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Abstract: Dual-fraction proteomics reveals a novel class of proteins impacted by nanoparticle
exposure. Background: Nanoparticles (NPs) interact with cellular proteomes, altering biological
processes. Understanding these interactions requires comprehensive analyses beyond solely
characterizing the NP corona. Methods: We utilized a dual-fraction mass spectrometry (MS)
approach analyzing both NP-bound and unbound proteins in Saccharomyces cerevisiae sp. protein
extracts exposed to silica nanoparticles (SiNPs). We identified unique protein signatures for each
fraction and quantified protein abundance changes using spectral counts. Results: Strong
correlations were observed between protein profiles in each fraction and non-exposed controls,
while minimal correlation existed between the fractions themselves. Linear models demonstrated
equal contributions from both fractions in predicting control sample abundance. Combining both
fractions revealed a larger proteomic response to SiNP exposure compared to single-fraction
analysis. We identified 302/56 proteins bound/unbound to SiNPs and an additional 196 “impacted”
proteins demonstrably affected by SiNPs. Conclusion: This dual-fraction MS approach provides a
more comprehensive understanding of nanoparticle interactions with cellular proteomes. It reveals
anovel class of “impacted” proteins, potentially undergoing conformational changes or aggregation
due to NP exposure. Further research is needed to elucidate their biological functions and the
mechanisms underlying their impact.

Keywords: silica nanoparticles; protein extracts; proteomics; mass spectrometry; protein-
nanoparticle interactions; corona

1. Introduction

Nanomaterials (NMs) have become ubiquitous in manufactured products across a diverse range
of industries, including food processing, pharmaceuticals, cosmetics, and electronics. Among these
NMs, silica-based nanoparticles (SiNPs) exhibit the highest prevalence due to their versatile
properties and wide applicability [1]. SINPs find use in various sectors, such as: food packaging and
additives, materials production (glass, cement, fiberglass, concrete), optics and fiber technologies,
textile manufacturing, agricultural fungicides, and biomedical/pharmaceutical applications
(biological carriers, excipients). This widespread utilization has sparked growing societal concern
regarding potential health and environmental consequences [2—4], prompting extensive research into
the toxicity of NMs. Investigation at the molecular level reveals crucial insights into SiNP interactions
with biomolecules. Analyzing protein-SiNP interactions allows for elucidation of affected biological
mechanisms. For instance, studies have demonstrated that SINPs can specifically target RNA binding
proteins [5]. Furthermore, nanoscale analysis elucidates the influence of SiNP size on corona
formation and protein conformational changes [6,7], highlighting the importance of considering both
size and surface properties when assessing potential risks or beneficial effects associated with SiNPs.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Understanding the intricate interactions between proteins and nanoparticles (NPs) is crucial for
assessing their potential impact on biological systems and guiding the development of safe and
effective nanotechnology applications. Numerous methods have been established to elucidate these
interactions, with techniques such as fluorescence flow cytometry offering insights into binding
events with purified proteins. However, complex protein samples derived from protein cellular
extracts, such as those obtained from Saccharomyces cerevisiae sp., pose a greater challenge.

In this study, we employ a dedicated protocol detailed in Mathé C. et al. [8] to identify protein-
NP interactions within these complex matrices. Briefly, the protocol involves incubating protein
extracts with NPs of interest, followed by centrifugation and drying steps to retrieve aggregates of
proteins and NPs (hereafter denote “pellet”). Proteins are subsequently desorbed from these
complexes for identification using high-throughput label-free nano-liquid chromatography coupled
with tandem mass spectrometry (nano-LC MS/MS). Bioinformatics analysis and database harvesting
enable protein identification based on spectral matching.

