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Abstract: The reliable operation of power systems depends on rapid fault detection to trigger protection mecha-

nisms and prevent further damage. Machine Learning-based fault detection systems have gained prominence for

their superior performance. These automated systems can assist operators by highlighting anomalies and faults,

providing a robust framework for improving Situation Awareness. However, existing approaches predominantly

rely on monolithic models, which struggle with adapting to changing data, handling imbalanced datasets, and

capturing patterns in noisy environments. To overcome these challenges, this study explores the potential of Mul-

tiple Classifier System (MCS) approaches. The results demonstrate that ensemble methods generally outperform

single models, with dynamic approaches like META-DES showing remarkable resilience to noise. These findings

highlight the importance of model diversity and ensemble strategies in improving fault classification accuracy

under real-world, noisy conditions. This research emphasizes the potential of MCS techniques as a robust solution

for enhancing the reliability of fault detection systems.

Keywords: electrical transmission systems; situation awareness; fault detection; multiple classifier systems;

ensemble; dynamic classifier selection

1. Introduction

Electrical power systems are vital to the functioning and advancement of modern societies,
providing energy to critical infrastructure and services, including telecommunications, transportation,
water supply, and emergency response systems [1–3]. Modern power systems consist of various
electrical components [4], which are dynamic and susceptible to disturbances or failures. These
failures may result from internal network issues, such as short circuits, or external factors, such as
environmental conditions [5]. Large power generation plants must operate in synchronization with
electrical grids, making it essential that the entire energy system functions safely and efficiently. In this
context, fault detection is crucial, as it enables the prompt activation of protective measures, protecting
equipment and preventing further damage to the network [6,7].

Fault detection is crucial in improving Situation Awareness (SA) in energy systems. In this
context, SA involves perceiving, understanding, and predicting changes within power systems [8,9].
SA supports operators and automated systems in understanding the system’s current state, detecting
potential issues, and predicting future states. According to [10], the first level of SA is the perception of
critical elements in the environment. In energy systems, this involves monitoring sensors, performance
data, and operational parameters to detect when something is wrong—such as abnormal voltage,
temperature spikes, or power outages [11]. Automated fault detection algorithms assist operators by
highlighting anomalies that may indicate a fault. In this sense, energy operators can better manage
system reliability and prevent cascading failures by integrating advanced fault detection systems
(such as Machine Learning (ML) models and real-time monitoring) with a robust framework for
SA. Enhanced SA improves the speed and accuracy of response to faults, reducing downtime and
improving overall system resilience.
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Numerous studies in the literature have applied a range of Machine Learning (ML) models
for fault classification in transmission lines, including Decision Trees [12], Random Forests [13],
XGBoost [14], CatBoost [15], LightGBM [16], and K-Nearest Neighbors (KNN) [17]. These models
have been successfully applied to classify faults based on voltage and current signals. However, the
performance of these ML models often considerably deteriorates when exposed to noisy data or signal
distortions [18] due to issues related to overfitting, underfitting, and model selection. In this context,
Multiple Classifier Systems (MCS) are a promising alternative to address the limitations of single (or
monolithic) approaches, improving the robustness and accuracy of fault classification models. MCS
consists of a set of models, each specialized in recognizing different patterns, which are selected and
combined to achieve a final classification. The motivation behind this approach is that no single model
performs optimally across all possible scenarios [19].

Few studies have applied MCS, also known as ensemble approaches, to fault classification in
electrical transmission systems [18,20–23]; most have focused on traditional approaches such as
Bagging or Boosting [18,23]. These approaches combine the output of multiple models to improve
overall accuracy but consider each classifier equally across the dataset. Conversely, relevant results
in classification tasks [24] have been obtained by selecting specific classifiers for each test pattern, a
technique known as dynamic classifier selection, as well as by combining models through stacking,
which generates a meta-model that learns to combine the models in an ensemble, resulting in more
accurate classifications [25]. This gap highlights the need to investigate whether MCS approaches,
such as stacked learning and dynamic classifier selection, can significantly improve the performance
of fault classification in electrical transmission systems, particularly in noisy data.

This work investigates the effectiveness of ensemble learning approaches, specifically stacking
models and dynamic classifier selection. To achieve this, MCSs were developed, each employing a
different approach to perform the final classification. These methods are compared against traditional
single models, such as Decision Tree, KNN, and XGBoost, to determine whether ensembles can offer
superior performance under different noisy data conditions. Different levels of noise were introduced
into the datasets to assess the robustness of the approaches.

The contributions of this work include:

• Evaluation of well-established MCS approaches from the literature in the fault classification in
electrical transmission systems task;

• Assessment of the impact on the performance of static ensemble and dynamic selection approaches
when different levels of noise are introduced;

• Comparison of the MCS with various single models from the literature across 14 different scenarios
in total;

• The superior performance of dynamic selection approaches to deal noise and enhancing classifica-
tion accuracy regarding single models.

The structure of this paper is as follows: Section 2 describes the MCS methods, Section 3 presents
the experimental protocol and explains how the study was conducted, Section 4 discusses the results,
and finally, Section 5 presents the conclusions and suggestions for future work.

2. Multiple Classifier Systems

Multiple Classifier System (MCS), or Ensemble Learning, is an area of ML highlighted due
to remarkable theoretical and practical results [26]. Ensemble-based approaches aim to reduce the
overall susceptibility of the single ML models to bias and variance by combining multiple models,
making them more robust. Therefore, these approaches must consider how they group models,
combining them to minimize their drawbacks in the final ensemble. The superiority of the ensembles
against single approaches has been demonstrated across several real-world problems, such as credit
scoring [27], heart disease classification [28], correlative microscopy [29], fault classification [30],
fingerprint analysis [31] and others applications [32]. The main motivation for using MCS is based on
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the No Free Lunch theorem, which states that no single model is the best for all classes of real-world
problems [19].

