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Abstract

This paper presents a complete derivation and design of a physics-informed neural
network (PINN) applicable to solve initial- and boundary value problems described by
linear ordinary differential equations. The objective not to develop a numerical solution
procedure which is more accurate and efficient than standard finite element or finite dif-
ference based methods, but to give a fully explicit mathematical description of a PINN
and to present an application example in the context of hydrodynamic lubrication. It is,
however, worth noticing that the PINN developed herein, contrary to FEM and FDM, is
a meshless method and that training does not require big data which is typical in machine
learning.

1 Introduction

There are various categories of artificial neural networks (ANN) and a physics-informed neural
network (PINN), see [I] for a recent review on the matter, is a neural network trained to
solve both supervised and unsupervised learning tasks while satisfying some given laws of
physics, which may be described in terms of nonlinear partial differential equations (PDE).
For example, the balance of momentum and conservation laws in solid- and fluid mechanics
and various types of initial value problems (IVP) and boundary value problems (BVP), see
e.g. [2,3].

In fluid mechanics, under certain assumptions, i.e. that the fluid is incompressible, iso-
viscous, the balance of linear momentum and the continuity equation, for flows in narrow
interfaces reduces to the classical Reynolds equation [4]. For more recent work establishing
lower-dimensional models in a similar manner, see e.g. [5] [6 [7]. The present work describes
how a PINN can be adapted and trained to solve both initial- and boundary value problems,
described by ordinary differential equations, numerically. The theoretical description starts
by presenting the neural network’s architecture and it is first applied to solve an initial value
problem, which is described by a first order ODE. Thereafter it is used to obtain a PINN for the
classical one-dimensional Reynolds equation, which is a boundary value problem governing
e.g. the flow of lubricant between the runner and the stator in a 1D slider bearing. The
novelty and originality of the present work lays the explicit mathematical description of the
cost function, that constitutes the “physics-informed” feature of the ANN, and the associated
gradient with respect to the networks weights and bias. Important features of this particular
numerical solution procedure, that is publicly available here: []], are that it is not data driven,
i.e. no training data needs to be provided and that it is a meshless method [9].
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Figure 1: Architecture of the PINN employed to solve the IVP and BVP considered here.

2 PINN architecture

Knowing the characteristics of the solution to the differential equation under consideration
is very helpful when designing the PINN architecture, including structure, number of hidden
layers, activation function, etc. For this reason, the PINN developed here, has one input node
x (the independent variable representing the spatial coordinate), one hidden layer consisting
of N nodes and one output node y (the dependent variable representing pressure). Figure
depicts a graphical illustration of the present architecture, which when trained solves both
the IVP example and the Reynolds BVP considered here. The Sigmoid function, i.e.

1
P(§) = 11 ¢ (1)
which is mapping R to [0, 1] and exhibits the property
¢'(€) = ¢(&) (1 — ¢(¢)) - (2)

is employed as activation function for the hidden layer. This means that the neural network

has 3N + 1 trainable parameters. That is, the weights wgo) and bias bgo) for the nodes in the
hidden layer and the weights wgl)
output node, plus the bias b) applied there.

Based on this particular architecture, the output z; of each node in the first hidden layer

,7=1...N, for each synapses connecting them with the

is,
0 0
zi(z) = ¢ (wz( )z + b,g )) . (3)
The output value is then given by applying the Sigmoid activation function scaled by the
weight from the node in the second layer and yields

N N
y(@) = b0+ 3w zi(@) = b0+ 3w (wz +0”). (4)
=1

=1
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Let us now construct the cost function which the network will be trained to minimise.
While the cost function appearing in a typical machine learning procedure is just the quadratic
difference between the predicted- and the target values, it will here be defined by means of
the operators £ and B. The cost function applied here reads

L= ((Ly— 1?)+((By —b) - ex)* + (By —b) - e2)?, (5)

where (f) defines the average value of f, and this is exactly the feature that makes an ANN
“physics informed”, i.e. a PINN.

