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Abstract 

Many places in Southern Africa experience seasonal flooding, but the intensity and predictability of 

these events have changed significantly over the past few decades. These increasingly severe and 

unpredictable floods affect rivers and low-lying areas the most. The Okavango Delta, the fifth largest 

Ramsar site in the world and UNESCO World Heritage site, has experienced a series of large floods 

since 2007, with particularly high inundation between 2009 and 2012. This study assesses the 

technical accuracy of flood forecasts and evaluates their relevance and integration into Community-

based Risk Management (CBRM) strategies, particularly in flood-prone areas of Ngamiland District. 

Through geospatial analysis, soil physical and chemical analysis, literature review, and key 

stakeholder interviews, this research aims to bridge the gap between scientific flood prediction and 

community-level preparedness, ultimately contributing to more inclusive and effective early warning 

systems. 

Keywords: community-based risk management; flood forecast accuracy; okavango delta; soil 

physics; soil chemistry 

 

1. Introduction 

1.1. Introduction 

Flooding is defined as a temporary condition of partial or complete inundation of normally dry 

land areas from the overflow of inland or tidal waters or from the unusual and rapid accumulation 

or runoff of surface waters from any source (UNISDR,2009). Floods are the most frequent types of 

natural disasters in the world. They pose a threat to both rural and urban areas, especially now that 

the climate and land use patterns are changing quickly. According to the Centre for Research on the 

Epidemiology of Disasters [CRED] & United Nations Office for Disaster Risk Reduction [UNDRR], 

(2015), from 1994 to 2013, flooding was the most frequent natural disaster, accounting for 43% of all 

recorded natural events and impacting almost 2.5 billion individuals worldwide. Low-income 

communities and developing countries are the most affected because they adapt slowly and have no 

or too few early warning systems (UNDRR, 2020). In sub-Saharan Africa, this problem is made worse 

by weak institutions and unequal access to technology. 

Many places in southern Africa receive seasonal floods, but the size and effects of these floods 

have become less predictable and more severe over the last few decades, affecting rivers and 

lowlands the most (NASA Earth Observatory, 2008). The 2018-2019 Cyclone Idai that caused 

devastating floods in Mozambique and Zimbabwe (Tevera, Musasa, & Simelane, 2021) and the 2024 

unprecedented flooding in West and Central Africa asserts this. Botswana is mostly a semi-arid 

country and could be perceived as not prone to flooding. However, the Okavango Delta, both a 

RAMSAR and UNESCO World Heritage site, experiences flooding. 
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Flooding in the Delta, driven by the rainy season in the highlands of Angola, is both a normal 

physical process and a disaster for the people who live within its constantly changing extent. The 

annual floods are a regular occurrence, with some people even practicing flood recession agriculture 

(Molapo farming) close to or in the floodplains of river channels where soils are moistened by the 

seasonal floods or the draining of water into low-lying ground (King, Shinn, Crews, & Young, 2016). 

The flooding event that occurred in the Okavango Delta from 2009 to 2011, however, showed how 

the local government was unprepared, resource allocation and community coping mechanisms were 

overstretched. Although regional meteorological and hydrological patterns and above-average 

rainfall events in the catchment areas of Angola were known, the translation of this data into timely 

and actionable flood forecasts “tended to be generic, with little hydrological data usage, and flood 

plans were rarely updated,” as pointed out by Motsholapheko et al. (2013). During the flooding, 

thousands of people were forced to leave their homes, their crops failed and some fell sick due to 

drinking dirty water (Mmopelwa, Kgathi, & Molefhe, 2011). 

Satellite images and geospatial techniques and tools are now being used increasingly to map, 

monitor and predict floods in most countries (Garcia-Pintado & Neal, 2023) such as the United States, 

India, Bangladesh, Namibia and Botswana although Botswana is still somewhat emerging in this 

regard. In Botswana geospatial techniques and tools are still underdeveloped and underutilized. In 

addition, most flood risk reduction efforts have used centralized models, which often disregard the 

knowledge of people who have been and are most likely to be affected. This research champions a 

shift toward community-based risk management (CBRM), as an integral part of disaster risk 

management that needs to be integrated with remote sensing acquired data and GIS-based flood-

extent mapping. “Community-based disaster risk management arrangements (CBDRMAs) have the 

potential to fill the gap between household-level and national-level strategies for risk management” 

(Bhattamishra & Barrett, 2010). By centering the voices and insights of those most at risk, while 

leveraging the precision of geospatial data, the study seeks to explore how people-centered methods 

can enhance both community preparedness and resilience. The 2009-2011 Okavango flooding events 

serve as a recent historical unprecedented incident and additionally provides a lens through which 

to explore the possibilities of merging traditional knowledge, environmental and hydro-

meteorological reality with the common people at the center. Therein lies the opportunity to connect 

scientific modelling with grassroots community engagement to develop more resilient, locally-

anchored, actionable and efficient flood risk management systems. 

1.2. Statement of The Problem 

Flooding in the Okavango Delta, Botswana, particularly the Ngamiland District, is a recurring 

challenge, causing significant disruptions to people’s livelihoods, essential infrastructure, and the 

stability of ecosystems. The severe flooding in 2009, 2010 and 2011, among the most extreme 

recordedin the region, have highlighted the area’s vulnerability to hydrological extremes (Thito, 

Wolski, and Murray-Hudson, 2016). 

Despite advancements in flood forecasting and prediction through the application of remote 

sensing, Geographic Information Systems (GIS), and hydrological models, a prominent disconnect 

persists between technical flood predictions and community-level risk preparedness. Thakadu, 

Kolawole, & Sommer (2017) observed that although communities generally trust flood risk 

messaging, the timing and applicability of such information are often inadequate for facilitating 

effective responses. Furthermore, while flood inundation maps derived from remote sensing show 

high accuracy (Thito et al., 2016), their practical utility in guiding local actions remains insufficiently 

explored. 

Hybrid reservoir-GIS models have effectively captured broad-scale flood dynamics in the Delta 

(Wolski, Savenije, Murray-Hudson & Gumbricht, 2006), and remote sensing imageries such as 

MODIS and Landsat, produce relatively high accuracy and reliable flood extent mapping (Thito et 

al., 2016). However, the integration of these technological methods, combining flood modelling and 

inundation mapping, into community-based risk management frameworks remains limited. Many 
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local communities lack access to timely, comprehensible flood forecasts and existing response 

systems are often informal and poorly linked with institutional early warning systems (Thakadu, 

Kolawole & Sommer 2017). This disconnect restricts the capacity of predictive tools to effectively 

support proactive risk reduction strategies. 

