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Article 
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Abstract: Dual‐fraction  proteomics  reveals  a  novel  class  of  proteins  impacted  by  nanoparticle 

exposure. Background: Nanoparticles  (NPs)  interact with  cellular proteomes, altering biological 

processes.  Understanding  these  interactions  requires  comprehensive  analyses  beyond  solely 

characterizing  the  NP  corona. Methods: We  utilized  a  dual‐fraction  mass  spectrometry  (MS) 

approach analyzing both NP‐bound and unbound proteins  in Saccharomyces cerevisiae sp. protein 

extracts exposed to silica nanoparticles (SiNPs). We identified unique protein signatures for each 

fraction  and  quantified  protein  abundance  changes  using  spectral  counts.  Results:  Strong 

correlations were observed between protein profiles  in  each  fraction and non‐exposed  controls, 

while minimal correlation existed between the fractions themselves. Linear models demonstrated 

equal contributions from both fractions in predicting control sample abundance. Combining both 

fractions  revealed  a  larger  proteomic  response  to  SiNP  exposure  compared  to  single‐fraction 

analysis. We identified 302/56 proteins bound/unbound to SiNPs and an additional 196 “impacted” 

proteins demonstrably affected by SiNPs. Conclusion: This dual‐fraction MS approach provides a 

more comprehensive understanding of nanoparticle interactions with cellular proteomes. It reveals 

a novel class of “impacted” proteins, potentially undergoing conformational changes or aggregation 

due  to NP  exposure. Further  research  is needed  to  elucidate  their biological  functions  and  the 

mechanisms underlying their impact. 

Keywords:  silica  nanoparticles;  protein  extracts;  proteomics;  mass  spectrometry;  protein‐

nanoparticle interactions; corona 

 

1. Introduction 

Nanomaterials (NMs) have become ubiquitous in manufactured products across a diverse range 

of industries, including food processing, pharmaceuticals, cosmetics, and electronics. Among these 

NMs,  silica‐based  nanoparticles  (SiNPs)  exhibit  the  highest  prevalence  due  to  their  versatile 

properties and wide applicability [1]. SiNPs find use in various sectors, such as: food packaging and 

additives, materials production  (glass, cement,  fiberglass, concrete), optics and  fiber  technologies, 

textile  manufacturing,  agricultural  fungicides,  and  biomedical/pharmaceutical  applications 

(biological carriers, excipients). This widespread utilization has sparked growing societal concern 

regarding potential health and environmental consequences [2–4], prompting extensive research into 

the toxicity of NMs. Investigation at the molecular level reveals crucial insights into SiNP interactions 

with biomolecules. Analyzing protein‐SiNP interactions allows for elucidation of affected biological 

mechanisms. For instance, studies have demonstrated that SiNPs can specifically target RNA binding 

proteins  [5].  Furthermore,  nanoscale  analysis  elucidates  the  influence  of  SiNP  size  on  corona 

formation and protein conformational changes [6,7], highlighting the importance of considering both 

size and surface properties when assessing potential risks or beneficial effects associated with SiNPs. 
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Understanding the intricate interactions between proteins and nanoparticles (NPs) is crucial for 

assessing  their potential  impact on biological  systems  and guiding  the development of  safe  and 

effective nanotechnology applications. Numerous methods have been established to elucidate these 

interactions, with  techniques  such  as  fluorescence  flow  cytometry  offering  insights  into  binding 

events with  purified  proteins. However,  complex  protein  samples  derived  from  protein  cellular 

extracts, such as those obtained from Saccharomyces cerevisiae sp., pose a greater challenge. 

In this study, we employ a dedicated protocol detailed in Mathé C. et al. [8] to identify protein‐

NP  interactions within  these  complex matrices. Briefly,  the protocol  involves  incubating protein 

extracts with NPs of interest, followed by centrifugation and drying steps to retrieve aggregates of 

proteins  and  NPs  (hereafter  denote  “pellet”).  Proteins  are  subsequently  desorbed  from  these 

complexes for identification using high‐throughput label‐free nano‐liquid chromatography coupled 

with tandem mass spectrometry (nano‐LC MS/MS). Bioinformatics analysis and database harvesting 

enable protein identification based on spectral matching. 

Differential analysis, comparing the identified proteins in exposed samples to those in control 

samples  lacking NP exposure  [5], allows us  to pinpoint  significantly adsorbed proteins. Notably, 

most existing studies focusing on NP toxicity primarily analyze the pellet fraction, which represents 

proteins physically bound to NPs. However, this approach overlooks potential impacts on unbound 

proteins that may undergo structural alterations, aggregation, or other functional changes upon NP 

exposure. Besides, certain NP types, such as carbon‐based NPs, exhibit exceptionally strong binding 

affinities  for proteins  [9],  rendering  traditional desorption methods  ineffective. Similarly,  smaller 

plastic  particles  can  aggregate  with  proteins  in  solution,  preventing  their  retrieval  through 

centrifugation.  In  these  instances,  the  fraction  containing  unbound  proteins  (hereafter  denote 

“supernatant”),  becomes  crucial  for  a  comprehensive  understanding  of NP‐induced  effects  [10]. 