An MCS comprises three phases: generation, selection, and integration. In the generation phase, a
pool of classifiers is created. The generated pool must be accurate and diverse [33]. The diversity occurs
when the pool models provide different performances for the same patterns. Several strategies can be
employed to introduce diversity into the model pool, such as using different training samples, varying
classifier types, selecting different features, or tuning distinct parameters for each classifier [33].

In the selection phase, one or more models are chosen based on a predefined criterion. This choice
can be performed in two ways: Static Selection (SS) (Figure 1), or Dynamic Selection (DS) (Figure 2). In
the first, the same set of models is used to classify all new instances in the test set. In the second, one
specific model or set of models is chosen for each new instance.

When more than one classifier is selected, the outputs must be combined, making the integration
phase necessary. In this phase, an aggregation strategy is applied to combine all outputs to generate the
final classification for a given new pattern. For this phase, we evaluate two widely used approaches in
the literature: majority voting [34] and stacked generalization [35].

In this work, we evaluate unprecedent way different MCS approaches for electrical fault detec-
tion task. Figures 1 and 2 show the MCS frameworks evaluated in static and dynamic ensemble,
respectively.

2.1. Static Ensemble

In the static ensemble (Figure 1), the entire set of classifiers in the pool is considered for the final
classification. The MCS developed in this work consists of two phases: (a) training and (b) testing. In
the training phase, a set of classifiers P = {p1, p2, . . . , pn}, where n is the size of the pool, is trained
using the training dataset, resulting in a pool P′. In the case of a stacked model, the outputs Ctrain of
the pool for the training dataset are sent as input to train an aggregation model A, which learns to
combine the classifications from the pool. The output of this phase is the pool P′ containing the base
classifiers and the aggregation function A′ that will be applied during the combination step.

Pool of 
Classifiers 

P
p1
p2...
pN (a)

Training

Classifier 
Generation

Aggregation 
Function

Ctrain

Testing Classification

P’

Trained 
Combination

A’

A

Non-Trainable 
Combination

Ctest

(b)

Ctest
T

Ctest
NT

Figure 1. A general framework of the Multiple Classifier System (MCS), or Ensemble Learning,
employing Static Selection (SS). This approach selects one or more models to classify all test patterns.

In the testing phase, each new instance is passed to the pool, which returns Ctest, a set of n
classifications, one from each model. The aggregation function A′ is then applied to combine these
classifications and produce the final classification.
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As Aggregation Functions, we evaluated two approaches that are widely used in static ensemble
methods: majority vote and stacked generalization. Majority vote method, introduced by Breiman
(1996) [36], consists of each base classifier predicting a class for a new data instance, with the final
prediction determined by the class that receives the highest number of votes. This method enhances
overall predictive performance, making it particularly effective for unstable models where small
changes in the training data can lead to significant variations in predictions [37].

Stacked generalization, introduced by Wolpert (1992) [38], involves training a meta-classifier
to combine the predictions from base classifiers. This meta-classifier is trained using the outputs of
the base models on the training sample. During inference, for a new pattern, the predictions of the
base models are used as inputs to the meta-classifier, which then combines them to return the final
prediction. This method enables the meta-classifier to effectively leverage the strengths of diverse
base models, leading to improved predictive performance and robustness when these models exhibit
high variability [25]. In this work, we evaluate two algorithms as meta-classifiers: Decision Tree and
Logistic Regression, both of which are used in stacked generalization [25,39].

2.2. Dynamic Ensemble

In the dynamic ensemble (Figure 2), a subset of classifiers from the pool is selected for each
new test instance. This subset can be composed of one to n classifiers, where n is the size of the
pool. The MCS developed in this work consists of two phases: (a) training and (b) testing. The
training phase is composed of two steps: Classifier Generation and Meta-Classifier Generation. In the
Classifier Generation step, similar to the static ensemble, a pool P′ of n classifiers is generated. The
Meta-Classifier Generation step is executed only when the dynamic selection approach requires a meta-
classifier to select the best model. In this step, the training samples are used to extract meta-features,
and the algorithm M is applied to generate the Meta-Classifier.

(a)

Training 

Classifier 
Generation

Meta-Classifier
Generation

P’

P’ M’

M

Ctest

Validation

RoC creation Classifiers 
Evaluation

RoC

S

Classification

(b)

Non-Trainable 
CombinationTesting

Pool of 
Classifiers 

P
p1
p2...
pN

C’test

Figure 2. A general framework of the Multiple Classifier System (MCS), or Ensemble Learning,
employing Dynamic Selection (DS). This approach selects one or more models from a Region of
Competence (RoC) to classify each pattern of the test set.
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The testing phase consists of three steps, and the path to the final classification depends on the
chosen dynamic selection approach. The first step is the RoC (Region of Competence) creation, which
is executed by dynamic approaches that require a Region of Competence. The RoC is created using
the validation instances most similar to the new test instance, to select the set of models with the best
performance for classifying instances within this RoC. The second step is "Classifiers Evaluation,"
which involves selecting the set of models based on specific criteria. Most approaches select classifiers
based on their performance within the Region of Competence. However, we also evaluate the use of a
Meta-Classifier, which extracts meta-features from the new instance and selects the set of models best
suited to classify it. The output of this step is a set S of selected models, which can range from 1 to N
models. Finally, in the classification step, the output of each model in the selected set is obtained. If
only one classifier is selected, its classification is returned as the final classification (C′

test). However, if
more than one model is selected, the C′

test is achieved through majority voting in the final step.
In this work, we evaluate six state-of-the-art dynamic selection algorithms: OLA, DESP, KNORA-

E, KNORA-U, MCB, and M-DES.