Consequently, there exists an urgent need to assess not only the technical accuracy of flood 

forecasts but also their accessibility and integration within community-based risk management 

strategies, particularly in the flood-prone areas of Ngamiland District. 

1.3. Research Questions 

i. General Research Question 

To what extent have existing flood forecasting methods, techniques and tools been effective in 

predicting flood events in Ngamiland, and how are these predictions integrated into 

community-based risk management strategies? 

ii. Specific Research Questions 

1. What are the spatial characteristics of flood-prone areas in relation to soil physical 

properties? 

2. How do local communities perceive and respond to flood forecasts and early warning 

systems? 

3. What community-based risk management strategies exist and how are they aligned with 

scientific predictions/forecasts 

4. How does the limited integration of local knowledge and scientific hydrological data affect 

flood predictability and community preparedness in the delta and what opportunities exist 

for improvement? 

1.4. Research Objectives 

i. General Research Objective 

To evaluate the disconnect between scientific flood forecasts and their integration in community-

based risk management. 

ii. Specific Research Objectives 

1. To assess the predictive accuracy of remote sensing data and existing hydrological models 

in estimating flood extent through literature review. 

2. To analyze the influence of soil-hydrological and topographic features on flood extent in 

floodplains and/or flood prone-areas. 

3. To examine the level of community awareness, trust, and response to early warning 

systems during the 2009-2011 flood event and identify the existing community-based risk 

management strategies. 

4. To explore the potential for integrating local knowledge and scientific data to create or 

improve existing community-based early warning systems. 

1.5. Hypotheses 

Research Objective Hypothesis 

General Objective: To evaluate the disconnect 

between scientific flood forecasts and their 

integration in community-based risk 

management.   

There is a significant disconnect between 

scientific forecasts and their integration into 

community-based risk management in 

Ngamiland.  

Specific Objective 2: to analyze the influence of 

soil-hydrological and topographic features on 

flood extent in floodplains and/or flood prone-

areas. 

Soil properties, especially the physical, have a 

significant influence on flood-prone areas. 
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Objective 3: to  examine the level of community 

awareness, trust, and response to early warning 

systems during the 2009-2011 flood event and 

identify the existing community-based risk 

management strategies. 

Communities with higher awareness and trust in 

early warning systems are more likely to respond 

proactively and use local risk management 

strategies. 

Objective 4: To explore the potential for 

integrating local knowledge and scientific data to 

create or improve existing community-based 

early warning systems. 

There is a high potential for improving flood-

preparedness outcomes by integrating local 

knowledge and scientific flood-forecasting tools. 

1.6. Justification for the Study 

This study is necessary in light of the recurrent floods in the Okavango delta and the 

surrounding Ngamiland district, more especially the 2009-2011 period, which revealed significant 

weaknesses in Botswana’s community preparedness and forecasting accuracy. Despite the growing 

availability of hydrological and geospatial data, communities remain overly vulnerable due to weak 

early warning systems, underutilization of predictive tools and a disconnect between scientific 

outputs and local-level risk management strategies. 

By evaluating the reliability of past flood forecasts and the extent to which local communities 

integrated that information into risk management planning, this study will help to identify practical 

gaps in existing systems. The research will also contribute to national resilience strategies by 

suggesting ways to improve local acceptance of forecasts or hazard warnings through community-

based risk reduction approaches. 

1.7. Scope of the Study 

This study focuses on the Ngamiland district in north-west Botswana, particularly areas within 

and adjacent to the Okavango delta floodplain, particularly the settlements of Shorobe and 

Gabamocha. These locations were selected due to their distance from the Delta channels, past 

exposure to flooding, and their ecological and socio-economic dependence on flood cycles such as 

Molapo farming. 

1.8. Operational definition of Concepts 

• Flood Forecast Accuracy: refers to how closely the forecasted values of flood parameters (such 

as peak discharge, timing, or inundation extent) match the observed flood outcomes, as defined 

by the World Meteorological Organization (2011). It comprises of precision and reliability of 

predicting the occurrence, magnitude, timing, and duration of floods. Accurate flood forecasts 

enable timely and effective response measures to mitigate the impact of flooding. In this study, 

it refers to how well forecasts issued during the 2009-2011 period matched actual flood events. 

• Community-Based Disaster Risk Management (CBDRM) is an approach and process of disaster 

risk management in which communities at risk are actively engaged in the identification, 

analysis, treatment, monitoring and evaluation of disaster risks in order to reduce their 

vulnerabilities and enhance their capacities to prevent and withstand damaging effects of 

hazards (the Maldives National Disaster Management Authority (NDMA). 

• Early Warning Systems: defined by the UNDRR (2017) as an integrated system of hazard 

monitoring, forecasting and prediction, disaster risk assessment, communication and 

preparedness activities systems and processes that enables individuals, communities, 

governments, businesses and others to take timely action to reduce disaster risks in advance of 

hazardous events. 

• Hydrological Modelling: involves the use of digital tools, techniques and methodologies to 

analyze data and create simulations of water movement, distribution, and quality through the 

components of the hydrological cycle. These models are essential for managing water resources, 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 August 2025 doi:10.20944/preprints202508.1649.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1649.v1
http://creativecommons.org/licenses/by/4.0/


 5 of 24 

 

predicting flood events, maintaining ecosystem health, designing hydraulic structures, and in 

climate change studies (World Meteorological Organization, 2008). 

• Geospatial Techniques and Tools: the technologies, applications, and methods used to gather, 

analyze, visualize and interpret spatial or geographical data, examples being Remote Sensing 

(RS) and Global Positioning Systems (GPS) and Geographic Information Systems (GIS). These 

are widely applied in flood mapping, environmental monitoring and disaster risk management 

(Goodchild, 2007; Lillesand, Kiefer, & Chipman, 2015). 

Abbreviations and Acronyms 

• EO: Earth Observation 

• GIS: Geographic Information System 

• SMI: Soil Moisture Index 

• SWIR: Short Wave Infrared (band) 

• MODIS: Moderate Resolution Imaging Spectroradiometer (Imagery) 

2. Literature Review 

2.1. Introduction 

Tiwari, Deo, and Adamowski (2021) define flood forecasting as the estimation of future water 

levels or flows at a single or multiple sites of a river system for different lead times. The United 

Nations (2006), in turn, defines early warning systems as “an integrated system of hazard monitoring, 

forecasting and prediction, disaster risk assessment, communication and preparedness activities, 

systems and processes that enable individuals, communities, governments, businesses and others to 

take timely action to reduce disaster risks in advance of hazardous events.” The UNDRR (2009) 

similarly defines early warning as “the provision of timely and effective information through 

identified institutions, that allows individuals that may be exposed to a hazard to take action to avoid 

or reduce their risk and prepare for effective response.” Flood forecasting, thereby, is a necessary part 

of flood management, given that no preventative or defense measures can be completely effective. 