Noteworthy, in most large‐scale proteins NM interactions studies usually only one fraction, the pellet 

or the supernatant, is analyzed. 

To  our  knowledge,  no  previous  studies  have  implemented  a  dual  analysis  approach 

encompassing both pellet and supernatant fractions within the context of protein‐NP  interactions. 

This  study aims  to shed  light on  this novel approach by addressing key questions  regarding  the 

correlation and complementarity of  these  fractions. We hypothesize  that analyzing both  fractions 

provides  a more  complete  picture  of NP‐induced  protein  alterations,  encompassing  both  direct 

binding  events  and  indirect  effects  on  the  proteome. High‐throughput mass  spectrometry  is  a 

sampling procedure and the number of distinct proteins mapped in a solution is correlated with: the 

proteins  extract  concentration, dynamic  and  complexity;  the  acquisition duration. Thus, proteins 

identified in the dual fractions are representative samples of the respective population of proteins: 

bounded or not bounded to the NP. This sampling effect rises many interrogations. In particular, how 

these  fractions  correlate and  complement  each other? Does  the  combined pellet  and  supernatant 

fractions are representative of the control population (i.e., not exposed to the NP)? What can we learn 

on the pellet (resp. supernatant) fraction composition by analyzing the dual supernatant (resp. pellet) 

fraction. 

To investigate this hypothesis, we exposed Saccharomyces cerevisiae sp. protein extracts to SiNPs. 

We identified adsorbed proteins (pellet) and unbound proteins (supernatant) using nano‐LC MS/MS, 

with  spectral  count  (SC)  serving  as  a proxy  for  relative  protein  concentration.  Furthermore, we 

included control samples devoid of NP exposure for differential analysis. In this research, we present 

a comparison between biological protein concentrations and their corresponding SC ratios obtained 

from  mass  spectrometry.  Subsequently,  we  employ  various  linear  models  to  demonstrate  the 

complementarity  of  pellet  and  supernatant  fractions.  Finally, we  utilize  differential  analysis  to 

highlight the benefits of our dual approach in identifying novel protein subsets impacted by SiNP 

exposure. 
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2. Materials and Methods 

Sample Preparation 

Yeast protein extracts  (YPE) were prepared  from  the Saccharomyces  cerevisiae  sp. strain S288C 

(Matα SUC2 mal mel gal2 CUP1), as described  in  [10]. Silica NP  (13 nm radius, LUDOX® TM‐50, 

Sigma‐Aldrich) were dialyzed using a membrane with a 3.5 kDa cut‐off against Milli‐Q water at 4 °C. 

YPE  (0.6 g.L‐1) was  incubated with silica NP  (1 g.L‐1)  in phosphate buffer  (100 mM, pH7) using a 

ThermoMixer ® (Eppendorf, Hamburg, Germany) at 20 °C during 3 h (cycles of 15 sec at 800 rpm 

followed by 285 sec at rest). The YPE concentration was chosen at the start of the adsorption isotherm 

plateau (see Figure 1), to have the minimum protein quantity in saturation conditions. 

 

Figure  1. Adsorption  isotherm  of YPE  on  silica NP  (1  g.L‐1)  in phosphate  buffer  (100 mM, pH7) 

realized by depletion. Ten samples at YPE concentration from 2.5x10‐2 to 2 g.L‐1 were incubated with 

silica NP using a Thermomixer ® at 20 °C during 3 h (cycles of 15 sec at 800 rpm followed by 285 sec 

at  rest).  Samples  were  centrifuged  at  20  °C,  20,000  rpm  during  10  min  and  the  supernatant 

concentration (unbound proteins) was determined using the absorbance at 205 nm with an absorption 

coefficient of 31 L.g‐1.cm‐1. Horizontal and vertical error bars represent standard error of the mean. 