2.2.1. DCS-LA

Dynamic Classifier Selection by Local Accuracy (DCS-LA), also known as Overall Local Accuracy
(OLA), introduced by Woods et al. (1997) [40], is a method for selecting the most competent classifier
for each test sample based on local accuracy estimates within a Region of Competence (RoC). For each
test instance, the RoC, composed of the k-nearest neighbors from the training set that are most similar
to the new instance, is created. Then, the classifier with the highest accuracy within the RoC is selected
to return the final classification.

2.2.2. DESP

Dynamic Ensemble Selection Performance (DESP) method, introduced by Woloszynski et al.
(2012) [41], consists of selecting the classifiers that achieve a classification performance in the RoC,
superior to a Random Classifier (RC). The performance of the RC is defined as RC = 1

L , where L is
the number of classes in the problem. If no base classifiers achieve this criterion, then the full pool is
utilized for classification, and the final classification is achieved through the majority voting method.

2.2.3. KNORA-E

K-Nearest Oracles Eliminate (KNORA-E) method, introduced by Ko et al. (2008) [42], consists of
selecting classifiers that correctly classify all instances within the RoC. If no classifier correctly classifies
all the samples in this region, then the size of the region is reduced until at least one classifier meets
the criterion. If still no classifiers meet the criterion, the full pool is utilized. The final decision is made
using the majority voting method.

2.2.4. KNORA-U

K-Nearest Oracles Union (KNORA-U) method, as introduced by Ko et al. (2008) [42], involves
selecting classifiers that correctly classify at least one instance within the Region of Competence (RoC).
Each selected classifier is assigned a weighted vote based on the number of instances it correctly
classifies within the RoC. The final decision is made by the class that accumulates the most votes from
the selected classifiers.

2.2.5. MCB

Multiple Classifier Behavior (MCB) method, introduced by Giacinto and Roli (2001) [43], consists
of dynamically selecting classifiers based on their local accuracy within a RoC, which is determined
using similarity metrics and the concept of Behavioral Knowledge Space (BKS). The behavior of
classifiers is represented by an MCB vector, which includes the class predictions made by each classifier
for the test instance. The similarity between the MCB vector of the test instance and those of its
neighbors is then computed. Neighbors with a similarity above a certain threshold are used to refine
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the RoC. Finally, the classifier with the highest accuracy within this refined RoC is chosen to make the
final classification.

2.2.6. META-DES

META-DES method, introduced by Cruz et al. (2014) [44], consists of dynamically selecting
classifiers based on multiple criteria that assess the competence of each classifier.

In the training phase, a meta-classifier M′ is generated through a meta-feature extraction process.
This process involves generating multiple sets of meta-features, each representing a different criterion
related to the performance of the base classifiers, such as their local accuracy, consensus in predictions,
and confidence level for the input sample. These meta-features are then used to train the meta-classifier,
which learns to predict whether a base classifier is competent enough to correctly classify new test
instances.

In the testing phase, for each instance, the meta-classifier predicts whether a base model is
competent to classify it; if more than one classifier is selected, the final classification is achieved
through the majority voting method.

3. Experimental Protocol

This section is organized into two subsections: Dataset Description (Section 3.1) and Experimental
Setup (Section 3.2). Section 3.1 provides detailed information about the two datasets used in the
experiments, while Section 3.2 outlines the protocol followed to evaluate the single and ensemble
approaches in this study.

3.1. Dataset Description

Two separate datasets were used to evaluate the single and ensemble approaches discussed in
this paper. The first dataset, referred to here as Dataset 1, was generated using ATPDraw software1.
This dataset simulates the 138 kV section of a substation, including two transmission lines connected
to the substation bus. Each line was considered as a load of 36 MW and 18 Mvar. Various types of
faults were simulated between circuit breakers and line outputs, covering phase-to-ground, phase-to-
phase, phase-to-phase-to-ground, and three-phase faults. Current measurements were taken at the
transformer connection breaker on the main bus and at the line connection breakers sharing the same
bus. Additionally, the voltage at the line outputs was measured. The simulation lasted 200 seconds,
with data collected at 0.01-second intervals, resulting in a database of 20,000 samples. This database is
structured as follows: the features columns represent voltage measurements at the outputs of the two
lines for phases A, B, and C. Following these columns are current measurements in the circuit above
the circuit breakers. The classes are categorized as follows:

• Class 0: No faults
• Class 1: Phase-to-ground faults
• Class 2: Phase-to-phase faults
• Class 3: Phase-to-phase-to-ground faults
• Class 4: Three-phase faults

The second dataset (referred to as Dataset 2), derived from [45], was adapted to include only the
energy variables of current and voltage signals, along with their Root Mean Square (RMS) values. As
the system is three-phase, the final database contains twelve attributes and two variables that can
be used as targets: fault location and fault type. The first is used to locate where the fault occurred
and has discrete values between 4.14 and 414, each representing a distance in kilometers. The second
variable has categorical values indicating the phases in which the fault occurred, such as AB, BC, and
BG. In the present work, fault type was used as the target. The classes are categorized as follows:

1 https://www.atpdraw.net/
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• Class 0: Fault AB
• Class 1: Fault ABC
• Class 2: Fault ABG
• Class 3: Fault AC
• Class 4: Fault ACG

Gaussian noise was introduced during preprocessing to better approximate real-world conditions
and evaluate the robustness of the models. For the first dataset, noise values ranged from 10,000 to
60,000. In the second dataset, due to the extremely high original values (in the megawatt range), we
normalized the data by dividing by 100,000, resulting in Gaussian noise values between 0.1 and 1.5.

