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Abstract: This paper brings to fruition recently found [21] exact reduction of decaying turbulence in the Navier-

Stokes equation in 3 + 1 dimensions to a Number Theory problem of finding the statistical limit of the Euler

ensemble. We reformulate the Euler ensemble as a Markov chain and show the equivalence of this formulation

to the quantum statistical theory of N fermions on a ring, with an external field related to the random fractions

of π. We find the solution of this system in the turbulent limit N → ∞, ν → 0 in terms of a complex trajectory

(instanton) providing a saddle point to the path integral over the density of these fermions. This results in an

analytic formula for the observable correlation function of vorticity in wavevector space. This is a full solution of

decaying turbulence from the first principle without approximations or fitted parameters. The energy spectrum

decays as k−
7
2 . We compute resulting integrals in Mathematica® and present effective index n(t) = − d log E

d log t for the

energy decay as a function of time Figure 3. The asymptotic value of the effective index in energy decay n(∞) = 7
4 ,

but the universal function n(t) is neither constant nor linear.

Keywords: turbulence; fractal; fixed point; velocity circulation; loop equations; euler phi; prime numbers; path

integral; instanton, markov chain; energy decay

1. Prologue

Turbulence seems a hopelessly complex problem. Here is a picture from a recent simulation
[36] that produced vortex lines of various shapes and sizes tangled like spaghetti.

Figure 1. The three-edimensional vortices in turbulent flow, from [36].

How could something so complex be described analytically?
The sheer complexity of this picture raises hopes of a simple statistical description.
Molecular dynamics with a large number of bodies is also hopelessly complex. Still, there is

a simple statistical description that becomes increasingly accurate as the complexity of the original
dynamical problem increases.
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As Maxwell, Boltzmann, and Gibbs discovered, Newton’s mechanics cover the energy surface
uniformly, given enough time. The rest of the statistical mechanics is a well-defined theory, though
sometimes computations are difficult, like critical phenomena.

So, why not use the same approach in case of the Navier-Stokes turbulence?
Unfortunately, there is no known analog of the Gibbs distribution in the case of the turbulent flow.
So, the cornerstone of the turbulence theory must be a replacement for the Gibbs distribution.
Hopf made the first step in this direction in 1952 (see the recent review in [33]). He wrote down a

functional equation satisfied by the probability distribution of the turbulent velocity field. Iterations
of this equation in the nonlinear term in the Navier-Stokes equation generate expansion in inverse
powers of viscosity, which is the opposite of our goal.

This equation is beautiful but mathematically as complex as the above picture of the vortex
spaghetti. This apparent complexity placed the turbulence high in a hierarchy of physics theories,
somewhere between the critical phenomena and the quark confinement problem.

Our theory, which started in 1993 (see Figure 2 for the history), says there is a much simpler
version of the Hopf equation (the loop equation), still sufficient to determine the statistics.

Figure 2. The path to the microscopic theory.

The loop equation is equivalent to the Schrödinger equation in loop space. This deep analogy is
not a poetic metaphor but a precise mathematical equivalence with far-reaching consequences, such as
quantum oscillations in the decaying energy spectrum in classical turbulence.

We will present here and investigate the quantum statistical system satisfying the loop equation
of the classical Navier-Stokes theory and leading to an analytic expression for the observable energy
spectrum.
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Figure 3. Green curve is the effective index n(t) = −t∂t log E − 1 as a function of time.
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Figure 4. Data for effective index n(t) = −t∂t log E − 1 as compiled in [34]. The green curve matches
our prediction in Figure 3.

2. Summary

Here are the main results reported in this paper.

• We review the theory of Navier-Stokes loop equation, its relation to the Hopf functional equation,
and the representation of the loop functional in terms of momentum loop.

• We present the solution of the loop equation in the inviscid limit of the three-dimensional Navier-
Stokes theory in terms of the Euler ensemble. This ensemble consists of a one-dimensional ring
of Ising spins in an external field related to random fractions of π.

• We reduced the Markov process for the Euler ensemble in its fermionic representation (60) to the
path integral.

• This path integral in the continuum limit is dominated by a complex classical trajectory (instan-
ton), satisfying a nonlinear ODE (130).

• We solved this classical equation corresponding to the vorticity correlation function and found
the spectrum of the linear operator for small fluctuations around this solution.

• We computed the instanton’s contribution to the vorticity correlation function by using zeta
regularization of the functional determinant of this linearized operator.

• The continuum limit of this solution, N → ∞, corresponds to the inviscid limit of the decaying
turbulence in the Navier-Stokes equation. Effective turbulent viscosity is ν̃ = νN2 → const .
There are no quantum corrections to this instanton contribution in the turbulent limit.

• We derived an analytic formula for energy spectrum and dissipation in finite system (233a),
(233c), (223) and investigated it in Appendix A, B,C.

• The energy spectrum decays asymptotically as

(ν̃)3/2

√
t

(
const κ−7/2 − const κ−13/2 + ∑

n
Re Wnκ−8+ıtn

)

where κ = k
√

ν̃t and ±tn are imaginary parts of nontrivial zeros of the ζ function.
• The total remaining energy decays as t−7/4, but the effective index n(t) = − d log E

d log t is a nontrivial
function of log t approaching n(∞) = 7/4, see Figure 3).
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3. Introduction

Our paper will have two introductions: one for physicists and another for mathematicians.
The physics introduction discusses the possible correspondence between our theory and decaying

turbulence as observed in real or numerical experiments. For a physicist, this theory provides a solution
of the Hopf functional equation for the statistical distribution of velocity field in the unforced Navier-
Stokes equation. There are strong indications that our theory applies to one of the two universality
classes observed in these experiments.

The second introduction summarizes the mathematics behind the loop equation [19] and its
solution [21] in terms of the Euler ensemble. This introduction is addressed to mathematicians, who
can skip the first introduction and study this ensemble as a new Number Theory set with a conjectured
relation to the decaying turbulence.

There is a third category of readers: applied mathematicians and engineers who are not interested
in abstract theories but want to have some data and/or formulas to compute the energy decay curve.
These readers could go directly to the last section 7 where they will find final formulas (233c),(233a)
and the Mathematica®code [24], which allows to compute both the spectrum and the dissipation.

The fourth category (my favorite) is curious but skeptical readers who doubt that quantum tricks
can solve the hardest problem of classical physics. These readers would still have questions, even after
reviewing this paper’s lengthy computations. There is the last section 8, where some of their questions
are answered.

3.1. Physical Introduction. The Energy Flow and Random Vorticity Structures

The decaying turbulence is an old subject addressed before within a weak turbulence framework
(truncated perturbative expansion in inverse powers of viscosity ν in the forced Navier-Stokes equa-
tion). Some phenomenological models were also fitted to the experiments: see the recent review of
these models and the experimental data in [34].

The perturbative approach is inadequate for the turbulence theory, which must be built by solving
the Navier-Stokes equations in the strong coupling limit ν → 0, opposite to the weak coupling. The
problem of universality of the strong turbulence with and without random forcing is the first question
to ask when building such a theory.

The experimental data for the energy decay in turbulent flows, fitted in [34] suggest the decay of
the dissipation rate E ∼ t−n with n ≈ 1.2 or 1.6 depending on initial conditions (finite total momentum∮

v⃗d3r or zero total momentum but finite total angular momentum
∫

r⃗ × v⃗d3r). So, two universality
classes of decaying turbulence were observed in these experiments.

It is unclear which data in [34] (if any) reached the strong turbulence limit corresponding to our
regime. It is also possible that the stochastic forces added to the Navier-Stokes equation in simulations
pollute the decaying turbulence. By design, these forces were supposed to trigger and amplify the
spontaneous stochasticity of the turbulent flow. However, in our theory [21], this natural stochasticity
is related to a dual quantum system and is discrete.