A  centrifugation  (20  °C,  20,000  rpm,  10 min)  allowed  the  separation  of  free proteins  in  the 

supernatant  and  adsorbed  proteins  in  the  pellet.  500  μL  of  supernatant were  recovered  for  the 

proteomic analysis. Then, for the pellet, two washings were realized as following: the pellet (40 μL) 

was  resuspended  in  1.5 mL of phosphate buffer,  centrifuged  (20  °C, 20,000  rpm, 5 min) and  the 

supernatant (1.46 mL) was removed. After the two washings, a desorption protocol was performed: 

the  40  μL  of  pellet  were  resuspended  in  phosphate  buffer  and  sodium  dodecyl  sulfate  (SDS 

UltraPure™ 10 %, Invitrogen). The 750 μL final solution contains 1% of SDS, concentration often used 

to desorb proteins [6]. Then, mixing during 1 h at 20 °C was realized using a Thermomixer ® (cycles 

of 15 sec at 800 rpm followed by 105 sec at rest). A last centrifugation (20 °C, 20,000 rpm, 10 min) was 

performed  and  the  100  μL  of  pellet  were  recovered  for  the  proteomic  analysis.  The  protein 

concentration was determined using  the peptide bond absorbance at 205 nm with an  absorption 

coefficient of 31 L.g‐1.cm‐1 [11]. 

Since  SDS  impacts  the  determination  of  protein  concentration,  a  calibration  curve  was 

performed to correct raw concentration values (see Figure 2). 
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Figure  2.  Calibration  curve  for  the  YPE  concentration  with  SDS  1%.  Concentrations  levels  are 

determined using the absorbance at 205 nm with an absorption coefficient of 31 L.g‐1.cm‐1. The blue 

curve depicts the linear regression model fitted to the data points. 

Proteomics Analysis 

Tubes containing 60% of their maximum volume of YPE in a phosphate buffer (100 mM) were 

mixed during 24 hours at 3 rpm, 6 °C. Samples concentrations were within the recommended range 

for optimal detection and quantification. Proteomic experiments were performed at the Proteomic 

Analysis Platform of Paris Sud‐Ouest (PAPPSO). YPE samples were deposited on SDS‐PAGE gels 

and proteins separated using short migration time. A classic protein digestion protocol was applied 

(described  in Henry C. & al.  [12]). Samples were analyzed by LC–MS/MS on an Orbitrap Fusion 

Lumos  Tibrid  (Thermo  Fisher  Scientific,  MA,  United‐States)  mass  spectrometer.  The  protein 

identification was  performed  using  the  Saccharomyces  cerevisiae  sp.  strain  S288c  protein  database 

(41,6750 entries, version 2020). 

Spectral Count Normalisation 

Spectral counts (SC) were calculated for each protein detected by MS. Then these raw SC values 

are normalized in two steps. Firstly, for each fraction we adjust SC of the three replicates to a constant 

average ratio of 40 SC per mg.L‐1. Secondly, we perform a global normalization to equals the total SC 

of pellet and supernatant sum to the control total SC. Normalized SC for each replicate and averaged 

are shown on Table 1. 

Table 1. Spectral counts summary. Fractions are indicated in the first column. Columns 2 to 4 contains 

the total spectral count for each replica. Column 5 indicates the average total SC. Column 6 shows the 

percentage of the average SC value, for each fraction, compared to the control average SC. 

Fraction  Replica 1  Replica 2  Replica 3  Average  % of control 

Control  20,346  33,223  33,791  29,120  100.0% 

Pellet  15,629  17,503  16,068  16,400  56.3% 

Supernatant  12,453  9,768  15,939  12,720  43.7% 

Additionally, proteins identify with less than three SC were filtered out from the final datasets. 

Statistical Analysis 

All statistical analysis were performed using the R language [13] and the standard packages for 

the correlation analysis, the statistical tests (Pearson and Spearman) and the fitting of linear models. 

Linear mixed  effects models were  adjusted using  the  “lme4” R package  [14]. Generalized  linear 

models used  for  the bayesian protein differential analysis  (detailed  in Marichal L. & al.  [6]) were 

calculated using  the  following packages: “rstanarm”  [15]  to  fit generalized  linear models using a 
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gaussian  link  function;  “bridgesampling”  [16]  to  compute  the  log  marginal  likelihoods;  the 

“BayesFactor”  [17]  to  calculate  the  Bayes  Factors  and  posterior  probabilities  from  marginal 

likelihoods. 

3. Results 

Biological Fractions Complementarity 

Protein concentration was determined for each technical replicate in all samples using optical 

density measurements. Table 2 presents the average protein concentrations for each fraction. As the 

pellet and supernatant fractions are derived from the control sample, we anticipate their combined 

protein concentration  to closely approximate  that of  the control. Our data demonstrate a slightly 

higher  total  protein  concentration  for  the  combined  pellet  and  supernatant  fractions  (0.73  g.L‐1) 

compared to the control (0.63 g.L‐1). Remarkably, both the supernatant and pellet fractions exhibited 

protein concentrations approximately equal to (50%) or close to (65%) half of that observed in the 

control sample. 

Table 2. Average proteins concentration in each fraction. 

