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Abstract: Any  calculation of  thin film optical  spectra  requires  the  formulation of  certain model 

assumptions. In general, those model assumptions concern geometrical features as well as material 

properties. We review important facets of the thin film optics ʺstandard modelʺ that provides the 

basis of generally  accepted  relevant modern  spectra  calculation  routines. Moreover, we discuss 

phenomena arising when certain model assumptions are violated. Examples are provided by the 

Goos‐Hänchen  shift,  the  polarization  leakage,  interaction  with  partially  coherent  light,  rough 

surfaces, as well as the emergence of thickness‐dependent, time‐dependent, or non‐linear optical 

material  parameters.  Corresponding  challenges  in  coating  characterization  and  design  are 

discussed, and future prospects are identified. 

Keywords: optical coatings; optical spectra; thin film model 

 

1. Introduction 

Today,  there  is  a  large  variety  of  commercial  software  available  that  provides  calculation 

routines for both design and characterization tasks arising in research and technology of thin solid 

films and optical  (multilayer)  coatings. Examples of  commonly used  software packages are Film 

Wizard  [1], FilmStar  [2], Essential Macleod  [3], OptiLayer  [4] and OTF Studio  [5]. Those software 

solutions strongly differ in menu organisation and interface appearance and comfortability, and also 

in the efficiency of the mathematics used for performing the concrete calculations. But as a matter of 

fact, the physical model ideas that are hidden behind the different mathematical routines are very 

similar. As a consequence of this surprising convergence, the user has to provide practically identical 

information to any chosen software before he (or she) can start with the calculation. Such information 

usually includes the angle of incidence, the polarization state of the light, and a spectral target that 

naturally  includes  information about  the  spectral  range of  interest. And at  least  in a design  task, 

information about  the optical properties of available materials must be provided,  in  terms of  the 

wavelength  dependence  of  two  material  quantities:  the  refractive  index  𝑛 ,  and  the  extinction 
coefficient 𝐾  for each material. 

It is however more interesting, which kind of (usually accessible) information is NOT needed 

for the calculation. Thus, the intensity of the incident light is usually not a parameter of interest. The 

same concerns spatial beam extensions, or geometrical information about the angular distribution of 

light ray directions in focused or defocused incident radiation. The reason is in the specifics of the 

underlying physical thin film model, and this is what this paper shall be about. 

In order to avoid misunderstandings: We recognize that the title of our paper has some similarity 

to the title of the excellent paper by A.V. Tikhonravov: “Some theoretical aspects of thin‐film optics 

and their applications”, published  in 1993 [6]. It is by no means our purpose to copy the strategic 

approach of that publication. What we are discussing here is focused on 
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 Physical modelling of both the system geometry and the material parameters 

 Forward  search  tasks  concerning  the  calculation  of  spectrophotometric  quantities  only,  no 

inverse problems 

 Specific effects arising from violations of the model assumptions in practice. 

We therefore start with the description of what one could call the standard model of thin film 

optics. We note that this is usually rather a matter discussed in relevant textbooks, and would like to 

explicitly refer to those which had explicit impact on this study [7–10]. 

It is our opinion that a critical view on the underlying model assumptions is essential for any 

user of commercial thin film design and characterization software in order to develop a realistic view 

on  the practical significance of any calculation  result. Knowledge on  the  thin film optical models 

should already been imparted in corresponding university courses, where thin film optics may be 

taught as a special chapter of applied optics with clear interfaces to physical optics, electrodynamics, 

quantum physics and solid state physics [10]. 

2. Basic Model Assumptions in Conventional Thin Film Optics 

2.1. System Geometry 

Let  us  shortly  summarize  basic  model  assumptions  concerning  system  and  illumination 

geometry characteristic in thin film optics [9,10]: 

 We  assume  stratified media  only. Consequently,  the  optical  properties  of  the media  shall 

depend  on  one  coordinate  (here  the  z‐coordinate,  compare  Figure  1)  only.  The  optical 

parameters describing  the materials may exhibit a discontinuous z‐dependence, and  in  this 

case, the discontinuities in the optical parameters describe what we will further call interfaces. 

The interfaces are perpendicular to the z‐axis. 

 Consequently, the model system extends to infinity along the x‐ and y‐axes. 

 We  further  assume  optical  isotropy  of  all  media.  In  addition,  any  magnetic  response  is 

neglected in our model. 

 The semispace above the stratified medium is filled with a homogenous medium, called the 

incidence medium. As a postulate, light propagation in the incidence medium should be free 

of  damping. On  its  bottom,  the  stratified medium  faces  a  semispace  filled with  a  further 

homogeneous medium, called the exit medium. 

 It is assumed, that a plane monochromatic electromagnetic wave is incident (from the incidence 

medium) on the stratified medium. In this case, an incident wavevector may be unambiguously 

defined. On this basis, an incidence angle may be introduced, which is zero for the particular 

case of normal incidence. 

 At oblique light incidence, the wavevector of the incident wave and the z‐axis allow defining 

an incidence plane. 

 We further assume a three‐wave scenario. That means, that the incident wave gives rise to the 

generation of two other plane waves, propagating either in the exit medium (the transmitted 

wave), or in the incidence medium (the reflected wave). 

 The materials  are  described  in  terms  of  linear  optical  constants  only.  As  a  consequence, 

reflectances and transmittances may be introduced that do not depend on the light intensity. 

The set of requirements I – VIII defines what we will further call the standard model of thin film 

optics (compare Fig. 1) In many situations, the exit medium is associated with the substrate material. 

We further note that sometimes the incidence medium is called the superstratum. Note that in this 

article, we will not explicitly consider the back side of the substrate (compare [10,11]). 
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Figure 1. Illustration of the “standard model” of Thin Film Optics. I is the light intensity; subscripts E, T, and R 

denote incident, transmitted, and reflected intensities. All other symbols are introduced in the next paragraph. 

2.2. Material Description 

2.2.1. Dispersion Models 

When restricting on electric dipole interaction in optically isotropic materials (i.e. neglecting any 

magnetic response), the light‐matter interaction results in the induction of a macroscopic polarization 

of the medium according to [10,12–14]: 

𝑷ሺ𝑡ሻ ൌ 𝜀଴ න 𝜅ሺ𝜉ሻ
∞

଴
𝑬ሺ𝑡 െ 𝜉ሻ𝑑𝜉  (1)

Here, 𝑷  is the polarisation of the medium,  𝜀଴  the vacuum permittivity, 𝑬  the electric field in 
the medium and  𝜅   the  real  response  function of  the medium.  𝑡   is  the  time,  and  the  integration 

variable  𝜉  stands for the time delay. 

