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Abstract: Cardiac arrest (CA) is a hemostatic state only reversible via dynamics intracardiac action 

potentials implementing hemorheological-biochemical reactions of adequate blood volumes (BV). 

Undeniably exclusive electrophysiological processes that began since intrauterine life remain 

compromised by cardiopulmonary resuscitation (CPR). Failure of CPR to adapt these hemostatic-

electrophysiological conditions as well as human cardiotorsal anatomy, and thoracic biomechanics 

results in a staggering number of CA mortalities worldwide. Except for mechanical circulatory 

support (MCS), CPR induces a pointless back-and-forth mode of perfusion that worsens the stalled 

metabolism. Since the heart and respiratory pump, the main generators of endothelial shear stress 

(ESS) that control organs microcirculation, thereby metabolism, no longer function. Accordingly, we 

propose ESS-induced meditators as a potential solution in CA, mechanically with pulsatile MCSs 

providing rapid circulatory flow restoration (CFR), regardless of return of spontaneous circulation 

(ROSC). And manually with a novel technique of cardiac massage inducing snaping atrial wall shear 

stress with adequate BV, promoting a less-traumatic ROSC. Our goal is to evaluate the therapeutic 

proposal through an in-depth analysis that could change the fierce strain in evolving current CPR 

doctrine, thus improving the dismal outcomes of CA victims. 

Keywords: cardiac arrest (CA); cardiopulmonary resuscitation (CPR); circulatory flow resuscitation 

(CFR); microcirculation; endothelial dysfunction; endothelial shear stress (ESS); mechanical 

circulatory support (MCS) 

 

1. Introduction 

Cardiac arrest (CA) still claims a staggering number of lives annually, causing widespread 

disabilities over six decades of CPR employment [1,2]. 

Current CPR modalities may combine mid-sternal chest compressions (manually, 

mechanically); automated external defibrillators (AEDs), ventilation and invasive procedures like 

drug injection, implantable cardioverter defibrillators (IDC), extracorporeal membrane oxygenation 

(ECMO) or E-CPR, and cardiopulmonary bypass (CPB) [3–11]. 

Despite progress in CPR, out-of-hospital CA (OHCA) still results in a 30-day brain injury-free 

survival of approximately 2% [12–14]. 

Apart from E-CPR, which is still a work in progress, none of CPR modalities can achieve a single 

metabolic process before return of spontaneous circulation (ROSC). 

Difficulties encountered in achieving ROSC with CPR can be attributed to the 

pathophysiological challenges posed by the CA state, summarized in (Figure 1). 

As is known, ROSC occurs due to intracardiac action potentials requiring at least ≥ 15 mmHg 

coronary perfusion pressure, provided by adequate blood volumes (BV) dynamics, electrolytes, 

neurohumoral factors, and wall shear stresses [15]. Meanwhile, the arrested heart be-comes almost 

empty due to massive shifts of BV to low-pressure zones increasing the hepatosplanchnic venous 

capacitance. Also, the heart will be pulled even further away from the sternum by the cardiotorsal 

gravitational effect in the supine position. In addition, vigorous mid-sternal chest compressions, 
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disregarding the cylindrical ribcage biomechanics, especially ribs’ orientations and axis of their 

movements, cause frequent CPR-related trauma [16]. 

 

Figure 1. Schema demonstrating outcomes of cardiopulmonary resuscitation (CPR) collision with the 

pathophysiological conditions of cardiac arrest (CA). 

Ultimately, performing CPR in a hemostatic condition induces a back-and-forth ineffective 

perfusion momentum. 

As a result, most CPR survivors succumbing to multiorgan failure shortly due to inadequate 

organs perfusion during the procedure [17–20]. 

Such shortcomings of CPR represent a significant burden for global health authorities, requiring 

a thorough analysis of the entire structure of CA. 

In-Depth Glance at CA 

Literally, CA defines an abrupt discontinuity of organs perfusion following sudden asystole of 

the systemic ventricle, whether fibrillated, dysfunctional by cardiac-extracardiac events (e.g., 

myocardial injury, asphyxia), or knocked-out (e.g., Zwaardemaker-Libbrecht effect) [21–26]. 

This means that regardless of cardiac conditions, we must restore organs perfusion and 

metabolism as quickly as possible before irreversible cellular damage occurs [27] 

Since salvage of cellular metabolism, either with rapid ROSC or E-CPR, depends on 

microcirculations controlled by endothelial shear stress (ESS)-induced mediators [28] 

Therefore, in this study we present novel techniques implementing rational mobilizations of the 

massive stagnant BV, inducing physiological pulse-pressure, thus ESS across the aorta.  