Fraction  Pellet  Supernatant Control

Average proteins concentration  0.41 g.L‐1  0.32 g.L‐1 0.63 g.L‐1

Spectral‐Counts Distributions Complementarity 

Following protein identification via mass spectrometry, raw spectral count (SC) for each protein 

was determined as the sum of its corresponding spectra. To account for experimental and technical 

biases (e.g., sample preparation and mass spectrometry acquisition variability), raw SC values were 

normalized using a two‐step process described in detail within the Methods section. Indeed, raw SC 

data exhibited variations in average spectral counts per mg.L‐1 between fractions: ~40 SC per mg.L‐1 

in the pellet, ~23 SC per mg.L‐1 in the supernatant, and ~20 SC per mg.L‐1 in the control. 

At the protein level, high correlations between technical replicates were observed across all three 

fractions using both Pearson (range [0.993‐1.000]) and the non‐parametric Spearman (range [0.902‐

1.000]) correlation coefficients. 

Figure 3 presents a visualization of Pearson correlation coefficient values (represented by a red 

to  green  color  scale).  In  particular,  SC  in  the  control  exhibited  stronger  correlations  with  the 

supernatant  (ρ  =  0.878)  compared  to  the  pellet  (ρ  =  0.606). Conversely,  a weak  correlation was 

observed  between  the  pellet  and  supernatant  (ρ  =  0.196).  These  findings  underscore  the 

complementary nature of information derived from both the pellet and supernatant fractions relative 

to the control. 

 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 September 2024 doi:10.20944/preprints202409.0515.v1

https://doi.org/10.20944/preprints202409.0515.v1


  6 

 

Figure  3.  Spectral  counts  correlation  plot  between  the  pellet,  supernatant  and  control  fractions. 

Pearson correlation coefficients between replicates are calculated and depicted as squares which size 

and color (scale given on the right of the plot) depends on its value. Average correlation coefficients 

values between fraction pairs are indicated on the lower triangular matrix. 

Regression Analysis 

To evaluate the complementary nature of the three fractions, control, pellet, and supernatant, 

linear regression models were employed. The independent variable was defined as control spectral 

counts (SC), while the dependent variables were pellet and supernatant SC. The model equation is 

represented as: 

𝑆𝐶௖௢௡௧௥௢௟ ~ 𝛼 ൅ 𝛽ଵ ൈ 𝑆𝐶௣௘௟௟௘௧ ൅ 𝛽ଶ ൈ 𝑆𝐶௦௨௣௘௥௡௔௡௧௔௡௧,  (1)

Table  3  presents  the  fitted  coefficients  and  regression  performance  metrics.  The  model 

demonstrates that both the pellet and supernatant contribute equally to the estimation of control SC, 

as  indicated  by  the  coefficients  β1  =  1.07  and  β2  =  1.05,  respectively.  The model  exhibits  strong 

adjustment, with an adjusted R2 of 0.98 and a Root Mean Square Error (RMSE) of 8.29. Student t‐tests 

yielded highly significant p‐values (<0.001) for both the pellet and supernatant coefficients, falling 

within narrow confidence intervals (see Table 3). Noteworthy, the intercept coefficient is nearly zero 

and deemed irrelevant to the model based on a Student t‐test p‐value of 0.83. 

Table 3. Coefficients of the linear model, Equation (1). For each parameter of the model (first column), 

the coefficient value and its deviation are indicated in the second column. The third column contains 

the confidence interval. The Student t‐test statistic and the associated p‐values are provided in the last 

two columns. 

Parameter  Coefficient Confidence Interval t‐student p‐value

Intercept (α)  ‐0.09  ±0.40 [‐0.88, 0.70] 29,120 0.83

SC Pellet (β1)  1.07  ±0.01 [1.04, 1.09] 16,400 <0.001

SC Supernatant (β2)  1.05  ±0.01 [1.03, 1.06] 12,720    <0.001

To directly compare the “reconstructed” protein subset derived from the combined pellet and 

supernatant data with  the original control set, we summed  the averaged spectral counts  for each 

identified protein across the respective fractions. A linear regression model was then fitted to this 

new dataset, excluding the intercept term (α = 0) as previously determined to be irrelevant. The model 

is defined as: 

𝑆𝐶௖௢௡௧௥௢௟ ~ β ൈ ሺ𝑆𝐶௣௘௟௟௘௧ ൅ 𝑆𝐶௦௨௣௘௥௡௔௡௧௔௡௧ሻ,  (2)

The fitted linear coefficient (β) for this model is 1.05 ± 0.01, with an adjusted R2 of 0.98. Figure 4 

visually represents the data, plotting proteins as dots colored according to their majority fraction and 

overlaying the fitted linear regression line. The strong collinearity between the detected and control 

sets  is evident, with a similar dispersion across each  fraction observed  for proteins exhibiting  the 

highest SC values. 
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Figure 4. Spectral Counts (SC) linear regression model. This plot depicts the linear regression, as a 

blue  line, between  the cumulated SC of each protein  in  the pellet and supernatant, with  the SC of 

these proteins in the control (see Equation 2). Besides the regression line, each dot depicts the related 

SC in the control (Y axis) and in the cumulated pellet and supernatant (X axis). The color of the dot is 

red when the protein is more abundant in the pellet than in the supernatant and blue otherwise. 