From  the  response  function,  the dielectric  function  𝜀ሺ𝜔ሻ   (with 𝜔   ‐ angular  frequency of  the 
incident light) of the medium is straightforwardly calculated according to: 

𝜀 ൌ 1 ൅න 𝜅ሺ𝜉ሻ𝑒௜ఠక
∞

଴
𝑑𝜉 ൌ 1 ൅න 𝜅ሺ𝜉ሻሺcos𝜔 𝜉 ൅ 𝑖 sin𝜔 𝜉ሻ

∞

଴
𝑑𝜉 ൌ 𝜀ሺ𝜔ሻ  (2)

Note that according to (2), the dielectric function must depend on the light frequency (so‐called 

dispersion) and is necessarily a complex quantity. For any real response function  𝜅ሺ𝜉ሻ, from (2) we 

immediately find: 

Re 𝜀 ሺെ𝜔ሻ ൌ Re 𝜀 ሺ𝜔ሻ; Im 𝜀 ሺെ𝜔ሻ ൌ െ Im 𝜀 ሺ𝜔ሻ  (3)

In terms of the formulated model assumptions III and VIII, the optical constants n (the refractive 

index) and K (the extinction coefficient) are obtained from the complex dielectric function according 

to (4): 

𝑛ሺ𝜔ሻ ൅ 𝑖𝐾ሺ𝜔ሻ ≡ ඥ𝜀ሺ𝜔ሻ ⇒ ቊ
𝑛ሺ𝜔ሻ ൌ 𝑅𝑒ඥ𝜀ሺ𝜔ሻ

𝐾ሺ𝜔ሻ ൌ 𝐼𝑚ඥ𝜀ሺ𝜔ሻ
  (4)

2.2.2. Commonly Used Dispersion Models 

There is a large amount of dispersion models used in the modern scientific literature, compare 

for example [15–25]. Many of these models arise from making use of quantum mechanical features 

( )
0( ) i t

e e,t e   krrE E

Plane, monochromatic

medium 1: 
incidence medium

medium 2:
exit medium

layers

   n z z

EI RI

TI

 T

E

I
T f I

I
 

 R

E

I
R f I

I
 

Scalar dielectric function,
negligible magnetic response

linear material 
equations



0
x

z

k

k

 
 
 
 
 

k
incidence plane:

planex z 

planex y 

interfaces:

xy
z

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 January 2025 doi:10.20944/preprints202501.1108.v1

https://doi.org/10.20944/preprints202501.1108.v1


  4  of  22 

 

of the light‐matter interaction, while in classical physics; there are basically three different dispersion 

models. We can only shortly present a selection of  those models and start with  the basic classical 

models: 

When  classifying  the  electrons  in  a  solid  into  free  and  bound  electrons  [26,27],  three  basic 

polarization mechanisms may be identified, which are presented in the following scheme: 

 

Here we have further introduced the resonance frequency 𝜔଴, the damping constant  𝛾, and the 

“plasma  angular  frequency”  𝜔௣ ൌ ට
ே௤మ

ఌబ௠
   of  the  considered  free  or  bound  charge  carriers  (here 

electrons), respectively.  𝑞  and 𝑚  are charge and mass of the charge carriers, and 𝑁  stands for their 
concentration in the medium. The subscript “stat” denotes the static value of a given quantity. 

Typically, none of the three mentioned models is applied in its pure form, because real matter 

has  a  tremendous number  of degrees  of  freedom,  all  contributing  to  the  full polarization of  the 

medium under the action of an  incident  light wave. Therefore,  the  three basic models are usually 

properly  superimposed  to  achieve  a  satisfying  description  of  a  realistic  optical  behavior.  Some 

popularity has  the multi‐oscillator model  [27,28], but we will  further  focus on  two  special  cases, 

namely the Brendel model [17] as well as the beta‐distributed oscillator model (ß_do model [18,19]). 

Brendel  model:  It  pursues  the  specifics  of  optical  materials,  which  are  characterized  by 

fluctuations in the resonance frequencies within the material and thus provide an inhomogeneous 

line  broadening  mechanism.  When  assuming  a  Gaussian  distribution  of  angular  resonance 

frequencies  𝛺   around  a  central  frequency  𝜔̄଴ ,  an  approximate  calculation  of  the  “averaged” 

dielectric function is performed by the equation 

𝜀ሺ𝜔ሻ ൌ 1 ൅
1

√2𝜋𝜎
න exp ቈെ

ሺ𝛺 െ 𝜔̄଴ሻଶ

2𝜎ଶ
቉

𝜔௣ଶ

𝛺ଶ െ 𝜔ଶ െ 2𝑖𝛾𝜔

∞

ି∞
𝑑𝛺  (5)

Here,  𝜎   is  the  standard deviation  of  the  assumed Gaussian distribution, which defines  the 

inhomogeneous contribution to the width of the absorption line defined by the imaginary part of . 
The shape of the absorption line is defined by the relation between  𝜎  and  𝛾. In the case of  𝜎 ≫ 𝛾, a 
Gaussian  lineshape will be observed, while  for  𝜎 ≪ 𝛾 , we will find a  rather Lorentzian behavior. 

When both linewidth contributions are comparable to each other, we have  𝜎 ൎ 𝛾, and then we obtain 

a so‐called Voigt line. 

The  beta‐distributed  oscillator  (β_do) model:  In  the  β_do model  it  is  the  assumed,  that  the 

envelope of the mentioned multiplicity of individual absorption lines is formed by a Beta‐distribution 

being given by 
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𝑤ఉ_doሺ𝜔ሻ ൌ ൞

ሺ𝜔 െ 𝜔௔ሻ஺ିଵሺ𝜔௕ െ 𝜔ሻ஻ିଵ

׬ ሺ𝜔 െ 𝜔௔ሻ஺ିଵሺ𝜔௕ െ 𝜔ሻ஻ିଵ𝑑𝜔
ఠ್

ఠೌ

;𝐴,𝐵 ൐ 0;𝜔 ∈ ሺ𝜔௔ ,𝜔௕ሻ

0;𝜔 ∉ ሺ𝜔௔ ,𝜔௕ሻ

  (6)

The  real  parameters  𝐴 ,  𝐵 ,  𝜔௔   and  𝜔௕   are  free  parameters  within  the  β_do  model.  The 

dielectric function is then given by: 

𝜀ሺ𝜔ሻ ൌ 1 ൅
𝐽
𝜋
න 𝑤ఉ_doሺ𝜉ሻ
ఠ್

ఠೌ

൤
1

𝜉 െ 𝜔 െ 𝑖𝛾
൅

1
𝜉 ൅ 𝜔 ൅ 𝑖𝛾

൨ 𝑑𝜉  (7)

Here  𝐽   is a  further model parameter, which has  the sense of an oscillator strength. Figure 2 

shows an example on the optical constants dispersion as described in terms of the β_do model. The 

total of 6 free parameters provides some flexibility in modelling various (in particular asymmetric) 

absorption  features,  in  particular  in modelling what  is  called  an  absorption  edge,  defined  by  the 

parameter (or threshold frequency or absorption onset frequency) 𝜔௔  in (6). 