Differential analysis, comparing the identified proteins in exposed samples to those in control
samples lacking NP exposure [5], allows us to pinpoint significantly adsorbed proteins. Notably,
most existing studies focusing on NP toxicity primarily analyze the pellet fraction, which represents
proteins physically bound to NPs. However, this approach overlooks potential impacts on unbound
proteins that may undergo structural alterations, aggregation, or other functional changes upon NP
exposure. Besides, certain NP types, such as carbon-based NPs, exhibit exceptionally strong binding
affinities for proteins [9], rendering traditional desorption methods ineffective. Similarly, smaller
plastic particles can aggregate with proteins in solution, preventing their retrieval through
centrifugation. In these instances, the fraction containing unbound proteins (hereafter denote
“supernatant”), becomes crucial for a comprehensive understanding of NP-induced effects [10].
Noteworthy, in most large-scale proteins NM interactions studies usually only one fraction, the pellet
or the supernatant, is analyzed.

To our knowledge, no previous studies have implemented a dual analysis approach
encompassing both pellet and supernatant fractions within the context of protein-NP interactions.
This study aims to shed light on this novel approach by addressing key questions regarding the
correlation and complementarity of these fractions. We hypothesize that analyzing both fractions
provides a more complete picture of NP-induced protein alterations, encompassing both direct
binding events and indirect effects on the proteome. High-throughput mass spectrometry is a
sampling procedure and the number of distinct proteins mapped in a solution is correlated with: the
proteins extract concentration, dynamic and complexity; the acquisition duration. Thus, proteins
identified in the dual fractions are representative samples of the respective population of proteins:
bounded or not bounded to the NP. This sampling effect rises many interrogations. In particular, how
these fractions correlate and complement each other? Does the combined pellet and supernatant
fractions are representative of the control population (i.e., not exposed to the NP)? What can we learn
on the pellet (resp. supernatant) fraction composition by analyzing the dual supernatant (resp. pellet)
fraction.

To investigate this hypothesis, we exposed Saccharomyces cerevisiae sp. protein extracts to SiNPs.
We identified adsorbed proteins (pellet) and unbound proteins (supernatant) using nano-LC MS/MS,
with spectral count (SC) serving as a proxy for relative protein concentration. Furthermore, we
included control samples devoid of NP exposure for differential analysis. In this research, we present
a comparison between biological protein concentrations and their corresponding SC ratios obtained
from mass spectrometry. Subsequently, we employ various linear models to demonstrate the
complementarity of pellet and supernatant fractions. Finally, we utilize differential analysis to
highlight the benefits of our dual approach in identifying novel protein subsets impacted by SiNP
exposure.
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2. Materials and Methods
Sample Preparation

Yeast protein extracts (YPE) were prepared from the Saccharomyces cerevisiae sp. strain 5288C
(Mata SUC2 mal mel gal2 CUP1), as described in [10]. Silica NP (13 nm radius, LUDOX® TM-50,
Sigma-Aldrich) were dialyzed using a membrane with a 3.5 kDa cut-off against Milli-Q water at 4 °C.
YPE (0.6 g.L') was incubated with silica NP (1 g.L") in phosphate buffer (100 mM, pH7) using a
ThermoMixer ® (Eppendorf, Hamburg, Germany) at 20 °C during 3 h (cycles of 15 sec at 800 rpm
followed by 285 sec at rest). The YPE concentration was chosen at the start of the adsorption isotherm
plateau (see Figure 1), to have the minimum protein quantity in saturation conditions.
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Figure 1. Adsorption isotherm of YPE on silica NP (1 g.L!) in phosphate buffer (100 mM, pH?7)
realized by depletion. Ten samples at YPE concentration from 2.5x102 to 2 g.L-! were incubated with
silica NP using a Thermomixer ® at 20 °C during 3 h (cycles of 15 sec at 800 rpm followed by 285 sec
at rest). Samples were centrifuged at 20 °C, 20,000 rpm during 10 min and the supernatant
concentration (unbound proteins) was determined using the absorbance at 205 nm with an absorption
coefficient of 31 L.gl.cm™. Horizontal and vertical error bars represent standard error of the mean.