The Gaussian forcing with a continuous wavevector spectrum can distort these quantum stochastic
phenomena as these forces stir the flow "with a large dirty spoon" all over the space at every moment.
With forcing turned off at some moment and the turbulence reaching the universal stage in its
subsequent decay, the energy dissipation would occur in vorticity structures deep inside the volume
by the pure turbulent dynamics we are studying.

Some recent DNS reviewed in [34] used such a setup, with forcing turned off. They observed
subsequent energy dissipation, apparently reaching one of the two universal regimes (with spectrum
starting as k2 or k4), presumably due to these random vorticity structures.

The following calculation supports this scenario. The energy balance in the pure Navier-Stokes
reduces to the energy dissipation by the enstrophy in the bulk, compensated by the energy pumping
by forces from the boundary (say, the large sphere around the flow).
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The general identity, which follows from the Navier-Stokes if one multiplies both sides by v⃗ and
averages over an infinite time interval, reads:

∫
V

d3r
〈

νω⃗2
〉
= −

∫
V

d3r∂β

〈
vβ

(
p + 1/2v2

α

)
+ νvα(∂βvα − ∂αvβ)

〉
(1)

By the Stokes theorem, the right side reduces to the flow through the boundary ∂V of the
integration region V. The left side is the dissipation in this volume, so we find:

EV = −
∫

∂V
d⃗σ ·

〈
v⃗
(

p + 1/2v2
α

)
+ νω⃗ × v⃗

〉
(2)

This identity holds for an arbitrary volume. The left side represents the viscous dissipation inside
V, while the right represents the energy flow through the boundary ∂V.

If there is a finite collection of vortex structures in the bulk, we can expand this volume to an
infinite sphere; in this case, the ω⃗ × v⃗ term drops as there is no vorticity at infinity.

Furthermore, the velocity in the Biot-Savart law decreases as |⃗r|−3 at infinity, so that only the v⃗p
term survives

⟨EV⟩ → −
∫

∂V
d⃗σ · ⟨⃗vp⟩ (3)

This energy flow on the right side will stay finite in the limit of the expanding sphere in case the
pressure grows as p → − f⃗ · r⃗, where f⃗ is the local force at a given point on a large sphere.

⟨E⟩ = fα lim
R→∞

R3
∫

S2

nαnβ

〈
vβ(Rn⃗)

〉
(4)

Where did we lose the Kolmogorov energy flow? It is still there for any finite volume surrounding
the vortex sheet

⟨EV⟩ = −
∫

V
d3r
〈
vβ∂β p + vαvβ∂βvα

〉
=

−
∫

V
d3r
〈
vαvβ∂βvα

〉
−
∫

∂V
d⃗σ · ⟨⃗vp⟩ (5)

The first term is the Kolmogorov energy flow inside the volume V, and the second is the energy flow
through the boundary.

Without finite force f⃗ acting on the boundary, say, with periodic boundary conditions, the
boundary integral would be absent, and we would recover the Kolmogorov relation.〈

vαvβ∂βvα

〉
= −⟨EV⟩/V; (6)

This relation, together with space symmetry properties in Rd leads to the Kolmogorov three-point
correlation

〈
vα (⃗r0)vβ (⃗r0)vγ (⃗r + r⃗0)

〉
=

E
(d − 1)(d + 2)V

(
δαγrβ + δβγrα −

2
d

δαβrγ

)
; (7)

In the conventional approach, based on the time averaging of the Navier-Stokes equations, the
periodic Gaussian random force f⃗ (⃗r, t) is added to the right side. In this case, with periodic boundary
conditions

⟨EV⟩ = −
∫

V
d3r
〈
vβ∂β p − vβ fβ (⃗r, t) + vαvβ∂βvα

〉
=
∫

V
d3r
〈
vβ fβ (⃗r, t)

〉
(8)
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In the limit when the force becomes uniform in space, we recover another definition with E = f⃗ · P⃗,
where P⃗ =

∫
V d3rv⃗ is a total momentum.

The turbulence phenomenon we study is a universal spontaneous stochasticity independent of
the boundary conditions.

As long as there is an energy flow from the boundaries, the confined turbulence in the middle
would dissipate this flow in singular vortex tubes. The spontaneous stochasticity results from the
random distribution of these singular tubes inside the volume in the velocity flow picture [22]. In the
dual picture of our recent theory [21], these are the random gaps in the momentum curve P⃗(θ) (see
below).

The relation between the energy pumping on the large sphere and the distribution of the vortex
blobs in bulk follows from the Biot-Savart integral

v⃗(r) = −∇⃗ ×
∫

d3r′
ω⃗(r′)

4π|r − r′| (9)

In case there is a finite total momentum of the fluid, there will also be a constant velocity added to the
Biot-Savart integral. We are considering the fluid at rest, where no such term exists. Therefore, our
theory belongs to the k4 universality class.

On a large sphere ∂V with radius R → ∞,

lim
R→∞

R3v⃗(Rn⃗) ∝

1
4π ∑

blobs

∫
blob

d3r′ω⃗(r′)×
(⃗
r′− < r⃗ >blob

)
; (10)

Here < r⃗ >blob is the geometric center of each blob. Substituting this into the identity (4), we directly
relate the energy pumping with the forces at the boundary and the blob’s dipole moments of vorticity.

No forcing inside the flow is needed for this energy pumping; the energy flow starts at the
boundary and propagates to numerous singular vorticity blobs, where it is finally dissipated. The
distribution of these vorticity blobs is all we need for the turbulence theory. The forcing is required
only as a boundary condition at infinity.

These assumptions about confined turbulence as stochastic dynamics of isolated vortex structures
were confirmed in a beautiful experimental work by William Irvine and collaborators at Chicago
University ([14]). The energy was pumped in by vortex rings flying from eight corners of a large glass
cube and colliding in the center, making a turbulent blob.

They measured the (approximately) Kolmogorov energy spectrum, proving that periodic bound-
ary conditions were unnecessary.

The latest paper [15] also observed how the singular vortex structures move and reconnect inside
this confined turbulence.

As for the decaying turbulence, these authors observed (William Irvine, private communication)
two distinct decay regimes, not just a single power law like the old works [34].

Another critical comment: with the velocity correlations growing with distance by the approxi-
mate K41 law, even the forcing at the remote boundary would influence the potential part of velocity
in bulk. This boundary influence makes the energy cascade picture non-universal; it may depend upon
the statistics of the random forcing.

Two asymptotic regimes manifesting this non-universality were observed for the energy spectrum
E(k, t): one for initial spectrum E(k, 0) ∝ k2 and another for E(k, 0) ∝ k4. The potential velocity part
differs for these regimes, as the first adds a constant velocity to the Biot-Savart integral. In the general
case, it will be a harmonic potential flow with certain boundary conditions at infinity, with explicit
continuous dependence of the boundary forces.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 April 2024                   doi:10.20944/preprints202312.1012.v7



7 of 44

Only the statistics of the rotational part of velocity, i.e., vorticity, could reach some universal
regime independent of the boundary conditions at infinity. Certain discrete universality classes could
exist as it is common to all in critical phenomena.

Unlike the potential part of velocity, the vorticity is localized in singular regions – tubes and sheets,
sparsely filling the space, as observed in numerical simulations. The potential part of velocity drops in
the loop equations, and the remaining stochastic motion of the velocity circulation is equivalent to
the vorticity statistics. Therefore, our solutions [21] of the loop equations [19,20] describe the internal
stochastization of the decaying turbulence by a dual discrete system.

3.2. Mathematical Introduction. The Loop Equation and Its Solution

We derived a functional equation for the so-called loop average or Wilson loop in turbulence a
while ago. All the references to our previous works can be found in a recent review paper [20].

