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Abstract: Heart rate (HR) is strongly affected by the autonomic nervous system (ANS), while its 
spontaneous fluctuations, called heart-rate variability (HRV), are reporting about the dynamics of the 
complex, vegetative regulation of the heart rhythm. Hence, HRV is widely considered an important 
marker of the ANS-effects on the cardiac system, and as such, a crucial diagnostic tool in cardiology. 
In order to get nontrivial results from HRV-analysis, it would be desirable to establish exact, universal 
interrelations between the typical HRV parameters and HR itself that, however, has not been fully 
accomplished, yet. Hence, our aim was to perform a comparative statistical analysis of ECG-
recordings from a public database, with a focus on the HR-dependence of typical HRV parameters. 
We revealed their fundamental connections, which were substantiated by basic mathematical 
considerations, and were experimentally demonstrated via the analysis of 24-hours ECG-recordings 
of more than 200 healthy individuals. The large database allowed us to perform unique age-cohort 
analyses, too. We confirmed the HR-dependence of typical time-domain parameters as RMSSD and 
SDNN, frequency-domain parameters as the VLF-, LF- and HF-components, and nonlinear indices 
as sample entropy and DFA-exponent. In addition to shedding light on their relationship, we are the 
first to our knowledge identified a new, diffuse structure in the VHF regime, as an important 
indicator of the SNS activity. In addition, the demonstrated age-dependence of the HRV parameters 
gives important new insight into the long-term changes of the ANS-regulation of the cardiac system. 
We propose that our results to be utilized in HRV analysis in both medical and research practice.  

Keywords: RMSSD, Bland-Altman plot, Parseval-theorem, HRV spectral band, Autonomic nervous 
system, Entropy- and DFA-analysis, Age-dependence, Correlated and uncorrelated noise 
 

1. Introduction 

Heart rate variability (HRV) measures the variation in interbeat intervals from one heartbeat to 
the next, reflecting changes in the heart rate (HR) over time. Heart rhythm is primarily governed by 
the synchronized firing of pacemaker cells in the sinoatrial node of the heart muscle, which initiates 
the cardiac cycle, and the activity of the pacemaker cells is regulated by autonomic efferent neurons 
and circulating hormones. The complex actions of the underlying interdependent regulatory systems 
give rise to the variability of the length of the cardiac cycle over different time scales, supporting the 
optimal performance of the heart under homeostasis. Therefore, HRV is widely considered an 
important marker of the autonomic nervous system (ANS)[1]. 
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In addition to sympathetic and parasympathetic nervous system (SNS and PNS) activities, 
respiration and the baroreceptor reflex are considered to influence HRV on time scales ranging from 
seconds to minutes. In contrast, other ultradian and circadian rhythms driven by factors like 
metabolism, physical activity, body temperature and sleep-wake cycles govern HRV over hours to 
the daily cycle. 

At the individual level, HRV can be influenced by several non-modifiable factors, such as age, 
gender and genetics, as well as modifiable factors, including physiological and pathological elements 
(e.g., posture, respiration, hormonal influences, inflammation, infections, neurological or mental 
disorders, cardiovascular conditions), lifestyle factors (e.g., alcohol, tobacco, drug use, exercise, 
meditation) and environmental factors (e.g., physical stress and temperature), and 
neuropsychological factors [2–5]. 

HRV is widely used in the investigation of the heart, and is considered an essential diagnostic 
tool in cardiology. Higher HRV is often associated with better fitness and heart adaptability, while 
reduced HRV is commonly linked to various pathological conditions, including congestive heart 
failure, diabetic neuropathy, mental disorders and cancer [6,7].  

Researchers and clinicians use time-domain, frequency-domain, and non-linear indices to 
measure HRV, by typically analysing time-resolved electrocardiography (ECG) or pulsometry 
signals [8–10]. Time-domain indices are derived from the time series of RR-intervals, and capture the 
variability in HRV over the monitoring period. The mean RR (or NN) interval or, equivalently, the 
average HR, are the simplest time-domain indicators. Other time-domain measures, such as the 
standard deviation of normal-to-normal RR intervals (SDNN), represent the overall variability (both 
short- and long-term), while the root mean square of successive differences (RMSSD) is more suited 
to quantify short-term variability [8]. 