Since £y is a differential operator the cost function contains derivatives of the network
output (4]). In order to obtain an expression of the cost function, in terms of the input z, the
weights w and bias b, the network output ., must be differentiated twice with respect to
(w.r.t. ) . This can be accomplished by some kind of automatic differentiation AD)EI, which
is a computerised methodology based on the chain rule, which can be applied to efficiently
and accurately evaluate derivatives of numeric functions, see e.g. [L0, [IT]. The present work
instead applies symbolic differentiation to clearly explain all the essential details of the PINN.
Indeed, differentiating once yield

Y (x ((Zw(” ) +o! > ((Zw (w Vo + 0" ))> +b(1>> =

wgl)wgo)qb' (wgo)a: + bl(o ) Z w; w (w(o)x + b( )) ( — ¢ (wgo)w + bgo))) ,

(6)

Il
-

and, because of , a consecutive differentiation then yield

D ([~ (1) (© (O (0) ) W (O (o (0) (0)
y'(@) = o < wg w; ¢ \w; x+ b, =2 wi (wi7) ¢ (w07 ) =
2 (Sl (02 0) ) = Sl () (1)

wl(l) (wlgo)f ¢ (wl@w + bgo)) (1 —2¢ (wgo):n + bgo))) = (7)

O (@Y (w0 +50) (1 - 6 (w1 60)) (126 (2 +50)).

Moreover, finding the set of weights and bias minimising the cost function requires its partial
derivatives w.r.t. to each weight and bias defining the PINN. In the subsections below, we
will present how to achieve this, by first considering a first order differential equation having
an analytical solution, and, thereafter, we will consider the classical Reynolds equation which
is a second order (linear) ODE that describes laminar flow of incompressible and iso-viscous
fluids in narrow interfaces.
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3 A first order ODE example

Let us consider the first order ODE, describing the initial value problem (IVP) given by

Ly—f=y +22y=0, >0 (8a)
By —b =y(0) —1=0, (8b)

LAlso referred to as algorithmic differentiation, computer differentiation, auto-differentiation or simply
autodiff
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with exact solution y = e~ By means of @7 a cost function suitable for solving (8]) may

be generated by
= ([0 (a0 0) (1 (a1 +

2
x <<Z wz(l)qﬁ (wgo)rv + bz(-o))) + b(1)> > + [y(0) — 1]2
i=1

The solution of can be obtained by implementing a training routine which iteratively finds
the set of weights w and bias b that minimises (9) (and similarly for minimising (L7)).
The most well-known of these is the Gradient Decent method attributed to Cauchy, who first
suggested it in 1847 [12]. For an overview, see e.g. [13].

As mentioned in the previous section, the derivatives of (E[) w.r.t. to the weights w and bias
b are required to find them, and automatic differentiation is, normally, employed to perform
the differentiation. However, here we carry out symbolic differentiation to demonstrate exactly
the explicit expressions that constitutes the gradient of the cost function. Indeed, by taking
the partial derivatives we obtain

W __ <<Z w, <w§0):1: + b§0)>> + b(l)) = w§1)¢>’ (wgo)ac + bgo)) T, (10a)

9)

8w(0 (
0 0

P 211) = o <<Z wie (wEO)x + b,(-o))) + b(1)> = ¢ (wfo)m + b§0)> : (10b)
w; w; i=1

Oy _ N (0) ) (1) (- (0., 5(0)

ap) (%(0) Zw (w x+b; ) +0b =w,;, ¢ (wi x+ b, ), (10c)
7
dy

ob(0) (10d)

Moreover, the derivatives of the cost function (5|) w.r.t. to the weights and bias is also required.
For the derivative w.r.t. wgo) for the first order ODE , this means that

, oy’ Oy 9y(0)
<2 (y' + 2xy) (a(m + 2@«%(0)) > +2(y(0) — 1) 200 (11)

w; i

To complete the analysis, we also need expressions for the derivatives of 3 w.r.t. wio , W

bgo) and b)), By the chain rule, the following expressions can be obtained, viz.

oy’ © 10
w 0) (O)Zw w <w T+ b; )
2
= wgl)qS' (wgo)x + bl( )) - xw(l) ( Z( )> ¢’ <w§0)x + bgo)) , (12a)
o _ 0 00O (1002 4+ 50) = O (W Og 4+ 4O
PO (1) ¢ (w x+b; ) =w, ¢ (wi r+0b, ), (12b)
N
Oy = 9 Z wgl)wgo)qb’ (w(O)x + b(0)> = w(l)w(0)¢// (w(O)m + b(O)) (12c)
(0) (0) ; ? ? 7 ? 7 7 7 i )