The path to an exact solution by a dimensional reduction in this equation was proposed in the
1993 paper but has just been explored (see Figure 2). At the time, we could not compare a theory
with anything but crude measurements in physical and numerical experiments at modest Reynolds
numbers. All these experiments agreed with the K41 scaling, so the exotic equation based on unjustified
methods of quantum field theory was premature. The specific prediction of the Loop equation, namely
the Area law, could not be verified in DNS at the time with existing computer power.

The situation has changed over the last decades. No alternative microscopic theory based on the
Navier-Stokes equation emerged, but our understanding of the strong turbulence phenomena grew
significantly. On the other hand, the loop equations technology in the gauge theory also advanced
over the last decades. The correspondence between the loop space functionals and the original vector
fields was better understood, and various solutions to the gauge loop equations were found. In
particular, the momentum loop equation was developed, similar to our momentum loop used below
[17,18]. Recently, some numerical methods were found to solve loop equations beyond perturbation
theory [2,12]. The loop dynamics was extended to quantum gravity, where it was used to study
nonperturbative phenomena [4,37].

All these old and new developments made loop equations a major nonperturbative approach to
gauge field theory. So, it is time to revive the hibernating theory of the loop equations in turbulence,
where these equations are much simpler. The latest DNS [3,10,11,30] with Reynolds numbers of tens of
thousands revealed and quantified violations of the K41 scaling laws. These numerical experiments
are in agreement with so-called multifractal scaling laws [35].

Theoretically, we studied the loop equation in the confinement region (large circulation over large
loop C) and justified the Area law suggested in ’93 on heuristic arguments. This law says that the tails
of velocity circulation PDF in the confinement region are functions of the minimal area inside this loop.
It was verified in DNS few years ago [11], which triggered the further development of the geometric
theory of turbulence[3,20,30]. In particular, the Area law was justified for flat and quadratic minimal
surfaces, and an exact scaling law in confinement region Γ ∝

√
Area was derived [20]. The area law

was verified with better precision in [10].
In the previous paper, [21], we have found a family of exact solutions of the loop equation for

decaying turbulence [19,20]. This family describes a fixed trajectory of solutions with the universal
time decay factor. The solutions are formulated in terms of the Wilson loop or loop average

Ψ[γ, C] =
〈

exp
(

ıγ
ν

∮
dC⃗(θ) · v⃗

(
C⃗(θ)

))〉
init

; (11)

Ψ[γ, C] ⇒
〈

exp
(

ıγ
ν

∮
dC⃗(θ)P⃗(θ)

)〉
E

; (12)

In the first equation (the definition), the averaging ⟨. . . ⟩ goes over initial data for the solutions of the
Navier-Stokes equation for velocity field v⃗(⃗r). In the second one (the solution), the averaging goes over
the space of solutions P⃗(θ) of the loop equation [21]. We choose in this paper the parametrization of
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the loop with ξ = θ
2π to match with the fermionic coordinates below (the parametrization is arbitrary,

in virtue of parametric invariance of the loop dynamics).
The loop equation for the momentum loop P⃗(θ) follows from the Navier-Stokes equation for v⃗

∂tvα = ν∂βωβα − vβωβα − ∂α

(
p +

v2
β

2

)
; (13)

∂αvα = 0; (14)

ωβα = ∂βvα − ∂αvβ (15)

After some transformations, replacing velocity and vorticity with the functional derivatives of the loop
functional, we found the following momentum loop equation in [20,21]

ν∂t P⃗ = −γ2(∆P⃗)2P⃗ + ∆P⃗

(
γ2P⃗ · ∆P⃗ + ıγ

(
(P⃗ · ∆P⃗)2

∆P⃗2
− P⃗2

))
; (16)

P⃗(θ) ≡ P⃗(θ+) + P⃗(θ−)
2

; (17)

∆P⃗(θ) ≡ P⃗(θ+)− P⃗(θ−); (18)

The momentum loop has a discontinuity ∆P⃗(θ) at every parameter 0 < θ ≤ 1, making it a fractal
curve in complex space Cd. The details can be found in [20,21]. We will skip the arguments t, θ in these
loop equations, as there is no explicit dependence of these equations on either of these variables.

This Anzatz represents a plane wave in loop space, solving the loop equation for the Wilson loop
due to the lack of direct dependence of the loop operator on the shape of the loop.

The superposition of these plane wave solutions would solve the Cauchy problem in loop space:
find the stochastic function P⃗(θ) at t = 0, providing the initial velocity field distribution. Formally, the
initial distribution W0[P] of the momentum field P⃗(θ) is given by inverse functional Fourier transform.

W0[P] =
∫

DCδ3(C⃗[0])Ψ[C, γ]t=0 exp
(
− ıγ

ν

∫
dC⃗(θ) · P⃗(θ)

)
(19)

This path integral was computed in [20,21] for a special stochastic solution of the Navier-Stokes
equation: the global rotation with Gaussian random rotation matrix. The initial velocity distribution
is Gaussian, with a slowly varying correlation function. The corresponding loop field reads (we set
γ = 1 for simplicity in this section)

Ψ0[C] ≡ Ψ[C, 1]t=0 = exp
(
− 1

2ν2

∫
C

dC⃗(θ) · dC⃗(θ′) f
(

C⃗(θ)− C⃗(θ′)
))

(20)

where f (⃗r) is the velocity correlation function〈
vα(r)vβ(r′)

〉
=
(

δαβ − ∂α∂β∂−2
µ

)
f (r − r′) (21)

The potential part drops out in the closed loop integral. The correlation function varies at the
macroscopic scale, which means that one could expand it in the Taylor series

f (r − r′) → f0 − f1(r − r′)2 + . . . (22)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 April 2024                   doi:10.20944/preprints202312.1012.v7



9 of 44

The first term f0 is proportional to initial energy density,

1
2

〈
v2

α

〉
=

d − 1
2

f0 (23)

and the second one is proportional to initial energy dissipation rate E0

f1 =
E0

2d(d − 1)ν
(24)

where d = 3 is the dimension of space. The constant term in (22) as well as r2 + r′2 terms drop from
the closed loop integral, so we are left with the cross-term rr′, which reduces to a full square

Ψ0[C] → exp

(
− f1

ν2

(∮
dCα(θ)Cβ(θ)

)2
)

(25)

This distribution is almost Gaussian: it reduces to Gaussian one by extra integration

Ψ0[C] → const
∫
(dϕ) exp

(
−ϕ2

αβ

)
exp

(
2ı
√

f1

ν
ϕµν

∮
dCµ(θ)Cν(θ)

)
(26)

The integration here involves all d(d−1)
2 = 3 independent α < β components of the antisymmetric

tensor ϕαβ. Note that this is ordinary integration, not the functional one.
This distribution can be translated into the momentum loop space. Here is the resulting stochastic

function P⃗(θ), defined by the Fourier expansion on the circle

Pα(θ) =
∞

∑
odd n=1

Pα,neınθ + P̄α,ne−ınθ ; (27)

Pα,n = N (0, 1); (28)

P̄α,n =
4
√

f1

nν
ϕαβPβ,n; (29)

ϕαβ = −ϕβα; (30)

ϕαβ = N (0, 1)∀α < β; (31)

At fixed tensor ϕ the correlations are

〈
Pα,nPβ,m

〉
t=0 =

4
√

f1

mν
δnmϕαβ; (32)

〈
Pα(θ)Pβ(θ

′)
〉

t=0 = 2ı
√

f1

ν
ϕαβ sign(θ′ − θ); (33)

Ψ0[C] =
〈

exp
(

ı
ν

∮
dC⃗(θ)P⃗(θ)

)〉
P,ϕ

(34)

Though this special solution does not describe isotropic turbulence, it helps understand the mathemat-
ical properties of the loop technology. In particular, it shows the significance of the discontinuities of
the momentum loop P⃗(θ).

