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Abstract 

The Imaging Infra‐Red Spectrometer (IIRS) is the most advanced reflectance spectrometer currently 

orbiting the Moon. IIRS was launched on‐board Chandrayaan‐2 in 2019 to image the lunar surface in 

the wavelength range of 0.8 to 5.0 μm  in 250 contiguous bands at a high spatial resolution of ~80 

m/pixel and a spectral resolution of 20‐25 nm. The IIRS strips are available in the PDS4‐compliant 

QUB file format. However, the data lack inherent map‐projection information. This study presents 

and  implements a different approach  to automatically seleno‐reference  the  images obtained  from 

IIRS. Using the SIFT (Scale‐Invariant Feature Transform) algorithm, matching common points from 

the individual resampled pixels of IIRS and LRO‐WAC (Lunar Reconnaissance Orbiter ‐ Wide Angle 

Camera, which has been used as a reference image) are obtained. Our results show that SIFT is able 

to both identify and match corresponding pixels from both IIRS and WAC with RMS errors < the size 

of a single IIRS pixel. Hence, any user interested to work with IIRS data may refer to this technique 

to simplify the registration process of the IIRS strips to their actual ground coordinates. 

Keywords: moon; infrared observations; instrumentation; seleno‐referencing; chandrayaan‐2 

 

1. INTRUDUCTION 

CHANDRAYAAN‐2 has been orbiting the Moon since its launch in 2019. The Imaging Infra‐Red 

Spectrometer (IIRS) on‐board Chandrayaan‐2 captures high‐resolution images of the lunar surface 

with  its 250 contiguous spectral bands  in  the wavelength range of 0.8  to 5.0 μm at a high spatial 

resolution of 80 m/pixel and a spectral  resolution of ~20‐25 nm  [1],  [2],  [3],  [4]. Data  from  IIRS  is 

archived in the PDS4 format at ISRO’s PRADAN online portal (https://pradan.issdc.gov.in). IIRS was 

specifically designed to capture the hydration signature (observed at ~3 μm), in addition to using it 

to conduct high‐resolution mineralogical analysis of the lunar surface. Till date, several techniques 

have been applied on IIRS data to process and analyze it, such as, automated geometric correction 

[2], photometric correction and analysis [3], and thermal correction and analysis [4]. A recent study 

highlights the applicability of using IIRS data to derive lunar surface temperatures at a high spatial 

resolution [5]. 

Before performing any scientific analysis using raster data, an accurate registration to its actual 

ground coordinates is necessary. As such, pixel‐wise geometric information (including datum and 

map projection) is essential to accurately register a raster image.    In the case of IIRS, its metadata 

provides  latitude,  longitude,  scan and pixel numbers at a 50‐pixel  interval.  [2] have utilized  this 

metadata to create a tool to automate the complicated and time‐taking process of seleno‐referencing 

an IIRS  image. However, we have observed that the metadata does not provide accurate pixel‐to‐

pixel coordinate  information, and  its usage results  in an error/offset of  the seleno‐referenced  IIRS 

image. An alternative way to seleno‐reference IIRS strips could be the manual extraction of the GCPs 
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and  performing  an  image‐to‐image  seleno‐referencing  with  LRO‐WAC  (Lunar  Reconnaissance 

Orbiter  ‐ Wide  Angle  Camera)  data  (spatial  resolution  of  100 m).  However, manually  seleno‐

referencing an IIRS image is a tedious and time‐consuming process which is prone to errors/offsets 

of several meters. Therefore,  there  is a dire need  for a  robust method  that can accurately seleno‐

reference IIRS images quickly, reliably, and accurately. Hence, the primary motivation of this study 

is to develop and implement an automated seleno‐referencing pipeline that is capable of overcoming 

the limitations of the derived geometry as well as providing a fast and user‐friendly way to precisely 

seleno‐reference IIRS images. The subsequent sections provide a detailed account of the methodology 

that has been developed  in  this study  for an automated,  feature‐based seleno‐referencing of  IIRS 

strips via the Scale‐Invariant Feature Transform (SIFT) algorithm. 