Frequency-domain analysis involves calculating the absolute or relative power, within high-
frequency (HF), low-frequency (LF), and sometimes very-low-frequency (VLF) bands. For HRV in 
normal subjects, typical frequency band ranges in short-term recordings are 0-0.04 Hz (VLF), 0.04-
0.15 Hz (LF), and 0.15-0.4 Hz (HF). Frequency-domain HRV measures include peak frequencies (the 
frequency corresponding to maximum power within each band), as well as the absolute and relative 
powers for each band, sometimes the normalized powers for LF and HF, the LF/HF power ratio, and 
the total spectral power [9,10]. 

Nonlinear indices assess the complexity and unpredictability of the interbeat intervals. Due to 
the heart's complex regulation system, HRV cannot be fully described using linear methods alone, 
prompting the use of nonlinear techniques such as the Poincaré plot, sample entropy (SampEn), and 
detrended fluctuation analysis (DFA). The Poincaré plot visualizes the correlation between 
consecutive RR intervals by plotting RRj+1 against RRj, and the shape of the plot is quantified using 
an ellipse fitted to the data. The ellipse's width (SD1) and length (SD2) are considered to represent 
short-term and overall HR variability, respectively [11]. 

Sample entropy SampEn measures the complexity of HRV, with a computation depending on 
two parameters: the embedding dimension (m) and the tolerance (r). Default values are m = 2 and r 
= 0.2xSDNN. Detrended fluctuation analysis (DFA) evaluates correlations in HRV data across 
different time scales. Short-term (α1) and long-term (α2) fluctuations are measured by the slopes of 
a log-log plot of correlation coefficient versus segment length, with α1 derived from segments of 4-
16 beats and α2 from 16-64 beats [8,9]. 

HRV analysis is nowadays routinely applied in clinical cardiology and stress-relaxation studies 
[12–15]. When choosing HRV measures from the time-domain, frequency-domain, and non-linear 
methods to track clinical progress or performance, the choice often depends on the investigator's 
intuition and preference. This choice is further complicated by the well-known but often ignored fact 
that changes in HR do affect HRV. E.g., a decrease in HR leads to an increase of typical HRV indices, 
while an increase in HR generally decreases HRV parameters such as SDNN and RMSSD [16–19]. As 
physical activity and posture impact both HR and HRV [3–5,20,21], protocols developed by the joint 
European and American task forces [22] recommend stationary RR time-series measurement during 
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HRV monitoring, though this complicates experiments requiring movement. Nearly all parameters 
that describe instantaneous HRV (i.e., excluding time-averaged measures) are influenced by HR, such 
as the time-domain, frequency-domain, or nonlinear measures [23–27], and this dependence is 
generally pivotal, namely, it usually masks the effects of all the other factors on HRV. For instance, if 
the relationship between the common HRV parameter, RMSSD and the HR is not appropriately 
considered, then the variability parameter will primarily reflect changes in the heart rhythm, and it 
will not provide independent physiological information [27]. 

During the past two decades, some prominent research groups have, indeed, recognized that 
HRV cannot be used as an accurate diagnostic marker without taking into account its HR-
dependence, and therefore serious attempts have been made to describe the general features of the 
HR-dependence of various HRV parameters (see, amongst others, the publications of and the debates 
between the Billmann and the Boyett groups [16,16,18,19,23–25,28]. However, lacking the exact 
function that describes the relationship between HRV and HR, there has been no practical way to 
define a single, ”heart-rate-corrected” HRV parameter that could properly account for the HR-
dependence. Some papers even argued that the existence of such a well-defined HRV(HR) function 
might mean that HRV does not contain extra information to what HR does [24]. Lately, it has been 
shown that while a well-defined RMSSD(HR) function indeed exists, and shows a remarkable 
invariability on the level of an individual from the hours’ to the monthly scale (hence it is called the 
“Master Curve”, MC) [27], momentary deviations from it on the seconds’ to the minutes scale do 
occur, and reflect changes in the sympatho-vagal balance, due, e.g. to stress or relaxation [29]. 
Longitudinal analyses also revealed changes of the MC on the decade scale, as well [27], which may 
be associated with the age-dependent degradation of the cardiac regulatory mechanism. As for the 
HR-dependence of the spectral and nonlinear HRV parameters, we should highlight the contribution 
of Platisa and coworkers, who, based on the results of some 20 volunteers, presented nice, low-noise 
curves describing changes in the VLF, LF and HF components, as well as in the sample entropy and 
alpha1 and 2 parameters of the DFA analysis, as a function of RR intervals, in a row of publications 
[26,30–33]. They also established apparent pairwise connections between these parameters, described 
with quasi-linear or quasi-quadratic functions, in this representation. More recently, Tsaneva and 
coworkers also presented notable analyses of HRV data by time-and frequency-domain, as well as 
nonlinear descriptors [10,34–37].   

