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Abstract

Cadherin-8 (CDHS) is a type II cadherin that plays crucial roles in various aspects of neural
development and disease. Although anti-CDH8 monoclonal antibodies (mAbs) are available for
Western blotting and immunohistochemistry (IHC), anti-CDH8 mAbs suitable for flow cytometry
have not been reported. In this study, we developed novel anti-human CDH8 mAbs (named
CasMabs) using a flow cytometry-based high-throughput screening method. Among these, a clone
called CasMab-4 (IgG, k) specifically recognized CDHS8-overexpressing Chinese hamster ovary-K1
(CHO/CDHS) cells, with no detectable cross-reactivity toward 21 other cadherins, including both
type I and type II, by flow cytometry. Additionally, CasMab-4 detected endogenous CDHS in the
human esophageal squamous cell carcinoma cell line TE5. The dissociation constant (Kp) values for
CasMab-4 binding to CHO/CDHS8 and TE5 were estimated to be 3.8 x 10° M and 4.9 x 10 M,
respectively. Furthermore, CasMab-4 was effective in Western blotting and IHC. Overall, these
findings suggest that CasMab-4 is a versatile tool for basic research and holds potential for tumor
diagnosis and therapy.

Keywords: cadherin-8; CDHS8; monoclonal antibody; Cell-Based Immunization and Screening; flow
cytometry; immunohistochemistry

1. Introduction

The cadherin superfamily includes over 100 cell-surface glycoproteins, which are characterized
by conserved extracellular cadherin repeats [1,2]. The first identified cadherins (E-Cadherin/CDH]I,
N-Cadherin/CDH2, P-Cadherin/CDHS3) and their closest relatives are classified as classical cadherins.
These are divided into type I (CDH1-CDH4 and CDH15) and type II (CDH5-CDH12, CDH18-
CDH20, CDH22, and CDH?24) cadherins [3]. Classical cadherins are crucial for tissue development
and maintenance in vertebrates [4]. In the nervous system, they participate in a wide range of
developmental processes, including neurulation, neuronal migration, neurite outgrowth, axonal
fasciculation, synaptic differentiation, and synaptic plasticity [5].

Each cadherin in the brain is expressed in specific groups of functionally connected nuclei and
laminae [6]. A type II classical cadherin, cadherin-8 (CDHS), plays a crucial role in cold sensation,
with its neural circuitry formed by sensory neurons projecting into the spinal cord [7]. The CDHS-
expressing sensory neurons were found to connect to CDH8-expressing dorsal horn neurons in the
spinal cord, and CDH8 was located near the synaptic junctions formed between these neuronal
groups [7].

The neuron-specific transcription factor T-box brain 1 (TBR1) is crucial for brain development
[8]. TBR1 haploinsufficiency changed the expression of CDHS, resulting in decreased inter- and intra-
amygdalar connectivity and cognitive problems in a mouse model [9]. These developmental
abnormalities are likely to impair neuronal activation in response to behavioral stimuli, as evidenced
by a reduced number of c-FOS—positive neurons in the TBR1 (+/-) amygdalae [9].
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Autism spectrum disorder is characterized by impairments in social communication and
learning disability and is implicated to arise from aberrant synaptic connectivity [10]. For instance,
rare variants in the neuroligin and neurexin genes, which encode synaptic adhesion molecules that
interact across the synaptic cleft, have been linked to increased susceptibility to autism [11,12].
Furthermore, rare familial microdeletions on chromosome 16q21 that disrupt CDHS8 were identified
in families with autism spectrum disorder and learning disabilities [13]. In a family, three of the four
boys with autism and learning disabilities inherited the deletion, but it was not present in their four
unaffected siblings or their unaffected mother [13]. Therefore, CDHS is proposed as a susceptibility
factor for autism and learning disabilities.