 

Figure 2. Optical constants as modelled by the _do model. The indicated value 𝜔௔ marks the absorption edge. 

As already mentioned, there is a tremendous amount of further dispersion models, particularly 

accounting for the quantum mechanical nature of  light‐matter  interaction [13–15,20–25,29–35]. We 

will  shortly mention  the  Tauc‐Lorentz,  Cody‐Lorentz,  as  well  as  the  Forouhi‐Bloomer models, 

because  of  their  ability  to  model  the  threshold  character  of  light  absorption  in  dielectric  or 

semiconductor coatings by introducing an absorption edge. 

In  the Tauc‐Lorentz model,  the  imaginary part of  the dielectric  function of a single oscillator 

model is merged together with the Tauc edge [30–32] to generate the imaginary part of the dielectric 

function of the Tauc Lorentz model according to [20,21] (8): 

Im 𝜀 ሺ𝜔ሻ ∝
൫ℏ𝜔 െ 𝐸௚൯

ଶ
𝜃൫ℏ𝜔 െ 𝐸௚൯ ൅ ൫ℏ𝜔 ൅ 𝐸௚൯

ଶ
𝜃൫െℏ𝜔 െ 𝐸௚൯

𝜔ሾሺ𝜔଴
ଶ െ 𝜔ଶሻଶ ൅ 4𝜔ଶ𝛾ଶሿ

  (8)

Here,  𝐸௚  is the absorption edge described  in terms of the Tauc optical gap. Compared to the 

usual writing, (8) is generalized to negative frequency arguments in order to comply with (3). The 

corresponding real part  is calculated  in  terms of a Kramers‐Kronig relation  (see  later point 2.2.3). 

Explicit expressions can be found, for example, in [20,33]. 

The  introduction  of  the  Tauc  gap  in  amorphous  semiconductor  optics  is  connected  to  the 

assumption  of  a  constant  (frequency‐independent)  transition matrix  element  of  the momentum 

operator.  If, on  the  contrary,  constancy of  the  electric dipole moment operator  is presumed, one 

arrives at the Cody‐description of light absorption in the vicinity of the absorption gap, which results 

in the definition of the Cody gap [35]. With corresponding modifications in (8),  the Cody‐Lorentz 

model may be formulated [22]. To our knowledge the Tauc‐Lorentz model is more frequently used 

in practice than its counterpart, the Cody‐Lorentz relation. 

In the Forouhi Bloomer model (we restrict here on the version for amorphous solids [23]), explicit 

expressions for n and K are derived according to: 

𝐾ሺ𝜔ሻ ൌ
𝐴൫𝜔 െ 𝜔௚௔௣൯

ଶ

ଶ 𝐵 ൅ 𝐶
 

(9)

 n, K

a
0
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𝑛ሺ𝜔ሻ ൌ 𝑛∞ ൅
𝐵଴𝜔 ൅ 𝐶଴

𝜔ଶ െ 𝐵𝜔 ൅ 𝐶
 

The  𝐴‐, 𝐵‐ and  𝐶‐values are constants. For uniformity reasons, (9) is written here in terms of the 

angular frequency, which is in contrast to the original publication where the photon energy was used. 

What  appears  rather  strange  is  the  asymptotic  behavior  for  𝐾ሺ𝜔 → ∞ሻ → 𝐴 ് 0 .  This  has  been 
recognized early and gave rise to corresponding criticism ([20]). Nevertheless, the model is frequently 

applied to spectra analysis in the vicinity of the fundamental absorption edge. 

2.2.3. Kramers‐Kronig Consistency 

Any  physically  reasonable  dielectric  function  must  suffice  the  Kramers‐Kronig  relations 

[10,12,13]: 

Re 𝜀 ሺ𝜔ሻ ൌ 1 ൅
1
𝜋
𝑉𝑃න

Im 𝜀 ሺ𝜔ଶሻ𝑑𝜔ଶ

𝜔ଶ െ 𝜔

∞

ି∞
ൌ 1 ൅

2
𝜋
𝑉𝑃න

Im 𝜀 ሺ𝜔ଶሻ𝜔ଶ𝑑𝜔ଶ

𝜔ଶ
ଶ െ 𝜔ଶ

∞

଴
  (10)

Im 𝜀 ሺ𝜔ሻ ൌ െ
1
𝜋
𝑉𝑃න

ሾRe 𝜀 ሺ𝜔ଶሻ െ 1ሿ𝑑𝜔ଶ

𝜔ଶ െ 𝜔

∞

ି∞
൅
𝜎௦௧௔௧
𝜀଴𝜔

ൌ െ
2𝜔
𝜋
𝑉𝑃න

ሾRe 𝜀 ሺ𝜔ଶሻ െ 1ሿ

𝜔ଶ
ଶ െ 𝜔ଶ 𝑑𝜔ଶ ൅

𝜎௦௧௔௧
𝜀଴𝜔

∞

଴
 

(11)

With VP – Cauchys principal value of the improper integral, and 𝜔ଶ  ‐ integration variable. The 

term 
ఙೞ೟ೌ೟
ఌబఠ

ൌ
ఠ೛
మ

ଶఊఠ
   in  (11)  arises  from  the  singularity  in  the Drude  function  at  𝜔 ൌ 0   and  is  only 

relevant in electric conductors with a static electric conductivity  𝜎௦௧௔௧ ് 0. The Drude‐, Debye‐, and 
oscillator models are consistent with (10) and (11), and so are their linear superpositions. As a special 

case, the β_do model is Kramers‐Kronig consistent as well. The situation is a bit more complicated 

with the Brendel model [36] because the dielectric function according to (5) contains a contribution 

with a vanishing resonance frequency, which becomes equivalent to a Drude‐like term and therefore 

requires an addendum to (11) similar to what we have in the case of conductors. The problem may 

be overcome when using an appropriately apodised Gaussian function in (5) instead. 