All the above works, along with many others, are fundamental contributions towards a deeper 
understanding of the complex mechanism via which the ANS influences the fluctuations of the HR 
time series, however, a more complete exploration of this stochastic process is at need. 

Correspondingly, the current study aims to address this gap by performing a comparative 
statistical analysis of ECG recordings from a public database, containing 24-hour-long ECG 
recordings of 200 healthy individuals, with a focus on the HR-dependence of typical time-domain, 
frequency-domain, and nonlinear HRV parameters, which reflect the same stochastic process from 
different viewpoints. in addition, the large number of recordings and the wide age distribution of the 
volunteers allowed us to make age-cohort studies, as well. In support, the age dependence of the 
HRV parameters illuminates the physiological grounds of the complex regulatory mechanism of the 
ANS on cardiac function, since aging is associated with structural and functional alterations in the 
brainstem and hypothalamus, regions integral to autonomic regulation [38,39],. 

In this study, we represent the various HRV parameters as a function of HR, because the curves 
in this representation are the easiest to interpret in terms of PNS and SNS effects (see, e.g., Figure S2 
and S3) on the ultradian time scale of minutes to hours. Age-dependence, on the other hand, reflects 
long-term changes in the cardiac control of ANS, typically on the scale of decades to years. 
Investigation of such a combination of dependencies on a large database is a novel approach to the 
best of our knowledge. Therefore, we propose that our results, clarifying the formal connections 
between the most typical HRV parameters via analyzing their HR- and age-dependence, will facilitate 
a more insightful interpretation of HRV data in cardiovascular research and medical practice. 
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2. Materials and Methods 

ECG data were obtained from a public database of the Telemetric- and Holter-ECG Warehouse 
(“THEW”) at the University of Rochester Medical Center, New York, United States [40]. The 24-h 
Holter recording data of 202 healthy volunteers (Database Normal, EHOL-03-0202-003, age ranging 
from 9 to 82 years) were analysed. The time series were filtered for outliers by a MATLAB routine 
“isoutlier”, with moving median 30 points (MathWorks, 2020). 

In this study, we examined time-domain HRV parameters RMSSD and SDNN directly 
calculated from the time series of RR intervals extracted from the ECG recordings, the frequency-
domain parameters LF, HF and very-high-frequency (VHF) power obtained from Fast Fourier 
Transform (FFT)-spectra of the RR and dRR time series, while among the nonlinear measures the 
DFA exponent α1 (with m = 2 and r = 0.2xSDNN), and the Poincaré plot were derived from RR time 
series, according to their definitions (Table 1), using a MATLAB code written by one of us (A.B.). 
Note that, since here we examined only healthy subjects’ recordings, where the percentage of 
extrasystoles is negligible, we approximated the NN time series with the corresponding RR time 
series, filtered for outliers (Figure S1).  

Table 1. List of the main parameters used in this study. 

Parameter Definition Mathematical formula 

RMSSD 

Measures short-term HRV based on the 

square root of the mean of the N−1 squared 

differences between adjacent RR intervals. 

Reflects parasympathetic activity. 

𝑅𝑀𝑆𝑆𝐷 = ඩ
1

𝑁 − 1
෍(𝑅𝑅௜ାଵ − 𝑅𝑅௜)ଶ

ேିଵ

ଵ

 

SDNN 

Standard deviation of all RR intervals. 

Reflects overall HRV (both sympathetic and 

parasympathetic). 