Monoclonal antibodies (mAbs) that detect CDHS8 by Western blotting or immunohistochemistry
(IHC) have been developed for various applications; however, suitable mAbs for flow cytometry are
not currently available. Using the Cell-Based Immunization and Screening (CBIS) method, our
laboratory has previously developed anti-CDH1 [14] and anti-CDH15 [15] mAbs for use in flow
cytometry, Western blotting, and IHC. The CBIS method involves high-throughput flow cytometry—
based screening, and mAbs produced using this approach usually recognize conformational
epitopes, which allows their use in flow cytometry. Notably, some of these mAbs are also compatible
with Western blotting and IHC. In this study, we used the CBIS method to develop highly versatile
anti-CDHS8 mAbs.

2. Materials and Methods

2.1. Cell Lines

Mouse myeloma P3X63Ag8U.1 (P3U1), human glioblastoma (GBM) LN229, and Chinese
hamster ovary (CHO)-K1 were obtained from the American Type Culture Collection (ATCC,
Manassas, VA, USA). Human esophageal squamous cell carcinoma (SCC) TE5 was obtained from the
Cell Resource Center for Biomedical Research Institute of Development, Aging and Cancer at Tohoku
University (Miyagi, Japan).

2.2. Stable Transfectants

Genes encoding human CDHS8 (NM_001796.5) were obtained from the RIKEN BioResource
Research Center (Ibaraki, Japan). The CDHS cDNA was subcloned into the pCAG-Ble vector with an
N-terminal MAP16 tag [16]. Additionally, the CDH8 cDNA with an N-terminal PA16 tag [17] was
constructed. These plasmids were transfected into LN229 or CHO-K1cells, and stable transfectants
were sorted using an anti-MAP16 tag mAb (clone PMab-1) [16] or an anti-PA16 tag mAb (clone NZ-
1) [17] using the Neon transfection system (Thermo Fisher Scientific, Inc.). Finally, MAP16-CDHS8-
overexpressed LN229 (LN229/CDHS8) and PA16-CDH8-overexpressed CHO-K1 (CHO/CDHS) were
established.

Type I cadherin-overexpressed CHO-K1 cell lines were previously established in [14]. Type II
cadherin-overexpressed CHO-K1 cell lines were established previously [18]. Truncated, seven-
domain (7D), and atypical cadherin overexpressed CHO-K1 cell lines were previously established in
[18]. Each cadherin expression was confirmed using an anti-CDH1 mAb (clone CaiMab-3 [14],), an
anti-CDH3 mADb (clone MMO0508-9V11, Abcam, Cambridge, UK), an anti-CDH6 mAbD (clone 427909,
R&D Systems Inc., Minneapolis, MN, USA), an anti-CDH15 mAb (clone CaisMab-1 [15]), an anti-
CDH17 mAb (clone 2618, Thermo Fisher Scientific, Inc.), and another anti-PA16-tag mAb (clone NZ-
33 [19]) to detect other cadherins.

2.3. Production of Hybridomas

Female BALB/cAJcl mice (CLEA Japan, Tokyo, Japan) were intraperitoneally immunized with
LN229/CDHS cells (1 x 108 cells/injection) mixed with 2% Alhydrogel adjuvant (InvivoGen, San
Diego, CA, USA). Following three additional weekly immunizations (1.0 x 10% cells/injection), a
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booster dose (1 x 108 cells/injection) was administered two days before spleen excision. Hybridomas
were produced as previously described [15].

2.4. Flow Cytometry Analysis and Determination of Dissociation Constant Values

CHO/CDHS and TE5 cells were harvested with 1 mM EDTA were washed with phosphate-
buffered saline (PBS) containing 0.1% bovine serum albumin (BSA; blocking buffer). The cells and
incubated with CasMab-4 and flow cytometric data were acquired and the dissociation constant (Kp)
values were calculated as described previously [15].

2.5. Western Blotting

Western blotting was performed using 1 ug/mL CasMab-4, 1 ug/mL of NZ-1, or 1 ug/mL of an
anti-isocitrate dehydrogenase 1 (IDH1) mAb (clone RcMab-1) as described previously [15].