A centrifugation (20 °C, 20,000 rpm, 10 min) allowed the separation of free proteins in the
supernatant and adsorbed proteins in the pellet. 500 uL of supernatant were recovered for the
proteomic analysis. Then, for the pellet, two washings were realized as following: the pellet (40 pL)
was resuspended in 1.5 mL of phosphate buffer, centrifuged (20 °C, 20,000 rpm, 5 min) and the
supernatant (1.46 mL) was removed. After the two washings, a desorption protocol was performed:
the 40 pL of pellet were resuspended in phosphate buffer and sodium dodecyl sulfate (SDS
UltraPure™ 10 %, Invitrogen). The 750 uL final solution contains 1% of SDS, concentration often used
to desorb proteins [6]. Then, mixing during 1 h at 20 °C was realized using a Thermomixer ® (cycles
of 15 sec at 800 rpm followed by 105 sec at rest). A last centrifugation (20 °C, 20,000 rpm, 10 min) was
performed and the 100 pL of pellet were recovered for the proteomic analysis. The protein
concentration was determined using the peptide bond absorbance at 205 nm with an absorption
coefficient of 31 L.gl.cm™ [11].

Since SDS impacts the determination of protein concentration, a calibration curve was
performed to correct raw concentration values (see Figure 2).
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Figure 2. Calibration curve for the YPE concentration with SDS 1%. Concentrations levels are
determined using the absorbance at 205 nm with an absorption coefficient of 31 L.gl.cm™. The blue
curve depicts the linear regression model fitted to the data points.

Proteomics Analysis

Tubes containing 60% of their maximum volume of YPE in a phosphate buffer (100 mM) were
mixed during 24 hours at 3 rpm, 6 °C. Samples concentrations were within the recommended range
for optimal detection and quantification. Proteomic experiments were performed at the Proteomic
Analysis Platform of Paris Sud-Ouest (PAPPSO). YPE samples were deposited on SDS-PAGE gels
and proteins separated using short migration time. A classic protein digestion protocol was applied
(described in Henry C. & al. [12]). Samples were analyzed by LC-MS/MS on an Orbitrap Fusion
Lumos Tibrid (Thermo Fisher Scientific, MA, United-States) mass spectrometer. The protein
identification was performed using the Saccharomyces cerevisiae sp. strain S288c protein database
(41,6750 entries, version 2020).

Spectral Count Normalisation

Spectral counts (SC) were calculated for each protein detected by MS. Then these raw SC values
are normalized in two steps. Firstly, for each fraction we adjust SC of the three replicates to a constant
average ratio of 40 SC per mg.L. Secondly, we perform a global normalization to equals the total SC
of pellet and supernatant sum to the control total SC. Normalized SC for each replicate and averaged
are shown on Table 1.

Table 1. Spectral counts summary. Fractions are indicated in the first column. Columns 2 to 4 contains
the total spectral count for each replica. Column 5 indicates the average total SC. Column 6 shows the
percentage of the average SC value, for each fraction, compared to the control average SC.

Fraction Replica 1 Replica 2 Replica 3 Average % of control
Control 20,346 33,223 33,791 29,120 100.0%
Pellet 15,629 17,503 16,068 16,400 56.3%

Supernatant 12,453 9,768 15,939 12,720 43.7%

Additionally, proteins identify with less than three SC were filtered out from the final datasets.

Statistical Analysis

All statistical analysis were performed using the R language [13] and the standard packages for
the correlation analysis, the statistical tests (Pearson and Spearman) and the fitting of linear models.
Linear mixed effects models were adjusted using the “Ime4” R package [14]. Generalized linear
models used for the bayesian protein differential analysis (detailed in Marichal L. & al. [6]) were
calculated using the following packages: “rstanarm” [15] to fit generalized linear models using a
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gaussian link function; “bridgesampling” [16] to compute the log marginal likelihoods; the
“BayesFactor” [17] to calculate the Bayes Factors and posterior probabilities from marginal
likelihoods.

3. Results
Biological Fractions Complementarity

Protein concentration was determined for each technical replicate in all samples using optical
density measurements. Table 2 presents the average protein concentrations for each fraction. As the
pellet and supernatant fractions are derived from the control sample, we anticipate their combined
protein concentration to closely approximate that of the control. Our data demonstrate a slightly
higher total protein concentration for the combined pellet and supernatant fractions (0.73 g.L?)
compared to the control (0.63 g.L*). Remarkably, both the supernatant and pellet fractions exhibited
protein concentrations approximately equal to (50%) or close to (65%) half of that observed in the
control sample.