8bi 8()2 =1

oy
a0 = O (12d)
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What remains now is to obtain expressions for y(0) and the partial derivatives of y(0), w.r.t.
to the weights and bias. Let us start with y(0). With y(x) given by we directly have

N
_ (Z wgl>¢(b§.°>)> L0, (13)
=1

which, in turn, means that

WO _ (14a)

oo (Seee) o) et o
et )ty

=1 (14d)

The PINN (following the architecture presented above) was implemented as computer
program in MATLAB. The program was employed to obtain a numerical solution to the

IVP in , using the parameters in Table The weights wZ(O) and bias bgo) was initialised

Table 1: Parameters used to defined the PINN to for the IVP in .

Parameter | Description Value
N; # of grid points for the solution domain [0, 2] 41
N, # of training batches (# or corrections during 1 Epoch) | 1000
T, # of Epochs (1 Epoch contains T} training batches) 100
L, Learning rate coefficient (relaxation for the update) 0.01
N # of nodes/neurons in the hidden layer 10

using randomly generated and uniformly distributed numbers in the interval [—2,2], while
the weights wgl) was initially set to zero and the bias b(!) to one, to ensure fulfilment of the
initial condition (y(0) = 1). Table 2| lists the weights an bias corresponding to the solution
presented in Fig. We note that, with the weights and bias given by Table |2 the trained

network’s prediction exhibits the overall error

N;
! 2

(7t —ylon)) =58 x 1074, (15)

k=1

and 1 — y(0) = 2.2 x 10~*, when comparing against the initial condition.
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Figure 2: The solution to the IVP ({g]), predicted by the PINN (red line with circle markers)
and the exact solution obtained by integration (blue continuous line).

Table 2: Parameters used to defined the PINN for the IVP ().

Node w0 p(0) w® pL)
1| 1.8500 | -0.5946 | -3.5805 | 0.3055
2| 1.8588 | 1.5974 | 0.9712
3] 0.3025 | 1.9241 | 0.8921
4| 1.4546 | 0.3742 | -0.9955
5| 0.5065 | 1.2535 | -0.1430
6 | -1.0898 | -1.0199 | -1.1067
71 -0.8302 | 0.3519 | -1.1668
8 | 0.3789 | 1.6502 | 0.1754
9| 2.5012 | 0.7657 | 1.2955

10 | 2.2743 | 1.4172 | 1.2787

4 A PINN for the classical Reynolds equation

The Reynolds equation for a one-dimensional flow situation where the lubricant is assumed to
be incompressible and iso-viscous, is a second order Boundary Value Problem (BVP), which
in dimensionless form can be formulated as

% <c(x)z§i) = f(z), 0<z<1, (16a)
y(0) =0, y(1) =0, (16b)

where c(z) = H3, f(x) = dH /dX and H is the dimensionless film thickness, if it is assumed
that the pressure y at the boundaries is zero. For the subsequent analysis it is, however, more
suitable work with a condensed form which can be obtained by defining the operators £ and

B as
Ly = c(x)y” + (x)y, (17a)
By — Bgm . (17b)
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The Reynolds BVP given by can then be presented as

Ly—f=0 0<z<l, (18a)
By —b =0, (18b)
where b = 0.
For the Reynolds BVP, the cost function becomes
2
L= (@) + @)y = 1)7) +2(0) + (1), (19)

and from the analysis presented for the IVP in Section [3| above, we have all the “ingredients”
except for the partial derivatives of ¢y and y(1) w.r.t. to the weights and bias. For y”, based

on @ and , we obtain
' O~ OV (O O
5 = g 2 () (e H) =
= 2w§1)w§0)¢” (wgo)x + bgo)) + .I’U)Z(l) (wl@))Z ¢ (wgo)az

" 9 N 9 9
Oy(l) = W Z wl(l) <w§0)> ¢’ (wgo)x + b§0)> = (wl@)) ¢’ (wgo)x + bl(-o)> , (20Db)
Wy Wi~ =1

o 9 N 9 9
8by(0) = 50 ngl) (wz@)) " (wz(o)x + b§0)> _ wEl) (wZ(O)) " (wZ(O)x + bz(O)) ., (200)
i ;o 1=1

(2

=
ST~
=
N——
—~
[\
)
o
~—

8y/1
D 0, (20d)
where the third derivative of the Sigmoid function is required. It yields
d d

11 _ / o / 2 _
pr (¢"(6) = € (0" (©) (1 =26(€) =¢" (©) (1 =26 (£) —2(¢' (&))" =

=0 (&) (1—0()(1-20(£))*—2(¢(&) (1 — (€)=
= (&) (1—0(£)*(1—36()).