2.6. IHC Using Cell Blocks

The formalin-fixed paraffin-embedded (FFPE) cell sections were stained with CasMab-4 (0.1 or
10 ug/mL), MpMab-2 (10 pupg/mL, IgGi isotype control, http://www.med-tohoku-
antibody.com/topics/001_paper_antibody_PDIS.htm), or NZ-33 (0.01 ug/mL) using the BenchMark
ULTRA PLUS with OptiView DAB IHC Detection Kit or ultraView Universal DAB Detection Kit
(Roche Diagnostics, Indianapolis, IN, USA).

3. Results

3.1. Development of Anti-CDHS8 mAbs by the CBIS Method

An immunogen, LN229/CDHS, was prepared as described in the Materials and Methods.
LN229/CDHS (1 x 108 cells/mouse) was intraperitoneally injected five times into two BALB/cA]Jcl mice
(Figure 1A). Hybridomas were produced by fusing splenocytes with myeloma P3U1 (Figure 1B). The
supernatants of the hybridoma were screened to identify those positive for CHO/CDHS and negative
for CHO-K1 (Figure 1C). As a result, 54 positive wells out of 956 (5.6%) were found. Limiting dilution
was then performed to clone hybridomas producing anti-CDH8 mAb (Figure 1D). Finally, 4 clones
were established, and the purified mAbs were prepared.
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Figure 1. Schematic representation of anti-CDH8 mAbs production. (A) BALB/cAJcl mice were
intraperitoneally injected with LN229/CDHS. (B) After five immunizations, splenocytes were fused with P3UT.
(C) The supernatants from hybridomas were screened using CHO-K1 and CHO/CDHS by flow cytometry. (D)
CasMabs, anti-CDH8 mAb-producing hybridoma clones, were established through limiting dilution.

3.2. Flow Cytometry Analyses of CasMab-4 Against CHO-K1, CHO/CDHS, and TE5

Among four clones, we selected CasMab-4 (IgG;, ) based on its reactivity in flow cytometry and
suitability for Western blotting (http://www.med-tohoku-
antibody.com/topics/001_paper_antibody_PDIS.htm). Figure 2 shows the flow cytometry analysis
using CasMab-4 against CHO/CDHS8 and CHO-K1. CasMab-4 reacted in a dose-dependent manner
with CHO/CDHS from 10 to 0.01 ug/mL (Figure 2A). In contrast, CasMab-4 did not recognize CHO-
K1 even at 10 pg/mL (Figure 2A). Additionally, CasMab-4 reacted with human esophageal SCC TE5
in a dose-dependent way (Figure 2B), indicating that TE5 expresses endogenous CDHS. The binding
affinity of CasMab-4 was assessed through flow cytometry. The fitted binding isotherms of CasMab-
4 binding to CHO/CDHS8 and TE5 are shown in Figure 2C. The Ko values were 3.8 x 10 M for
CHO/CDHS and 4.9 x 1071 M for TE5. These findings demonstrate that CasMab-4 has a high binding
affinity for CDHS8-positive cell lines.
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Figure 2. Flow cytometric analysis of CasMab-4. (A) CHO-K1 and CHO/CDHS8 were treated with CasMab-4 at
the indicated concentrations (red) or with blocking buffer (black, negative control). (B) Human esophageal SCC
TE5 was treated with CasMab-4 at the indicated concentrations (red) or with blocking buffer (black, negative
control). The mAbs-treated cells were incubated with Alexa Fluor 488-conjugated anti-mouse IgG. Fluorescence
data were collected using the SA3800 Cell Analyzer. (C) The determination of the dissociation constant of
CasMab-4. CHO/CDHS and TE5 were suspended in serially diluted CasMab-4. Then, cells were treated with
Alexa Fluor 488-conjugated anti-mouse IgG. Fluorescence data were subsequently collected using the SA3800
Cell Analyzer. The Kb values were calculated by GraphPad PRISM 6.
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3.3. Determination of the Specificity of CasMab-4 Using CDHs-Overexpressed CHO-K1