These include proven methods employing invasive as well as noninvasive pulsatile mechanical 

circulatory support (MCS), tested in beatless-heart and CA neonatal piglets, respectively [29–33]. In 

addition, a novel chest compression technique inducing an intracardiac hemorheological effect with 

adequate BV promoting less traumatic ROSC has recently been used in two drownings [34,35]. 

Our aim is to corroborate ESS as a potentially effective method to significantly improve the 

dismal outcomes of CA. 

2. Results 

Novel Concept 

ESS-mediated endothelial functions are mainly generated by the cardiopulmonary pump 

through the closed pressurized hydraulic left and right heart-circuits. Under the hydrostatic state of 
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CA, the human body (Soma) becomes like a container composed of an inner sphere (A) containing 

stagnant amounts of fluids (blood, air,) surrounded by a barrier sphere (B) of endothelium (vascular, 

alveolar), overlapped by an outer sphere (C) of covering layers e.g., muscles, ribcage… 

(Somarheology theory) [29,30]. Therefore, creating a shear momentum across (A) inducing ESS at (B) 

can be achieved by direct intraluminal stimuli or indirect extraluminal impacts on (C) with pulsatile 

MCS.  

STUDIES 

To address factors compromising rapid ROSC as well as ESS suppression by conventional E-

CPR during CA. Details are available in the corresponding references of each study. 

1- A noninvasive MCS composed of multi-layer Vest and Corset driven by a low-pressure 

alternating pulsatile generator. Functionally, the device depicted in (Figure 2), can induce 

extracorporeal pulsatile impacts on several covering C-zones, circulating a massive amount of 

stagnant BV in regular rhythm. As detailed in references [29,30], prototypes were used in refractory 

CA models (≥20min). Results showed significant hemodynamics improvement, presented in (Figure 

3), with near-physiological AP (systolic AP ≥100mmHg) and improved cerebral perfusion manifested 

by recovered carotid artery echo-doppler. In addition, a laser flowmeter (Perimed PeriScan PIM 3 

System) measurements from the tip of the tongue showed significant improvements in 

microcirculation. There were increased urine output and global vasodilation compensated with IV 

fluids (1–2 L). The TUNEL test showed inferior apoptotic cells in the treated animal with an obvious 

dilation of the intracardiac coronary bed (Figure 4). 

 

Figure 2. Diagram representing the mechanism of the CFR device alternating pulsations between Corset and 

Vest on several covering zones (C): Mediastinal (C-I), Parenchyma (C-II), Diaphragm C-III, and 

hepatosplanchnic (C-IV) compartments. 

 

Figure 3. Hemodynamic data obtained in refractory CA model (≥30min) with noninvasive MCS, showing near-

physiological AP (middles line) and carotid artery flow (lower line), without return of heartbeats (upper line). 
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Figure 4. TUNEL test (X400). Left image showing few myocardial apoptotic cells with dilated coronary bed in 

same treated animal model (CA with asphyxia ≥30min). Right image shows myocardial apoptosis in animal 

model treated with conventional CPR after 8 min of CA and kept alive for 6H. 

2- Invasive MCS (pulsatile Tube) tested as pulsatile CPB versus conventional CPB in beatless-

heart model [31–33]. Fourteen neonatal piglets were divided into three groups: Group I (Gr-I, n=6) 

underwent pulsatile CPB at 100 bpm. Group II (Gr-II, n=6) underwent non-pulsatile CPB, with all 

subjects in these groups exposed to normothermic CPB for 120 minutes. A third sham group (n=2) 

technically managed like the other groups but without CPB. Hemodynamic, biochemical and 

histopathological data were collected and compared between groups. These include post-sternotomy 

insertion of right atrium, left atrium, left internal mammary and intra-infundibular catheters, for 

RAP, LAP, AP and PAP measurements, respectively. Cardiac output (CO) measured with transit time 

probe temporary placed around the PA (Transonic System Inc. Flowmeter). Cardiac index (CI), 

systemic vascular resistance index (SVRI) and pulmonary vascular resistance index (PVRI) were 

calculated according to the following formulae: SVRI= (mean AP-RAP)/CI X 79.9; PVRI= (mean PA-