This literature review critically explores global, regional and local perspectives on flood risk 

prediction, soil-based flood vulnerability, and community-based disaster risk reduction. The review 

highlights theoretical contributions, empirical findings and metrological approaches while 

identifying key gaps that this study addresses. 

2.2. Empirical and Theoretical Perspectives 

I. Global and Regional Perspectives on Flood Prediction and Vulnerability 

Flood risk prediction has evolved with advances in hydrological modelling, remote sensing and 

machine learning techniques (Sharma & Machiwal, 2017). Globally, systems integrating soil 

hydrology, rainfall intensity and terrain analysis have improved short-term forecasts (Rahman, 

Ahmed & Haque, 2021). At regional level, sub-Saharan Africa has seen an increasing use of 

geospatial tools in modelling flood extent and vulnerability (CRED & UNDRR, 2015). 

Hillel (2004) showed that soil characteristics such as texture, porosity and moisture retention 

play a critical role in determining flood susceptibility. Additionally, Mercer, et al. (2012), showed 

that high bulk density and low infiltration rates increase surface runoff, particularly in flood-

prone areas. 

II. Flooding in the Okavango Delta: Local Experiences and Studies 

The Okavango Delta experiences seasonal flooding shaped by upstream rainfall in the Republic 

of Angola and the distributary dynamics of the delta’s channels. Flood events between the years 

2009 and 2011 had significant socio-economic impacts, especially in Ngamiland district 

(Mmolawa et al., 2011, Motsholapheko et al., 2013). These studies found that community 

resilience was often restricted by limited access to early warnings and inadequate preparedness. 
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Modeling efforts such as those by Wolski et al. (2006, 2007) and Tuito e al. (2016) demonstrated 

how integrating hydrodynamic models with satellite data can improve inundation mapping and 

prediction. However, their models often overlooked local soil characteristics, which significantly 

influence flood dynamics at micro level. 

III. Community Based Flood Risk Reduction 

Community engagement in flood preparedness has proven effective in regions with high 

uncertainty in hydrological forecasting. Mercer et al. (2012) advocates for integrating local 

knowledge with scientific data for robust risk communication. In Botswana, Shinn (2018) and 

Takadzwa et al. (2017) emphasized the value of participatory methods for social-ecological 

adaptation, though the translation of forecasts into community-level action remains inexistent. 

Rahman et al. (2021) demonstrated in South Asia that community-based early warning systems 

(CBEWS) are only effective when communities understand, trust and respond to warnings. This 

reinforces Brown et al.’s (2019) observation in the Zambezi Basin that strong institutional 

frameworks are needed for early warning systems (EWS) to succeed in Africa. 

IV. Flood Modeling and Inundation Mapping 

Globally, flood modeling has evolved in response to increasing flood frequency and severity. 

Models such as LISFLOOD-FP, HEC-RAS and SWAT have been widely applied to simulate 

flood inundation dynamics and support early warning systems. Earth observation (EO) data, 

particularly from MODIS, Sentinel-1 and Landsat satellites, has become central in these efforts, 

offering both cost effective and regularly updated data on flood extent, depth and duration 

(Schumann & Bates, 2018, Tarpanelli et al., 2017). 

However, in many low and middle-income regions, including sub Saharan Africa, flood models 

often suffer from coarse resolution, sparse ground calibration data, and weak institutional links 

with local disaster preparedness systems (Ward et al., 2015). This gap reveals the need for 

context-specific, smaller-scale modeling approaches that balance scientific accuracy with 

practical applicability for local stakeholders. 

In Botswana, the Okavango Delta more specifically, early work by Wolski et al. (2006,2007) laid 

the groundwork for flood modelling using a hybrid reservoir-GIS approach that considered 

river inflow, local rainfall, evapotranspiration and topography. These models were instrumental 

in demonstrating the non-linear hydrological behavior of the delta. More recently, Marthews et 

al. (2022) applied the global JULES-CaMa-Flood framework to simulate flooding across major 

tropical wetlands. Their findings revealed that while such models could represent broad 

seasonal trends, they struggled to reflect local-scale dynamics such as channel overflow and 

distribution shifting. The authors emphasized the need for locally calibrated models to improve 

flood predictability in Botswana’s wetland regions. 

While these developments in technology offer valuable insights into flood mapping and 

prediction, a persistent gap exists between EO-derived flood intelligence and the risk 

communication systems available to local communities. This study aims to address that gap by 

grounding flood analysis in both high-resolution EO data and local field-based knowledge, 

including community interviews and soil assessments. This integrated approach supports more 

accurate, equitable and usable flood forecasting in complex, data-scarce environments. 

V. Soil Properties and Flood Vulnerability 

Soil plays an important role in flood infiltration and runoff. Studies, such as Hillel (2004) and 

Wolski et al.’s (2006) work in modeling, point to the importance of analyzing physical soil 

parameters. While flood extent is often mapped using hydrological and remote sensing tools, 

the underlying soil physical properties play a foundational role in determining the flood 

vulnerability of an area, yet they remain under-represented in most models (Hess et al., 2022, 

Marthews et al., 2022). Parameters such as texture, soil structure, and moisture retention capacity 

among others, critically influence how water interacts with the land surface (Hillel, 2004, Brady 

& Weil, 2016). 
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Soils in the Okavango delta range from sandy and well-drained dunes to clay-dominated and 

water-retaining soils in the low-lying alluvial plains (Murray-Hudson et al., 2016). These 

physical differences directly affect flood retention and runoff behavior. Clay soils, for instance, 

tend to impede infiltration and promote water pooling, increasing the risk of prolonged surface 

flooding (Rawls et al., 1993, Mikkelsen et al., 2013). Conversely, sandy soils allow rapid 

percolation but may worsen subsurface water loss, reducing the soil moisture available for 

vegetation and farming (Brady & Weil, 2016). Understanding soil data can help refine both flood 

risk assessments and adaptation strategies such as drainage interventions and placement of 

emergency infrastructure (Hillel, 2004, Mikkelsen et al., 2013). 