We previously established CHO-K1 cells, which overexpressed type I cadherins (CDH1-CDH4
and CDHI15) [14,15], type II cadherins (CDH5-CDH12, CDH18-CDH20, CDH22, and CDH24), a
truncated cadherin (CDH13), 7D cadherins (CDH16 and CDH17), and an atypical cadherin (CDH26)
[18]. Therefore, the specificity of CasMab-4 to those cadherins was determined. As shown in Figure
3A, CasMab-4 recognized CHO/CDHS but did not react with other cadherins-overexpressed CHO-
K1 cells. The cell surface expression of each cadherin was confirmed in Figure 3B. These results
indicate that CasMab-4 is a specific mAb to CDH8 among those CDHs.
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Figure 3. Specificity of CasMab-4. (A) The type I cadherins (CDH1, CDH2, CDH3, CDH4, and CDH15), type II
cadherins (CDH5, CDH6, CDH7, CDHS8, CDH9, CDH10, CDH11, CDH12, CDH18, CDHS8, CDH20, CDH22, and
CDH24), a truncated cadherin (CDH13), 7D cadherins (CDH16 and CDH17), and an atypical cadherin (CDH26)-
overexpressed CHO-K1 were treated with 10 pg/mL of CasMab-4 (red) or with control blocking buffer (black,
negative control), followed by treatment with anti-mouse IgG conjugated with Alexa Fluor 488. (B) Each
cadherin expression was confirmed by 1 ug/mL of an anti-CDH1 mAb (clone CaiMab-3), 1 ug/mL of an anti-
CDH3 mAD (clone MM0508-9V11), 1 ug/mL of an anti-CDH6 mAb (clone 427909), 1 pg/mL of an anti-CDH15
mAD (clone CaisMab-1), 1 ug/mL of an anti-CDH17 mAb (clone 2618), and 1 pg/mL of an anti-PAl6-tag mAb
(clone NZ-33) to detect other CDHs, followed by the treatment with Alexa Fluor 488-conjugated secondary
mAbs. The fluorescence data were collected using the SA3800 Cell Analyzer.

3.4. Western Blotting Using CasMab-4

We next tested whether CasMab-4 is suitable for Western blotting. Whole-cell lysates from CHO-
K1 and CHO/CDHS were analyzed. CasMab-4 detected bands around 63-100 kDa in CHO/CDHS,
but not in CHO-K1 (Figure 4A). An anti-PA16 mAb (NZ-1) primarily detected 100 kDa in CHO/CDHS8
(Figure 4B). An internal control, IDH1, was detected by RcMab-1 (Figure 4C). These results
demonstrate that CasMab-4 can detect CDHS8 in Western blotting.
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Figure 4. Western blotting using CasMab-4. Cell lysates (10 ug/lane) from CHO-K1 and CHO/CDHS8 were
electrophoresed and transferred to polyvinylidene difluoride membranes. The membranes were incubated with
1 pug/mL of CasMab-4 (A), 1 ug/mL of NZ-1 (B), or 1 pg/mL of RcMab-1 (an anti-IDH1 mAb) (C), followed by
the treatment with anti-mouse (CasMab-4) or anti-rat IgG (NZ-1 and RcMab-1)-conjugated with horseradish
peroxidase.

3.5. IHC Using CasMab-4 in FFPE Cell Blocks

We next tested whether CasMab-4 is suitable for IHC in FFPE sections from CHO-K1 and
CHO/CDHS. CasMab-4 showed intense membranous and cytoplasmic staining in CHO/CDHS but
not in CHO-K1 (Figure 5A). Additionally, an anti-PA16 tag mAb (NZ-33) exhibited a similar staining
(Figure 5B). CasMab-4 also showed a membranous staining in TES5, but the isotype control mAb
(MpMab-2) did not. These results indicate that CasMab-4 can detect exogenous and endogenous
CDHS in IHC of FFPE sections of cultured cells.
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Figure 5. Inmunohistochemistry using CasMab-4 in formalin-fixed paraffin-embedded cell blocks. (A) CHO-
K1 and CHO/CDHS sections were treated with 0.1 pg/mL of CasMab-4 or 0.01 pg/mL of NZ-33. The staining
was performed using BenchMark ULTRA PLUS with the ultraView Universal DAB Detection Kit. (B) TE5 sections
were treated with 10 pug/mL of CasMab-4 or 10 pg/mL of MpMab-2 (IgG: isotype control). The staining was
performed using BenchMark ULTRA PLUS with the OptiView DAB IHC Detection Kit. Scale bar = 100 pum.