Each dataset was divided into two distinct samples: 80% for training and 20% for testing. This split
ensures that the models have sufficient data to learn from while preserving a portion for evaluating
the generalization power of approaches on unseen data.

3.2. Experimental Setup

The static ensemble and dynamic selection approaches were evaluated using the two datasets
previously described. All selected approaches are well-established in the ensemble learning literature
and have achieved notable results in various application domains [33,46–48]. This study assessed the
following static ensemble methods: Majority Vote, Stacked Decision Trees (DT), and Stacked Logistic
Regression (LR). For dynamic selection, we evaluated the following approaches: DESP, KNORA-
E, KNORA-U, MCB, M-DES, and OLA. Tables 1 and 2 show the hyperparameters used for static
ensembles and dynamic selection approaches, respectively. The hyperparameters employed are the
default values of the Python language’s DESlib package 2.

Table 1. Parameters used for each static ensemble approach.

Static Ensemble Parameter Value
Majority Vote voting {’hard’}

Stacked DT

meta_classifier {DecisionTree}
meta_classifier_criterion {’gini’}

meta_classifier_min_samples_leaf {1}
meta_classifier_min_samples_split {2}

meta_classifier_splitter {’best’}
Stacked LR meta_classifier {LogisticRegression}

The static and dynamic ensemble approaches are compared against six individual classification
models. To ensure a fair comparison, these classification models are also included in the pool of
classifiers used in the evaluated ensembles. The individual models are described in detail below.

A Decision Tree (DT) is a supervised learning model that uses a rule-based approach to build a
binary tree structure for decision-making. A DT maps a data domain to a response set by recursively
dividing the domain into subdomains, ensuring that each division gains more significant information
than the original node [49]. The final structure of a DT consists of decision nodes and leaf nodes.
The DT is a white-box model for classification, offering the advantage of transparency in its decision-
making process. This transparency is achieved by interpreting the tree’s rules, which reveal the logical
path behind each prediction [50,51].

Random Forest (RF) is an ensemble learning model composed of multiple decision trees. During
training, each tree is built on a different subset of the training data, selected using the bagging technique
(random sampling with replacement). This process introduces diversity among the trees, producing

2 https://deslib.readthedocs.io/en/latest/
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independent and uncorrelated models, which helps reduce overfitting and improves generalization [52].
In the testing phase, the final classification is determined by a majority vote from all the trees, with the
class receiving the most votes selected as the final prediction [13].

Table 2. Parameters used for each dynamic selection approach.

Dynamic Selection Parameter Value

DESP

DFP {False}
DESL_perc {0.5}

IH_rate {0.3}
k {7}

knn_classifier {’knn’}
knn_metric {’minkowski’}

mode {’selection’}

KNORA-E

DFP {False}

KNORA-U

DESL_perc {0.5}
IH_rate {0.3}

k {7}
knn_classifier {’knn’}

knn_metric {’minkowski’}

MCB

DFP {False}
DESL_perc {0.5}

IH_rate {0.3}
diff_thresh {0.1}

k {7}
knn_classifier {’knn’}

knn_metric {’minkowski’}
knne {False}

M-DES

DFP {False}
DESL_perc {0.5}

Hc {1.0}
IH_rate {0.3}

Kp {5}
k {7}

knn_classifier {’knn’}
knn_metric {’minkowski’}

meta_classifier {’Multinomial naive Bayes’}
mode {’selection’}

OLA

DFP {False}
DESL_perc {0.5}

k {7}
knn_classifier {’knn’}

knn_metric {’minkowski’}
knne {False}

Gradient Boosting (GB) based models create an ensemble using the boosting technique, where
new classifiers are trained based on the residuals of the current model. These models employ gradient
descent to minimize the loss function by iteratively adding models that correct the residuals of the com-
bined ensemble. The main algorithms in this category are Extreme Gradient Boosting (XGBoost) [14],
Light Gradient Boosting Machine (LightGBM) [16], and CatBoost [15]. XGBoost is designed to optimize
both computational speed and model performance. This model adds regularization terms to control
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the complexity of the model, which is helpful to prevent over-fitting and improve the generalization of
the model. LightGBM is similar to XGBoost but employs a distinct leaf-wise tree growth strategy. This
method enables LightGBM to grow trees in a manner that more effectively reduces loss, often resulting
in faster training times and improved accuracy. CatBoost is a classifier that simplifies data preparation
by effectively handling missing values for numerical variables and non-encoded categorical variables,
reducing the need for extensive preprocessing. Unlike XGBoost and LightGBM, which require manual
encoding of categorical features, CatBoost processes these features natively, leading to potentially
better performance and more straightforward implementation.

K-Nearest Neighbors (KNN) is a lazy learning model with no training process. KNN works by
locating the K data points in the training sample most similar to a new data point, forming a “nearest
neighbors region”, and making a prediction based on this region. In the case of a classification task,
for each new data point, KNN assigns a class by determining the majority class among the nearest
neighbors [17,53].

Table 3 shows the hyperparameter values for each model evaluated. These values were selected
based on previous works that addressed electrical fault detection tasks using ML models [12–17]. The
hyperparameters for each model were selected through grid search cross-validation with five folds.
This technique helps mitigate overfitting by ensuring the models are evaluated on multiple subsets
of the data. For each set of values from the grid search, the training data is split into five equal parts.
During each iteration, four parts are used for training while the remaining part is used for validation.
The combination of hyperparameter values with the highest mean accuracy is selected.

Table 3. Hyperparameters used in the grid-search for each model.