The  Campi‐Coriasso‐Model  [37,38]  seems  to  be  the  first  Kramers‐Kronig  consistent model 

combining the oscillator model with Tauc’s law [39]. It uses the same number of parameters with the 

same meaning  as  the  Tauc‐Lorentz model,  but  its  parametrization  is  different  and  it  is  far  less 

common. In the original work no analytical expression for the real part of the dielectric function is 

provided but can be found in [39], where also a good overview on models combining Tauc’s law and 

Lorentz model is given. The author of [39] conclude on the Kramers‐Kronig‐consistency of both the 

Tauc‐Lorentz  and  Cody‐Lorentz  approaches,  while  the  Forouhi‐Bloomer  model  is  claimed  as 

Kramers‐Kronig inconsistent. 

In [40] a different physically consistent model combining the oscillator model with Tauc’s law is 

presented. It is called Advanced Dispersion Model and  is a precursor of the Universal Dispersion 

Model [24]. In contrast to the latter, it requires a priori information about the physical and chemical 

structures of the films since the model contains physical parameters specific for the material, such as 

atomic fractions. 

In  concluding  this paragraph,  let us mention  that  the Kramers‐Kronig  relations  represent  a 

rather  general  quantitative  formulation  of  the  physical  connection  between  light  refraction  and 

absorption phenomena. In fact those connections are intuitively used by any coating practitioner. It 

is well known from coating practice that materials with a large refractive index tend to have smaller 

optical gaps than materials with a smaller refractive index. These correlations are formulated in semi‐

empirical rules like the Moss‐ and Ravindra‐rules [41], and represent a useful guide in any realistic 

coating design procedure. 

3. Model Violations 

3.1. General 
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In this article, we will separately deal with model violations concerning geometrical features of 

our “standard model”, and those concerning modelling the optical material constants. Concerning 

geometry, so it is clear that the idealized model requirements I – VIII as formulated in section 2.1 will 

never be fulfilled in practice, and therefore, model violations are unavoidable in practice. Therefore, 

we will discuss prominent examples, effects and  their possible application potential. To a certain 

extent, this also concerns modelling of materials, because no real material is absolutely homogeneous, 

isotropic, electrically insulating and so on. What we will not discuss here are specific effects arising 

from the use of Kramers‐Kronig  inconsistent dispersion models in practical modelling the coating 

optical  response  in broad  spectral  regions. We  see no  real necessity  to make use of  inconsistent 

models, because there are enough Kramers‐Kronig consistent dispersion models available, and it is 

hard  to recognize  the generation of new application  ideas  from  the use of physically  inconsistent 

models. 

3.2. Geometry 

3.2.1. Restricted Beam Dimensions 

We  return  to  our  standard model  (Figure  1)  and  turn  to  the  discussion  of  selected model 

assumption  violations. Within  this  section, we  shortly  discuss  a  phenomenon  called  the Goos‐

Hänchen shift [42] for historical reasons. 

In this context we consider a situation, that in contrast to model assumption V, the illumination 

area  is spatially restricted. In particular, we assume some kind of  illumination slit that  is elongated 

along the y‐axis while being spatially restricted along the x‐axis (Figure 3). 

 

Figure 3. Violation of model assumption V, resulting in a lateral shift (exaggerated for visibility) of the reflected 

light beam. 

Clearly, even in this modified illumination geometry, the incident light beam may be reflected 

or transmitted at the sample surface. Once we have a spatially restricted illumination spot, it makes 

sense to ask, where the light leaves the sample. 
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Historically, this was first investigated in internal total reflection conditions at a single interface. 

As a matter of fact, the totally reflected light beam turns out to be laterally shifted along the x‐axis 

with  respect  to  the  incident  light beam  for a characteristic distance  lr. This  is  the  so‐called Goos‐

Hänchen shift [42,43]. It turned out later that this phenomenon is however not restricted to surfaces 

in total internal reflection conditions. In optical coatings, lateral shifts up to the sub‐millimeter range 

have been experimentally established [44]. 

In [43], Kurt Artmann was able to show that the value of the Goos‐Hänchen shift depends on 

the first derivative of the phase  𝛿௥  of the complex reflection coefficient with respect to the incidence 

angle 𝜑. The idea behind his model is that the spatially restricted illumination area is equivalent to 

relaxing the model requirement V. Hence, he assumed a certain distribution of incident plane waves 

with different incidence angles, and the lateral shift  𝑙௥  is then obtained as: 

𝑙௥ ൌ െ
𝑑𝛿௥
𝑑𝑘௫

ൌ
𝜆

2𝜋𝑛ଵ cos𝜑
𝑑𝛿௥
𝑑𝜑
  (12)

Here,  𝑛ଵ  denotes the refractive index of the incidence medium. 

Again, the effect is not only relevant in total internal reflection conditions [10]. It has been found 

in the vicinity of the Brewsters angle with p‐polarized light [45], at interfaces between transparent 

and absorbing media [45–49], as well as at metal surfaces [48,49]. 

Artmanns argumentation is general enough to be applicable to thin film stacks as well [44,50]. 

Correspondingly, lateral shifts in transmission (𝑡) and reflection (𝑟) are estimated in terms of (13): 

𝑟 ൌ |𝑟|𝑒௜ఋೝ ⇒ 𝑙௥ ൌ െ
𝜆

2𝜋
1

𝑛ଵ cos𝜑
𝑑𝛿௥
𝑑𝜑

 

𝑡 ൌ |𝑡|𝑒௜ఋ೟ ⇒ 𝑙௧ ൌ െ
𝜆

2𝜋
1

𝑛ଵ cos𝜑
𝑑𝛿௧
𝑑𝜑
 

(13)

The  lateral shift according  to  (13) depends on  the wavelength of  the  incident  light. Potential 

applications therefore pursue wavelength demultiplexing tasks [51,52]. 

3.2.2. Polarization Leakage 

In  this  section,  we  discuss  consequences  of  a  violation  of  model  requirement  VI  (no 

unambiguously  defined  incidence  plane).  Let  us  imagine  a  situation, where  the  assumed  plane 

sample surface  is  illuminated by  light consisting of many different  rays with different  individual 

wavevectors. Let us  further  restrict  on  a  simple model  case, where  all  incident wavevectors  are 

confined in a cone characterized by an apex‐semiangle 𝛹  (Figure 4) [53]. The angle 𝜑  now denotes 
the angle between the surface normal and the symmetry axis of the cone. The described situation may 

correspond to oblique incidence of focused or defocused light. 

 

Figure 4. Assumed illumination geometry resulting in polarization leakage. 
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However, because of the assumed conical light incidence geometry, it is now no more possible 

to define an  incidence plane  in the strong sense. Indeed, each of  the  light rays that  form  the cone 

defines an individual incidence plane, and consequently, the termini of s‐ and p‐polarization [10] use 

their assumed strong sense. Indeed, for example, light that is s‐polarized with respect to the nominal 

incidence plane defined  by  the  symmetry  axis  of  the  cone,  is not necessarily  s‐polarized  for  the 

individual  incidence  planes  relevant  for  other  k‐vectors,  instead,  it  may  contain  p‐polarized 

components. The result is an effect called the polarization leakage. It is rather disturbing in any real 

experiment performed with linearly polarized light and, in particular, destroys the performance of 

thin film light polarizers. 