𝑆𝐷𝑁𝑁 = ඩ
1

𝑁 − 1
෍(𝑅𝑅௜ − 〈𝑅𝑅௜〉)ଶ

ேିଵ

ଵ

 

 

VLF (Very Low Frequency) 

Power in the very low frequency range 

(0.0033-0.04 Hz). Linked to thermoregulation, 

hormones, and other slow-acting regulatory 

mechanisms. 

න 𝐹(𝑅𝑅)𝑑𝜔
଴.଴ସு௭

଴.଴଴ଷଷு௭

 

F(𝑅𝑅) Fourier transform of RR time series 

LF (Low Frequency) 

Power in the low frequency range (0.04–0.15 

Hz). Reflects both sympathetic and 

parasympathetic activity. 

න 𝐹(𝑅𝑅)𝑑𝜔
଴.ଵହு௭

଴.଴ସு௭

 

HF (High Frequency) 

Power in the high frequency range (0.15–0.40 

Hz). Mainly reflects parasympathetic (vagal) 

activity, associated with respiration. 

න 𝐹(𝑅𝑅)𝑑𝜔
଴.ସு௭

଴.ଵହு௭

 

VHF (Very High Frequency) Power in the very high frequency range (>0.4 

Hz). May reflect noise or specific 

physiological phenomena. 

න 𝐹(𝑅𝑅)𝑑𝜔
௠௔௫(ఠ)

଴.ସு௭

 

Entropy (SampEn, ApEn) Measures the complexity or unpredictability 

of RR interval time series. Higher entropy = 

more complex signal. [41] 

SampEn(m, r, N) = ln(A/B) 

𝐴 = 𝑁(𝑑[𝑋௠ାଵ(𝑖), 𝑋௠ାଵ(𝑗)] < 𝑟) 

𝐵 = 𝑁(𝑑[𝑋௠(𝑖), 𝑋௠(𝑗)] < 𝑟) 

N number of vector pairs 

in our case 𝑚 = 2, 

𝑟 = 0.2 ∙ 𝑆𝐷𝑁𝑁 
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DFA (Detrended Fluctuation Analysis) Detects fractal scaling properties in HRV, 

capturing long-range correlations. Useful in 

non-stationary data. [42] 

𝐹(𝑠) = ቎
1

𝑁௦
෍

1

𝑠
෍(𝑦௜(𝑗) − 𝑦ො௜(𝑗))ଶ

௦

௝ୀଵ

ேೞ

௜ୀଵ

቏

ଵ/ଶ

 

𝐹(𝑠) ∝ 𝑠ఈ 

𝛼 is scaling exponent 

(s=10, 20, …, 100) 

 
For the DFA analysis, the time series was divided into non-overlapping segments of lengths 

ranging from 10 to 100 data points, in 10 steps. These fixed segment sizes (10, 20, ..., 100) were used 
to evaluate the fluctuation function across different time scales. The RR interval time series was 
interpolated at 4 Hz to achieve uniform sampling. All analyses — including frequency-domain 
measures (FFT-based spectral analysis), nonlinear metrics (e.g., entropy calculation, detrended 
fluctuation analysis), and time-domain parameters (e.g., RMSSD, SDNN) — were performed on 
successive overlapping segments. Each segment contained 512 data points, corresponding to a time 
window of 128 seconds. Consecutive segments were shifted by 50 data points (12.5 seconds), 
resulting in a considerable overlap between successive windows, which allowed for high temporal 
resolution in the dynamic analysis. 

HRV-related Poincaré plots are graphical representations of the relevant RR time series [11]. The 
Descartian coordinates of the i-th point are Ri and Ri+1, respectively, where Ri is the i-th RR interval 
(Figure 1a). The Poincaré plots can then be transformed to the so-called Bland-Altman representation 
((Ri + Ri+1)/2, Ri+1 − Ri). Note that the Bland-Altman plot is a difference plot, usually used to compare 
two different series of measurements of the same thing or process, in order to reveal, eg., possible 
systematic differences, due to inaccuracies of the different measuring instruments [43]. Here, we used 
it in an unusual way, inasmuch as we applied it to the same time series, but one of the counterpart is 
”shifted” by one data point. and this way, we arrive at a transformation of the Poincaré scatter plot, 
where the points are now distributed quuasi-symmetrically around the abscissa (Figure 1b and c). 
From this, after a conversion from the RR- to the HR-scale (Figure 1c), and fitting Gaussians to the 
dRR distribution at each HR, a high-accuracy RMSSD(HR) plot can be determined, which is called 
the “Master Curve” (MC) (Figure 1d) [27]. 