Model Parameter Values

KNN
n_neighbors {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

weights {’uniform’, ’distance’}
metric {’euclidean’, ’manhattan’, ’minkowski’}

Decision Tree

random_state {0, 1, 2, 42}
criterion {’gini’, ’entropy’}

max_depth {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
min_samples_leaf {1, 2, 4, 6}

Random Forest

n_estimators {1, 10, 30, 100, 200}
random_state {0, 42}

max_depth {2, 10, 30, None}
max_features {’auto’, ’sqrt’, ’log2’}

min_samples_leaf {1, 2}

XGBoosting

learning_rate {0.1, 0.547, 0.6427}
max_depth {2, 4, 6, 8, 10}

n_estimators {2, 4, 8, 10, 200}
min_child_weight {1, 3, 5}

subsample {0.7, 0.8, 0.9}

Lgbm

learning_rate {0.001, 0.01, 0.1}
max_depth {2, 4, 6, 8, 10}

min_child_samples {20}
n_estimators {2, 4, 8, 10, 200}
num_leaves {7, 31}

boosting_type {’gbdt’, ’goss’}

CatBoosting
learning_rate {0.1, 0.01, 0.001}
max_depth {2, 4, 6, 8, 10}

n_estimators {2, 4, 8, 10, 200}
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The evaluation of the models was conducted using three well-known metrics: Accuracy, Precision,
and Recall. Accuracy measures the overall correctness of the model, providing a general measure of
how well the model performs across all classes. Precision and Recall, on the other hand, offer insights
into the model’s performance specifically on the positive class. Precision focuses on the correctness of
positive predictions, indicating the proportion of true positive results among all positive predictions.
Recall assesses the completeness of positive predictions, representing the proportion of true positive
results out of the actual positive cases. Table 4 presents the equations, ranges, and acronyms for each
metric. True Positive (TP) refers to instances where the model correctly predicts the positive class.
True Negative (TN) refers to instances where the model correctly predicts the negative class. False
Positive (FP) occurs when the model incorrectly predicts the positive class for a negative instance. False
Negative (FN) occurs when the model incorrectly predicts the negative class for a positive instance.

Table 4. Metrics for classification evaluation. For all metrics, the higher the value, the better the
classification performance.

Metric Acronym Equation Limits
Accuracy A TP+TN

TP+TN+FP+FN [0, 1]

Precision P TP
TP+FP [0, 1]

Recall R TP
TP+FN [0, 1]

4. Results

The following sections (Sections 4.1 and 4.2) analyze the experimental results of the evaluated
approaches, encompassing single, static ensemble, and dynamic selection models for the two used
datasets. The approaches are evaluated using the metrics of Accuracy (A), Precision (P), and Recall (R)
in seven and eight scenarios for Datasets 1 and 2, respectively.

4.1. Dataset 1

Table 5 shows the metrics (A, P, and R) used to analyze the performance of the single models.
In general, the values of metrics A, P, and R decreased as the noise level increased. RF and KNN
achieved the highest A, P, and R values in the noise-free scenario, while DT recorded the lowest values.
Nevertheless, KNN was the model that was more affected by the increase in the noise level. Indeed,
KNN obtained the second worst result from noise level 10,000 to 60,000. This result shows the KNN’s
sensibility to noisy data. DT obtained the worst values in all scenarios. This poor result can be caused
by overfitting in the training sample or class imbalance.

LightGBM, XGBoost, and CatBoost, ranked first, second, and third respectively, demonstrated
more stable performance with the addition of noise. All three models achieved A, P, and R values
exceeding 99% across all scenarios. This result shows that these gradient-boosting algorithms are able
to handle noisy data by iteratively refining their predictions, which allows them to maintain robustness
in the presence of noise.

Figure 3 shows the evolution of accuracy for the different noise levels. It is possible to note the
performance degradation of all models, mainly KNN, DT, and RF, respectively.

Table 6 shows the A, P, and R metrics attained by the static ensemble models (Majority Vote,
Stacked DT, and Stacked LR). For all models, the metric values tend to decrease with the increase in the
noise level. Both Stacked models attained a more stable result, varying around 99% for all metrics. This
result shows that the strategy of assigning weights was effective. Indeed, the single models LightGBM,
XGBoost, and CatBoost reached the best results and, therefore, received the highest weights in the
Stacked ensembles. Conversely, the addition of noise negatively impacted the Majority Vote model,
with the A, P, and R metrics dropping from 99.90% across the board to 97.92%, 98.00%, and 97.92%,
respectively. This result shows that the DT, KNN, and RF models must have influenced the decision of
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the Majority Vote. This result shows the importance of the pool’s quality (creating and training) and
the combination strategy. Figure 4 shows the evolution of accuracy for the different noise levels. The
performance degradation of all models, mainly of the Majority Vote, can be noted.

Table 5. Evaluation of the single models in Dataset 1 for several noise levels. The best result for each
metric is highlighted in bold.