2. Data and Methods 

A. Chandrayaan‐2 IIRS level‐1 data 

The  input data consists of  IIRS  level‐1 calibrated radiance products  typically provided  in  the 

PDS4‐compliant  QUB  format,  which  is  a  Band‐Sequential  (BSQ)  multi‐band  image.  This  data 

represents the calibrated radiance values acquired by IIRS. Accompanying each QUB file is an XML 

metadata file, which contains supporting information like image corner coordinates, which have been 

used in our algorithm. 

B. LRO‐WAC global mosaic 

The basemap employed for reference in this study is the LRO‐WAC global lunar mosaic. This is 

a publicly available seleno‐referenced dataset, provided  in GeoTIFF  format. For our purpose,  the 

LRO‐WAC mosaic serves as  the geometric  reference  standard. The  specific Coordinate Reference 

System (CRS) of the WAC mosaic (i.e., Simple Cylindrical Moon) is extracted directly from the file 

and used as the target CRS for the seleno‐referenced IIRS output. 

The core objective of this study is to achieve a significantly high geometric accuracy by directly 

registering the IIRS image to the corresponding LRO‐WAC image using the image‐to‐image feature‐

matching technique. It is hypothesized that this feature‐based registration will effectively compensate 

for  the accumulated errors  in spacecraft pointing, orbit, and sensor modelling, yielding a seleno‐

referenced IIRS product that exhibits a substantially improved spatial alignment with the LRO‐WAC 

standard. 

C. Region of Interest (ROI) definition and pre‐processing 

A single band is selected from the IIRS hyperspectral data cube for processing. In this case, an 

ideal band should have a good signal‐to‐noise ratio (SNR) and surface features that are easily visible. 

Moreover, the IIRS level‐1 datasets have an incorrect spatial orientation of the image array relative to 

the seleno‐graphic area it represents, as defined by the metadata.    Prior to feature‐matching against 

the WAC mosaic,  the algorithm performs an orientation‐check on  the  IIRS  strips using  the XML 

metadata. Wherever necessary, an IIRS strip automatically undergoes an orientation correction, such 

that misalignments, if any, could be identified and removed by the algorithm. 

The extracted IIRS seleno‐graphic corner coordinates (longitude and latitude) are then used to 

extract  the  pixel  coordinates  of  the  corresponding WAC  ROI  pixel  coordinates  (column,  row). 

Further, a minimum bounding box (in WAC pixel coordinates) is determined that encompasses all 

transformed IIRS corners. Padding is then applied to this bounding box, to ensure that the extracted 

WAC region sufficiently overlaps the IIRS strip. Then, the padded pixel coordinates are clipped to 

the valid dimensions of the WAC mosaic (0 to RasterXSize‐1, 0 to RasterYSize‐1) to prevent out‐of‐

bounds  requests.  The  final  ROI  is  defined  as  a  tuple  (𝑦௠௜௡_௙௜௡௔௟ ,  𝑦୫ୟ୶_௙௜௡௔௟ ,  𝑥୫୧୬ _௙௜௡௔௟ , 

𝑥୫ୟ୶ _௙௜௡௔௟) representing the rows and columns to extract from the WAC mosaic. 

Both the IIRS band array and the extracted WAC ROI array are divided into smaller, overlapping 

square patches or tiles. A grid size and an overlap percentage are defined. The coordinates (𝑥௠௜௡, 

𝑦௠௜௡ ,  𝑥௠௔௫ ,  𝑦௠௔௫ )  for each  tile within  its  respective  full array  (rescaled  IIRS or WAC ROI) are 

stored. Tiles < 1/2(grid size) are discarded. 
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Each IIRS and WAC patch is individually normalized. Invalid pixels are masked out. The 2nd 

and  98th  percentiles  of  the  valid  pixel  values  are  calculated.  These  percentiles  define  the  robust 

minimum (𝑝௟௢௪) and maximum (𝑝௛௜௚௛) intensity range, mitigating the effects of extreme outliers. 

Valid pixels are then clipped to this range and then linearly scaled to the floating‐point range [0.0, 

1.0] using the following equation: 

                        (1) 

The means  and  standard deviations of  these  0‐1 normalized valid pixels  are  calculated  and 

stored along with the percentile values (stats). Patches with insufficient valid pixels or near‐constant 

values (low percentile range) are skipped. 