While a general theory of the polarization leakage is developed in [54], a somewhat simpler but 

less general  treatment  restricted  to a Lambertian  intensity distribution  results  in  the manageable 

expression (14) (compare [53]): 

𝑙𝑒𝑎𝑘𝑎𝑔𝑒 ൎ
𝛹ଶ

4 tanଶ 𝜑
  (14)

In deriving (14),  𝛹 ≪ 𝜑  is assumed. 

Note that the leakage is determined by the illumination geometry only, the apex‐ semiangle is 

given in radians. Therefore, improvements of the coating design have no effect on the polarization 

leakage. 

As it turns out from (14), the polarization leakage may be reduced by enlarging the angle 𝜑. In 
practice, that gave rise for the development of completely new types of thin film polarizers, working 

at incidence angles substantially larger than the usually applied incidence at 45° [55]. The working 

principle  of  these  polarizers  is  based  on  attenuated  total  internal  reflection  at  certain  internal 

interfaces, and thus represents an example of the development of completely new optical components 

stimulated by the emergence of an originally disturbing effect like the polarization leakage. 

3.2.3. Rough Surfaces 

Rough  surfaces, as well as any  laterally  structured  coatings, violate  the model assumption  I 

defined in section 2.1 because they introduce an additional  𝑥‐ and/or  𝑦‐dependence of the dielectric 
function. Indeed, any surface profile is usually defined in terms of a surface height function  ℎሺ𝑥, 𝑦ሻ. 
The rms surface roughness  𝜎  is then defined through: 

𝜎 ൌ
1
𝐿
ඨන න ሾℎሺ𝑥,𝑦ሻ െ ⟨ℎ⟩ሿଶ𝑑𝑥

௅

଴
𝑑𝑦

௅

଴
; ⟨ℎ⟩ ൌ

1
𝐿ଶ
න න ℎሺ𝑥,𝑦ሻ𝑑𝑥

௅

଴
𝑑𝑦

௅

଴
  (15)

where  𝐿  is a characteristic length scale. Usually, in a practical situation, the surface profile is not 
exactly known. Let us for simplicity consider the situation of a one‐dimensional surface height profile 

ℎሺ𝑥ሻ   that  is assumed  to be known on a  certain  length  interval  𝐿   in a number of  𝑁   points. That 
interval may then periodically continued, so that it can be approximated by [56]: 

ℎሺ𝑥ሻ ൌ ෍ ℎ௟𝑒
ଶ௜గ௟௫
௅

ே

௟ୀିே

  (16)

In this case, the rms surface roughness can be written as: 

𝜎௥௠௦ ൌ ෍ |ℎ௟|ଶ
ே

௟ୀିே

  (17)

From here we obtain the expressions for the so‐called small scale roughness  𝜎௦௠௔௟௟  and large 
scale roughness  𝜎௟௔௥௚௘  via: 

𝜎௦௠௔௟௟ ൌ ෍ |ℎ௟|ଶ

ቂ௟வவ
௅
ఒቃ

 
(18)
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𝜎௟௔௥௚௘ ൌ ෍ |ℎ௟|ଶ

ቂ௟ழழ
௅
ఒቃ

 
(19)

Small‐and large scale roughnesses have a different impact on the optical properties of a coating. 

Large  scale  roughness  gives  rise  to  diffuse  light  scattering  and  thus  provides  an  optical  loss 

mechanism. Small scale roughness, on the contrary, rather acts like an antireflection coating. A small 

scale roughness is usually modelled by introducing a fictive mixture layer on the surface, making use 

of a mixing model like the Lorentz‐Lorenz or the Maxwell Garnett approach. This calculation strategy 

is well established and incorporated today in commercially available film characterization software, 

particularly for ellipsometry purposes [57]. The introduction of an (optically homogeneous) mixture 

model  eliminates  the x‐ and  y‐dependence of  the optical properties  from  the  system,  so  that  the 

calculation of  the optical properties may again be performed  in  terms of  the model assumptions 

formulated in section 2.1. 

The situation is different in the case of a large scale roughness. Different approximation formulas 

have been proposed to incorporate the scatter losses into the optical model. A crucial point is that the 

effect of the roughness on the thin film spectra is now twofold: The surface roughness may not only 

change the propagation direction of the incident light through elastic scatter, but has also an impact 

on  the  coherence  of  light  trains  superimposing  as  a  result  of multiple  internal  reflections  at  the 

interfaces of the film system. Therefore, at the moment, no unique generally accepted manageable 

approach is available, but there exists a large diversity of different approaches, (as examples, we cite 

[56,58–91])  all  having  their  individual  strength  and  shortcomings. As  seen  from  the  references, 

surface roughness in optical coatings is a hot topic from the sixtieth of the last century of the previous 

millennium until today. 

A detailed discussion of the available literature is beyond the frames of this review. Clearly, a 

rigorous electrodynamic treatment of wave propagation through a system with a specified surface 

geometry will provide the necessary information, but in thin film practice, any practitioner will seek 

for  a  couple of manageable  formulas  that  allow  for  a quick‐and‐dirty  estimation of  the  effect of 

roughness  on  a  spectrum  that  is  otherwise  calculated  in  the  usual way. We  therefore  limit  the 

discussion of  large scale  roughness  to  the presentation of a  set of estimation  formulas,  that have 

proven  useful  for  estimating  the  roughness‐induced  changes  in  specular  reflectance  and 

transmittance at interfaces compared to the ideally flat surface model (Table 1). Thereby, the model 

for  large scale roughness by A. V. Tikhonravov [56]  is  limited to normal  light  incidence and non‐

absorbing materials only. It can be extended to the case of oblique light incidence, as exemplified in 

[58,79]. Table 1 summarizes several proposed versions of scatter factors S relevant for reflection (r) 

and transmission (t). In the calculations, these scatter factors appear as prefactors to the usual Fresnel 

field transmission and reflection coefficients. 

Table 1. Overview on scatter factors  𝑆௥  and  𝑆௧  applied in various references. j is the layer number in a stack, 

and  𝜆  the vacuum wavelength,  𝛿መ௝
௦ ൌ 𝑛ො௝ cos𝜑ො௝  and  𝛿መ௝

௣ ൌ
𝑛ො௝

cos𝜑ො௝
൘ , the effective refractive index and  cos𝜑ො௝ ൌ

ඨ1 െ ൬
௡బ
௡ොೕ

sin𝜑൰
ଶ

,  𝑛ො ൌ 𝑛 ൅ 𝑖𝐾. 