Noise
Metric

Single Models
Level CatBoost DT KNN LightGBM RF XGBoost

Without
A 99.80 74.58 99.90 99.85 99.90 99.83

noise
P 99.80 77.24 99.90 99.85 99.90 99.83
R 99.80 74.58 99.90 99.85 99.90 99.83

A 99.67 71.58 94.40 99.75 99.80 99.62
10,000 P 99.67 74.52 94.36 99.75 99.80 99.63

R 99.67 71.58 94.40 99.75 99.80 99.62

A 99.55 69.10 88.72 99.65 99.58 99.62
20,000 P 99.55 72.02 88.45 99.65 99.58 99.62

R 99.55 69.10 88.72 99.65 99.58 99.62

A 99.50 66.07 84.52 99.55 99.08 99.62
30,000 P 99.50 68.64 83.94 99.55 99.08 99.63

R 99.50 66.07 84.52 99.55 99.08 99.62
A 99.58 69.15 78.75 99.48 98.50 99.35

40,000 P 99.58 98.50 77.58 99.48 98.50 99.35
R 99.58 98.50 78.75 99.48 98.50 99.35

A 99.42 67.42 75.25 99.50 98.02 99.48
50,000 P 99.42 67.60 73.40 99.50 98.05 99.48

R 99.42 67.42 75.25 99.50 98.02 99.48

A 99.22 67.22 70.17 99.20 97.70 99.17
60,000 P 99.22 60.77 67.34 99.20 97.74 99.18

R 99.22 67.22 70.17 99.20 97.70 99.17
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Figure 3. Accuracy obtained by evaluated single models.
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Table 6. Evaluation of the static ensemble in Dataset 1 for several noise levels. The best result for each
metric is highlighted in bold.

Noise
Metric

Static Ensemble
Level Majority Vote Stacked DT Stacked LR

Without
A 99.90 99.90 99.90

noise
P 99.90 99.90 99.90
R 99.90 99.90 99.90
A 99.65 99.72 99.85

10,000 P 99.65 99.73 99.85
R 99.65 99.72 99.85
A 99.50 99.78 99.85

20,000 P 99.50 99.78 99.85
R 99.50 99.78 99.85
A 99.17 99.55 99.72

30,000 P 99.18 99.55 99.73
R 99.17 99.55 99.72
A 98.80 99.78 99.78

40,000 P 98.82 99.78 99.78
R 98.80 99.78 99.78
A 98.40 99.55 99.70

50,000 P 98.44 99.55 99.70
R 98.40 99.55 99.70
A 97.92 99.45 99.60

60,000 P 98.00 99.45 99.60
R 97.92 99.45 99.60
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Figure 4. Accuracy obtained by the evaluated static ensemble models.

Table 7 shows the performance of the Dynamic Selection models (DESP, KNORA-E, KNORA-U,
MCB, M-DES, and OLA) for Dataset 1. For all models, the metric values tend to decrease with the
increase in the noise level. KNORA-E, KNORA-U, and M-DES reached a more stable performance,
varying all metrics around 99%. On the other hand, the OLA model suffered from increasing noise
since the A, P, and R metrics decreased from 99.90%, 99.90%, and 99.90% to 94.97%, 95.11%, and
94.97%. These results show that methods based on the Region of Competence (RoC), which rely on
training instances similar to the test instance, like OLA exhibit higher sensitivity to noise. In contrast,
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performance-based approaches, such as those employed by KNORA-E and KNORA-U, or the use of
meta-features like the M-DES approach, demonstrate greater robustness. Figure 5 shows the evolution
of accuracy for the different noise levels. The performance degradation of all models, mainly of the
DESP, MCB, and OLA, can be noted.

Table 7. Evaluation of the dynamic selection approaches in Dataset 1 for several noise levels. The best
result for each metric is highlighted in bold.

Noise
Metric

Dynamic Selection Approach
Level DESP KNORA-E KNORA-U MCB M-DES OLA

Without
A 99.85 99.85 99.93 99.88 99.85 99.90

noise
P 99.85 99.85 99.93 99.88 99.85 99.90
R 99.85 99.85 99.93 99.88 99.85 99.90

A 99.65 99.70 99.80 99.98 99.75 98.72
10,000 P 99.65 99.70 99.80 99.98 99.75 98.72

R 99.65 99.70 99.80 99.98 99.75 98.72

A 99.52 99.67 99.70 98.52 99.75 97.20
20,000 P 99.53 99.68 99.70 98.53 99.75 97.26

R 99.52 99.67 99.70 98.52 99.75 97.20

A 99.12 99.48 99.50 98.32 99.70 96.83
30,000 P 99.14 99.48 99.50 98.32 99.70 96.90

R 99.12 99.48 99.50 98.32 99.70 96.83

A 98.67 99.48 99.58 97.15 99.70 95.55
40,000 P 98.70 99.48 99.58 97.15 99.70 95.61

R 98.67 99.48 99.58 97.15 99.70 95.55

A 98.78 99.40 99.48 97.82 99.65 95.60
50,000 P 99.79 99.40 99.48 97.82 99.65 95.64

R 99.78 99.40 99.48 97.82 99.65 95.60

A 98.60 99.33 99.42 96.95 99.62 94.97
60,000 P 98.63 99.33 99.43 96.96 99.63 95.11

R 98.60 99.33 99.42 96.95 99.62 94.97
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Figure 5. Accuracy obtained by the evaluated dynamic selection models.

Figure 6 compares the metric values reached by the best models of the evaluated approaches:
Single Models, Static Ensemble, and Dynamic Selection. It shows that models based on ensembles
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attained the best results in all scenarios. From the Without Noise scenario until 50,000 Amp, Stacked
LR attained the best A, P, and R values; meanwhile, for 60,000 Amp, M-DES was superior for all
metrics. It is essential to highlight that ensemble approaches attained higher performance values than
single models in most scenarios. For instance, Stacked LR and M-DES reached a superior performance
of around 48% and 41% in terms of A for DT and KNN, respectively.

A P R A P R A P R A P R A P R A P R A P R
Without Noise            10,000                20,000                30,000                  40,000                50,000                60,000    

 Noise Level

99.0
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100.0

M
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Stacked LR
M-DES
LightGBM

Figure 6. A, P, and R metrics for the best models of each approach for all noise level scenarios.