To assess potential replicate effects on spectral count relationships, linear mixed effects models 

were employed. The model structure is defined as: 

𝑆𝐶௖௢௡௧௥௢௟ ∼ 𝛽ଵ ൈ 𝑆𝐶௣௘௟௟௘௧ ൅ 𝛽ଶ ൈ 𝑆𝐶௦௨௣௘௥௡௔௧௔௡௧ ൅ ሺ1 ∣ 𝑟𝑒𝑝𝑙𝑖𝑐𝑎ሻ,  (3)

where “(1 | replica)”  in equation 3  indicates a random  intercept for each replicate. Both pellet and 

supernatant  fitted  coefficients  remained  similar  to  the  initial model, with  β1 = 1.07 and  β2 = 1.01, 

respectively.  The model  exhibited  strong  adequacy  (conditional  R2  =  0.93  and  RMSE  =  15.43). 

Furthermore, an analysis of variance comparing the models with and without replicate mixed effects 

revealed no  significant  influence of  this parameter  (p‐value  <  10‐16). Based on  these  findings, we 

conclude that random effects attributable to sample replicates are absent. 

Differential Analysis between Fractions 

To identify enriched or depleted proteins between the pellet and supernatant fractions relative 

to  the control, a differential analysis was conducted  (see Methods  section). Prior  to  this analysis, 

normalization was performed to equalize the average total spectral counts (SC) across each fraction. 

Proteins with an average SC below five were subsequently filtered, mitigating potential biases arising 

from differences in overall protein concentration between samples. Figure 5 presents a Venn diagram 

illustrating  the  overlap  of  proteins  identified  by MS  across  the  three  fractions. Notably,  98%  of 

proteins identified in the control were also detected in either the supernatant or pellet fraction. The 

pellet  exhibited  the  highest  number  of  identified  proteins  (1,077),  including  301  unique  to  this 

fraction. 
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Figure 5. Venn diagram of  the number of detected proteins  in  the pellet, supernatant and control 

fractions. The relative percentage is indicated within parenthesis. 

To determine if differences in spectral counts (SC) between proteins across different conditions 

are  statistically  significant, a Bayesian approach was employed  (see Methods  section). The Bayes 

factor  (BF)  served  as  a  threshold  for  identifying  enriched  or  depleted  proteins.  This  approach 

effectively distinguished proteins adsorbed onto nanoparticle (NM) surfaces (enriched in the pellet 

fraction) from those unaffected by the NMs (enriched in the supernatant fraction), as detailed in Table 

4. 

Table 4. Pellet and supernatant Bayesian differential analysis. For Bayesian factor thresholds 3,10 and 

30 we  indicate  the  number  of  proteins with  a  significant  difference  in  spectral  counts  between 

fractions: pellet and control (columns 2 and 3); supernatant and control (columns 4 and 5). 

Bayes Factor (BF)   

evidence 

  Pellet fraction    Supernatant fraction 

enriched depleted enriched  depleted 

BF ≥ 3:      substantial    302 83 56 265

BF ≥ 10:    strong  139 55 11 159

BF ≥ 30:    very strong  54 27 2 88

Table 5 presents a cross analysis between proteins enriched in the pellet and those depleted in 

the supernatant for the threshold BF ≥ 3. 

Table  5. Cross Analysis  of  adsorbed  proteins  in  the  pellet  and  supernatant  fractions.  This  table 

displays the overlap between proteins enriched in the pellet (indicating nanoparticle adsorption) and 

those depleted in the supernatant (poorly detected in solution) for a Bayes Factor (BF) threshold 3 (see 

additional Table S1 for thresholds 3, 10, and 30). The first column indicates the number of supernatant‐

depleted proteins. Blue number along the top row represent the number of pellet‐enriched proteins 

and the green number indicate the subset of pellet‐enriched proteins also detected in the supernatant 

fraction. Black  numbers  represent  the  number  of  proteins  concurrently  enriched  in  the pellet  and 

depleted in the supernatant. Blue (resp. green) percentage represent the ratio of overlapped proteins to 

total pellet‐enriched proteins (resp. and detected in the supernatant). 

depleted in the   

supernatant 

Enriched in the pellet AND detected in the supernatant   

302  179 

265  124  41.1%  124  69.3% 

Table 5 highlights distinct protein partitioning patterns based on Bayes Factor (BF) thresholds. 