𝑺𝒓  𝑺𝒕  Ref. 

1 െ
1
2
ቂ4𝜋𝑛௝

𝜎௟௔௥௚௘
𝜆

ቃ
ଶ

  1 െ
1
2
ቂ2𝜋൫𝑛௝ െ 𝑛௝ାଵ൯

𝜎௟௔௥௚௘
𝜆

ቃ
ଶ

  [56] 

1 െ
1
2
ቂ4𝜋𝛿௝

𝜎௟௔௥௚௘
𝜆

cos𝜑௝ାଵቃ
ଶ

  1 െ
1
2
ቂ2𝜋൫𝛿௝ െ 𝛿௝ାଵ൯

𝜎௟௔௥௚௘
𝜆

cos𝜑௝ାଵቃ
ଶ

  [58] 

𝑒
ି
ଵ
ଶ൤ସగ௡ೕ

ఙ೗ೌೝ೒೐
ఒ ൨

మ

  𝑒
ି
ଵ
ଶ൤ଶగ൫௡ೕି௡ೕశభ൯

ఙ೗ೌೝ೒೐
ఒ ൨

మ

 
[70–

72,75,85] 

𝑒
ି
ଵ
ଶ൤ସగఋೕ

ೞఙ೗ೌೝ೒೐
ఒ ൨

మ

  𝑒
ି
ଵ
ଶ൤ଶగቀఋೕ

ೞିఋೕశభ
ೞ ቁ

ఙ೗ೌೝ೒೐
ఒ ൨

మ

  [77] 
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𝑒
ି
ଵ
ଶ൤ସగఋ

෡
ೕ
ೞఙ೗ೌೝ೒೐

ఒ ൨
మ

  𝑒
ି
ଵ
ଶ൤ଶగቀఋ

෡
ೕ
ೞିఋ෡ೕశభ

ೞ ቁ
ఙ೗ೌೝ೒೐

ఒ ൨
మ

  [79] 

3.2.4. Coherence 

In thin film optics, a loss in coherence between multiply  internally reflected waves is usually 

caused by either a coating thickness that increases the coherence length of the incident light, or by 

the loss of phase information of the wave when passing rough interfaces (compare section 3.2.3.) In 

this section, our focus will be on the first mechanism. 

In  optical multilayer  systems with  smooth  interfaces,  a  distinction  is  usually made  in  the 

description between the extreme cases of  incoherent (e.g. substrate with consideration of the back 

side)  and  coherent  light propagation  [11].  In  the  case  of  incoherent  light propagation,  no phase 

information is included, because the coherence length of the light is assumed to be smaller than the 

layer thickness. Therefore, no interference effects occur and only the wave amplitudes are relevant 

and geometrical optics can be used for modelling. 

In the case of coherent  light propagation,  the coherence  length  is assumed  to be significantly 

larger  than  the  layer  thickness.  For  this  reason,  the  phase  information  remains  important  and 

interference effects between multiply  reflected waves will occur. Therefore,  the wave optic  is  the 

corresponding theoretical model here. 

Optical coatings containing both types of layers can be modelled with the general transfer matrix 

method outlined in many textbooks (e.g. [92]). In the case of anisotropic layers, a generalized method 

is proposed in [93]. 

In the intermediate regime, when the layer thickness is in the range of the coherence length, the 

two mentioned extreme cases are of no relevance, and an adapted  theoretical approach based on 

partial coherence is required. 

Bearing in mind that the coherence length is affected by spectral resolution and wavelength of 

the  light source, a given sample may appear either “coherent” or “incoherent”, depending on  the 

illumination conditions  [10]. When an optical coating  is measured  in a sufficiently broad spectral 

range,  the  transition  from  “coherent”  to  “incoherent”  may  even  be  observed  within  a  single 

transmission or reflection spectrum. As a result, the loss in coherence may be observed by a depletion 

of  the amplitude of  the  interference  fringes usually observed  in both  transmission and  reflection 

spectra. 

Let us finish this section with a short literature review. Initially, the theoretical description of 

partial  coherence was  limited  to  single  layer  coatings  at  normal  incidence  [94],  but  later  these 

limitations could be eliminated in a more general theory [95]. In this approach a complex degree of 

coherence  (cdc)  has  been  introduced.  The  limiting  cases  of  the  absolute  values  are  cdc  =  0  for 
incoherent  and  cdc  =  1  for  coherent  light  propagation.  In  [77]  a  simpler  coherence  function  is 

proposed and spectral averaging over an interval is used. 

In [96] partially coherent light propagation is also modelled with the transfer matrix method, 

but  the  transition  from  coherent  to  incoherent propagation  is achieved by  introducing a  random 

phase of increasing intensity. In [97] the coherence length is considered using a Fourier transform of 

a randomly generated partially‐coherent wave. Thereby, the statistical field distribution of partially 

coherent light is modelled using a rigorous coupled wave analysis. 

In [72] and [75] a generalized matrix method is presented, where interface roughness has been 

addressed  as  a  special  case  of  partially  coherent  light  propagation.  The  phase‐shift  integration 

method in [98] provides an alternative mathematical approach for the modelling and is used to derive 

an analytical expression for irradiance at an arbitrary depth of the multilayer stack. The method is 

advantageous for gradient optimization methods because analytical layer thickness derivatives are 

provided. 

In  [99]  the net‐radiation method  is  adapted  for modeling  the  reflectance,  transmittance  and 

absorption depth profile of thin‐film multilayer structures such as solar cells. Thereby, an arbitrary 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 January 2025 doi:10.20944/preprints202501.1108.v1

https://doi.org/10.20944/preprints202501.1108.v1


  12  of  22 

 

multilayer  structure with  coherent, partly  coherent and  incoherent  layers  can be  simulated more 

accurately at much lower computational cost. 

A generalized  transmission  line method  (TLM)  is outlined  in  [100] and applied  to  thickness 

determination of individual layers of an organic light‐emitting diode. Additionally, the approach is 

used  for  calculation of  the  external quantum  efficiency of  an organic photovoltaic with partially 

coherent rough interfaces between the layers. 

3.2. Materials 

3.2.1. Optically Anisotropic Materials 

In fact, optical material anisotropy and its relation to optical thin film theory and practice is well 

understood and documented in the realm of (variable angle) spectroscopic ellipsometry [101–103]. 