In summary, the results for Dataset 1 demonstrate that the MCS approaches consistently out-
performed single models in most scenarios, particularly in the presence of noise. Among the single
models, gradient-boosting methods such as LightGBM, XGBoost, and CatBoost showed a more stable
performance, maintaining high metric values even as the noise level increased, while KNN and DT
were the most affected by the noise. Static ensemble models, especially Stacked LR, proved to be
effective in maintaining robust performance across noise levels, benefiting from the weighted combina-
tion of high-performing models. In the dynamic selection approaches, KNORA-E, KNORA-U, and
M-DES demonstrated resilience to noise, maintaining nearly consistent performance. The performance
degradation of methods like OLA, MCB, and DESP highlights their sensitivity to noise. Thus, the
MCS approaches evaluted, particularly Stacked LR and M-DES, provided the best results, validating
the effectiveness of combining and selection models to enhance robustness and accuracy in noisy
environments.

4.2. Dataset 2

Table 8 shows the A, P, and R performance metrics reached by the single models for Dataset 2. The
A, P, and R metrics values for all evaluated models have a downward trend with the increase in the
noise level. XGBoost and LightGBM models reached the best metric values in all scenarios. LightGBM
attained the first rank in the two first scenarios, while XGBoost was the best one in the others. Both
reached the same performance for a noise level of 0.3 (third scenario). KNN and DT obtained the two
worst metric values for all scenarios in this order. However, between them, the KNN performance was
more affected by the increase in the noise level. For instance, the A value of the KNN and DT models
dropped 11.90% and 16.78%, respectively. This result shows the KNN’s sensibility to noisy data and
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a probable overfitting of the DT in the training sample. Figure 7 shows the degradation of all single
models in terms of the A metric with the increase in the noise level. It is evident that KNN and DT
produced the poorest results. However, CatBoost, LightGBM, RF, and XGBoost were the models most
affected by the increasing noise levels.
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Figure 7. Accuracy obtained by evaluated single models.

Table 8. Evaluation of the single models in Dataset 2 for several noise levels. The best result for each
metric is highlighted in bold.

Noise
Metric

Single Models
Level CatBoost DT KNN LightGBM RF XGBoost

Without
A 99.40 53.87 72.00 99.83 99.77 99.79

noise
P 99.40 43.66 71.95 99.83 99.77 99.79
R 99.40 53.87 72.00 99.83 99.77 99.79

A 97.79 53.79 71.44 99.21 98.45 99.10
0.1 P 97.79 43.58 71.44 99.21 98.45 99.10

R 97.79 53.79 71.44 99.21 98.45 99.10

A 95.45 53.10 69.91 97.14 95.89 97.14
0.3 P 95.45 42.84 69.84 97.14 95.89 97.14

R 95.45 53.10 69.91 97.14 95.89 97.14
A 92.16 52.56 68.32 94.16 92.42 92.43

0.5 P 92.16 48.32 68.22 94.16 92.43 94.38
R 92.16 52.56 68.32 94.16 92.42 94.38
A 89.52 51.67 66.35 90.53 89.19 90.83

0.7 P 89.52 48.01 66.40 90.54 89.22 90.84
R 89.52 51.67 66.35 90.53 89.19 90.83
A 84.91 48.75 63.96 85.76 84.02 86.35

1 P 84.91 49.19 63.83 85.81 84.12 86.39
R 84.91 48.75 63.96 85.76 84.02 86.35
A 80.53 48.74 61.69 81.63 79.99 81.70

1.3 P 80.53 48.98 61.53 81.68 80.06 81.73
R 80.53 48.74 61.69 81.63 79.99 81.70
A 77.65 47.46 59.92 78.71 76.85 78.87

1.5 P 77.65 46.72 59.75 78.82 76.92 78.91
R 77.65 47.46 59.72 78.71 76.95 78.87
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Table 9 shows the A, P, and R metrics attained by the static ensemble models. For all models, the
metric values tend to decrease with the increase in the noise level. These results show that the Stacked
LR and Majority Vote models demonstrate greater robustness across all noise levels. Initially, Stacked
LR outperforms Majority Vote, delivering superior results with 99.80% of A, P, and R in the noise-free
scenario, compared to 99.66% obtained by Majority Vote. However, from noise level 0.5, Majority Vote
showed competitive performance, with 78.58% of accuracy at noise level 1.5, closely matching Stacked
LR, which achieved 78.34% under the same conditions. In contrast, Stacked DT showes to be the most
sensitive to noise, starting with a highlighted performance of 99.77% in the noise-free scenario but
dropping significantly to 70.55% at noise level 1.5. This behaviour likely occurred due to the nature of
DT, which are prone to overfitting, especially when confronted with noisy data. As noise increases,
the trees within the ensemble may capture random fluctuations, leading to poorer generalization and
significant performance degradation. Figure 8 shows the evolution of accuracy for the different noise
level, mainly Stacked DT, can be noted.

Table 10 shows the performance of the Dynamic Selection approaches (DESP, KNORA-E, KNORA-
U, MCB, M-DES, and OLA) for Dataset 2. KNORA-E, KNORA-U, and M-DES exhibited more stable
performance, starting with accuracy around 99% in the noise-free scenario, but decreasing to approxi-
mately 77% at a noise level of 1.5. The DESP model showed competitive performance starting from
noise level 0.5, achieving a recall of 84.77, compared to 84.19 for KNORA-U and 83.99 for M-DES.
In contrast, OLA and MCB were more sensitive to noise, with OLA showing the most significant
performance drop due to its reliance on local training instances, which become less reliable as noise
increases.

Table 9. Evaluation of the static ensemble in Dataset 2 for several noise levels. The best result for each
metric is highlighted in bold.