LAP)/CI X 79.9; CI=CO/Weight. Endothelial function and vasorelaxation (induced by acetylcholine 

and nitroprusside) were assessed in segments collected from the pulmonary artery (PA), carotid 

artery (CA), femoral artery (FA), and renal artery (RA) in all groups. Apoptosis was evaluated using 

the TUNEL test on myocardial and pulmonary tissue samples collected from all groups. Data 

collection points included: before CPB (T0), at the start of CPB (T1), one hour after CPB (T2), and at 

the end of CPB (T3). Results: As shown in (Figure 5), the device induced near-physiological AP 

(≥80mmHg) with a mean pulse-pressure of 46±7.55 mmHg in Gr-I versus 1.6±0.54 mmHg in the 

steady-flow Gr-II (P<0.05). SVRI was 1.372±0.35 versus 3.140±0.344 dynes.s.cm-5/m2 in Gr-I versus Gr-

II, respectively. PVRI was 0.3±0.06 versus 0.85±0.05 dynes.s.cm-5/m2 in Gr-I versus Gr-II, respectively 

(P<0.05). Unlike Gr-II, acetylcholine reactivity test showed significant endothelial function restoration 

of endothelial function almost closer to sham in Gr-I as presented in (Figure 6) and (Table 1). The 

TUNEL test presented (Figure 7) revealed myocardial apoptotic cells in Gr-II and none in Gr-I as well 

as Sham. Hemolysis were higher and lactic acid were lower in Gr-I versus Gr-II (p≤0.05). 

Table 1. Acetylcholine endothelial reactivity test. 

Arterial segments Sham  Pulsatile CPB Control Acetylcholine 

Carotid 40±24.4 39.4±27.6 32.3±22.03  

Femoral 40±26.7 39.3±15.6 30.6±14.2 % 

Pulmonary 78±37.5 72.2±25.9 39.3±16.6  

Renal  67±28.9 26±17.7 5.3±8.7  

Endothelial dependent vascular relaxation Acetylcholine Test in 3 groups of newborn piglets, underwent 

pulsatile and conventional cardiopulmonary bypass (CPB) and Sham. P<0.01, ANOVA test. 
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Figure 5. Hemodynamic data of conventional (upper panel) versus pulsatile (lower panel) cardiopulmonary 

bypass (CBP). AP: Aortic pressure. PAP: Pulmonary artery pressure was 0 mmHg as the heart was fully 

discharged and taken over by CPB in both groups. 

 

Figure 6. Acetylcholine endothelial reactivity test, showing restored endothelial function in the pulsatile group, 

versus sham and control groups. P<0.01 (ANOVA test). 

 

Figure 7. TUNEL test, showing myocardial apoptotic cells in the control group (right image) versus pulsatile 

group (left image). 

3- Novel technique of chest compressions through the 5th intercostal space while placing the 

victim in the left lateral decubitus position to bypass the sternal barrier, with wrapped abdomen and 

raised legs. In short, refill-recoil-rebound the chest (3R /CPR), within the axis of the cylindrical ribcage 

will create a sudden intracardiac water hammer-like mechanism with an adequate BV 
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hemorheological-biochemical effect promoting less-traumatic ROCS. The technique was recently 

used successfully by a skilled lifeguard instructor as a last-chance intervention in two drownings 

incidents after failed CPR. ROSC occurred instantly with the refill maneuver in one victim, and 

several times with recoil-rebound chest compressions in another victim despite CA ≥ 25 minutes with 

ultimately severely depleted myocardial oxygen reserves and alcoholemia [34,35]. 

3. Discussion 

Results demonstrated the feasibility and potential advantages of rapid CFR-inducing ESS in 

significantly improving hemodynamics, microcirculation, regardless of heartbeats. 

Notably, rapid CFR-inducing ESS, either with the lifeguard's Heimlich maneuver or with the 

cardiac surgeons’ CPB, induces ROSC in ≥70% of drowning victims, and in ≥90% of open-heart 

patients, respectively [36]. This phenomenon was also observed in our study with shorter durations 

of CA (≤8 minutes), when immediate ROSC occurred with first pulsations of abdominal Corset. 

Similarly, we modeled the novel chest compressions technique in order to create intracardiac ESS 

with adequate BV. Unlike CPR, the technique adapts to and overcomes the pathophysiological 

conditions of CA (Figure 1). Thus, it can promote rapid ROSC in complete harmony with thoracic 

biomechanics, thereby less-traumatic, less-exhausting for rescuers. In addition, the rescuer can secure 

the victim's airway and easily check for heartbeats so as not to confuse CA with syncope or 

cardiogenic shock. 