The  initially normalized  IIRS patch  (in  its  0‐1 float  representation)  is  adjusted  to match  the 

statistics of the normalized WAC patch. Using the calculated means (𝑚𝑒𝑎𝑛ூூோௌ, 𝑚𝑒𝑎𝑛ௐ஺஼) and 

standard deviations (𝑠𝑡𝑑ூூோௌ,  𝑠𝑡𝑑ௐ஺஼) from the initial normalization step, the value of each valid 

normalized IIRS pixel (𝑝ூூோௌ௡௢௥௠) is adjusted using the following equation: 

                    (2) 

If  𝑠𝑡𝑑ௐ஺஼   of the IIRS patch ~ 0, the adjustment is skipped, and the IIRS patch that was initially 

normalized is used. 

Both the potentially adjusted and normalized IIRS float patch and the normalized WAC float 

patch are clipped to the [0.0, 1.0] range and then scaled to [0, 255], converting them to the uint8 format, 

suitable for many OpenCV feature detectors. 

D. The Scale‐Invariant Feature Transform (SIFT) algorithm for automated feature‐matching 

The SIFT algorithm is selected as the primary feature detection and matching algorithm due to 

its demonstrated robustness in prominent computer vision and remote sensing applications [6], [7]. 

SIFTʹs particular invariance to scale, rotation, and illumination changes makes it suitable for matching 

features  between  hyperspectral  imagery  acquired  under  varying  geometric  and  illumination 

conditions.  Thus,  the  algorithmʹs  ability  to  detect  distinctive  features  across  different  spatial 

resolutions is crucial for this application, given the resolution difference between IIRS and LRO‐WAC 

datasets. 

Previous  studies,  such  as,  [8],  have  demonstrated  SIFTʹs  effectiveness  in  planetary  surface 

feature‐matching  applications,  particularly  for  lunar  terrain  where  traditional  correlation‐based 

methods often fail due to the uniform albedo and subtle topographic variations of the lunar surface. 

The multi‐scale  nature  of  SIFT  detection  ensures  a  robust  feature  identification  across  the  scale 

differences inherent in multi‐sensor lunar datasets [7]. 

The  implementation  employs  SIFTʹs  standard  two‐stage  approach  –  the  initial  keypoint 

detection followed by descriptor computation. Keypoint detection identifies candidate interest points 

based on  scale‐space  extrema using  the Difference of Gaussians  (DoG) approach across multiple 

octaves.  The  descriptor  computation  stage  calculates  128‐dimensional  feature  vectors  for  each 

detected keypoint, potentially refining the keypoint  locations and rejecting unstable features. This 

separation enables the differentiation between detection failures (insufficient features in the imagery) 

and descriptor computation failures (unstable feature characteristics), facilitating quality assessment 

and troubleshooting. 

Feature correspondence is established using a brute‐force matcher with L2 norm and k‐nearest 

neighbour search (k=2) to enable ratio testing for ambiguous match filtering. A Loweʹs ratio test with 

a 0.75 threshold retains matches only when the nearest‐neighbour distance  is  less than 75% of the 

second nearest neighbour distance, effectively removing correspondences in repetitive lunar terrain 

patterns  like  crater  fields.  Also,  a  geometric  verification  using  a  RANSAC‐based  homography 

estimation  is  done, which  requires  a minimum  of  8‐point  correspondences with  a  3.0‐pixel  re‐

projection threshold to account for sensor resolution and terrain characteristics [8]. 
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Additionally,  the  homography  quality  is  assessed  to  reject  degenerate  transformations  that 

indicate  false  correspondences  or  inappropriate  geometric  models.  This  multi‐stage  filtering 

approach ensures a robust feature‐matching despite the challenging visual characteristics of  lunar 

surface imagery. 

SIFT‐derived correspondences serve as the foundation for GCP generation. The robustness of 

the  SIFT matching  process  directly  impacts  the  overall  seleno‐referencing  quality,  as  the  spatial 

distribution  and  accuracy  of  the  extracted  GCPs  determine  the  fidelity  of  the  final  geometric 

correction applied to IIRS hyperspectral data. 