Rather than solving the Cauchy problem, we are looking for an attractor: the fixed trajectory for
P⃗(θ, t) with some universal probability distribution related to the decaying turbulence statistics.

The following transformation reveals the hidden scaling invariance of decaying turbulence

P⃗ =

√
ν

2(t + t0)

F⃗
γ

(35)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 April 2024                   doi:10.20944/preprints202312.1012.v7



10 of 44

The new vector function F⃗ satisfies an equation

2∂τ F⃗ =
(

1 − (∆F⃗)2
)

F⃗ + ∆F⃗

(
γ2 F⃗ · ∆F⃗ + ıγ

(
(F⃗ · ∆F⃗)2

∆F⃗2
− F⃗2

))
; (36)

τ = log(t + t0) (37)

This equation is invariant under translations of the new variable τ = log(t + t0), corresponding
to the rescaling/translation of the original time.

t ⇒ λt + (λ − 1)t0 (38)

There are two consequences of this invariance.

• There is a fixed point for F⃗.
• The approach to this fixed point is exponential in τ, which is power-like in original time.

Both of these properties were used in [21]: the first one was used to find a fixed point, and the second
one was used to derive the spectral equation for the anomalous dimensions λi of decay t−λi of the
small deviations from these fixed points. In this paper, we only consider the fixed point, leaving the
exciting problem of the spectrum of anomalous dimensions for future research.

3.3. the Big and Small Euler Ensembles

Let us remember the basic properties of the fixed point for F⃗ in [21]. It is defined as a limit N → ∞
of the polygon F⃗0 . . . F⃗N = F⃗0 with the following vertices

F⃗k =

{
cos(αk), sin(αk), i cos

(
β
2

)}
2 sin

(
β
2

) ; (39)

θk =
k
N

; β =
2πp

q
; N → ∞; (40)

αk+1 = αk + σkβ; σk = ±1, β ∑ σk = 2πpr; (41)

The parameters Ω̂, p, q, r, σ0 . . . σN = σ0 are random, making this solution for F⃗(θ) a fixed manifold
rather than a fixed point. We suggested calling this manifold the big Euler ensemble of just the Euler
ensemble.

It is a fixed point of (36) with the discrete version of discontinuity and principal value:

∆F⃗ ≡ F⃗k+1 − F⃗k; (42)

F⃗ ≡ F⃗k+1 + F⃗k
2

(43)

Both terms of the right side (36) vanish; the term proportional to ∆F⃗ and the term proportional to F⃗.
Otherwise, we would have F⃗ ∥ ∆F⃗, leading to zero vorticity [21]. The ensemble of all the different
solutions is called the big Euler ensemble. The integer numbers σk = ±1 came as the solution of the
loop equation, and the requirement of the rational p

q came from the periodicity requirement.
We can use integration (summation) by parts to write the circulation as follows (in virtue of

periodicity): ∮
dC⃗(θ) · P⃗(θ) = −

∮
dP⃗(θ) · C⃗(θ); (44)

∑
k

∆Ck P⃗k = −
∮

∆P⃗k · C⃗k; (45)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 April 2024                   doi:10.20944/preprints202312.1012.v7



11 of 44

A remarkable property of this solution P⃗(θ, t) of the loop equation is that even though it satisfies
the complex equation and has an imaginary part, the resulting circulation (44) is real! The imaginary
part of the P⃗(θ, t) does not depend on θ and thus drops from the integral

∮
dC⃗(θ) · P⃗(θ, t).

There is, in general, a larger manifold of periodic solutions to the discrete loop equation, which
has all three components of F⃗k complex and varying along the polygon.

We could not find a global parametrization of such a solution1. Instead, we generated it numeri-
cally by taking a planar closed polygon and evolving its vertices F⃗k by a stochastic process in the local
tangent plane to the surface of the equations in multi-dimensional complex space.

We could not submit such a solution to an extra restriction Im F⃗k = const needed to make
circulation real. We cannot prove that such a general solution does not exist but rather take the Euler
ensemble as a working hypothesis and investigate its properties.

This ensemble can be solved analytically in the statistical limit and has nice physical properties,
matching the expected behavior of the decaying turbulence solution.

We assign equal weights to all elements of this set; we call this conjecture the ergodic hypothesis.
This prescription is similar to assigning equal weights to each triangulation of curved space with
the same topology in dynamically triangulated quantum gravity [1]. Mathematically, this is the
most symmetric weight assignment, and there are general expectations that various discrete theories
converge into the same symmetry classes of continuum theories in the statistical limit. This method
works remarkably well in two dimensions, providing the same correlation functions as continuum
gravity (Liouville theory).

The fractions p
q with fixed denominator are counted by Euler totient function φ(q) [9]

φ(q) =
q−1

∑
p=1
(p,q)

1 = q ∏
p|q

(
1 − 1

p

)
; (46)

For example φ(16) = 8 and φ(17) = 16.
In some cases, one can analytically average over spins σ in the big Euler ensemble, reducing the

problem to computations of averages over the small Euler ensemble E(N) : N, p, q, r with the measure
induced by averaging over the spins in the big Euler ensemble.

In this paper, we perform this averaging over σ analytically, without any approximations, reducing
it to a partition function of a certain quantum mechanical system with Fermi particles. This partition
function is calculable using a WKB approximation in the statistical limit N → ∞.

4. The Markov Chain and Its Fermionic Representation

Here is a new representation of the Euler ensemble, leading us to the exact analytic solution
below.

We start by replacing independent random variables σ with fixed sum by a Markov process, as
suggested in [21]. We start with n random values of σi = 1 and remaining N − n values of σi = −1.
Instead of averaging over all of these values simultaneously, we follow a Markov process of picking
σN , . . . σ1 one after another. At each step, there will be M = N, . . . 0 remaining σ. We get a transition
n ⇒ n − 1 with probability n

M and n ⇒ n with complementary probability.

1 Nikita Nekrasov (private communication) suggested to me an algorithm of generating this solution as a set of adjacent
triangles in complex 3-space and pointed out an invariant measure in phase space, made of lengths of shared sides and
angles between them. Unfortunately, this beautiful construction does not guarantee real circulation, requiring further study.
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Multiplying these probabilities and summing all histories of the Markov process is equivalent to
the computation of the product of the Markov matrices

N

∏
M=1

Q(M); (47)

Q(M)|n⟩ = M − n
M

|n⟩+ n
M

|n − 1⟩; (48)

This Markov process will be random until n = 0. After that, all remaining σk will have negative signs
and be taken with probability 1, keeping n = 0.

The expectation value of some function X({σ}) reduces to the matrix product

P[X] =
N+

∑
n=0

⟨n|
(

N

∏
M=1

Q̂(M)

)
· X · |N+⟩; (49)

Q̂(M) · X|n⟩ = n
M

X(σM → 1)|n − 1⟩+ M − n
M

X(σM → −1)|n⟩ (50)

Here N+ = (N + ∑ σl)/2 = (N + qr)/2 is the number of positive sigmas. The operator Q̂(M)

sets in X|n⟩ the variable σM to 1 with probability n
M and to −1 with complementary probability. The

generalization of the Markov matrix Q(M) to the operator Q̂(M) will be presented shortly.
Once the whole product is applied to X, all the sigma variables in all terms will be specified so

that the result will be a number.
This Markov process is implemented as a computer code in [6], leading to a fast simulation with

O(N0) memory requirement.
Now, we observe that quantum Fermi statistics can represent the Markov chain of Ising variables.