At a substantial threshold BF ≥ 3, over 69% (i.e., 124/179) of pellet‐enriched proteins and detected in 
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the supernatant are also depleted  in  this  fraction,  indicating robust adsorption onto nanoparticles 

(NPs). Conversely, 59%  (i.e.,  (302‐179)/302) of pellet‐enriched proteins at  this  threshold are absent 

from the supernatant, suggesting highly specific NP binding that results in undetectable levels within 

the  supernatant  due  to  limited  sample  sensitivity. Notably,  no  proteins  exhibited  simultaneous 

depletion in both fractions (data not shown), indicating a low rate of false positives. 

The analysis extends to non‐adsorbed proteins present in the supernatant and their relationship 

with pellet‐depleted proteins. Table 6 presents this cross analysis, demonstrating that at threshold BF 

≥ 3, nearly all (over 88.9%) supernatant‐enriched proteins and detected in the pellet are also depleted 

in  this  fraction,  reinforcing  a  clear distinction  between  adsorbed  and non‐adsorbed populations. 

However, a significant disparity exists: 56 non‐adsorbed proteins were detected in the supernatant 

at  BF  ≥  3  compared  to  302  adsorbed  proteins  in  the  pellet.  This  observation  underscores  the 

substantial difference in abundance between these protein groups. 

Table 6. Cross Analysis of non‐adsorbed proteins in the pellet and supernatant fractions. This table 

displays the overlap between proteins enriched in the supernatant (indicating unbound proteins) and 

those depleted in the pellet (poorly adsorbed) for a Bayes Factor (BF) threshold 3 (see additional table 

S2 for  thresholds 3, 10, and 30). The first column  indicates  the number of pellet‐depleted proteins. 

Green number along the top row represent the number of supernatant‐enriched proteins and the blue 

number indicate the subset of supernatant‐enriched proteins also detected in the pellet fraction. Black 

numbers represent the number of proteins concurrently enriched in the supernatant and depleted in 

the pellet. Green (resp. blue) percentage represent the ratio of overlapped proteins to total supernatant‐

enriched proteins (resp. and detected in the pellet). 

depleted in the   

pellet 

Enriched in the supernatant / AND detected in the pellet 

56  36 

83  32  57.1%  32  88.9% 

To encompass the full spectrum of protein responses to nanoparticle exposure, we introduce a 

novel  category  “impacted  proteins”  encompassing  those  significantly  altered  in  abundance 

compared  to  the  control.  This  category  extends  beyond  simple  adsorption/non‐adsorption 

distinctions. We define a protein P as “directly impacted” if it meets criteria i) P is detected in either 

the pellet or supernatant fraction; and ii) P is enriched in the pellet and detected but not depleted in 

the supernatant. Conversely, a protein P is stated “indirectly impacted” if it fulfills criteria i) and iii) 

P  is depleted  in the supernatant but not enriched  in the pellet. The  less specific set of “impacted” 

proteins is the union of the “directly impacted” and “indirectly impacted” proteins subsets. 

Applying  a  BF  ≥  3  threshold  (see  Table  5),  there  is  179‐124=55  directly  impacted  proteins 

(condition ii) and 265‐124=141 indirectly impacted proteins (condition iii). This analysis reveals a total 

of 196 proteins impacted by the SiNPs exposure at this threshold. Furthermore, 178 (resp. 24) proteins 

were enriched and detected only in the pellet (resp. supernatant). These subsets identify proteins with 

a “very high” bound/unbound affinity for the SiNP surface. Table 7 summarizes the distribution of 

proteins across each category. 

Table 7. Proteins were categorized based on their interaction with silica nanoparticles (SiNPs) using 

a Bayes Factor  threshold  ≥  3. Proteins  are  classified  as: Unbound  (blue background), proteins not 

associated with SiNPs; Impacted (grey background), proteins showing altered abundance despite not 

being directly bound to SiNPs; Bound (red background), proteins directly interacting with the SiNP 

surface. Within each category, proteins are further subcategorized: Very high, exclusively detected in 

either  the pellet  (bound) or supernatant  (unbound)  fraction; High, detected  in both  the pellet and 

supernatant fraction; Direct, enriched in the pellet and detected but not depleted in the supernatant 

fraction; Indirect, depleted in the supernatant but not enriched in the pellet fraction. Protein counts 

and relative percentages (%) are indicated in parentheses for each category and subcategory. 
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Unbound  Impacted  Bound 

very high  high  indirect  direct  high  very high 

24 (4.3%)  32 (5.8%)  141 (25.5%)  55 (9.9%)  124 (22.4%)  178 (32.1%) 

