, or subtle changes
in river behavior that models miss (Paul et al., 2018). The integration of EO data and local knowledge
systems is therefore essential to bridging the communication and accuracy gap between top-down
and bottom-up forecasting mechanisms.

Interviews

The interview findings highlight a significant disconnect between scientifically-based flood
forecasting, including EO and SMI tools, and the actual community-level risk-response procedures.
Despite the existence of scientific tools like EO-based predictions, none of the respondents were
aware of such systems. This strongly suggests a structural communication failure, reinforcing
previous studies that emphasize the importance of localized and accessible early warning systems
(for example, UNDRR, 2019).

Furthermore, the lack of trust or familiarity with modern forecasting tools further deepens the
disconnect. While EO data can identify flood risks weeks or months in advance, the absence of
community sensitization, training and contextual translation renders forecasts irrelevant to local
decision-making. This insight supports the argument that forecasting systems must be people-
centered, not just data-centered.

These findings align with the national early warning information flow diagram for Botswana,
which centers around a centralized coordination code (NDMO, NETF, NCDM, NDMTF) as the
conduit among sectors such as water, health, agriculture, media and meteorology. While this system
is designed for integration across institutional levels, its implementation remains uneven at the
grassroots. Although the diagram indicates potential outreach to communities, interview data
suggest that these flows are rarely observed in practiced.

Finally, the findings highlight an urgent need to redefine flood risk communication pathways-
bridging national forecasts with local warnings through participatory design, regular training and
culturally grounded outreach. In doing so, flood forecasting can evolve from being a top-down
scientific exercise to a community-empowering tool.

Literature Review

This review strongly suggests that remote sensing tools, particularly satellite data, played a
critical role in identifying flood extents during the 2009-2011 floods in Ngamiland. Studies such as
Garcia-Pintado & Neal (2023) support the reliability of Earth observation in flood modelling.
However, the models often struggled with finer-scale predictions, especially in areas with complex
hydrology or variable soil characteristics (McClean et al., 2020; Hillel, 2004).

While technology that could detect flood accuracy existed, limitations in local model calibration
and real-time data integration reduced flood-forecast precision. This aligns with Motsholapheko et
al. (2013), who found that models in Botswana rarely incorporated community level variables such
as soil texture. Moreover, early warnings were not consistently trusted or well-communicated at
community-level. As Mercer et al. (2012) and King et al. (2016) argue, integrating scientific data with
local knowledge is essential for building credible, actionable early warning systems.

Overall, while hydrological models and remote sensing offer powerful tools for flood prediction,
their full potential in Botswana remains underutilized due to insufficient integration with community
feedback, soil-based and land-based data, and timely information dissemination.
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6. Conclusions

Effective flood risk management and land-use planning require a dual approach that bridges
the gap between technical forecasting tools with locally grounded knowledge of environmental
conditions. The findings of this study reinforce the fact that while scientific modelling is improving
flood predictability, its disconnection from community knowledge systems reduces its effectiveness
in risk management. Studies such as Garcia-Pintado & Neal (2023) and McClean et al. (2020) highlight
the increasing reliability of geospatial tools and Earth Observation data for modelling flood risk, but
without localization, these forecasts can fail to trigger effective community risk-response.

Bridging the gap between national-level forecasting and local-level preparedness is not only a
technological challenge, it is a governance and communication issue. King et al. (2016) emphasized
that rigid livelihoods constrained by policy and resource limitations hinder adaptive behaviors. This
was echoed in several interviews where community leaders and other members expressed frustration
over the lack of support and late communication from higher authorities. By investing in CBWES
functionality, engaging communities in design, and prioritizing localized interpretation of EO and
SMI data, Botswana’s flood warning systems can shift from being reactive and top-down to proactive,
participatory, and resilient.

7. Recommendations

To transform forecasting into a community-centered tool, several interventions recommended
are to:

- Strengthen CBEWS Structures: reactivate and equip VDCs with basic training, materials, and
decision-support tools to relay forecast information clearly and timely.

- Promote participatory design of early warning messages by involving local leaders, elders and
the youth to improve cultural and linguistic appropriateness, developing trust, comprehension
and understanding.

- Enhance Two-way Communication: structured channels such as mobile platforms, community
radio sessions or disaster dialogues, where communities can not only receive but also respond
to and critique forecast information, should be established.

- Integrate soil properties into flood risk planning; identifying zones with high infiltration
potential or those prone to waterlogging. Classifying areas which are more suitable for drainage
infrastructure or erosion control interventions is also recommended.

- Encourage collaboration between the National Disaster Management Office (NDMO),
Department of Water Affairs, and agricultural extension services to ensure that flood forecasts
and risk-management are coordinated and implemented at village level.

- Incorporate high-resolution topography in hydrological models and flood forecasts to better
represent risks at the village scale, as studies (e.g., Towey & Kemter, 2024; McClean et al., 2020)
have shown the sensitivity of flood predictions to the accuracy of elevation inputs.
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Appendix A

Demographic Information:

Interviewee Code/ID:

Village /Location:

Age Range: [J under 25 [0 25-40 [ 41-60 [ 61+
Gender: [ Male [ Female [ Other/Prefer not to say

Occupation/Livelihood:

Interview Questions

1. Were you living in this area during the floods that occurred
between 2009 and 2011?

2. Can you describe what you remember most about that
time?

3. In what ways were you or your household affected by those
floods? (e.g., loss of property, livestock, crops, health issues,
displacement, etc.)

4. Do you remember receiving any warnings or information
before the floods came?

5. Where did you hear it from? (e.g., radio, government,
neighbors, NGOs, churches, etc.)

6. Did you feel the warning came early enough?

7. Did you or other community members notice any signs that
the floods were coming before any official warning?

8. Are there traditional ways that people here predict
flooding?

9. How did you or your community prepare for the flooding, if
at all?

10. What do you think would have helped you prepare better
for the floods?

11. After the floods, how did the community respond or
recover?

12. What do you think is the best way to warn and prepare

people in your community for floods in the future?

Figure Al. Interview guide for data collection on community (Ngamiland, 2009-2011) flood experiences.
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SAND (%) A

Figure A2. USDA Soil Texture Classification Chart. Nano-Yield. (n.d). the soil texture triangle. Retrieved July
21,2025.

Adapted from the Mational Disaster Risk Management
Plan, October 2009

Figure A3. National Disaster Risk Management Office (NDMO) Early Warning Information Flow in Botswana.
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