This study seeks to bridge the gap between hydrological modeling and the ground vulnerability 

assessment by combining soil sample analysis with flood maps generated from satellite imagery 

and remote sensing tools and community perspectives to assess flood vulnerability. 

VI. Methodological Approaches in Similar Studies 

Numerous studies have made important contributions to flood modeling, EO-based mapping 

and vulnerability assessments, however, only a few have effectively combined all three 

approaches. For instance, Wolski et al. (2017) integrated MODIS imagery with runoff 

simulations to estimate Okavango flood extent but did not engage the community. Meanwhile, 

Budhathoki et al. (2020) and Mufute et al. (2008) demonstrated the power of combining 

geospatial mapping with participatory risk communication. Masocha et al.’s (2021) is one of the 

very few studies that include soil physical characteristics to explain spatial variations in flood 

impacts. 

This study aims to bridge these gaps by combining EO-derived flood mapping, soil property 

field analysis and community-based interviews into a multi-scalar vulnerability framework for 

Ngamiland, Botswana. 

2.3. Theoretical and Conceptual Framework 

Flood vulnerability and community disaster preparedness are shaped by a combination of 

environmental, infrastructural and social factors. This study is grounded in the Disaster Risk 

Reduction (DRR) framework and the Disaster Pressure and Release (PAR) model, which 

conceptualize disasters not just as natural disasters but as outcomes of societal vulnerability and 

environmental hazards (Wisner et al., 2004). The framework illustrates how limited infiltration 

capacity, weak forecasting integration, and poor risk-communication create a pressure that 

eventually leads to significant community impact during flood events like those recorded in 

Ngamiland, Botswana from 2009 to 2011. 

Past empirical studies highlight the role of hydrological and remote sensing models in early 

flood detection. Wolski, et al. (2017) for instance, demonstrated the effectiveness of MODIS and 

SWAT models in predicting Okavango Delta flooding. However, these technologies are rarely 

translated into formats that can be used by rural communities. This gap points out the weak interface 

between science-based prediction and community based early warning systems as observed by 

Brown et al. (2019) in the Zambezi basin. 

The conceptual framework for this study (Figure 1) shows the interplay between the natural 

environmental vulnerability (such as soil bulk density, prevalent soil type) and institutional 

limitations such as inadequate warning dissemination. At the core is the lack of fully-operational 

community based early warning systems, driven by the mismatch between flood prediction systems 

and community-level preparedness, which increases people’s chances to being exposed and harmed 

by the flood and limits risk reduction. 

Additionally, soil physical properties, such as bulk density and moisture content, play a critical 

role in influencing local flood vulnerability. High bulk density and moisture content can intensify 

flood impact (Hillel, 2004). By integrating soil analysis, remote sensing and community interviews, 

this research adopts a mixed methods approach. It will provide a holistic view of flood susceptibility 

and preparedness gaps in the Okavango delta. 
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Despite growing literature on Community-based Early Warning Systems, there are gaps that 

remain in translating hydrological model predictions into actionable local knowledge. There is also 

limited empirical data comparing soil characteristics with historical flood impacts in Botswana. This 

study aims to fill these gaps by combining technical soil analysis with community narratives, thereby 

contributing to both applied flood science and community-centered adaptation planning. 

 

Figure 1. Conceptual framework for showing the interaction of environmental, institutional, and socio-technical 

factors influencing community vulnerability to floods in the Okavango Delta (2009-2011). 

3. Methodology 

3.1. Research Design 

This study adopted a mixed method approach involving both qualitative data; review of past 

research reports, official reports, face-to-face interviews, and quantitative data; remote sensing, GIS 

and an analysis of soil samples. This design was suitable as it allowed for a comprehensive 

understanding of flood predictability, the limitations of the flood forecasting models currently being 

used in Botswana and community risk management practices in the Ngamiland region. 

3.2. Population 

The study population comprised of the residents of flood-affected areas in Ngamiland, including 

key stakeholders such as the local leaders, and households that experienced direct impacts from the 

2009-2011 flooding event. Additionally, this study considered the natural environment of flood-prone 

settlements in Ngamiland, specifically focusing on the villages of Shorobe, and Gabamocha. 

Institutions responsible for flood forecasting or disaster response within the country were also 

included, given their critical role in flood prediction and management. This population was 

purposefully selected due to their firsthand knowledge and experience regarding flood impacts, 

access to flood prediction information and preparedness or response measures. 
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Figure 2. Showing the study areas in Ngamiland, Botswana. 

3.3. Sampling Frame 

The sampling frame for this study encompassed directly affected households (from community 

records), local leaders and responsible institutional representatives (Kgosi, Kgosana and VDC 

members). This approach ensured that the sample captured a broad and informed perspective on 

flood impacts, prediction and management practices in the region. 

3.4. Sampling and Sampling Techniques 

Soil samples: 

Soil samples were collected to assess variations in soil quality across different land uses and 

ecological zones. Systematic transect sampling with point intercepts was the sampling design used 

to capture spatial and environmental variability within the study area (sample points shown in Table 

1). Using augers, thirty samples from the villages were collected at low-lying (flood-prone) zones, 

slightly elevated (moderate risk) zones and upland areas (low risk). Global Positioning System (GPS) 

coordinates and photographs were recorded for each sampling point. 

Table 1. Soil Sample Collection Points and Their Geographic Coordinates. 

Point ID Latitude Longitude 

M/01 -19.762898 23.612183 

M/02 -19.76288 23.610231 

M/03 -19.762828 2.609059 

M/04 -19.762879 23.607991 

M/05 -19.784474 23.646196 

M/06 -19.761711 23.605911 

M/07 -19.759971 23.589081 

M/08 -19.760359 23.589116 

M/09 -19.759706 23.589 

M/10 -19.759562 23.588717 

M/11 -19.758563 23.586337 

S/01 -19.763571 23.671286 

S/02 -19.76204 23.669155 
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S/03 -19762277 23.667103 

S/04 -19.761481 23.666396 

S/05 -19.761381 23.674333 

S/06 -19.761261 23.674839 

P/13 -19.778946 23.663702 

P/14 -19.770677 23.668104 

P/15 -19.771028 23.672285 

P/17* -19.761192 23.677708 

P/17t -19.761243 23.679253 

P/18 -19.757296 23.682271 

P/22 -19.768464 23.679633 

P/23 -19.764147 23.682874 

P/26 -19.779198 23.679412 

P/27 -19.775864 23.678411 

P/28 -19.770731 23.682409 

P/29 -19.766557 23.686373 

P/30 -19.763207 23.688853 

Spatial Data (Shape-files and Raster Files) 

Remote sensing and GIS data was used to complement field data, support spatial analysis, and 

allow for temporal comparisons. Data was sourced from reputable open-access platforms. Sources of 

the data included USGS Earth Explorer and the SASSCAL Geo Portal. The data types that were 

downloaded and used are Shape-files (for administrative boundaries, land use maps, ecological 

zones), and Raster Files (.tif) (NDVI, precipitation and soil moisture). The selection criteria included 

high spatial resolution, temporal coverage and dry vs wet season differentiation. 