Noise
Metric

Static Ensemble
Level Majority Vote Stacked DT Stacked LR

Without
A 99.66 99.77 99.80

noise
P 99.66 99.77 99.80
R 99.66 99.77 99.80
A 98.92 98.75 99.23

0.1 P 98.92 98.74 99.23
R 98.92 98.75 99.23
A 96.65 95.62 97.05

0.3 P 96.66 95.62 97.05
R 96.65 95.62 97.05
A 93.64 91.21 93.84

0.5 P 93.67 91.21 93.84
R 93.64 91.21 93.84
A 90.45 86.52 90.76

0.7 P 90.50 86.52 90.77
R 90.45 86.52 90.76
A 85.80 80.25 85.61

1 P 85.95 80.10 85.45
R 85.80 80.25 85.61

A 81.27 74.15 81.27
1.3 P 81.41 74.35 81.47

R 81.27 74.15 81.27
A 78.58 70.55 78.34

1.5 P 78.74 71.05 78.56
R 78.58 70.55 78.34
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Figure 8. Accuracy obtained by the evaluated static ensemble models.

Table 10. Evaluation of the dynamic selection approaches in Dataset 2 for several noise levels. The best
result for each metric is highlighted in bold.

Noise
Metric

Dynamic Selection Approach
Level DESP KNORA-E KNORA-U MCB M-DES OLA

Without
A 98.36 99.64 99.64 97.19 99.74 96.79

noise
P 98.36 99.64 99.64 97.19 99.74 96.79
R 98.36 99.64 99.64 97.19 99.74 96.79

A 98.86 98.79 98.74 96.24 99.02 95.43
0.1 P 98.96 98.79 98.74 96.25 99.02 95.43

R 98.86 98.79 98.74 96.24 99.02 95.43

A 94.27 95.69 96.28 93.60 96.76 93.02
0.3 P 94.41 95.71 96.30 93.62 96.77 93.02

R 94.27 95.69 96.28 93.60 96.76 93.02

A 90.84 91.34 92.83 90.14 92.97 89.06
0.5 P 91.87 91.40 92.89 90.19 93.02 89.09

R 90.84 91.34 92.83 90.14 92.97 89.06

A 87.86 87.72 89.53 86.10 89.54 85.57
0.7 P 88.10 87.80 89.61 86.15 89.62 85.61

R 87.86 87.72 89.53 86.10 89.54 85.57

A 84.77 82.41 84.95 80.90 83.99 80.08
1 P 84.30 82.25 84.19 79.91 83.61 80.00

R 84.77 82.41 84.19 80.90 83.99 80.08

A 80.47 77.70 80.62 76.01 79.16 75.51
1.3 P 80.67 77.90 80.92 76.20 79.35 75.71

R 80.47 77.70 80.62 76.01 79.16 75.51

A 77.67 74.86 77.97 74.15 75.90 72.92
1.5 P 77.87 74.98 78.05 74.35 75.90 72.98

R 77.67 74.86 77.97 74.15 75.90 72.92

Figure 9 shows the evolution of accuracy for the different noise levels. The performance degrada-
tion of all models, mainly of the MCB and OLA, can be noted.
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Figure 9. Accuracy obtained by the evaluated dynamic selection models.

Figure 10 compares the metric values achieved by the best models from the evaluated approaches:
Single Models, Static Ensemble, and Dynamic Selection for the Dataset 2. The figure shows that,
initially, with no noise (σ = 0), all models performed similarly, with metrics above 95%. As noise
levels increase, Stacked LR exhibits a sharper decline compared to XGBoost and META-DES, which
maintain better resilience. From σ = 1.0 onwards, the degradation becomes more pronounced for all
models, with META-DES and XGBoost consistently outperforming Stacked LR, particularly in terms
of precision and recall, demonstrating greater robustness to noise.
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Figure 10. A, P, and R metrics for the best models of each approach for all noise level scenarios in
Dataset 2.
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In summary, the results for DataSet 2 indicate that the ensemble and dynamic selection approaches
consistently outperformed single models as noise levels increased. Among the single models, XGBoost
and LightGBM demonstrated greater resilience, maintaining strong performance across various noise
levels, while KNN and DT were the most affected by the noise, with KNN showing higher sensitivity.
Static ensemble models, particularly Stacked LR and Majority Vote, exhibited robust performance, with
Stacked LR excelling in noise-free conditions and Majority Vote showing competitive performance
as noise increased. In the dynamic selection approaches, KNORA-E, KNORA-U, and M-DES demon-
strated stability and resilience, while OLA and MCB experienced significant performance degradation
under noisy conditions. Overall, M-DES and XGBoost were the most robust models, consistently
providing superior results, validating the effectiveness of ensemble and dynamic selection methods in
enhancing model performance and robustness in the presence of noise.

5. Conclusions

This work explored the application of Multiple Classifier Systems for fault classification in elec-
trical transmission systems. Ensemble approaches, particularly Stacked and M-DES, consistently
outperformed traditional single models, such as Decision Tree and K-Nearest Neighbors, demonstrat-
ing remarkable resilience in noisy environments. The robustness of gradient boosting models, such
as LightGBM, XGBoost, and CatBoost, was evident, maintaining high accuracy levels even with the
introduction of significant noise. Additionally, dynamic selection approaches, especially KNORA-E,
KNORA-U, and M-DES, proved more effective at handling noise than static approaches. These findings
highlight the potential of ensemble approaches in improving fault detection accuracy in challenging
conditions, as well as the importance of model diversity and combination strategies in enhancing
classification performance when dealing with noisy data. Besides, ensemble-based systems employed
for fault detection can be a helpful tool in increasing Situational Awareness in electrical power systems.

For future works, dynamic classifier selection and combination approaches could be proposed to
handle even higher levels of noise or to apply these techniques to different types of faults and other
components of electrical power systems.
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