 

 

Figure 1. (a) Poincaré plot of a typical RR time series. (b) The same in Bland–Altman-like representation. (c) ∆RR 
(≡dRR) as a function of heart rate (HR), as calculated from the data in (b). The color code shows the frequency of 
the data. (d) The RMSSD versus HR curve (MC), determined from data in (c), as the RMS of the distribution of 
ΔRR values at each HR. The red lines stand for illustration of the way of calculation at an ad hoc HR value. 
(Reproduced from Buzás et al. [27].) 
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The evaluation methods were applied to each valuable ECG recording, and the relationships 
between the time-, frequency-domain and nonlinear parameters are shown via HR data of a typical 
healthy individual (age:21, male), doubled with age-cohort-averaged data of healthy people. 

3. Results and Discussion 

3.1. RMSSD and the Poincaré plot 

Revealing the connection between these time-domain and nonlinear measures requires several-
hours-, preferably 24-hours-long recordings. Figure 2a shows a Bland-Altmann-type representation 
of the conventional Poincaré plot of a typical individual from the THEW data base, where from the 
MC, representing the HR-dependence of RMSSD, was calculated, as described above (Figure 2b). 
RMSSD as calculated directly from the RR time series data by a conventional sectional evaluation of 
the HR time series with a rolling time window (width = 128s, step size = 12.5s) is shown together with 
the MC in Figure 2c. When selecting the optimal width of the time window, one has to consider the 
problem stemming from the time dependence of HR. If the analysis is restricted to short time intervals 
(where HR does not change significantly), it results in a higher uncertainty in HRV, as compared to 
the MC method (Figure 2c). Although, longer averages reduce the level of fluctuations in the 
sequential time-window analysis, as well, but they inevitably accompany with information loss on 
the HR scale. Hence, whenever it can be applied, the MC method is preferred to use for the 
determination of the RMSSD(HR) dependence. As it was established in Buzás et al [27], the MC is 
rather stable for an individual on the daily to monthly scales, so it can be used as a good reference for 
the cardiac state of a person. On the cohort level, it was pointed out, however, that aging and 
myocardial infarction do influence MC, so a change of MC is considered to reflect remodelling of the 
heart. In Figure 2d, we show the age-cohort-averaged Master Curves according to a new age 
classification (the start and end ages of the cohorts are also indicated on the plot), showing a gradual 
decline of the HRV level, as age progresses [27]. It has also been shown that MC can be decently 
interpreted by a two-component stochastic model, where the two noise components were tentatively 
attributed to sympathetic and parasympathetic influence, PNS effects being more dominant at low 
heart rates (HR< ca.100), while SNS effects above (Figure S3) [27]. Recent publications suggest that 
MC represents the mean sympatho-vagal balance as a function of HR, and short-term (i.e., minute-
scale) deviations from it are indicative of actual fluctuations of the SNS and/or PNS effects [27,29]. A 
new HRV-indicator based on the actual RMSSD normalized to the Master Curve was successfully 
used to characterize stress responses and relaxation [29]. 

 

Figure 2. Master Curve plots of a typical individual. a) Bland-Altman plot of of RR data, as a function of HR. b) 
Master Curve (ln(RMSSD versus HR), c) ln(RMSSD calculated by the conventional method (blue dots) and MC 
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(black line), d) Age-cohort-averaged Master Curves, showing an overall decrease of HRV level as age progresses. 
The different cohorts are distinguished by colors, while their start and end ages in years are indicated aside the 
symbols. 

3.2. Fourier-components versus RMSSD and SDNN  

Fourier-transform of the RR or dRR time series is used for the spectral description of HRV, 
usually using the FFT algorithm. FFT analysis of the RR(t) data usually show characteristic features 
in the “very-low-frequency” (0.0033Hz<ω<0.04 Hz), the “low-frequency (0.04Hz<ω<0.15Hz) and in 
the “high-frequency” (0.15Hz<ω<0.4 Hz) regime, denoted by VLF, LF and HF, respectively. In the 
FFT spectra of dRR data, however, the VLF components are overdamped, hence, usually only the LF 
and HF features are considered. The VHF regime (>0.4 Hz) is rarely mentioned and poorly discussed 
[44].  