Interviews 

Qualitative data was collected through structured interviews with stakeholders who have 

knowledge or lived experience related to the research area. This enriched the study with local 

perspectives, contextual understanding, and potential ground-truthing for spatial data. Participants 

were selected based on: residency in the village during the 2009-2011 flooding event, age (over 30 

years old) and experience with flood preparedness and response, starting with the village Chief and 

Village Development Committee Chairperson. The leaders then introduced some individuals who 

were affected by the floods, who in turn did the same. Thereby, the snowball sampling technique was 

used to find interviewees, and interviews were collected until data saturation was reached. 

Literature Review 

The literature review formed the theoretical and contextual foundation of the study. Relevant 

academic and grey literature was reviewed to identify gaps, refine the research questions, and 

contextualize the study geographically and thematically. The sources included peer-reviewed journal 

articles, policy documents, and institutional reports from databases such ResearchGate, Google 

Scholar, and relevant organizational sources. Publications from the last 10–20 years that had direct 

relevance to the research topic (e.g., the nature and properties of soils, flood mapping, and remote 

sensing) were used. 

3.5. Instrumentation 

Remote Sensing and GIS methods, techniques and tools were used, mostly on the QGIS software. 

For the soil sampling procedures from target areas, a soil auger, re-sealable polyethylene bags, a GPS 

device and a field notebook were used. An interview guide was used for interviewing the key 

informants and an interview schedule for common village residents. 
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3.6. Data Collection Procedure 

A consent form was handed to the potential interviewee. After explaining the purpose of the 

interview and obtaining consent from the interviewee, an interview was administered for 20 – 25 

minutes. English or Setswana language was used depending on the interviewees’ preferred language. 

Audio recordings, with permission, and field notes were used for data recording. 

For the soil samples, soil augers were used to collect 15-25cm worth of soil from the target areas, 

and placed into labelled re-sealable polyethylene bags. A GPS device and a field notebook were used 

to collect and record information about the sample point. Each sample bag was labelled with a sample 

ID, the village name, GPS point and the area elevation. The samples were then placed in a portable 

insulated storage container and transported to the ORI lab facilities where they were analyzed for 

soil texture, bulk density, soil moisture content, organic matter, electric conductivity and pH. 

For remote sensing, flood maps and satellite imageries for the period 2009 to 2011 were collected 

from SASSCAL Geoportal and USGS Earth Explorer and analyzed using the QGIS software. 

3.7. Data Processing and analysis 

Soil samples 

The collected soil samples were processed and analyzed in a chemical laboratory for soil texture, 

bulk density, soil moisture content, organic matter, electric conductivity (EC), and pH. 

Soil texture: The Hydrometer method was used, which is whereby a 50g soil sample is mixed 

with 100ml dispersing solution, shook and then allowed to settle for twelve to sixteen hours. After 

sixteen hours, the mixture was put in a blender for 5-10 minutes on medium speed. It was then 

transferred to a 1000ml graduated cylinder and deionized water was added until the mixture reached 

the 1000ml mark. The mixture was then hand-mixed using a plunger for 30-60 seconds. After mixing, 

at the 40 second and 2-hour time intervals density was measured using a hydrometer. After the 

readings were corrected for temperature (±0.036g/L for each degree below or above 20℃), and density 

of the dispersing agent (subtracting reading of the blanks from the sample readings), the USDA soil 

texture chart was used to estimate the percentage of sand, silt and clay. 

Bulk density: A soil sample of known volume was collected and dried in an oven for 105⁰C over 

24 hours. The dry soil weight and original volume was used to calculate bulk density using the 

formula; bulk density =
dry soil weight−weight of container

𝑡𝑜𝑡𝑎𝑙 𝑠𝑜𝑖𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 
 . 

Soil moisture content: a wet soil sample was weighed, oven-dried at 105⁰C, then weighed again. 

The difference in mass percentage divided by the dry soil mass will determine the moisture. 

Organic matter content: a dry soil sample was weighed using an analytical balance, and burned 

in a furnace at 550⁰C for four hours. They were transferred to a desiccator to cool then weighed. The 

difference in the weight of the samples equaled the total organic carbon in the soil sample 

EC and pH: a dried and sieved soil sample of about 20g was mixed with deionized water at a 

ratio of 1:5. The mixture was then placed on the shaker and mixed for about 60 minutes, then allowed 

to settle for 30 minutes. The conductivity meter was calibrated with a standard solution (1.4 dS/m 

KCL solution) while the pH meter was calibrated using standard buffer solutions (pH 4, 7 and 10). 

The conductivity meter electrode was dipped into the clear supernatant without disturbing the 

sediment and once the EC value was stable it was recorded. For pH, the pH electrode was immersed 

in the soil solution, stirred gently and once the reading was stable it was recorded. The electrode and 

probe were rinsed between samples. 

Remote Sensing data 

Satellite imageries were pre-processed; by converting binary data to digital data (radiometric 

calibration), rectifying spatial distortions in the image (geometric correction), carrying out 

atmospheric correction, image enhancement, noise reduction and topographic normalization. This 

data was analyzed using the QGIS software. The raster layers were then layered, and their symbology 
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changed to one single-band pseudo-color. A raster calculator was then utilized to compare different 

years and seasons. The image was then exported as a layout image. 

Interviews 

Interview responses were transcribed and cleaned up to ensure accuracy before analysis. 

Thematic analysis was then applied to identify recurring patterns and themes related to flood 

forecasting accuracy and community risk management, with coding and theme organization carried 

out using Atlas.ti and Microsoft Excel. 

3.8. Ethical Considerations 

This study strictly adhered to the established ethical guidelines for conducting research 

involving human participants. It recognized the need to respect participant dignity, promote 

voluntary participation and ensure safe and responsible handling of all data collected. 