Table 2. Average proteins concentration in each fraction.

Fraction Pellet Supernatant Control
Average proteins concentration 0.41g.L? 0.32g.L? 0.63 g.L1

Spectral-Counts Distributions Complementarity

Following protein identification via mass spectrometry, raw spectral count (SC) for each protein
was determined as the sum of its corresponding spectra. To account for experimental and technical
biases (e.g., sample preparation and mass spectrometry acquisition variability), raw SC values were
normalized using a two-step process described in detail within the Methods section. Indeed, raw SC
data exhibited variations in average spectral counts per mg.L" between fractions: ~40 SC per mg.L"
in the pellet, ~23 SC per mg.L in the supernatant, and ~20 SC per mg.L" in the control.

At the protein level, high correlations between technical replicates were observed across all three
fractions using both Pearson (range [0.993-1.000]) and the non-parametric Spearman (range [0.902-
1.000]) correlation coefficients.

Figure 3 presents a visualization of Pearson correlation coefficient values (represented by a red
to green color scale). In particular, SC in the control exhibited stronger correlations with the
supernatant (0 = 0.878) compared to the pellet (0 = 0.606). Conversely, a weak correlation was
observed between the pellet and supernatant (o0 = 0.196). These findings underscore the
complementary nature of information derived from both the pellet and supernatant fractions relative
to the control.
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Figure 3. Spectral counts correlation plot between the pellet, supernatant and control fractions.
Pearson correlation coefficients between replicates are calculated and depicted as squares which size
and color (scale given on the right of the plot) depends on its value. Average correlation coefficients
values between fraction pairs are indicated on the lower triangular matrix.

Regression Analysis

To evaluate the complementary nature of the three fractions, control, pellet, and supernatant,
linear regression models were employed. The independent variable was defined as control spectral
counts (SC), while the dependent variables were pellet and supernatant SC. The model equation is
represented as:

SCcantrol ~a+ .81 X SCpellet + BZ X SCsupernantant. (1)

Table 3 presents the fitted coefficients and regression performance metrics. The model
demonstrates that both the pellet and supernatant contribute equally to the estimation of control SC,
as indicated by the coefficients 1 = 1.07 and P2 = 1.05, respectively. The model exhibits strong
adjustment, with an adjusted R? of 0.98 and a Root Mean Square Error (RMSE) of 8.29. Student t-tests
yielded highly significant p-values (<0.001) for both the pellet and supernatant coefficients, falling
within narrow confidence intervals (see Table 3). Noteworthy, the intercept coefficient is nearly zero
and deemed irrelevant to the model based on a Student t-test p-value of 0.83.

Table 3. Coefficients of the linear model, Equation (1). For each parameter of the model (first column),
the coefficient value and its deviation are indicated in the second column. The third column contains
the confidence interval. The Student t-test statistic and the associated p-values are provided in the last
two columns.

Parameter Coefficient Confidence Interval t-student p-value
Intercept (a) -0.09 +0.40 [-0.88, 0.70] 29,120 0.83
SC Pellet (f31) 1.07 +0.01 [1.04, 1.09] 16,400 <0.001
SC Supernatant (f32) 1.05 +0.01 [1.03, 1.06] 12,720 <0.001

To directly compare the “reconstructed” protein subset derived from the combined pellet and
supernatant data with the original control set, we summed the averaged spectral counts for each
identified protein across the respective fractions. A linear regression model was then fitted to this
new dataset, excluding the intercept term (a = 0) as previously determined to be irrelevant. The model
is defined as:

SCcontrol ~ B X (SCpellet + SCsupernantant), (2)

The fitted linear coefficient ((3) for this model is 1.05 + 0.01, with an adjusted R? of 0.98. Figure 4
visually represents the data, plotting proteins as dots colored according to their majority fraction and
overlaying the fitted linear regression line. The strong collinearity between the detected and control
sets is evident, with a similar dispersion across each fraction observed for proteins exhibiting the
highest SC values.
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Figure 4. Spectral Counts (SC) linear regression model. This plot depicts the linear regression, as a
blue line, between the cumulated SC of each protein in the pellet and supernatant, with the SC of
these proteins in the control (see Equation 2). Besides the regression line, each dot depicts the related
SC in the control (Y axis) and in the cumulated pellet and supernatant (X axis). The color of the dot is
red when the protein is more abundant in the pellet than in the supernatant and blue otherwise.