As stated by Feynman and demonstrated in our study, ESS-mediated endothelial function must 

be induced according to the Newton’s principles by maintaining an almost physiological arterial 

pulse-pressure [37]. 

In both animal studies, near-physiological AP was successfully induced in beatless-heart, either 

invasively or noninvasively with pulsatile MCSs, in correspondence to cardiovascular biophysics and 

pathophysiological conditions. 

For example, the right-heart circuit can adjust pressurized BV and ESS at five different 

anatomical zones to maintain low-level remodeling [38]. So, it is fundamental keep its low-level 

remodeling as delivery of ESS in high pulse-pressure can induce serious irreversible conditions such 

as Eisenmenger syndrome [39]. Therefore, in the 1st study, ESSs were delivered in alternating low-

pressure pulsatile impacts on multiple C-zones at the right-heart-side, at a rate of 40 bpm according 

to the capillary pressure cycle [40]. 

At the left-heart circuit, ESS inside the Valsalva sinuses determines coronary ostia 

morphogenesis and may contribute to a severe hemodynamic deterioration [40]. Accordingly, in the 

2nd study, pulsatile impacts of ESS were delivered from the aortic root to minimize the constitution 

of intravascular vortices [41]. However, this study showed significant hemolysis in the treated group 

(Gr-I) caused by the preliminary concept, which was subsequently resolved and tested effectively 

[33]. 

On the other hand, current CPR procedures contradict the most fundamental principles of 

hydrostatic circuits, leading to illusory and inconclusive benefits for CA victims. Oddly, most recent 

CPR publications ignore previously reported hemostatic data showing flattened zero AP and central 

venous pressure (CVP) exceeding ≥80 mmHg during chest compressions [42,43]. Such severe 

hemostatic disorders compromise invasive CPR procedures such as drug injections or ventilation due 

lack of interalveolar gas-exchanges [44]. 

Therefore, it is strongly recommended to use E-CPR promptly to salvage cellular metabolism 

instead of exhorting ROSC through a pointless Yoyo-perfusion mode of CPR [45]. However, E-CPR 

remains an invasive and time-consuming procedure requiring skilled squad and ultra-sound-guided 

installation through flattened arteries, which compromises its effectiveness in OHCA. In addition, 

suppression of ESS by the constant flow of E-CPR creates a vicious emerging cycle of energy losses 

and endothelial dysfunction. This phenomenon could be aggravated by ROSC, leading to 

countercurrent intravascular vortices (Reynolds stresses) [46]. 
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These issues were addressed in our study demonstrating significant restoration of endothelial 

function, confirmed by histopathological and biochemical results in piglets, animal models well-

known for lack of coronary network [47]. Interestingly, as shown in (Figure 5), the supposedly 

stunned PA due to no-flow perfusion, in both groups, showed quasi complete recovery, like sham. 

These prove the crucial role of ESS in improving endothelial function via pulmonary collaterals and 

myocardial microcirculatory pathways. Evidence of restored endothelial function in vitro as 

demonstrated in (Table 1) and (Figures 6 and 7), can significantly improve postarrest multiorgan 

failure mortality caused by poor CPR perfusion. 

Limitations: To avoid tedious repetitions of published materials and methods available in the 

literature for further details,, we limited our study to the means and potential for restoring ESS-

mediated endothelial function under hemostatic condition of CA. 

4. Conclusions 

Optimal goal of CPR, namely rapid ROSC while ensuring adequate perfusion of vital organs, 

remains elusive, leading to high mortality and morbidity. Prioritizing rapid CFR-inducing ESS over 

exhorting heartbeat return may improve the dismal outcomes of CA. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

CA Cardiac arrest 

CPR Cardiopulmonary resuscitation 

AED Automated external defibrillators 

ICD Implantable cardioverter defibrillators 

ECMO Extracorporeal membrane oxygenation 

CPB Cardiopulmonary bypass 

OHCA Out-of-hospital cardiac arrest 

ROSC Return of spontaneous circulation 

ESS Endothelial shear stress 

CFR Circulatory flow restoration 

MCS Mechanical circulatory support 

bpm beats per minute 

BV Blood volume 

AP Arterial pressure 

PA Pulmonary artery 

PAP Pulmonary artery pressure 

RV Right ventricle 

LV Left ventricle 

IV Intravenous 
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CVD Cardiovascular disease 

CO Cardiac output 

CI Cardiac index 
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