I. Informed Consent: all participants received a clear explanation of the study’s purpose, 

procedures and potential risks and benefits. Participation were completely voluntary and a 

written consent form, available in both Setswana and English languages, was signed by the 

participant before any interviews or soil sampling took place. 

II. Respect for Cultural Protocols: the study respected local hierarchies by seeking permission and 

entry through the Kgosi and Village Developments Committee (VDCs). 

III. Minimizing Harm and Discomfort: while the research does not deal with highly sensitive issues, 

participants recounting experiences of past flood events may be affected emotionally. To 

mitigate this, participants were allowed to skip questions or terminate interviews at any point. 

The researcher approached all interviews with empathy. 

IV. Institutional and National Ethics Approval: ethical clearance was sought from the University of 

Botswana Research Ethics Committee. This research was also aligned with the Botswana 

National Research Ethics Guidelines and any other protocols set by relevant institutions. A 

research permit was also acquired from the Ministry of Lands and Agriculture. 

4. Results 

Soil Properties Across Villages 

The soils across both villages were mostly sandy in texture, with loamy sand and sandy loam 

dominating (Table 2). Samples from Gabamocha village showed higher organic matter and moisture 

content, while Shorobe had higher bulk densities overall. The soils were generally neutral in pH and 

non-saline across all sites (Table 3). 

Table 2. Summary of Soil Physical and Chemical Properties for Shorobe and Gabamocha. 

SAMPLE ID 
MOISTURE 

CONTENT (%) 

TOTAL 

ORGANIC 

CONTENT(%) 

pH  

ELECTRIC 

CONDUCTIVITY 

(μs/cm) 

BULK 

DENSITY 

(g/ml) 

*M/01 82.67 12.034 6.81 69.3 1.2535 

*M/02 154.18 15.52 6.639 221 1.0423 

*M/03 759.95 9.1 7.017 54 1.4077 

*M/04 39.91 5.38 7.975 54.4 1.2669 

*M/05 33.66 5.45 7.499 33.2 1.2808 

*M/06 234.3 12.05 7.017 60 1.0461 

*M/07 78.24 9.84 6.883 43.4 1.2309 

*M/08 432.58 2312.13 6.86 63.4 0.9380 

*M/09 112.59 12.24 6.685 38.1 1.1531 

*M/10 75.68 9.53 6.601 39.9 1.2482 
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*M/11 52.33 6.99 6.489 48.3 1.1289 

^S/01 71.54 4.64 7.405 76.6 1.2863 

^S/02 22.26 1.16 7.305 16.2 1.5519 

^S/03 97.79 4.56 6.57 53.8 1.0030 

^S/04 30.56 1.89 6.635 15.6 1.1760 

^S/05 27.02 4.32 6.538 53 1.4573 

^S/06 17.13 2.35 6.319 26.6 1.4204 

^P/13 64.47 17.71 7.816 112.6 1.2655 

^P/14 45.98 424.77 7.46 31.8 1.3140 

^P/15 75.32 47.39 6.841 28.5 1.2377 

^P/17 21.08 41.7 6.89 57.9 1.2759 

^P/17t 23.79 96.33 6.757 17.9 1.4138 

^P/18 44.86 5.4 6.65 18.9 1.2498 

^P/22 59.78 4.4 6.475 27.9 1.3472 

^P/23 57.63 5.54 6.532 32.8 1.3859 

^P/26 23.88 3.64 6.312 16.5 1.4417 

^P/27 31.06 5.45 6.591 25.4 1.3512 

^P/28 42.88 5.85 6.25 18.5 1.2686 

^P/29 46.24 5.44 6.289 17.6 1.4041 

^P/30 57 7.24 6.373 15.3 1.4694 

Legend: * Sample from Gabamocha. ^ Sample from Shorobe. 

Table 3. 0 USDA Soil Texture Classification for Shorobe and Gabamocha Based on Sand, Silt and Clay 

Percentages. 

SAMPLE ID % Sand % Silt % Clay Texture Class 

*M/02  52.2 31.1 16.7 Sandy clay loam 

*M/04 57.3 30.4 12.3 Sandy loam 

*M/05 74 19 7 Loamy sand 

*M/08 53.4 19.4 27.2 Sandy loam 

*M/11 70.2 29.4 0.4 Loamy sand 

^P/14 66.2 21.4 12.4 Sandy loam 

^P/15 53 6 41 Sandy clay loam 

^P/29 53.6 24.8 21.6 Sandy loam 

^S/02 75 5.4 19.6 Loamy sand 

^S/05 77.6 16 6.4 Loamy sand 

Legend: * Sample from Gabamocha. ^ Sample from Shorobe . 

Elevation Data 

The distribution of sample points across varying elevations, from below 920m to nearly 970m, 

demonstrates spatial patterns relevant to flood risk analysis. Elevations were coded for each sampling 

point, enabling direct comparison between groups of locations identified as either more susceptible 

to flooding (Gabamocha, low-lying: orange bars) or less susceptible (Shorobe, higher ground: green 

bars). Gabamocha elevation ranged between 915m and 943m while Shorobe had ranges 925m to 

961m. 
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Figure 3. Elevations Levels of Soil Sampling Locations. 

SMI Data Analysis 

To assess the spatial and temporal variability in soil moisture across northern Botswana, Earth 

Observation (EO) data from 2008 to 2011 were analyzed. The maps in Figures 4 display soil moisture 

content and its seasonal changes, comparing wet and dry seasons across selected years. These results 

highlight regions experiencing increased moisture, reduced moisture, or minimal change, which are 

essential indicators for understanding hydrological responses to rainfall events and potential flood 

risk. 
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(d) 

Figure 4. a Showing the Comparative analysis of Soil Moisture Index in the 2008 Wet and Dry Season. b Showing 

the Difference Between the Soil Moisture Index in the 2009 Wet and Dry Season. c Showing the Difference 

Between the Soil Moisture Index in the 2009 Wet and Dry Season. d Showing the Difference Between the Soil 

Moisture Index in the 2009 Wet and Dry Season. 

Interview Responses 

Community Awareness and Sources of Flood Information 

Interview findings revealed that 82% of the respondents’ primary sources of flooding 

information in Ngamiland are local observations such as rainfall patterns and river levels and water 

velocity. Only 18% reported hearing flood forecasts through radio broadcasts, although many noted 

that this information was often delayed, not locally specific, exaggerated and unreliable, or not 

relayed at all. 