For a given IIRS tile, the WAC tile that yields the highest number of inliers after the filtering 

steps is considered as the ʺbest‐match.ʺ If a best match with inliers > 0 is found for an IIRS tile, for 

each inlier match in the IIRS source coordinate, we get the keypoint location (𝑥௣௔௧௖௛, 𝑦௣௔௧௖௛) within 

the rescaled IIRS tile. We then add the tileʹs top‐left offset to get the coordinate (𝑥௥௘௦௖௔௟௘ௗ, 𝑦௥௘௦௖௔௟௘ௗ) 
within the fully rescaled IIRS array. Subsequently, we invert the initial flip operations. In the case of 

LRO‐WAC,  for  each  inlier match  in  the WAC  target  coordinate, we  obtain  keypoint  locations 

𝑥௣௔௧௖௛ௐ஺஼ , 𝑦௣௔௧௖௛ௐ஺஼  within the WAC tile, then add the WAC tileʹs top‐left offset within the ROI 

to get the coordinate within the extracted WAC ROI array. Then, we store the pair (𝑥௢௥௜௚, 𝑦௢௥௜௚, 
longitude, latitude) as a potential GCP. 

E. Output 

All the generated GCPs (𝑥௢௥௜௚, 𝑦௢௥௜௚, longitude, latitude) from the successful tile matches are 

aggregated into a list. This list is written to a CSV file in the output directory. The CSV file contains 

the header  (𝑥௣௜௫௘௟  ,  𝑦௣௜௫௘௟ ,  longitude,  latitude) matching  the  format  expected by  the  subsequent 

seleno‐referencing script. 

F. Georeferencing transformation 

A minimum distance of 15‐20 pixels  is specified, which acts as a filter to ensure a more even 

spatial distribution of the GCPs across the IIRS image extent. The minimum and maximum (𝑥௣௜௫௘௟  
and 𝑦௣௜௫௘௟) coordinates are determined from the input GCPs. A grid is conceptually overlaid on the 

IIRS pixel‐space, with cell sizes equal to minimum distance. For each grid cell containing one or more 

GCPs, the Euclidean distance of each point within the cell to the cellʹs centre is calculated. Only the 

GCP closest  to  the centre of each occupied cell  is retained. This effectively  removes  the clustered 

points while preserving spatial coverage. 

Then we establish  the number of GCPs  that are available  for each  image. We  then apply  the 

condition:    and check  if a sufficient number of GCPs are available  (> 20). This 

statistical filter  is  then applied  to  remove  those points  that deviate  significantly  from  the general 

geometric trend. The Euclidean distance (residual error) between the actual target coordinates and 

the predicted target coordinates are calculated for each GCP. The means and the standard deviations 

of these residual errors are then computed. The Z‐score for each GCPʹs residual error is also calculated 

from (3), such that: 

                          (3) 

GCPs with a Z‐score exceeding a defined threshold are considered as outliers and are removed 

from  the  list. A  geometric  transformation model,  such  as  a polynomial,  is  selected  for warping. 

Higher‐order polynomials can model more complex distortions but require more well‐distributed 

GCPs, which risk overfitting. 

The gdal.warp operation creates the final georeferenced GeoTIFF file directly. The final output 

file contains the IIRS data warped to the WAC mosaicʹs CRS at the spatial resolution of IIRS. Using 

the algorithm described above, the time required to process a single IIRS strip can vary between ~two 

to ~five minutes, depending on the length of the strip. Additionally, the output generates a GeoTIFF 

image  containing 250 hyperspectral bands. The methodology described  to  implement  the  seleno‐

referencing process has been summarized in a flowchart (Fig. 1). 
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Figure  1. A flowchart depicting  the methodology  applied  to  seleno‐reference  an  IIRS  image using  the SIFT 

algorithm. 

G. Validation 

After the application of the steps mentioned above, the resultant seleno‐referenced IIRS GeoTIFF 

file is overlaid onto the LRO‐WAC mosaic within a GIS environment. A careful visual inspection of 

the spatial alignment of prominent, unambiguous features such as crater rims, central peaks, rilles, 

and  ridges across  the entire extent of  the  IIRS  strip  is carried out. Care  is  taken  to check  for any 

systematic offsets, rotations, or local distortions. 