Software packages for ellipsometry data analysis therefore usually allow modelling certain types of 

optical anisotropy  [104,105]. Therefore,  there  is no principal difficulty  to generalize  the  thin film 

model  to  anisotropic materials. We mention  that  anisotropic film materials  allow designing  and 

manufacturing of novel  superior polarizing  components, as  already demonstrated  in  the field of 

Giant Birefringent Optics (GBO [106,107]). 

3.2.2. Time‐Dependent Material Properties 

The  corresponding  basics  have  already  been  developed  in  the  50th  of  the  previous  century 

[108,109]. Instead of (1) and (2), we now have: 

𝜅 ൌ 𝜅ሺ𝑡, 𝜉ሻ ⇒ 𝑷ሺ𝑡ሻ ൌ 𝜀଴ න 𝜅ሺ𝑡, 𝜉ሻ
∞

଴
𝑬ሺ𝑡 െ 𝜉ሻ𝑑𝜉 ⇒ 𝜀ሺ𝑡,𝜔ሻ ൌ 1 ൅න 𝜅ሺ𝑡, 𝜉ሻ𝑒௜ఠక

∞

଴
𝑑𝜉  (20)

This way we have introduced what may be called a “time‐dependent dielectric function”, while 

relaxing the natural requirement of time homogeneity. 

Let us  in  a  short manner note  some  specifics  of wave propagation  in  the  presence  of  time 

inhomogeneity [110]. It is well known that spatial inhomogeneity preserves the light frequency but 

changes  the wavelength. Time‐inhomogeneity, on  the contrary, changes  the  light frequency while 

preserving the wavelength. This is a direct conclusion from Noethers theorems [10,111,112].   

A  temporal  interface  is defined as a discontinuity  in  𝜀ሺ𝑡ሻ , while a  spatial  (i.e. usual)  interface 

results from a discontinuity in  𝜀ሺ𝑧ሻ. Both kinds of interface result in the generation of a backtravelling 
(reflected) wave when an incident wave arrives at the interface. However, at a temporal interface, the 

sum of transmittance and reflectance may exceed 1, which is in contrast to the situation at a spatial 

interface between two passive media [109,110]. 

The combination of several temporal interfaces allows constructing temporal coatings [113]. Even 

more futuristic, the combination of temporal and spatial interfaces in an optical component leads us 

to the concept of a time‐varying metamaterial [114]. 

3.2.3. Non‐Linear Response 

According to model assumption VIII, T and R are independent of the incident light intensity. 

However, T and R may become intensity dependent, provided that (1) is replaced by its non‐linear 

counterpart according to [115]: 

𝑃ሺ𝑡ሻ ൌ 𝑃ሺଵሻ ൅ 𝑃ሺଶሻ ൅ 𝑃ሺଷሻ൅. . .ൌ 𝜀଴ න 𝜅ሺଵሻሺ𝜉ሻ𝐸ሺ𝑡 െ 𝜉ሻ𝑑𝜉
∞

଴
൅ 

𝜀଴ න න 𝜅ሺଶሻሺ𝜉ଵ, 𝜉ଶሻ𝐸ሺ𝑡 െ 𝜉ଵሻ𝐸ሺ𝑡 െ 𝜉ଵ െ 𝜉ଶሻ𝑑𝜉ଵ𝑑𝜉ଶ ൅
∞

଴

∞

଴
 

𝜀଴ න න න 𝜅ሺଷሻሺ𝜉ଵ, 𝜉ଶ, 𝜉ଷሻ𝐸ሺ𝑡 െ 𝜉ଵሻ𝐸ሺ𝑡 െ 𝜉ଵ െ 𝜉ଶሻ𝐸ሺ𝑡 െ 𝜉ଵ െ 𝜉ଶ െ 𝜉ଷሻ𝑑𝜉ଵ𝑑𝜉ଶ𝑑𝜉ଷ൅. . .
∞

଴

∞

଴

∞

଴
 

(21)

In the more familiar frequency domain (21) may be written in the simplified manner: 

𝑃 ൌ 𝑃ሺଵሻ ൅ 𝑃ሺଶሻ ൅ 𝑃ሺଷሻ൅. . .ൌ 𝜀଴𝜒ሺଵሻ𝐸 ൅ 𝜀଴𝜒ሺଶሻ𝐸ଶ ൅ 𝜀଴𝜒ሺଷሻ𝐸ଷ൅. ..  (22)
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As it is evident from (21) or (22), non‐linear optical effects become significant only at rather large 

light intensities. Relevant with respect to thin film optics examples include harmonic generation as 

well as the observation of intensity‐dependent transmittances or reflectances [116–120]. In ultrashort 

light pulses, peak intensities may become rather large [121]. In such a constellation, the reflectance of 

a  thin film  reflector may be  significantly  reduced when  comparing  to what  is expected  from  the 

standard (linear) theory. The physical process behind is called non‐linear absorption. Let us mention 

for completeness, that the second harmonic generation is related to second order terms in (21) and 

(22), while the third harmonic generation as well as nonlinear absorption result from the third‐order 

terms. 

As an example, Figure 5 shows the simulated normal incidence reflectances and transmittances 

of three fictive antireflection coatings depending on the intensity of the incident light. For details of 

the simulation algorithm see [122–124], but let us shortly mention that the calculation of T and R is 

based on the solution of a system of equations as: 

𝑑𝐸
𝑑𝑧

ൌ െ𝑖𝜇଴𝜔𝐻 

𝑑𝐻
𝑑𝑧

ൌ െ𝑖𝜀଴𝜀𝜔𝐸 െ
3
4
𝑖𝜀଴𝜔𝜒ሺଷሻ|𝐸|ଶ𝐸 

(23)

Here,  for  simplicity,  normal  incidence  is  assumed.  𝐸   stands  for  the  electric,  and  𝐻   for  the 
magnetic field strength. This is a non‐linear system of equations which needs to be solved numerically 

for the assumed z‐dependence of  𝜀  and  𝜒ሺଷሻ. Note that in the special case of  𝜒ሺଷሻ ൌ 0, (23) becomes 

linear and coincides with the system of equations relevant for calculating the linear response of any 

stratified medium  (compare  [9,10,26]).  In  particular,  the well‐known matrix  formalism may  be 

directly derived from the linear version of (23). 

 
 

(a)  (b) 

Figure 5. Comparison of (a) reflectance R and (b) transmittance T (normal incidence) of the antireflection designs 

specified in Table 2 as a function of the incident light intensity. For more details see text. 