Let us construct the operator Q̂(M) with Fermionic creation and annihilation operators, with occupa-
tion numbers νk = (1 + σk)/2 = (0, 1). These operators obey (anti)commutation relations, and they
create/annihilate σ = 1 state as follows (with Kronecker delta δ[n] ≡ δn,0):

[
ai, a†

j

]
+
= δij; (51)[

ai, aj
]
+
=
[

a†
i , a†

j

]
+
= 0; (52)

a†
n|σ1, . . . , σN⟩ = δ[σn + 1]|σ1, . . . , σn → 1, . . . σN⟩; (53)

an|σ1, . . . , σN⟩ = δ[σn − 1]|σ1, . . . , σn → −1, . . . σN⟩; (54)

ν̂n = a†
nan; (55)

ν̂n|σ1, . . . , σN⟩ = δ[σn − 1]|σ1, . . . , σN⟩ (56)

The number n(M) of positive sigmas ∑M
l=1 δ[σl − 1] coincides with the occupation number of

these Fermi particles.

n̂(M) =
M

∑
l=1

ν̂l ; (57)

This relation leads to the representation

Q̂(M) = ν̂M
n̂(M)

M
+ (1 − ν̂M)

M − n̂(M)

M
; (58)
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The variables σl can also be expressed in terms of this operator algebra by using

σ̂l = 2ν̂l − 1. (59)

The Wilson loop in (11) can now be represented as an average over the small Euler ensemble E(N) of a
quantum trace expression

Ψ[γ, C] =

〈
tr

(
Ẑ(qr) exp

(
iγ
ν ∑

l
∆C⃗l · Ω̂ · P⃗l(t)

)
N

∏
M=1

Q̂(M)

)〉
Ω̂,E(N)〈

tr
(

Ẑ(qr)∏N
M=1 Q̂(M)

)〉
E(N)

, (60)

Ẑ(s) =
∮ dω

2π
exp

(
ıω

(
∑

l
σ̂l − s

))
; (61)

∆C⃗l = C⃗
(

l + 1
N

)
− C⃗

(
l
N

)
, (62)

P⃗l(t) =
√

ν

2(t + t0)

F⃗l
γ

, Ω̂ ∈ O(3), (63)

F⃗l =
{cos(α̂l), sin(α̂l), 0}

2 sin
(

β
2

) , (64)

E(N) : p, q, r ∈ Z with 0 < p < q < N, gcd(p, q) = 1, −N ≤ qr ≤ N, (65)

α̂l = β
l−1

∑
k=1

(2ν̂k − 1); (66)

The last component of the vector F⃗l is set to 0 as this component does not depend on l and yields
zero in the sum over the loop ∑l ∆C⃗l = 0.

The proof of equivalence to the combinatorial formula with an average over σl = ±1 can be given
using the following Lemma (obvious for a physicist).

Lemma 1. The operators ν̂l all commute with each other.

Proof. Using commutation relations, we can write

ν̂l ν̂n = a†
l (δln − a†

nal)an = a†
l anδln − a†

l a†
nalan (67)

Interchanging indexes l, n in this relation, we see that the first term does not change due to Kronecker
delta, and the second term does not change because a†

l , a†
n anti-commute, as well as al , an, so the second

term is symmetric as well. Therefore, ν̂l ν̂n = ν̂nν̂l
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Theorem 1. The trace formula (60) equals the expectation value of the momentum loop ansatz (12), (35), (39)
in the big Euler ensemble.

Proof. As all the operators ν̂l commute with each other, the operators Q̂(M) can be applied in arbitrary
order to the states Σ = |σ1, . . . σN⟩ involved in the trace. The same is true about individual terms
in the circulation in the exponential of the Wilson loop. These terms F⃗l involve the operators α̂l ,
which commute with each other and with each Q̂(M). Thus, we can use the ordered product of the
operators Ĝl = Q̂(l) exp

(
ıωσ̂l +

iγ
ν ∆C⃗l · P⃗l(t)

)
. Each of the operators Ĝl acting in turn on arbitrary

state Σ will create two terms with δ[σl ± 1]. The exponential in Ĝl will involve σ̂k, k ≤ l. As a
result of the application of the operator Ẑl = ∏l

k=1 Ĝk to the state vector Σ we get 2l terms with
Σ ∏l

k=1 δ[σk − ηk], ηk = ±1. The factors Ẑl will involve only σ̂k, k ≤ l, which are all reduced to ηk, k ≤ l
in virtue of the product of the Kronecker deltas. Multiplying all operators ĜM will lead to superposition
Π̂N of 2N terms, each with product ∏N

M=1 δ[σM − ηM] with various choices of the signs ηi = ±1 for each
i. Furthermore, the product of Kronecker deltas will project the total sum of 2N combinations of the
states Σ in the trace tr . . . to a single term corresponding to a particular history η1, . . . ηN of the Markov
process. The product of Kronecker deltas in each history will be multiplied by the same state vector Σ,
by the product of Markov transition probabilities, and by the exponential exp

(
iγ
ν ∑l ∆C⃗l · Ω̂ · P⃗l(t)

)
with the operators σ̂ in P⃗k(t) replaced by numbers η leading to the usual numeric P⃗l(t). The transition
probabilities of the Markov process are designed to reproduce combinatorial probabilities of random
sigmas, adding up to one after summation over histories [31]. The integration over ω will produce
δ[∑l η̂l − s]. This delta function will reduce the trace to the required sum over all histories of the
Markov process with a fixed ∑l ηl .

We have found a third vertex of the triangle of equivalent theories: the decaying turbulence in
three-dimensional space, the fractal curve in complex space, and Fermi particles on a ring. By degrees
of freedom, this is a one-dimensional Fermi-gas in the statistical limit N → ∞. However, there is no
local Hamiltonian in this quantum partition function, just a trace of certain products of operators in
Fock space. So, an algebraic (or quantum statistical) problem remains to find the continuum limit of
this theory of the fermion ring.

This problem is addressed in the next section.

5. The Continuum Limit

As we shall shortly see, in the continuum limit N → ∞, the accumulated numbers of Fermi
particles νk = 1 and Dirac holes νk = 0 tend to some classical functions of "position" ξ = k

N , leading to
the exact solution.

5.1. Path Integral over Markov Histories

Let us represent the product ΠN of the transitional probabilities of the particular history of the
Markov processes as follows (with n± ≡ n±(l), ∆n± = −1)

ΠN = exp(NΛN); (68)

ΛN =
1
N ∑

l

(
∆n+ log

(
n+

n+ + n−

)
+ ∆n− log

(
n−

n+ + n−

))
; (69)

n+ = ∑
k≤l

νk; (70)

n− = ∑
k≤l

(1 − νk); (71)
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These n± are net numbers of η = ±1 in terms of Ising spins or occupation numbers νk = (1, 0) in
the Fermi representation. There is an extra constraint on the Markov process

n+ + n− = l; ∀l (72)

which follows from the above definition in terms of the occupation numbers. We can redefine n± as N
times the piecewise constant functions.

n± = N f±(ξ); (73)

f±(ξ) =
⌊Nξ⌋

∑
k=1

νk
N

; (74)

f ′±(ξ) =
N

∑
l=1

δ

(
ξ − l

N

) l

∑
k=1

νk
N

; (75)

0 < ξ < 1; (76)

The sums can be rewritten as Lebesgue integrals

ΛN =
∫ 0

1

(
d f+(ξ) log

(
f+(ξ)

ξ

)
+ d f−(ξ) log

(
f−(ξ)

ξ

))
(77)

The sum over histories of the Markov process will become a path integral over the difference
ϕ = f+(ξ)− f−(ξ)

∑
η.=±1

exp
(

N(ΛN + ıΛ(1)
N )
)
→
∫

Dϕ exp
(

N(ΛN + ıΛ(1)
N )
)

(78)

This path integral will be dominated by the "classical history," maximizing the product of transi-
tional probabilities if such a classical trajectory exists.