4. Discussion

CDHS has five extracellular cadherin repeats, one of which mediates calcium-dependent
homophilic and heterophilic interactions [20]. In this study, we developed a novel anti-CDH8 mADb
using the CBIS method (Figure 1). A clone CasMab-4 showed strong recognition of both exogenous
and endogenous CDHS in flow cytometry and IHC (Figures 3 and 5). Importantly, CasMab-4
exhibited high affinity (Figure 2C) and specificity for CDHS8 without detectable cross-reactivity to
other 21 cadherins, including type I, type I, 7D, truncated, and atypical CDH (Figure 3). Therefore,
CasMab-4 could be helpful for isolating CDHS8-positive cells using fluorescence-activated cell sorting.
Since cross-reactivity data are unavailable for commercially supplied mAbs, careful validation is
necessary, and caution should be exercised when using these mAbs. Additionally, identifying the
epitope recognized by CasMab-4 will be crucial for developing highly specific anti-CDH8 mAbs.
Furthermore, CasMab-4 is suitable for IHC of cell block specimens (Figure 5). Notably, IHC was
performed on an automated slide-staining system, ensuring standardized and reproducible staining
conditions. Overall, CasMab-4 is a versatile antibody with broad applications in basic research and
potential clinical use.

We found that CasMab-4 recognized the human esophageal SCC TES5 cell line in flow cytometry
and IHC (Figure 3 and Figure 5). Although we examined the reactivity of CasMab-4 in other
esophageal SCC and glioblastoma cell lines, TE5 is the only cell line recognized by CasMab-4. No
studies have examined the role of CDHS8 in tumors. Further studies will be essential to clarify the
roles of CDHS in tumor proliferation and metastasis, as well as its expression in various human
tumors. Although the extracellular domain of cadherins mediates calcium-dependent homophilic
binding [2], CDHS8 was reported to make not only homophilic binding, but also heterophilic one with
another type II cadherin, CDH11 [21]. Since CDH11/OB-cadherin is predominantly expressed in
mesenchymal cells and involved in fibrosis [22], the interaction between CDHS8-positive tumor cells
and CDH11-positive mesenchymal cells in the tumor microenvironment should be investigated in
future studies [23].

We previously cloned cDNAs from hybridomas and produced recombinant mouse IgGz-type
mAbs to enhance antibody-dependent cellular cytotoxicity (ADCC). Using human tumor xenograft
models, antitumor activities have been evaluated [24,25]. We have cloned the cDNA of CasMab-4,
and the IgGe-type CasMab-4 will be produced and evaluated for in vitro ADCC and antitumor
efficacies in mouse tumor xenograft models.

Using in situ hybridization, CDH8 was detected in the developing cortex of a 9-week-old human
embryo [13]. As shown in Figure 5, CasMab-4 is suitable for IHC. Therefore, CasMab-4 will contribute
to the analysis of the distribution and subcellular localization of CDHS in the human central nervous
system. CDHS is a TBR1 target in the cortex [26], and these have been implicated as risk factors in
behavioral disorders such as autism [27,28]. This pathway is consistent with the hypothesis that
dendritic defects contribute to the pathogenesis of disorders arising from aberrant neuronal wiring.
CasMab-4 will also help clarify the hypothesis.

The CDH8-mediated adhesive code that determines neuronal connectivity has been clarified in
mouse models [7,29,30]. In the mouse retina, the dendrites of over 40 different retinal ganglion cells
(RGCs) arborize within the inner plexiform layer [31]. The dendrites are limited to one or several
distinct sublaminae. Within these sublaminae, RGC dendrites receive synaptic inputs from at least 70
types of interneurons, including amacrine and bipolar cells [32,33]. In TBR1-expressing RGCs, the
TBR1-CDHS axis is required for their laminar specification [34]. Therefore, CasMab-4 would be an
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essential tool to distinguish or isolate CDH8-positive RGCs in human retina or in vitro differentiated
RGCs from induced pluripotent stem cells [35].
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