Functionality of CBWES, Timing and Responsiveness 

88% of village leaders confirmed that formal early warning systems were either non-functional 

or entirely absent. As one respondent noted, “we just observe the water ourselves; no one from the 

government tells us anything.” Another recurring theme was the delay or absence of actionable alerts. 

Leaders and the community leaders stated that by the time they received word of flooding in 

surrounding areas or heard flood-warnings the impact had already begun. In the years 2011-2012, 

community action was only initiated after visible flooding had already occurred. 

Risk Perception and Preparedness 

Risk awareness varied across villages. Communities that frequently experienced flooding, 

particularly those along floodplains, expressed a sense of resignation rather than proactive 

preparedness. Only 9% described any form of prior planning or evacuation plans. There was minimal 

evidence of structured risk preparedness activities such as evacuation drills, pre-arranged resources 

or risk communication plans. 
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Disconnect Between EO-Based Forecast and Community Action 

None (0%) of the interviewees were aware of or had interacted with Earth-Observation based 

forecasts and models. The respondents also noted that since the official reports were usually 

inaccurate, they rarely act based only on those warnings. 

Literature Review 

Predictive Accuracy of Remote Sensing Approaches 

Thito et al. (2016) attained high predictive accuracy in inundation extent mapping of the 

Okavango delta using a dynamic thresholding method applied to MODIS SWIR bands (MOD09Q1, 

MOD11A1). Their approach obtained an overall accuracy of 99.4% and a Kappa coefficient of 80% for 

the period 2001-2012, showing a maximum inundation extent during 2010–2012. Recent studies by 

Inman and Lyons (2020) utilized the superior spatial resolution of Landsat imagery (30m) in 

conjunction with Google Earth Engine to produce high-resolution inundation maps for the period 

1990-2019. Their results showed accuracy levels between 91.5%-98.1%. However, Landsat products 

generally estimated lower total area (approximately 692 km^2 less) compared to MODIS, primarily 

due to the increased number of mixed pixels that occur when using broad spatial resolution imagery. 

Mfundisi et al. (2023) combined RapidEye, Sentinel-2 and SRTM DEM data to delineate the 2011 high 

flood line in the Okavango basin. They integrated NDWI classification with topographic validation, 

and the flood-prone areas they mapped corresponded closely to known settlement and flood 

recession agriculture areas. These findings highlight the potential of using diverse tools and 

techniques of remote sensing for detailed risk mitigation. 

Predictive Accuracy of Hydrological Models 

Wolski et al. (2006) simulated 34 years of flood dynamics, including 15 years of inundation area 

data, using semi-distributed reservoir/GIS models. The EF5 hydrological forecasting framework, 

operational for the Okavango upstream at Rundu, Namibia, achieved strong validation statistics 

using TRMM rainfall and GIS-derived inputs (Wolski et al., 2020). This highlights the growing 

potential for very accurate operational flood forecasting using Earth observation and open-access 

hydrological data. 

5. Discussion 

Physical and Chemical Soil Properties 

The comparison between Gabamocha and Shorobe highlights distinct differences in soil physical 

and chemical properties, likely linked to land use, topography and flood exposure. 

- Soil Texture and Flooding Implications 

Gabamocha’s higher clay content in certain areas, (e.g., M/08) may enhance temporary water 

retention, making it more susceptible to waterlogging in low-lying areas. Shorobe soils, while 

sandier, had a sample (P/15) with 41% clay, suggesting isolated zones of potential high flood-

water retention. 

- Organic Matter and Moisture Retention 

Gabamocha had higher organic matter and moisture levels, especially in M/08 and M/03, 

pointing to possible organic matter accumulation due to prolonged flooding or vegetation 

decay. Lower bulk densities in these samples support the idea of looser, more porous soils that 

retain more water. Shorobe, on the other hand, displayed higher bulk density values and lower 

organic matter content overall, indicating more compacted soils that favor faster surface water 

runoff and less water storage during flooding. 

- Soil pH and Salinity Status 
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Both villages showed favorable pH conditions for plant growth (6.3-7.9), and EC values below 

250µS/cm, indicating non-saline soils suitable for most crops and natural vegetation. No 

significant soil salinity concerns were identified in either site. 

Elevation Data 

The elevation data clearly distinguishes two villages: one represented by orange bars (Shorobe) 

and the other by green bars (Gabamocha). Notably, Gabamocha has a relatively recent history of 

flooding while Shorobe has not experienced significant flood events. 

Gabamocha (Flood-Prone) 

This area features generally lower elevation points compared to Shorobe. Lower elevation 

enables the accumulation of surface water, reducing the rate of runoff and increasing the risk of 

saturation during water inflow. The community’s historical accounts of flooding support these 

physical characteristics, a relationship confirmed by global and regional analysis indicating that 

accurate high-resolution elevation data is important for understanding and modelling flood hazards 

(Blackwell et al., 2024). 

Shorobe (Low Flood Risk) 

This region comprises of relatively higher elevation sampling points. Elevated terrain enhances 

surface drainage and limits the amount of water retained within soils after precipitation, reducing 

flood risk. The historical absence of flooding in this village is consistent with the observed elevation 

profile, reflecting the pattern in which elevation reduces exposure to flood impacts (Towey & Kemter, 

2024). 

The contrast between these two villages illustrates how even small differences in elevation and 

have significant impacts on flood vulnerability. The relationship between elevation and soil moisture 

is significant: lower sites, especially with higher preceding soil moisture, tend to be more flood prone, 

as was seen in the case of Gabamocha in 2011-2012. Recent modelling studies, such as those by Ran 

et al. (2022), have shown that flood peak flows are heightened when both rainfall and preceding soil 

moisture are high, a relationship that is prominent in lower-elevation catchments (Ran et al., 2022). 

EO Data 

The EO-derived soil moisture index maps (Figures 2) illustrate inter-annual and seasonal 

variations in soil moisture across northern Botswana between 2008 and 2011. The observed changes 

in moisture content, categorized into reduced, increased or minimal change, reveal spatial 

heterogeneity in surface moisture, which has a large influence on runoff generation and flood 

potential. 

Focusing on the area within the Botswana boundary (outlined in orange), well-defined spatial 

patterns are showing. During the wet seasons, particularly in 2008 and 2011, the northwestern and 

central regions of Botswana exhibit increased soil moisture, signaling saturation-prone zones. Likely 

influenced by topography, drainage networks and soil types and textures, these areas are more 

responsive to rainfall events, leading to heightened runoff and elevated flood potential. Conversely, 

in the south and eastern regions of Botswana, most of the area shows little or no change in soil 

moisture, indicating a relatively stable hydrological regime or possible water retention in deeper soil 

layers. 