To assess potential replicate effects on spectral count relationships, linear mixed effects models
were employed. The model structure is defined as:

SCcontrol ~ ﬁl X SCpellet + ﬁz X SCsupernatant + (1 | replica), (3)

where “(1 | replica)” in equation 3 indicates a random intercept for each replicate. Both pellet and
supernatant fitted coefficients remained similar to the initial model, with 1 = 1.07 and {32 = 1.01,
respectively. The model exhibited strong adequacy (conditional R? = 0.93 and RMSE = 15.43).
Furthermore, an analysis of variance comparing the models with and without replicate mixed effects
revealed no significant influence of this parameter (p-value < 10¢). Based on these findings, we
conclude that random effects attributable to sample replicates are absent.

Differential Analysis between Fractions

To identify enriched or depleted proteins between the pellet and supernatant fractions relative
to the control, a differential analysis was conducted (see Methods section). Prior to this analysis,
normalization was performed to equalize the average total spectral counts (SC) across each fraction.
Proteins with an average SC below five were subsequently filtered, mitigating potential biases arising
from differences in overall protein concentration between samples. Figure 5 presents a Venn diagram
illustrating the overlap of proteins identified by MS across the three fractions. Notably, 98% of
proteins identified in the control were also detected in either the supernatant or pellet fraction. The
pellet exhibited the highest number of identified proteins (1,077), including 301 unique to this
fraction.
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Figure 5. Venn diagram of the number of detected proteins in the pellet, supernatant and control
fractions. The relative percentage is indicated within parenthesis.

To determine if differences in spectral counts (5C) between proteins across different conditions
are statistically significant, a Bayesian approach was employed (see Methods section). The Bayes
factor (BF) served as a threshold for identifying enriched or depleted proteins. This approach
effectively distinguished proteins adsorbed onto nanoparticle (NM) surfaces (enriched in the pellet
fraction) from those unaffected by the NMs (enriched in the supernatant fraction), as detailed in Table

4.
Table 4. Pellet and supernatant Bayesian differential analysis. For Bayesian factor thresholds 3,10 and
30 we indicate the number of proteins with a significant difference in spectral counts between
fractions: pellet and control (columns 2 and 3); supernatant and control (columns 4 and 5).
Bayes Factor (BF) @ Pellet fraction @ Supernatant fraction
evidence enriched depleted enriched depleted
BF >3:  substantial 302 83 56 265
BF >10: strong 139 55 11 159
BF > 30: wvery strong 54 27 2 88

Table 5 presents a cross analysis between proteins enriched in the pellet and those depleted in
the supernatant for the threshold BF > 3.

Table 5. Cross Analysis of adsorbed proteins in the pellet and supernatant fractions. This table
displays the overlap between proteins enriched in the pellet (indicating nanoparticle adsorption) and
those depleted in the supernatant (poorly detected in solution) for a Bayes Factor (BF) threshold 3 (see
additional Table S1 for thresholds 3, 10, and 30). The first column indicates the number of supernatant-
depleted proteins. Blue number along the top row represent the number of pellet-enriched proteins
and the green number indicate the subset of pellet-enriched proteins also detected in the supernatant
fraction. Black numbers represent the number of proteins concurrently enriched in the pellet and
depleted in the supernatant. Blue (resp. green) percentage represent the ratio of overlapped proteins to
total pellet-enriched proteins (resp. and detected in the supernatant).

depleted in the @ Enriched in the pellet AND detected in the supernatant (@)
supernatant 302 179
265 124 41.1% 124 69.3%

Table 5 highlights distinct protein partitioning patterns based on Bayes Factor (BF) thresholds.
At a substantial threshold BF > 3, over 69% (i.e., 124/179) of pellet-enriched proteins and detected in
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the supernatant are also depleted in this fraction, indicating robust adsorption onto nanoparticles
(NPs). Conversely, 59% (i.e., (302-179)/302) of pellet-enriched proteins at this threshold are absent
from the supernatant, suggesting highly specific NP binding that results in undetectable levels within
the supernatant due to limited sample sensitivity. Notably, no proteins exhibited simultaneous
depletion in both fractions (data not shown), indicating a low rate of false positives.