56 (10.1%)  196 (35.4%)  302 (54.5%) 

4. Discussion 

Nanotoxicological  investigations strive  to elucidate  the composition of  the nanoparticle  (NP) 

corona, providing crucial insights into the biological mechanisms affected by nanomaterials. Utilizing 

complex protein extracts enables a broader scale investigation of molecular mechanisms perturbed 

by nanomaterials, such as silica nanoparticles (SiNPs) in this study. While conventional molecular 

biology  techniques  are  effective  for  analyzing  individual  or  small  sets  of  peptides,  deciphering 

protein‐NP interactions within complex matrices necessitates technologies capable of sampling larger 

set of proteins. Mass  spectrometry  (MS) has  emerged  as one of  the preferred methods  for high‐

throughput  and  large‐scale  proteomics  analyses,  proving  particularly  valuable  in  characterizing 

protein‐NP interactions [8]. Most studies employing MS have primarily focused on identifying the 

subset  of  proteins  shaping  the  NP  corona  [18,19].  Characterizing  the  corona  offers  valuable 

information  for diverse applications,  for  example:  Identifying  specific proteins within  the  corona 

allows  for  targeted  NP  functionalization  strategies  aimed  at  modulating  desired  biological 

interactions. Analyzing  the  composition  of  the  protein  corona  can  help  to  decipher  the  specific 

molecular  pathways  impacted  by NP  exposure,  shedding  light  on  the mechanisms  underlying 

potential toxicity or beneficial effects. Identifying adsorbed proteins on the NP surface requires the 

following  steps:  isolation  of NP  aggregates  followed  by  desorption  of  bound  proteins  from  the 

surface, identification and relative quantification (e.g., spectral counts) using MS. While this protocol 

effectively identifies adsorbed proteins, it overlooks unbound proteins remaining in solution which 

may exhibit altered fates, such as conformational changes or aggregation, upon NP exposure. This 

study demonstrates that a dual fractions approach, encompassing both NP aggregate‐bound proteins 

and unbound proteins in solution, provides a more comprehensive understanding of the proteomic 

alterations induced by NP exposure in protein extracts. 

Utilizing SiNPs and Saccharomyces cerevisiae sp. protein extracts, we observed strong correlations 

between protein abundance profiles in both fractions with non‐exposed controls (Pearson correlation 

coefficient ρ ranging from 0.6 to 0.9). Notably, minimal correlation was observed between the two 

fractions  themselves  (ρ = 0.196),  indicating distinct proteomic signatures  for bound and unbound 

proteins. Linear models fitting both fractions demonstrated equal contributions to predicting protein 

abundance in the non‐exposed control sample (linear coefficients ranging from 1.05 to 1.07, adjusted 

R2 = 0.98). This suggests that each fraction independently captures unique aspects of the proteomic 

response to SiNPs exposure. Due to inherent limitations of MS sampling, which can only detect a 

subset of  the  total expressed proteome, a dual‐fraction approach provides a more comprehensive 

understanding of  SiNPs‐induced  effects  than  single‐fraction  analysis  (e.g.,  solely  focusing on NP 

aggregates). We identified 1078 unique proteins in the NP aggregates fraction and 1322 (+22.6%) by 

analyzing both fractions combined. These results show that both fractions complement each other 

and are representative of the control population. Furthermore, these findings also demonstrates that 

in conditions where proteins cannot be desorbed from NP (e.g., carbon nanotubes [9]) or extracted in 

solution (e.g., plastic particles), analyzing the subset of proteins in solution is relevant to study the 

effects of exposure to these particular NPs [10]. 

Our results also highlight the utility of the opposite fraction (unbound to SiNPs) for identifying 

a novel proteins subset, those unbound but potentially impacted by SiNPs. Indeed, proteins enriched 

in one fraction are expected to be depleted in the other. Differential analysis between the supernatant 

(i.e., proteins in solution) and control fractions at a substantial Bayesian factor evidence level (BF ≥ 3) 

identified 265 depleted proteins (see Table S1), with only 124 also showing enrichment in the pellet 

fraction (i.e., NP aggregates). This discrepancy underscores the value of considering both bound and 

unbound  protein  populations  for  a  comprehensive  understanding  of  protein‐nanoparticle 

interactions. Based on these observations, we propose a formal definition for the subset of “impacted” 
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proteins  in  the  context  of dual‐fraction  proteomic  analysis:  a  protein  P, detected  at  least  in  one 

fraction, enriched in the pellet (resp. depleted in the supernatant) and detected but not depleted in 

the supernatant (resp. not detected or enriched in the pellet) is directly (resp. indirectly) impacted by 

the NP. This dual‐fraction  approach  expands upon  conventional  analyses  focusing  solely on  the 

pellet fraction, which identified 302 proteins (BF ≥ 3) adsorbed onto the SiNP surface. Notably, our 

dual‐fraction analysis further reveals an additional 196 proteins impacted by SiNPs exposure and 56 

proteins non‐adsorbed onto the SiNP surface, highlighting the value of considering both bound and 

unbound  protein  populations  for  a  comprehensive  understanding  of  protein‐nanoparticle 

interactions. 