The 2010 dry season stands out, as a part of Northern Botswana experienced reduced soil 

moisture, likely a result of prolonged dry conditions, which can decrease infiltration efficiency during 

subsequent rains. Drought conditions or reduced soil moisture can lead to hydrophobic soil surfaces, 

initially reducing infiltration and altering runoff responses when rains return (Seneviratne et al., 

2010). 
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Such discrepancies may partly explain the disconnect between model-based flood forecasts and 

CBEWS alerts. Models often rely on large-scale precipitation and static soil assumptions and may 

overestimate flood risk in areas which appear saturated on average, while underestimating risk in 

locally sensitive zones flagged by communities. CBEWS, grounded in local experience and real-time 

observations, often capture minute environmental cues such as rising water levels, or subtle changes 

in river behavior that models miss (Paul et al., 2018). The integration of EO data and local knowledge 

systems is therefore essential to bridging the communication and accuracy gap between top-down 

and bottom-up forecasting mechanisms. 

Interviews 

The interview findings highlight a significant disconnect between scientifically-based flood 

forecasting, including EO and SMI tools, and the actual community-level risk-response procedures. 

Despite the existence of scientific tools like EO-based predictions, none of the respondents were 

aware of such systems. This strongly suggests a structural communication failure, reinforcing 

previous studies that emphasize the importance of localized and accessible early warning systems 

(for example, UNDRR, 2019). 

Furthermore, the lack of trust or familiarity with modern forecasting tools further deepens the 

disconnect. While EO data can identify flood risks weeks or months in advance, the absence of 

community sensitization, training and contextual translation renders forecasts irrelevant to local 

decision-making. This insight supports the argument that forecasting systems must be people-

centered, not just data-centered. 

These findings align with the national early warning information flow diagram for Botswana, 

which centers around a centralized coordination code (NDMO, NETF, NCDM, NDMTF) as the 

conduit among sectors such as water, health, agriculture, media and meteorology. While this system 

is designed for integration across institutional levels, its implementation remains uneven at the 

grassroots. Although the diagram indicates potential outreach to communities, interview data 

suggest that these flows are rarely observed in practiced. 

Finally, the findings highlight an urgent need to redefine flood risk communication pathways- 

bridging national forecasts with local warnings through participatory design, regular training and 

culturally grounded outreach. In doing so, flood forecasting can evolve from being a top-down 

scientific exercise to a community-empowering tool. 

Literature Review 

This review strongly suggests that remote sensing tools, particularly satellite data, played a 

critical role in identifying flood extents during the 2009-2011 floods in Ngamiland. Studies such as 

Garcia-Pintado & Neal (2023) support the reliability of Earth observation in flood modelling. 

However, the models often struggled with finer-scale predictions, especially in areas with complex 

hydrology or variable soil characteristics (McClean et al., 2020; Hillel, 2004). 

While technology that could detect flood accuracy existed, limitations in local model calibration 

and real-time data integration reduced flood-forecast precision. This aligns with Motsholapheko et 

al. (2013), who found that models in Botswana rarely incorporated community level variables such 

as soil texture. Moreover, early warnings were not consistently trusted or well-communicated at 

community-level. As Mercer et al. (2012) and King et al. (2016) argue, integrating scientific data with 

local knowledge is essential for building credible, actionable early warning systems. 

Overall, while hydrological models and remote sensing offer powerful tools for flood prediction, 

their full potential in Botswana remains underutilized due to insufficient integration with community 

feedback, soil-based and land-based data, and timely information dissemination. 
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6. Conclusions 

Effective flood risk management and land-use planning require a dual approach that bridges 

the gap between technical forecasting tools with locally grounded knowledge of environmental 

conditions. The findings of this study reinforce the fact that while scientific modelling is improving 

flood predictability, its disconnection from community knowledge systems reduces its effectiveness 

in risk management. Studies such as Garcia-Pintado & Neal (2023) and McClean et al. (2020) highlight 

the increasing reliability of geospatial tools and Earth Observation data for modelling flood risk, but 

without localization, these forecasts can fail to trigger effective community risk-response. 

Bridging the gap between national-level forecasting and local-level preparedness is not only a 

technological challenge, it is a governance and communication issue. King et al. (2016) emphasized 

that rigid livelihoods constrained by policy and resource limitations hinder adaptive behaviors. This 

was echoed in several interviews where community leaders and other members expressed frustration 

over the lack of support and late communication from higher authorities. By investing in CBWES 

functionality, engaging communities in design, and prioritizing localized interpretation of EO and 

SMI data, Botswana’s flood warning systems can shift from being reactive and top-down to proactive, 

participatory, and resilient. 

7. Recommendations 

To transform forecasting into a community-centered tool, several interventions recommended 

are to: 

- Strengthen CBEWS Structures: reactivate and equip VDCs with basic training, materials, and 

decision-support tools to relay forecast information clearly and timely. 

- Promote participatory design of early warning messages by involving local leaders, elders and 

the youth to improve cultural and linguistic appropriateness, developing trust, comprehension 

and understanding. 

- Enhance Two-way Communication: structured channels such as mobile platforms, community 

radio sessions or disaster dialogues, where communities can not only receive but also respond 

to and critique forecast information, should be established. 

- Integrate soil properties into flood risk planning; identifying zones with high infiltration 

potential or those prone to waterlogging. Classifying areas which are more suitable for drainage 

infrastructure or erosion control interventions is also recommended. 

- Encourage collaboration between the National Disaster Management Office (NDMO), 

Department of Water Affairs, and agricultural extension services to ensure that flood forecasts 

and risk-management are coordinated and implemented at village level. 

- Incorporate high-resolution topography in hydrological models and flood forecasts to better 

represent risks at the village scale, as studies (e.g., Towey & Kemter, 2024; McClean et al., 2020) 

have shown the sensitivity of flood predictions to the accuracy of elevation inputs. 
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Appendix A 

 

Figure A1. Interview guide for data collection on community (Ngamiland, 2009-2011) flood experiences. 
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Figure A2. USDA Soil Texture Classification Chart. Nano-Yield. (n.d). the soil texture triangle. Retrieved July 

21,2025. 

 

Figure A3. National Disaster Risk Management Office (NDMO) Early Warning Information Flow in Botswana. 
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