A  set of well‐defined  Independent Check Points  (ICPs)  that are  clearly visible and precisely 

locatable  are manually  identified  in both  the original  IIRS  image  and  the WAC mosaic. A good 

distribution of ICPs across the IIRS strip is crucial. 

3. Results and Discussion 

A total of ~200 IIRS strips were processed using a SIFT‐based algorithm, which is described in 

Section II (E). The large pool of IIRS strips allowed us to create a database using which we were able 

to quantitatively assess  the accuracy of  the  seleno‐referenced dataset and estimate  the associated 

errors. Our analysis of the processed IIRS dataset reveals that the algorithm has worked well on the 

IIRS images and has taken care of the different solar incidence angles that each IIRS strip possesses. 

We chose only those IIRS strips whose acquisition times ranged between the lunar sunrise (~07:00 

hours local lunar time) and the lunar sunset (~19:00 hours local lunar time), as well as between the 

latitudes of ±55°. The 12‐hour  time‐window has allowed us  to analyze  IIRS strips across different 

times of a lunar day and assess whether the time of acquisition (and consequently, the solar incidence 

angles) has any impact on the performance of the algorithm. 

      Fig. 2 shows an example of a sample of  four separate and processed  IIRS strips  that pass 

primarily over the lunar maria (a‐d). RMS errors (RMSE_total) calculated (in metres) for each strip 

have been shown in Table 1. The estimated RMS errors for the strips passing over the maria range 

between ~67.5 m to ~82.5 m, indicating that for three of the strips (Fig. 2 a, b, d), the RMS errors are 

within  the  resolution  of  a  single  IIRS pixel  (~80 m), which  further  highlights  the  efficacy  of  the 

algorithm. Similarly, Fig. 3 shows  four processed  IIRS strips  that pass primarily over parts of  the 

lunar highlands  (a‐d). For  the highlands example,  the estimated RMS errors were  found  to range 

between ~64 m to 66.6 m, two of which are from those IIRS strips which are less than the resolution 

of  a  single  IIRS pixel  (a,  b), while  the  other  two  (c, d)  have  values  such  as  83.6 m  and  84.5 m, 

respectively (Table 1). The mean RMS error for the eight strips (~73 m) was also found to be below 

the resolution of an IIRS pixel. The details regarding the RMS errors estimated for the eight IIRS strips 

are provided in Table 1 and Fig. 4. 

A specific cause that could be attributed to the range of the measured RMS errors could not be 

found. However, one possible cause seems to be more relevant than the other possible causes – a 
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difference  in  the solar  incidence angles. The LRO‐WAC dataset  (which has been used a reference 

image in this study) has a range of solar incidence angles (between 48°‐72° at the equator) [10], which 

are  relatively  higher  than  IIRS  and  hence,  generally do  not match  the  IIRS  values  (~20°  to  ~43° 

between the latitudes of 5° S to 28° N). It is important to note that IIRS essentially has comparatively 

lower  incidence  angles  across  most  of  the  ~200  strips  that  we  have  analyzed  in  this  study. 

Consequently, based on our analysis, it was found that the differences create potential conditions for 

misidentification of the features on the lunar surface for the SIFT algorithm. Such occurrences could 

lead to an error equivalent to approximately one IIRS pixel (60 m < error < 90 m) near the equator, 

potentially  increasing to up to three IIRS pixels (240 m < error < 300 m) upwards of ±40°  latitude. 

However, in spite of the large differences in the incidence angles of IIRS and WAC, the SIFT algorithm 

is able to identify surface features from WAC and match them accurately for a majority of the IIRS 

images. 

Table 1. RMS errors calculated for IIRS data from eight different IIRS strips with respect to the corresponding 

LRO‐WAC tiles. figure locations of each IIRS strip have been mentioned in the ‘remarks’ column. 
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Figure 2. Four examples of IIRS strips seleno‐referenced using the SIFT algorithm. (a) to (d) show the IIRS strips 

that are from the lunar maria. Extents of the IIRS strips are indicated by white rectangles. Basemap is LRO‐WAC. 