The analysis extends to non-adsorbed proteins present in the supernatant and their relationship
with pellet-depleted proteins. Table 6 presents this cross analysis, demonstrating that at threshold BF
> 3, nearly all (over 88.9%) supernatant-enriched proteins and detected in the pellet are also depleted
in this fraction, reinforcing a clear distinction between adsorbed and non-adsorbed populations.
However, a significant disparity exists: 56 non-adsorbed proteins were detected in the supernatant
at BF > 3 compared to 302 adsorbed proteins in the pellet. This observation underscores the
substantial difference in abundance between these protein groups.

Table 6. Cross Analysis of non-adsorbed proteins in the pellet and supernatant fractions. This table
displays the overlap between proteins enriched in the supernatant (indicating unbound proteins) and
those depleted in the pellet (poorly adsorbed) for a Bayes Factor (BF) threshold 3 (see additional table
S2 for thresholds 3, 10, and 30). The first column indicates the number of pellet-depleted proteins.
Green number along the top row represent the number of supernatant-enriched proteins and the blue
number indicate the subset of supernatant-enriched proteins also detected in the pellet fraction. Black
numbers represent the number of proteins concurrently enriched in the supernatant and depleted in
the pellet. Green (resp. blue) percentage represent the ratio of overlapped proteins to total supernatant-
enriched proteins (resp. and detected in the pellet).

depleted in the (@  Enriched in the supernatant / AND detected in the pellet @
pellet 56 36
83 32 57.1% 32 88.9%

To encompass the full spectrum of protein responses to nanoparticle exposure, we introduce a
novel category “impacted proteins” encompassing those significantly altered in abundance
compared to the control. This category extends beyond simple adsorption/non-adsorption
distinctions. We define a protein P as “directly impacted” if it meets criteria i) P is detected in either
the pellet or supernatant fraction; and i) P is enriched in the pellet and detected but not depleted in
the supernatant. Conversely, a protein P is stated “indirectly impacted” if it fulfills criteria i) and iii)
P is depleted in the supernatant but not enriched in the pellet. The less specific set of “impacted”
proteins is the union of the “directly impacted” and “indirectly impacted” proteins subsets.

Applying a BF > 3 threshold (see Table 5), there is 179-124=55 directly impacted proteins
(condition i) and 265-124=141 indirectly impacted proteins (condition 7ii). This analysis reveals a total
of 196 proteins impacted by the SiNPs exposure at this threshold. Furthermore, 178 (resp. 24) proteins
were enriched and detected only in the pellet (resp. supernatant). These subsets identify proteins with
a “very high” bound/unbound affinity for the SiNP surface. Table 7 summarizes the distribution of
proteins across each category.

Table 7. Proteins were categorized based on their interaction with silica nanoparticles (SiNPs) using
a Bayes Factor threshold > 3. Proteins are classified as: Unbound (blue background), proteins not
associated with SiNPs; Impacted (grey background), proteins showing altered abundance despite not
being directly bound to SiNPs; Bound (red background), proteins directly interacting with the SiNP
surface. Within each category, proteins are further subcategorized: Very high, exclusively detected in
either the pellet (bound) or supernatant (unbound) fraction; High, detected in both the pellet and
supernatant fraction; Direct, enriched in the pellet and detected but not depleted in the supernatant
fraction; Indirect, depleted in the supernatant but not enriched in the pellet fraction. Protein counts
and relative percentages (%) are indicated in parentheses for each category and subcategory.
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10
Unbound Impacted Bound
very high high indirect direct high very high
24 (4.3%) 32 (5.8%) 141 (25.5%) 55 (9.9%) 124 (22.4%) 178 (32.1%)
56 (10.1%) 196 (35.4%) 302 (54.5%)