Unless the so-called ULF band (ω<0.0033Hz) is investigated, FFT is usually performed on HRV(t) 
(i.e., RR or dRR time series) data within a few-minutes-wide time window (of a width usually 
between 2 and 5 minutes), which is shifted along the time scale. The RR or dRR time series should be 
interpolated by equidistant sampling beforehand, and then an average HR value can also be assigned 
to each interval. Because of the strict mathematical relationship between frequency- and time-domain 
parameters, if the former show a HR-dependence, the latter should also do so.   

Figure 3a shows the averaged FFT map of all the healthy people’s dRR data from the THEW 
database, as a function of HR. While the conventional LF and HF bands present explicit spectral 
features at “normal” heart rates (HR up to ca. 120 bpm), a more diffuse but non-negligible feature 
also emerges in the VHF region at higher heart rates (above ca. 100 bpm, Figure 3a and b). Without 
entering a deeper discussion about the origin of this neglected broad band, one should establish that 
it appears in the range of high HRs, where SNS effects dominate, and as such, it is expected to be an 
important status indicator in neurology, cardiology, aging or sports applications.  

 

 

Figure 3. a) Colour-coded averaged Fourier-map of the dRR data of all the 202 healthy individuals. (The data 
are normalized at each HR.) The white horizontal lines indicate the boarder-frequencies dividing the different 
bands (VLF, LF, HF and VHF). b) Frequency spectra taken at different HRs: 50bpm (red), 100bpm (blue) and 
150bpm (yellow). 

Our findings provide an interesting support to the above statement: The 24-hours-long ECG 
recordings of the THEW database, registered on healthy people of ages between 9 and 82 years, were 
classified into 5 age cohorts, and the cohort-averaged FFT spectral maps were compared (Figure 4).  

It is apparent that as age increases, a large part of the VHF “cloud” is shifted towards lower HR 
values, and gradually merges into the HF band. Further targeted physiological studies are needed to 
explore the full diagnostic value of this new spectral feature, but it is clear that this effect points at 
the increased weight of SNS effects, as age progresses. Our new findings are also in line with 
independent physiological evidences for the increase of the SNS activity by age in humans, which 
has been observed in both basal (resting) conditions and in response to stress or physiological 
challenges. In support, Monahan et al. (2003) demonstrated that aging is associated with increased 
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sympathetic nervous system activity and reduced parasympathetic modulation, which may 
contribute to the development of age-related hypertension [39]. Esler et al. (2008) observed elevated 
plasma norepinephrine levels and increased sympathetic nerve firing rates as aging is progressed 
[45].  

 

 

Figure 4. Age-cohort averaged dRR Fourier-maps, showing the shift   part of the VHF “cloud” to lower HRs. 

Due to the strict connection between the HRV(ω) and HRV(t) data (where ω is the angular 
frequency, and t is time), a quantitative statement can be established for the HR-dependence of such 
time-domain HRV parameters as RMSSD or SDNN and that of the Fourier-components of the FFT 
power spectra. Namely, the following equations hold: 

 
 

      and 
 
 
The name of the underlying mathematical relationship is Parseval’s theorem, which expresses 

the unitarity of the Fourier transform, loosely stating that the “energy” of the signal should be equal 
by summing power-per-sample across time or spectral power across frequency [46]. To translate it 
for our case: the HRV amplitude associated for a certain HR should be the same whether it is 
calculated from the time-domain parameters or the corresponding frequency-domain ones. From 
this, it follows that RMSSD(HR) and SDNN(HR) can be regained from the superposition of the 
LF(HR), HF(HR) and VHF(HR) functions. . Using the data of the selected typical individual, Figure 
5 shows that it is indeed the case, with good approximation. 
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Figure 5. a) dRR Fourier-map, and b) RR Fourier map of the selected, typical individual. c) Power-spectrum 
coefficients of the different dRR Fourier-spectral components (VLF (magenta), LF (red), HF (blue) and VHF 
(green), and their superposition (black), with the almost perfectly overlapping MC (dashed black), as a function 
of HR. d) Power-spectrum coefficients of the different RR Fourier-spectral components (VLF (magenta), LF (red), 
HF (blue) and VHF (green), and their superposition (black), with the overlapping scatter plot of the SDNN(HR) 
values obtained from the conventional (shifting time-window) evaluation (cyan points), as a function of HR.  