The first term (without the circulation term) brings the variational problem

max
ϕ

ΛN [ϕ]; (79)

ΛN [ϕ] =
∫ 0

1
dξ

(
d f+
dξ

log
(

f+
ξ

)
+

d f−
dξ

log
(

f−
ξ

))
; (80)

f±(ξ) =
1
2
(ξ ± ϕ(ξ)); (81)

f±(ξ) ≥ 0; (82)

This problem is, however, a degenerate one, as the functional reduces to the integral of the total
derivative:

δΛN [ϕ]

δϕ(ξ)
= 0; (83)

ΛN [ϕ] =
∫ 0

1
d( f+ log f+ + f− log f−) + 1 +

∫ 1

0
dξ log ξ =

−1
2
(1 − s) log(1 − s)− 1

2
(1 + s) log(1 + s) + log(2); (84)

It depends on the boundary condition ϕ(0) = 0, ϕ(1) = s but not on the shape of ϕ(ξ).
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This expression matches the Stirling formula for the logarithm of the binomial coefficient in the
combinatorial solution [21] for the Euler ensemble

lim
N→∞

log
(

N
N(1 + s)/2

)
N

= −1
2
(1 − s) log(1 − s)− 1

2
(1 + s) log(1 + s) + log(2) (85)

This Λ(s) = Λ∞(s) is a smooth even function of s taking positive values from Λ(±1) = 0 to the
maximal value Λ(0) = log(2) (see Figure 5).

Out[ ]=

- 1.0 - 0.5 0.5 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N(s)

Figure 5. The plot of the function Λ(s). As required, it is positive, takes a maximal value log(2) at
s = 0, and vanishes at both ends s = ±1 of the physical region.

Now, let us add the circulation term to the exponential of the partition function (60). This term can
be directly expressed in terms of the difference between our two densities Nϕ(ξ) = N f+(ξ)− N f−(ξ):

ıNΛ(1)
N [ϕ, CΩ] =

ı√
2νt

∫ 1

0
dC⃗Ω(ξ) · F⃗(ξ); (86)

F⃗(ξ) =
{sin(βNϕ(ξ)), cos(βNϕ(ξ)), 0}

2 sin(β/2)
; (87)

C⃗Ω(θ) = Ω̂ · C⃗(θ); (88)

The key assumption is, of course, the existence of the smooth limit of the charge density ϕ(ξ) of
these fermions when they are densely covering this loop.

We are working with α(ξ) = βNϕ(ξ) in the following.
The measure for paths [Dα] is undetermined. The derivatives of these alphas were quantized in

the original Fermi theory: each step α′(ξ) ≈ N∆α = Nβσ = ±Nβ.
As we demonstrate below, in continuum theory, this discrete distribution can be replaced by a

Gaussian distribution with the same mean square

∑
α′=±Nβ

↔
∫

dα′ exp
(
− (α′)2

2N2β2

)
(89)

To demonstrate that, we consider in the critical region β2 ∼ N−1 → 0 the most general term that arises
in the moments of the circulation in (86) (see [5] for some exact computations of these moments)

2−N ∑
σi=±1

exp

(
ıβ ∑

i
kiσi

)
= ∏

i
cos βki → exp

(
−β2/2 ∑

i
k2

i

)
(90)

where ki are some integers. With a large number N of these integers, the sum in the exponential
becomes an integral which is equivalent to a Gaussian integral
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exp

(
−β2/2 ∑

i
k2

i

)
= ∏

i

∫ ∞

−∞

dσi√
2π

exp
(
−σ2

i /2
)

exp(ıβkiσi) → exp
(
−Nβ2/2

∫ 1

0
dξk(ξ)2

)
(91)

We arrive at the standard path integral measure

∫
[Dα] =

∫
Dα(ξ) exp

(
−
∫ 1

0
dξ

(α′)2

2Nβ2

)
; (92)∫

[Dα] exp
(

ıN
∫ 1

0 dξα(ξ)K(ξ)
)

∫
[Dα]

= exp
(
−1/2N2

∫∫
dξ1dξ2K(ξ1)K(ξ2)G(ξ1, ξ2)

)
; (93)

G(ξ1, ξ2) = ⟨α(ξ1)α(ξ2)⟩; (94)

The next section will compute this Green’s function G(ξ1, ξ2).
Thus, we arrive at the following path integral in the continuum limit

Ψ[C] =

∑
p<q;(p,q)

∫
Ω∈O(3)

dΩ
∫
[Dα] exp

(
ı

∫ 1
0 dξIm

(
C ′

Ω(ξ) exp(ıα(ξ))
)

2 sin(πp/q)
√

2ν(t + t0)

)

∑
p<q;(p,q)

|O(3)|
∫
[Dα]

; (95)

CΩ(θ) = Ω̂ · C⃗(θ) · {ı, 1, 0}; (96)

We get the U(1) statistical model with the boundary condition α(1) = α(0) + βNs. The period
βNs = 2πpr is a multiple of 2π, which is irrelevant at N → ∞. The effective potential for this theory is
a linear function of the loop slope C⃗′(ξ).

This model is yet another representation of the Euler ensemble, suitable for the continuum limit.

5.2. Matching Path Integral with Combinatorial Sums in Big Euler Ensemble

The results of the path integration over α must match the combinatorial calculations with σl = ±1
in the limit of large N. Without the interaction provided by the circulation term in (95), this path
integral is dominated by a linear trajectory

αcl(ξ) = βNξs; (97)

We already saw the match between the classical Action ΛN [ϕ(ξ) = ξs] and the asymptotic value
of the logarithm of the Binomial coefficient of the combinatorial solution for the sum over σ variables.

Let us verify some examples of the expectation values over σ. The simplest is (with n ̸= m)

⟨σnσm⟩∑ σ=Ns (98)

The direct calculation using methods of [5,21] leads to

⟨σnσm⟩∑ σ=Ns = −
∮ dω

2πZ
eıωNs cos((N − 2)ω) sin2(ω) =

(1 − Ns2)

2N−3ZN(1 − s2)

(
N − 2

1
2 (N + Ns − 2)

)
;(99)

Z =
∮ dω

2π
eıωNs cos(Nω) = 2−N

(
N

1
2 (sN + N)

)
(100)
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Using Gamma function properties, this ratio simplifies to

Ns2 − 1
N − 1

(101)

This result can be derived from symmetry without any integration.

⟨σnσm⟩∑ σ=Ns = A(N, s)(1 − δnm) + δnm; (102)

∑
n,m

⟨σnσm⟩∑ σ=Ns = s2N2 = A(N, s)N(N − 1) + N (103)

A(N, s) =
Ns2 − 1
N − 1

(104)

The same limit A(∞, s) = s2 follows from the classical trajectory

⟨σnσm⟩∑ σ=Ns →
α′cl(ξ)

βN
α′cl(ξ

′)

βN
= s2 (105)

Let us consider less trivial example [5,21]

Un,m →
m−1

∑
k=n

exp(ıαk,n); (106)

αk,n = β
k

∑
l=0
l ̸=n

σl ; (107)

We shall set s = 0, as this is the leading contribution to the partition function. The expectation value of
Un,m in our continuum limit becomes

⟨Un,m⟩ = N
∫ ξ2

ξ1

dξ⟨exp(ıα(ξ))⟩ = N
∫ ξ2

ξ1

dξ exp(−1/2G(ξ, ξ)) (108)

Here G(ξ1, ξ2) is the Green’s function corresponding to a 1D particle on a line interval ξ ∈ (0, 1),
introduced in the previous section. It satisfies the equation, which follows from our Gaussian Action

∂2
ξ G(ξ, ξ ′) = −β2Nδ(ξ − ξ ′); (109)

G(0, ξ ′) = G(ξ, 0) = 0; (110)

The solution is

G(ξ, ξ ′) = 1/2β2N
(
ξ + ξ ′ − |ξ − ξ ′|

)
(111)