4. Discussion

Nanotoxicological investigations strive to elucidate the composition of the nanoparticle (NP)
corona, providing crucial insights into the biological mechanisms affected by nanomaterials. Utilizing
complex protein extracts enables a broader scale investigation of molecular mechanisms perturbed
by nanomaterials, such as silica nanoparticles (SiNPs) in this study. While conventional molecular
biology techniques are effective for analyzing individual or small sets of peptides, deciphering
protein-NP interactions within complex matrices necessitates technologies capable of sampling larger
set of proteins. Mass spectrometry (MS) has emerged as one of the preferred methods for high-
throughput and large-scale proteomics analyses, proving particularly valuable in characterizing
protein-NP interactions [8]. Most studies employing MS have primarily focused on identifying the
subset of proteins shaping the NP corona [18,19]. Characterizing the corona offers valuable
information for diverse applications, for example: Identifying specific proteins within the corona
allows for targeted NP functionalization strategies aimed at modulating desired biological
interactions. Analyzing the composition of the protein corona can help to decipher the specific
molecular pathways impacted by NP exposure, shedding light on the mechanisms underlying
potential toxicity or beneficial effects. Identifying adsorbed proteins on the NP surface requires the
following steps: isolation of NP aggregates followed by desorption of bound proteins from the
surface, identification and relative quantification (e.g., spectral counts) using MS. While this protocol
effectively identifies adsorbed proteins, it overlooks unbound proteins remaining in solution which
may exhibit altered fates, such as conformational changes or aggregation, upon NP exposure. This
study demonstrates that a dual fractions approach, encompassing both NP aggregate-bound proteins
and unbound proteins in solution, provides a more comprehensive understanding of the proteomic
alterations induced by NP exposure in protein extracts.

Utilizing SiNPs and Saccharomyces cerevisiae sp. protein extracts, we observed strong correlations
between protein abundance profiles in both fractions with non-exposed controls (Pearson correlation
coefficient o ranging from 0.6 to 0.9). Notably, minimal correlation was observed between the two
fractions themselves (o = 0.196), indicating distinct proteomic signatures for bound and unbound
proteins. Linear models fitting both fractions demonstrated equal contributions to predicting protein
abundance in the non-exposed control sample (linear coefficients ranging from 1.05 to 1.07, adjusted
R? =0.98). This suggests that each fraction independently captures unique aspects of the proteomic
response to SiNPs exposure. Due to inherent limitations of MS sampling, which can only detect a
subset of the total expressed proteome, a dual-fraction approach provides a more comprehensive
understanding of SiNPs-induced effects than single-fraction analysis (e.g., solely focusing on NP
aggregates). We identified 1078 unique proteins in the NP aggregates fraction and 1322 (+22.6%) by
analyzing both fractions combined. These results show that both fractions complement each other
and are representative of the control population. Furthermore, these findings also demonstrates that
in conditions where proteins cannot be desorbed from NP (e.g., carbon nanotubes [9]) or extracted in
solution (e.g., plastic particles), analyzing the subset of proteins in solution is relevant to study the
effects of exposure to these particular NPs [10].

Our results also highlight the utility of the opposite fraction (unbound to SiNPs) for identifying
anovel proteins subset, those unbound but potentially impacted by SiNPs. Indeed, proteins enriched
in one fraction are expected to be depleted in the other. Differential analysis between the supernatant
(i.e., proteins in solution) and control fractions at a substantial Bayesian factor evidence level (BF > 3)
identified 265 depleted proteins (see Table S1), with only 124 also showing enrichment in the pellet
fraction (i.e., NP aggregates). This discrepancy underscores the value of considering both bound and
unbound protein populations for a comprehensive understanding of protein-nanoparticle
interactions. Based on these observations, we propose a formal definition for the subset of “impacted”
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proteins in the context of dual-fraction proteomic analysis: a protein P, detected at least in one
fraction, enriched in the pellet (resp. depleted in the supernatant) and detected but not depleted in
the supernatant (resp. not detected or enriched in the pellet) is directly (resp. indirectly) impacted by
the NP. This dual-fraction approach expands upon conventional analyses focusing solely on the
pellet fraction, which identified 302 proteins (BF > 3) adsorbed onto the SiNP surface. Notably, our
dual-fraction analysis further reveals an additional 196 proteins impacted by SiNPs exposure and 56
proteins non-adsorbed onto the SiNP surface, highlighting the value of considering both bound and
unbound protein populations for a comprehensive understanding of protein-nanoparticle
interactions.