3.3. Fourier-components versus nonlinear measures (DFA and SampEn) 

DFA analysis and SampEn report rather on the structure of HRV fluctuations than on the size of 
them. DFA analysis evaluates the degree of correlation between each RR interval and the preceding 
and following RR intervals across various time scales. The algorithm first divides the integrated time 
series of 10 intervals into bins of length N. In each bin, a least-squares line is fitted to capture the local 
trend. The integrated time series is then detrended by subtracting the local trend in each bin. The 
root-mean-square fluctuation of the integrated and detrended time series is subsequently calculated 
for all bin lengths, ranging from N = 10 to N = 100 RR intervals. The α coefficient, which quantifies 
the relationship between fluctuations and bin length on a log-log plot, determines the extent of long-
range correlations. An α1 value of 1.00 indicates perfect correlations across all time scales, while an α 
value of 0.50 signifies complete lack of correlation with previous and subsequent intervals [8,47]. 

Figure 6d shows the α1 (HR) plot of the selected individual, whose RR data were used in the 
former HRV analyses in this paper. In spite of the relatively large standard deviation, the overall 
trend is clearly visible: While at the lowest HR values (HR  60-65 bpm), the DFA coefficient, α1 is 
close to 0.5, there is a rising tendency up to HR  120-130 bpm, α1 reaching a maximum value of 
shortly over 1, above which HR range, it starts to decline to lower values, again. The statistical 
meaning of this is that while HRV statistics at low HR values is close to that of an uncorrelated white 
noise, around its zenith it approaches α11, representing a strongly correlated pink (1/f) noise, and 
at even higher HR values, it returns toward a less correlated fluctuation statistics. Entropy, reporting 
the degree of disorder, reflects a corresponding anti-correlation with the DFA exponent. The 
uncorrelated white-noise-like state corresponds to the highest value, and then, after reaching a 
minimum showing a stronger level of correlation at HR  130 bpm, it starts to rise again as HR grows 
(Figure 6a). The corresponding frequency spectra are in line with the above: at HR  65 bpm, the noise 
spectrum shows a relatively flat feature (slope  0), at other HR values it shows a steeper negative 
slope, reaching its extremum (slope  -2) around 130 bpm, representing an 1/f2–like, correlated noise. 
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Figure 6. a) SampEn values calculated from RR data in a 120s-wide sliding window analysis, b) DFA exponents 
(α1) from a sliding-window analysis. c), d) and e) Frequency spectra associated to 65bpm, 85bpm, 110bpm and 
130bpm, respectively.  

An age-cohort analysis shows the above relations between the DFA-exponent and SampEn even 
more clearly (Figure 7). The cohort-averaged plots show a nice anti-symmetry, revealing that the 
decline of α1 at high HRs is real, whose pandant is seen as a rise of SampEn in the same range. Our 
findings are in concert with the earlier results of Platisa et al., who depicted the DFA-exponent and 
SampEn as a function of the RR-interval lengths, and found extrema around the same RR value in 
both cases [30]. They also hypothesized that the abscissa of this “turning point”, Htp (i.e., the 
minimum place for SampEn and the corresponding maximum place of α1) might reflect the intrinsic 
heart rate, Hi (i.e., the HR measurable at full autonomic blockade) [30,33]. This would mean that Hi 
could be determined non-invasively, without pharmacologically blocking the effects of PNS and SNS 
on the cardiac cycle. Our age-cohort-averaged data, indeed, show a similar tendency of declination 
for Htp, as it has earlier been determined for Hi [48], implying a possible close connection between Htp 
and Hi. Note that a decrease of HRi to lower values by age is also in concert with an increasing 
sympathetic dominance. Recent studies of Singh et al., using other nonlinear HRV measures, such as 
Approximate Entropy (ApEn) and Recurrence Quantification Analysis (RQA) analysed two age 
cohorts (”young” and ”elderly” subjects), also came to a similar conclusion [49], suggesting that ApEn 
and RQA could more sensitively measure age-dependent effects than linear parameters can do. 