Thus, we find

⟨Un,m⟩ = N
∫ ξ2

ξ1

dξ exp
(
−1/2β2Nξ

)
=

2
β2 (exp(−y/2)− exp(−x/2)); (112)

x = β2Nξ1; (113)

y = β2Nξ2; (114)
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in agreement with [5,21] in the critical region N → ∞, β2 ∼ 1/N. Finally, the expectation value

⟨Un,mŪn,m⟩ =
m−1

∑
l=n

m−1

∑
k=n

⟨exp(ıαkn − ıαln)⟩ (115)

Here, the Gaussian path integration yields

⟨Un,mŪn,m⟩ → N2
∫ ξ2

ξ1

dξ
∫ ξ2

ξ1

dξ ′ exp
(
−1/2

(
G(ξ, ξ) + G(ξ ′, ξ ′)− 2G(ξ, ξ ′)

))
=

N2
∫ ξ2

ξ1

dξ
∫ ξ2

ξ1

dξ ′ exp
(

1/2β2N|ξ − ξ ′|
)
=

4
β4 (2 exp((y − x)/2) + x − y − 2) (116)

This result also agrees with combinatorial computations in [5,21].

5.3. Small Euler Ensemble in Statistical Limit

The remaining problem is averaging over the variables N, p, q, r of the small Euler ensemble.

The variable s = qr
N is distributed between −1, 1 with the binomial weight [5,21]

(
N

N(1 + s)/2

)
peaked at s = 0. There is a finite term coming from r = 0 plus a continuum spectrum coming from
large r

W(r) =

1 if r = 0;
√

2πN
q exp

(
− (qr)2

2N

)
otherwise;

(117)

As it was conjectured in [21] and supported by rigorous estimates in [5], the r = 0 term dominates the
sums, after which the variables y, x can be treated as continuous variables.

The variable p at fixed q has a discrete distribution

fp(p | q) =

q−1

∑
p=1
(p,q)

δ(p − n)

φ(q)
(118)

As we shall see, rather than p, we would need an asymptotic distribution of a scaling variable

X(p, q) =
1
q2 cot2

(
πp
q

)
(119)

This distribution for X(p, q) at fixed q → ∞ can be found analytically, using newly established relations
for the cotangent sums (see Appendix in [21], and Mathematica® notebook [23]). Asymptotically, at
large q, these relations read

⟨Xn⟩ ≡ lim
q→∞

q−1

∑
p=1
(p,q)

X(p, q)n

q
= δn,0 +

2π−2nζ(2n)
(2n + 1)ζ(2n + 1)

(120)

This relation can be transformed further as
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⟨Xn⟩ =


1 if n = 0

2
∞

∑
k=1

φ(k)k−(2n+1)

(2n+1)π2n if n > 0

(121)

The Mellin transform of these moments leads to the following singular distribution

⟨Xn⟩ =
∫ ∞

0
fX(X) dX Xn; (122)

fX(X) = (1 − α)δ(X) + πX
√

XΦ
(⌊

1
π
√

X

⌋)
; (123)

α = π
∫ ∞

0
X
√

XdXΦ
(⌊

1
π
√

X

⌋)
=

2π

5

∞

∑
1

Φ(k)
(

1
(πk)5 − 1

(π(k + 1))5

)
=

2
5π4

∞

∑
1

φ(k)
k5 =

1
225ζ(5)

(124)

where Φ(n) is the totient summatory function

Φ(q) =
q

∑
n=1

φ(n) (125)

The distribution can also be rewritten as an infinite sum

∫
dx fX(x)F(x) = (1 − α)F(0) + π

∞

∑
n=1

φ(n)

1
π2n2∫
0

x
3
2 dxF(x) (126)

The normalization of this distribution comes out 1 as it should, with factor 1 − α in front of the
delta function.

The upper limit of X

Xmax = X(q − 1, q) → 1
π2 (127)

Our distribution (122) is consistent with this upper limit, as the argument
⌊

1
π
√

X

⌋
becomes zero at

Xπ2 > 1. It is plotted in Figure 6.
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1

� X

�(q)

Figure 6. The log-log-plot of the distribution fX(X). It is equals πΦ(k)X
√

X at each internal 1
π2(k+1)2 <

X < 1
π2k2 with positive integer k. Asymptotically fX(X) → 3

√
X

π3 at X → 0.
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Once we are zooming into the tails of the p, q distribution, we also must recall that

P(q < yN) =
Φ(⌊Ny⌋)

Φ(N)
→ y2; (128)

fy(y) =

N

∑
q=2

δ
(

y − q
N

)
φ(q)

Φ(N)
(129)

5.4. Complex Classical Trajectory in the Path Integral

This classical equation for our path integral reads:

α′′ = −ıκ
(
C ′

Ω exp(ıα) + (C ′
Ω)⋆ exp(−ıα)

)
; (130)

κ =
1

2πy
√

X
√

2ν(t + t0)
(131)

The parameter κ is distributed according to the above distributions for y, X in a small Euler ensemble
in the statistical limit.

This complex equation leads to a complex classical solution (instanton). It simplifies for z =

exp(ıα):

z′′ =
(z′)2

z
+ κ
(
C ′

Ωz2 + (C ′
Ω)⋆

)
; (132)

z(0) = z(1) = 1 (133)

This equation cannot be analytically solved for arbitrary periodic function C′
Ω(ξ).

The weak and strong coupling expansions by κ are straightforward.
At small κ

z(ξ) → 1 + 2κ

(
−Aξ +

∫ ξ

0
Re CΩ(ξ ′)dξ ′

)
+ O(κ2); (134)

A =
∫ 1

0
Re CΩ(ξ ′)dξ ′ (135)

At large κ

z(ξ) → ı exp
(
−ı arg C ′

Ω(ξ)
)
= ı

∣∣C ′
Ω(ξ)

∣∣
C ′

Ω(ξ)
(136)

This solution is valid at intermediate ξ, not too close to the boundaries ξ = (0, 1). In the region near
the boundaries ξ(1 − ξ) ≪ 1√

κ
, the following asymptotic agrees with the classical equation

z → 1 ± ıξ
√

2κRe C′
Ω(0) + O(ξ2); (137)

z → 1 ± ı(1 − ξ)
√

2κRe C′
Ω(1) + O((1 − ξ)2); (138)

One can expand in small or large values of κ and use the above distributions for X, y term by term.
As it was noticed in the previous paper [21], the viscosity ν = ν̃

N2 → 0 in our theory. This limit
makes κ ∼ N → ∞, justifying the strong coupling limit for the Wilson loop solution. In the next section
we are considering an important calculable case of the vorticity correlation function, where the full
solution in quadratures is available.
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6. Dual Theory of Vorticity Correlation

The simplest observable quantity we can extract from the loop functional is the vorticity correlation
function [20], corresponding to the loop C backtracking between two points in space r⃗1 = 0, r⃗2 = r⃗,
(see [21] for details and the justification).

The vorticity operators are inserted at these two points. Let us outline an analytical solution. We
shift the time variable by t + t0 ⇒ t to simplify the formulas.

The correlation function reduces to the following average over the big Euler ensemble E of our
random curves in complex space [21]

〈
ω⃗(⃗0) · ω⃗(⃗r)

〉
=
∫

O(3)

dΩ
4t2|O(3)| ∑

0≤n<m<N

〈
ω⃗m · ω⃗neı⃗ρ·Ω̂·(S⃗n,m−S⃗m,n)

〉
E

; (139)

S⃗n,m =
∑m−1

k=n F⃗k

m − n (mod N)
; (140)

ω⃗k =

{
0, 0,

ıσk
2

cot
(

β

2

)}
; (141)

ρ⃗ =
r⃗

2
√

νt
; (142)

⟨X[σ...]⟩p,q,r ≡
∑E X[σ...]δ[qr − ∑ σ]

∑E δ[qr − ∑ σ]
; (143)

Integrating the global rotation matrix O(3) is part of the ensemble averaging.