To the best of our knowledge, this is the first MS-based proteomic study, relying on a dual
fractions approach, to analyze both bound and unbound protein populations from YPE exposed to
SiNPs. Defining a novel category of “impacted” proteins based on their differential relative
abundance in bound and unbound fractions offers a promising avenue for enriching our
understanding of the biochemical and biophysical interactions involved. The “impacted” proteins
subset warrants further investigation to elucidate its characteristics, still several hypotheses can be
proposed: Directly interacting proteins may arise from transient binding events, exemplified by the
Vroman effect [20], wherein proteins bind either directly to the NP surface (i.e.,, hard corona) or
indirectly via the protein corona (i.e., soft corona) [8,21]; Indirectly impacted proteins could result
from protein denaturation or aggregation, facilitated by interactions with plastic surfaces (e.g., tubes)
and mechanical agitation [10]. To elucidate the fate of these impacted proteins, some key questions
to work on include: Do they undergo conformational modifications? Are they aggregating within
solution? While our results show that this approach is more sensitive and generate a more in-depth
analysis of NP exposure, it does require a doubling of the quantities of biological material, sample
preparation and MS acquisition times, and most probably total costs.

To enhance comparability between samples within our dual-fraction mass spectrometry
approach, two key modifications were implemented in the MS analysis protocol: i) Maintaining non-
normalized and unequal sample concentrations was critical. This allowed for a direct relationship
between spectral count (SC) values and protein abundance within each sample; i) Identical
acquisition times were enforced for all samples, ensuring that each sample underwent the same level
of sampling depth. These modifications aimed to achieve comparable SC per unit concentration
across all samples. However, when sample concentrations fall below detection limits, a correction
factor can be applied, followed by normalization, as exemplified with SiNPs (detailed in the Methods
section). This approach introduces potential sampling biases. Oversampling may inflate SC for
identified proteins while overlooking low-abundance proteins. Conversely, under-sampling risks
suppressing true protein identifications. The implementation of semi-absolute quantification MS
techniques [22], employing external standards such as UPS2, could potentially mitigate these biases
and optimize the quantitation process.

This article demonstrates that a dual-fraction mass spectrometry approach facilitates a more
comprehensive understanding of nanoparticle exposure at the molecular level. We introduce a novel
protein subset, characterized by the absence of corona binding but demonstrable NP impact. In
Saccharomyces cerevisiae sp. protein cellular extracts exposed to SiNPs, 196 proteins exhibit this
characteristic. While a detailed investigation into the biological mechanisms and altered metabolic
pathways associated with these impacted proteins is beyond the scope of this work, such an analysis
would significantly enhance our understanding of SiNP exposure effects. Future research should
explore the applicability of this method to other proteomes, particularly those characterized by larger
size or greater protein translation dynamic range [23]. Additionally, optimization of the MS protocol
may mitigate current sampling limitations and further improve method efficiency.

Supplementary Materials: The following supporting information can be downloaded at:
www.mdpi.com/xxx/s1, Table S1: Cross analysis of adsorbed proteins in the pellet and supernatant fractions;
Table S2: Cross Analysis of non-adsorbed proteins in the pellet and supernatant fractions. Supplementary File
“Yeast_SiO2_raw.xlsx’: Excel file containing raw spectral counts for the three replicates of the pellet, supernatant
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and control; Supplementary File ‘Yeast_SiO2_raw.RData’: R datafile containing a tibble data frame (tidyr R
package) with raw spectral counts for the three replicates of the pellet, supernatant and control.
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