It is also worth emphasizing that similarly to the decrease of Htp and Hi values, the centre of the 
VHF “cloud” also decreases as age progresses. This is a nontrivial correlation in the sense that, unlike 
the weight of the spectral components, the nonlinear HRV parameters do not directly measure the 
specific peaks considered a manifestation of ANS-related effects, but rather reflect the background 
noise structure, probably governed by coupled oscillations and fluctuations of other regulatory 
processes. Hence, they must carry some independent information, as well, to those HRV time- or 
frequency-domain parameters that measure the amplitude (power) of fluctuations. 
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Figure 7. a) Age-cohort-averaged entropy values and b) DFA exponents, as a function of HR.  

 

4. Conclusions 

Based on the intrinsic HR- and age-dependence of typical time- and frequency-domain HRV 
parameters and nonlinear HRV indices, we carried out a comparative study to reveal their 
fundamental connection, which is substantiated by basic mathematical considerations, and was 
experimentally demonstrated via the analysis of 24-hours ECG recordings of more than 200 healthy 
individuals. 

We confirmed that the HR-dependence of one of the most frequently used time-domain 
parameters, RMSSD can be derived from Poincaré plots, as well, and that this “Master-Curve” 
representation seems to be superior to the conventional method. MC reflects both PNS and SNS 
effects, and represents the medium-term sympatho-vagal balance (from the hour- to the monthly 
scale). Momentary deviations from it (on the second to the minute scale) are indicative of the actual 
changes in, e.g., mood or stress [29], while long-term changes (on the yearly to the decade-scale) can 
be attributed to irreversible decline of the complex regulatory mechanism governing the dynamics 
of cardiac function (see also [27]).  

In addition to this, we showed that the RMSSD(HR) and SDNN(HR) plots can also be 
reproduced from the Fourier-spectral components of the original RR time series, which is a natural 
manifestation of the Parseval theorem. As an illustrative tool for the visualization of the HRV spectra, 
we used a novel Fourier-map representation. By comparing the HR-dependence of the Fourier-map 
and the Master Curve, we found a new cloud-like structure of the HRV frequency spectrum. It is 
bunched mainly in the VHF band, and must be an important indicator of the effects of sympathetic 
nervous system on the heart rhythm. By an age-cohort evaluation, it was found that this “VHF band” 
is gradually shifted to lower HR regimes, as age progresses, and as such, it may be an important 
indicator of the age-related remodeling of the heart. We expect it to be utilized in the diagnostics of 
various cardiovascular diseases in the near future [45].  

An anti-correlation between the DFA exponent (α) and sample entropy is apparent both on the 
individual and the cohort levels, which could be interpreted by frequency-spectral features of the 
HRV, as well. One can establish that these nonlinear indices report on the stochastic structure of HR 
fluctuations, contrary to the other time- or frequency-domain HRV measures that reflect direct PNS 
and SNS effects on the power of the HRV signal, hence, they carry independent information about 
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the complex regulatory mechanism of the cardiac cycle. Nevertheless, the age-dependence of the 
extremum-places of these nonlinear measures seem to show correlation with the frequency-shift of 
the diffuse structure of the HRV spectrum, which can probably be assigned to increasing SNS 
dominance, as age progresses.  

On the whole, we believe that our new findings regarding the phenomenology of HRV will 
shed more light on the context of various HRV measures, and will contribute to a deeper 
interpretation of the effects of external and internal factors associated to normal physiological 
or pathological phenomena. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

ANS Autonomic nervous system 
DFA Detrended fluctuation analysis 
ECG Electrocardiography 
FFT Fast Fourier Transform 
HF High-frequency 
HR Heart rate 
HRV Heart rate variability 
LF Low-frequency 
MC Master Curve 
NN Normal-to-normal RR intervals (NN and RR are used here synonymously) 
PNS Parasympathetic nervous system 
RMSSD Root mean square of successive differences 
RR; dRR Length of the RR interval, Length-difference of successive RR intervals 
SampEn Sample entropy 
SDNN Standard deviation of normal-to-normal RR intervals 
SNS Sympathetic nervous system 
THEW Telemetric- and Holter-ECG Warehouse 
VHF Very-high-frequency 
VLF Very-low-frequency 
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