For the corresponding IIRS strip IDs (a‐d), please refer to Table 1. 
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Figure 3. Four examples of IIRS strips seleno‐referenced using the SIFT algorithm. (a) to (d) show the IIRS strips 

that are from the lunar highlands. Extents of the IIRS strips are shown in white for (a‐c), and in black for (d). 

Basemap is LRO‐WAC. For the corresponding IIRS strip IDs, please refer to Table 1. 

In order  to understand whether  latitude plays a role  in  the seleno‐referencing process,  three 

separate  IIRS  strips  were  scrutinized  in  detail  (Fig.  5).  One  of  the  images 

(CH2_IIR_NCI_20240201T1026227387_D_IMG_D18)  extends  from  ~60° S up  to  20° S. RMS  errors 

have been computed at every few degrees in latitude along the extent of the image. The estimated 

RMSE values ranged between ~1,040 m at 60° S to ~70 m at 47° S and ~65 m at 22° S. This indicates 

that with increasing latitude (beyond ±55°), RMS errors increase exponentially. This is due to the fact 
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that beyond ±55°,  the curvature of  the Moon  tends  to become more prominent, which affects  the 

images captured by sensors like IIRS as well as those captured by LRO, and is therefore a limitation 

of  this  study.  Similarly,  the  second  image  (CH2_IIR_NCI_20240422T1522156952_D_IMG_D18), 

which spans from 40° N up to 70° N, has similar RMSE values, such that at lower latitudes the value 

is  less than IIRS’s spatial resolution, whereas at its maximum extent,  it was found to be ~2,000 m. 

Therefore, it is evident that at higher latitudes (beyond ±55°), RMS errors are exceptionally higher as 

compared  to  the  lower  latitudes.  The  third  image 

(CH2_IIR_NCI_20231117T1110268671_D_IMG_D18)  extends  from  ~8°  S  to  ~32°  N.  The 

corresponding RMS errors estimated from this image are <80 m for all instances. Hence, according to 

the values  in Fig. 5,  it was  found  that  latitude does play a role  for  the current seleno‐referencing 

process which impacts the derived accuracy of the IIRS strips according to their latitudinal extents. 

 

Figure 4. A plot of RMS errors computed from the eight IIRS strips as shown  in Table 1. For IIRS figure IDs 

mentioned in the figure above, please refer to the ‘Remarks’ column in Table 1. 
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Figure 5. A plot of RMS errors plotted against different latitudes (60° S to 70° N) using three IIRS strips. 

4. CONCLUSIONS 

This study presents a methodology to automate the process of seleno‐referencing IIRS images 

using LRO‐WAC as a reference image. The SIFT algorithm, which has been used to automatically 

detect GCPs  from both WAC and  IIRS,  is explained  in detail  in Section 2. Results  from  the study 

indicate that SIFT is able to both identify and match the derived GCPs from WAC and IIRS, using 

which IIRS strips have been seleno‐referenced (Section 3). A sample of eight IIRS strips shows the 

efficacy of the SIFT algorithm, such that, the measured RMS errors were within the size of a single 

IIRS pixel for five of the eight IIRS strips (Table 1). For the remaining three strips, the RMS errors 

were less than ~85 m. The mean RMS error was calculated to be ~73 m. In addition, three IIRS strips 

were analyzed to find out whether latitude plays a role in the RMS errors estimated from IIRS strips. 

However, based on the results presented in Fig. 5, a correlation was obtained between latitude and 

the derived RMSE values, which was seen to affect the accuracy of the seleno‐referenced IIRS strips 

beyond  ±55°,  without  significantly  impacting  the  lower  latitudes.  Finally,  the  SIFT  algorithm 

explained  here  could  be  used  to  automatically  detect  GCPs  from  an  individual  IIRS  strip  and 

accurately seleno‐reference  it as per the actual surface coordinates  in a much faster (less than five 

minutes), more  accurate  and more  reliably  than  the  existing ways,  i.e.,  either manually  seleno‐

referencing them or by using the attached metadata provided with each IIRS strip. Additionally, this 

algorithm  may  also  be  used  on  similar  unregistered  planetary  datasets,  for  which  a  standard 

reference map with a comparable spatial resolution is necessary. 
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