After having solved (23) with proper boundary conditions, the electric field transmission and 

reflection coefficients (Fresnel‐coefficients  𝑡  and  𝑟) are obtained from: 

𝑡 ൌ
2

𝐸ሺ𝑧 ൌ 0ሻ െ ට
𝜇଴
𝜀଴
𝐻ሺ𝑧 ൌ 0ሻ

; 𝑟 ൌ
𝐸ሺ𝑧 ൌ 0ሻ ൅ ට

𝜇଴
𝜀଴
𝐻ሺ𝑧 ൌ 0ሻ

𝐸ሺ𝑧 ൌ 0ሻ െ ට
𝜇଴
𝜀଴
𝐻ሺ𝑧 ൌ 0ሻ

  (24)

Here, air is assumed as incidence medium. The interface between air and the stratified medium 

is at  𝑧 ൌ 0. 
Assuming now  𝜒ሺଷሻ ് 0 , all materials are  characterized by  four optical  constants.  Indeed,  in 

addition to the linear optical constants  𝑛  and 𝐾, the real as well as the imaginary parts of  𝜒ሺଷሻ  have 
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to be taken into consideration. As a result, the calculated transmittance and reflectance turn out to be 

intensity‐dependent.   

Let us finish this small section with a model calculation (see Figure 5). We start from a simple V‐

coating [7,8] that might be in use as antireflection coating at a wavelength of 532 nm (black line). In 

addition,  the  red  line  in Figure  5  shows  the performance of  a modified V‐coating optimized  for 

smallest reflectance at an incident intensity of 1011 Wcm‐2 taking nonlinear susceptibilities into account, 

while the green line corresponds to the performance of a design optimized for highest transmittance at 

1011 Wcm‐2. Basic design parameters are summarized in Table 2. 

Obviously, at low light intensities, the traditional V‐coating is best in antireflection performance. 

However, the picture changes at larger light intensities. Therefore, in nonlinear optics, new optical 

coating design solutions may have to be developed. 

Table 2. Basic input parameters for the calculations provided in Figure 5. Substrate is fused silica 

(𝑛ௌ௨௕@532nm ൌ 1.4607), ambient air, normal incidence. Layer 1 is next to substrate, layer 2 next to ambient. 

  𝑛  𝐾 
Re(3)   

/ m2V‐2 

Im(3)   

/ m2V‐2 

Thicknesses / nm 

V‐coating 
R‐optimized 

design 

T‐optimized 

design 

Layer 1  2.249  0  1.86·10‐20  2.74·10‐21  17.5  11.7  8.4 

Layer 2  1.477  0  2.05·10‐22  7.32·10‐24  121.5  122.4  125.8 

Thus,  in  nonlinear  optics,  optical  coating  design  tasks  are  of  increased  complexity  when 

comparing with the linear case. Particularly, we mention the increased number of optical material 

parameters that need to be known and considered in the design calculation. 

The intensity dependence of the optical performance of the coating is a direct consequence. A 

design that is optimized for a certain light intensity is not necessarily a good choice for application at 

other intensities (compare Figure 5). 

Compared  to  the  linear  task,  the determination of non‐linear optical parameters needs much 

more complex and expansive equipment, as well as a considerable larger measurement effort [125]. 

We note  that  it might be prospective  to make use of parametrized dispersion  laws  for non‐linear 

optical constants [126], calibrated by a restricted set of experimental data. We also mention that there 

exists a couple of estimation formulas for realistic non‐linear refractive indices [127–129], based on 

the generalized Millers rule [130]. 

3.2.4. Thickness‐Dependent Optical Constants 

The basic concept of optical thin film theory described so far relies on the possibility to perform 

a  clear  separation  between material  parameters  (optical  constants)  and  geometrical  parameters 

(thicknesses) from each other [16]. This is a fundamental requirement, and it allows, for example in a 

coating design task, combining optical constants and film thicknesses in an arbitrary manner. In fact, 

this is not always possible. Once the optical constants represent macroscopic parameters, obtained 

after averaging the atomic or molecular responses in a thermodynamically relevant volume fraction, 

this concept may collapse when  the film  thickness becomes  too small. Thus, atomic or molecular 

monolayers are more reliably modeled in terms of the microscopic polarizability [131,132]. This is 

clearly an extreme example, but a “thickness‐dependence” of optical constants is also obtained in thin 

metal films, when the thickness becomes smaller than the mean free path of the conduction electrons 

in the metal [133–135]. Also, a clear separation between effective optical constants and thickness of a 

metal island film is problematic [136]. In a more recent publication, Willey [137] proposed a design 

procedure  for metal‐island‐film  based  coatings while  taking  the  thickness  dependence  of  their 

effective optical constants into account explicitly. 
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Presently, research is also directed on making use of nanolaminates as versatile building blocks 

in  optical  coatings  design  [138–142].  The  hope  is  that  because  of  quantum  confinement  effects 

[143,144],  new  combinations  of  optical  gap  and  refractive  index  may  become  accessible,  thus 

overcoming  the  restrictions  emerging  from  the  Moss  or  Ravindra  rules  [41].  However,  those 

nanolaminates are strongly anisotropic (compare Figures 6 and 7), and the efficient exploitation of 

confinement effects may be restricted to special illumination and polarization geometries. Thus, in 

the case of normal incidence (Figure 6), the electric field strength vector 𝑬  is in the x‐y‐plane and 
cannot induce electric dipole transitions along the z‐axis (i.e. between different discrete energy levels 

of the electron moving along the confinement direction in the quantum well, compare the selection 

rules discussed in [144]). At oblique incidence and p‐polarization, however, such transitions shall be 

possible, because the electric field strength vector has a non‐vanishing component along the z‐axis. 

Hence, even the absorption behaviour of such nanolaminates is expected to be strongly anisotropic, 

which offers new development directions in the field of polarizing absorptive optics. 

 

Figure 6. Nanolaminate at normal light incidence. 
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Figure 7. Nanolaminate at oblique light incidence and for p‐polarisation. 

4. Summary and Challenges 

We have  reviewed  important  facets of  the  typical  thin film optical model. According  to our 

primary intention, idealized model assumptions have first been formulated, and then opposed to real 

geometry and measurement conditions that give rise to model assumption violations in practice. We 

emphasize that knowledge of these possible model violations and their effects is important for at least 

three reasons. 

i. They enable  the user of commercial optical film calculation software  to critically evaluate  the 

practical value of a calculation result 

ii. They enable the practitioner to understand the reason for discrepancies between the promised 

and measured performance of purchased thin film optical components. 

iii. They  define  important  topics  for  the  design  of  university  courses  on  applied  thin  film 

spectroscopy. 

In addition to this, we tried to demonstrate that the effects caused by certain model violations 

had a stimulating impact on the development of novel optical components. Examples are provided 

by  new  demultiplexing  devices,  Giant  Birefringent  Optics,  as well  as  new  thin  film  polarizer, 

dielectric reflector, antireflection coating and absorber coating designs. 
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