To  the best of our knowledge,  this  is  the  first MS‐based proteomic  study,  relying on a dual 

fractions approach, to analyze both bound and unbound protein populations from YPE exposed to 

SiNPs.  Defining  a  novel  category  of  “impacted”  proteins  based  on  their  differential  relative 

abundance  in  bound  and  unbound  fractions  offers  a  promising  avenue  for  enriching  our 

understanding of  the biochemical and biophysical  interactions  involved. The “impacted” proteins 

subset warrants further investigation to elucidate its characteristics, still several hypotheses can be 

proposed: Directly interacting proteins may arise from transient binding events, exemplified by the 

Vroman  effect  [20], wherein proteins bind  either directly  to  the NP  surface  (i.e., hard  corona) or 

indirectly via the protein corona (i.e., soft corona) [8,21]; Indirectly  impacted proteins could result 

from protein denaturation or aggregation, facilitated by interactions with plastic surfaces (e.g., tubes) 

and mechanical agitation [10]. To elucidate the fate of these impacted proteins, some key questions 

to work on  include: Do they undergo conformational modifications? Are  they aggregating within 

solution? While our results show that this approach is more sensitive and generate a more in‐depth 

analysis of NP exposure, it does require a doubling of the quantities of biological material, sample 

preparation and MS acquisition times, and most probably total costs. 

To  enhance  comparability  between  samples  within  our  dual‐fraction  mass  spectrometry 

approach, two key modifications were implemented in the MS analysis protocol: i) Maintaining non‐

normalized and unequal sample concentrations was critical. This allowed for a direct relationship 

between  spectral  count  (SC)  values  and  protein  abundance  within  each  sample;  ii)  Identical 

acquisition times were enforced for all samples, ensuring that each sample underwent the same level 

of  sampling depth. These modifications  aimed  to  achieve  comparable  SC per unit  concentration 

across all samples. However, when sample concentrations fall below detection  limits, a correction 

factor can be applied, followed by normalization, as exemplified with SiNPs (detailed in the Methods 

section).  This  approach  introduces  potential  sampling  biases. Oversampling may  inflate  SC  for 

identified proteins while overlooking  low‐abundance proteins. Conversely, under‐sampling  risks 

suppressing  true  protein  identifications. The  implementation  of  semi‐absolute  quantification MS 

techniques [22], employing external standards such as UPS2, could potentially mitigate these biases 

and optimize the quantitation process. 

This article demonstrates  that a dual‐fraction mass  spectrometry approach  facilitates a more 

comprehensive understanding of nanoparticle exposure at the molecular level. We introduce a novel 

protein  subset,  characterized  by  the  absence  of  corona  binding  but demonstrable NP  impact.  In 

Saccharomyces  cerevisiae  sp.  protein  cellular  extracts  exposed  to  SiNPs,  196  proteins  exhibit  this 

characteristic. While a detailed investigation into the biological mechanisms and altered metabolic 

pathways associated with these impacted proteins is beyond the scope of this work, such an analysis 

would  significantly enhance our understanding of SiNP exposure effects. Future  research  should 

explore the applicability of this method to other proteomes, particularly those characterized by larger 

size or greater protein translation dynamic range [23]. Additionally, optimization of the MS protocol 

may mitigate current sampling limitations and further improve method efficiency. 

Supplementary  Materials:  The  following  supporting  information  can  be  downloaded  at: 

www.mdpi.com/xxx/s1, Table S1: Cross analysis of adsorbed proteins in the pellet and supernatant fractions; 

Table S2: Cross Analysis of non‐adsorbed proteins in the pellet and supernatant fractions. Supplementary File 

‘Yeast_SiO2_raw.xlsx’: Excel file containing raw spectral counts for the three replicates of the pellet, supernatant 
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and  control; Supplementary File  ‘Yeast_SiO2_raw.RData’: R datafile  containing a  tibble data  frame  (tidyr R 

package) with raw spectral counts for the three replicates of the pellet, supernatant and control. 

Author  Contributions:  Conceptualization, methodology  and  validation,  Y.B,  J.‐P.R.,  S.C.,  S.P.  and  J.‐C.A.; 
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