For y(1) we get

7 i=1
Ay(1 0 ol
) _ 9 ((wa”qb(w(“) +b§0)>> +b<1>> Wy (W01 10), 220)
o ol \\ &
dy(1) 9 ((zN: 1), (., (0) , 1(0) ) <1)>
- wP¢ (w® +50) | 40 ) =1, (22d)
a0~ a0 (| & ( )

and we now have all the “ingredients” required to fully specify . To test the performance
of the PINN, a Reynolds BVP was specified for a linear slider with dimensionless film thickness

defined by
H(z)=1+K - Kz. (23)

7
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This means that c(z) = (1+ K — Kz)3 and f(z) = dH /dr = —K and that the exact solution

1S
1 1 1+ K 1 1
e - _ 24
yemact(x) [K(l—i—K—Kw 2_|_K(1_|_K_Kx)2 2+K>}’ ( )

see e.g. [14]. The PINN (following the architecture suggested herein) was implemented in
MATLAB and a numerical solution to , was obtained using the parameters in Table As

Table 3: Parameters used to defined the ANN to for the Reynolds equation.

Parameter | Description Value
N; # of grid points for the solution domain [0, 1] 21
K Slope parameter for the Reynolds equation 1
N, # of training batches (# or corrections during 1 Epoch) | 2000
T, # of Epochs (1 Epoch contains T}, training batches) 600
L, Learning rate coefficient (relaxation for the update) 0.005
N # of nodes/neurons in the hidden layer 10

for the IVP, addressed in the previous section, the weights wgo) and bias bgo) was, again, ini-

tialised using randomly generated numbers, uniformly distributed in [—2, 2], while the weights
wgl) and the bias b1) was initially set to zero, to ensure fulfilment of the boundary conditions.

Figure 3| depicts solution predicted by the PINN (red line with circle markers) and the
exact solution obtained by integration (blue continuous line). Table [4] lists the weights an

1072

—— Exact

S

w

—_

Dimensionless pressure (-)
[\)

o

Figure 3: The solution achieved by the ANN (red line with circle markers) and the exact
solution obtained by integration (blue continuous line).

bias corresponding to the solution presented in Fig. [3]| We note that, with these weights and
bias, the trained network’s prediction of the solution to the Reynolds BVP exhibits the overall

error
1 | &
A D Weract (k) — y(a))* = 6.2 x 107, (25)
v\ k=1

while y(0) = 4.1 x 107* and y(1) = —4.0 x 1074
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Table 4: Parameters used to defined the ANN.

Node w©) p(0) w® p@)
1| 0.0557 | 1.9808 | -0.2186 | -0.0641
2 | -6.3047 | 6.1664 | 0.1220
31-9.3674 | 11.4571 | 0.3843
4 | -4.5473 | 3.3266 | 0.0305
5 1-2.4464 | -1.9884 | 0.1188
6 | -0.1365 | -0.1674 | 0.4155
71 0.8581 | 0.5253 | 0.5089
8 | 1.0901 | 2.0858 | 0.3348
9 | 0.2085 | 0.2523 | -0.2024

10 | -3.2168 | 5.9722 | -0.9899

5 Concluding remarks

A physics-informed neural network (PINN) applicable to solve initial- and boundary value
problems has been established. The PINN was applied to solve an initial value problem
described by a first order ordinary differential equation and to solve the Reynolds boundary
value problem, described by a second order ordinary differential equation, both with analytical
solutions. For the given specifications the predictions returned by the PINN was in good
agreement with the analytical solutions. The advantage of the present approach is, however,
neither accuracy nor efficiency when solving these linear equations, but that it presents a
meshless method and that it is not data driven. This concept may, of course, be generalised,
and it is hypothesised that future research in this direction may lead to more accurate and
efficient in solving related but nonlinear problems, than currently available routines.
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