6.1. Correlation Function and Path Integral

Let us apply our path integral to the expectation value over spins σ = ±1 in the big Euler
ensemble, with the distribution of q, X established in the previous section. In the continuum limit, we
replace summation with integration. We arrive at the following expression for the correlation function:

〈
ω⃗(⃗0) · ω⃗(⃗r)

〉
∝

∑
even q<N

∑
p; (p|q)

cot2(πp/q)
(p/q)2

∫
0<ξ1<ξ2<1

dξ1dξ2

∫
O(3)

dΩ
∫
[Dα]α′(ξ1)α

′(ξ2)e
ı r⃗·Ω̂·Im V⃗(ξ1,ξ2)√

νt

t2Φ(N)|O(3)|
∫
[Dα]

; (144)

V⃗(ξ1, ξ2) = q
√

X{ı, 1, 0}(S(ξ1, ξ2)− S(ξ2, 1 + ξ1)); (145)

S(a, b) =

∫ b
a dξeıα(ξ)

b − a
; (146)

Here and in the following, we skip all positive constant factors, including powers of N. Ultimately,
we restore the correct normalization of the vorticity correlation using its value at r⃗ = 0 computed in
previous work [21].

The computations significantly simplify in Fourier space.

〈
ω⃗(⃗0) · ω⃗(⃗k)

〉
=
∫

d3⃗r
〈

ω⃗(⃗0) · ω⃗(⃗r)
〉

exp
(
−ı⃗k · r⃗

)
∝

∑
even q<N

∑
p; (p|q)

cot2(πp/q)
(p/q)2

∫
0<ξ1<ξ2<1

dξ1dξ2

∫
O(3)

dΩ
∫
[Dα]α′(ξ1)α

′(ξ2)δ

(
r⃗ · Ω̂ · Im V⃗(ξ1, ξ2)√

νt
− k⃗

)
t2Φ(N)|O(3)|

∫
[Dα]

; (147)

The angular integration
∫

dΩ yields

∫
O(3)

dΩδ

(
Ω̂ · Im V⃗(ξ1, ξ2)√

νt
− k⃗

)
∝

√
νt

k⃗2
δ
(∣∣∣Im V⃗(ξ1, ξ2)

∣∣∣− |⃗k|
√

νt
)

(148)
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Now, using the Lagrange multiplier λ for this condition, and shifting integration over λ to the
real axis, we have to minimize effective action

A[α, λ] =
πy2X

2

∫ 1+ξ1

ξ1

(α′)2 + λy
√

X

∣∣∣∣∣∣∣∣
∫ ξ2

ξ1

dξ eıα

ξ2 − ξ1
−

∫ 1+ξ1

ξ2

dξ eıα

1 + ξ1 − ξ2

∣∣∣∣∣∣∣∣; (149)

∂λ A[α, λ] = |⃗k|
√

νt; (150)

This variational problem reduces to two pendulum equations

α′′1 +
r

ξ2 − ξ1
sin α1 = 0; ∀ξ1 < ξ < ξ2 (151)

α′′2 +
r

ξ2 − ξ1 − 1
sin α2 = 0; ∀ξ2 < ξ < 1 + ξ1 (152)

r =
λ

πy
√

XI(r)
; (153)

I(r) =

∣∣∣∣∣∣∣∣
∫ ξ2

ξ1

dξ eıα1

ξ2 − ξ1
−

∫ 1+ξ1

ξ2

dξ eıα2

1 + ξ1 − ξ2

∣∣∣∣∣∣∣∣; (154)

The well-known solution is Jacobi amplitude am(x | u),

α1(ξ) = 2am

(
ξ − α2

2
a1 | r

a2
1(ξ2 − ξ1)

)
; (155a)

α2(ξ) = 2am

(
ξ − α2

2
a2 | − r

a2
2(1 − ξ2 + ξ1)

)
; (155b)

The free parameters a1, a2, α1, α2 satisfy four equations

α1(ξ2) = α2(ξ2); (156a)

α′1(ξ2) = α′2(ξ2); (156b)

α1(ξ1) = α2(1 + ξ1); (156c)

α′1(ξ1) = α′2(1 + ξ1); (156d)

together with the constraint following from the variation of the Lagrange multiplier λ:

I(r) =
|⃗k|

√
νt

y
√

X
(157)

6.2. Turbulent Viscosity and the Local Limit

These five equations, in general, are quite complex, but there is one simplifying property.
In the local limit N → ∞, the remaining effective action at the extremum

NA[αc, λc] =
πNy2X

2

(∫ ξ2

ξ1

dξ(α′1(ξ))
2 +

∫ 1+ξ1

ξ2

dξ(α′2(ξ))
2
)

(158)
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grows as N, unless both α1(ξ) ∼ α2(ξ) ∼ N−1/2 → 0. In this case, the above constraint can be
expanded in α1, α2. As we show in [24], the leading constant and linear terms both cancel so that the
quadratic term remains

2|⃗k|
√

νt
y
√

X
=

∣∣∣∣∣
∫ ξ2

ξ1

dξα2
1(ξ)

ξ2 − ξ1
−
∫ 1+ξ1

ξ2

dξα2
2(ξ)

1 + ξ1 − ξ2

∣∣∣∣∣ ∼ 1
N

(159)

This estimate then requires vanishing viscosity in the local limit, at fixed turbulent viscosity

ν̃ = νN2 → const . (160)

This phenomenon of renormalization of viscosity by a factor of N2 was already observed in our
first paper [21]. Our Euler ensemble in the local limit N → ∞ can only solve the inviscid limit of the
Navier-Stokes decaying turbulence, with finite ν̃ acting as a turbulent viscosity.

The desired anomalous dissipation phenomenon takes place in this limit of our theory.
Returning to the elliptic function solution, we rewrite it in the linearized case at a1 ∼ a2 → 0.

This linearization is equivalent to replacing sin(α) → α in the differential equation and studying the
resulting linear ODE as a boundary problem. We choose different parametrizations in this linear case

α1(ξ) = a
(

cos(K1(ξ − ξ2)) +
b

K1
sin(K1(ξ − ξ2))

)
; (161)

α2(ξ) = a
(

cos(K2(ξ − ξ2)) +
b

K2
sin(K2(ξ − ξ2))

)
; (162)

K1 =

√
r
∆

; (163)

K2 =

√
r

∆ − 1
; (164)

∆ = ξ2 − ξ1; (165)

In the physical region 0 < ∆ < 1, r < 0, K2 is real, and K1 imaginary, but the solution stays real.
The matching conditions at α1(ξ2) = α2(ξ2), α′1(ξ2) = α′2(ξ2) are identically satisfied with this Anzatz.
The derivative match α′1(ξ1) = α′2(1 + ξ1) can be solved exactly for b

b =

√
r

∆−1 sin
(
(1 − ∆)

√
r

∆−1

)
+
√

r
∆ sin

(
∆
√

r
∆

)
cos
(
(∆ − 1)

√
r

∆−1

)
− cos

(
∆
√

r
∆

) (166)

The remaining matching condition α1(ξ1) = α2(1 + ξ1) reduces to the root of the function

g(r, ∆) =
(2∆ − 1) sin

(√
(∆ − 1)r

)
sin
(√

∆r
)

√
(∆ − 1)∆

+ 2 cos
(√

(∆ − 1)r
)

cos
(√

∆r
)
− 2 (167)

This function has multiple roots, but we are looking for the real root r0(∆) with minimal value of
the action at given ∆

Ac(r, ∆) =
∫ ξ2

ξ1

dξα′1(ξ)
2 +

∫ 1+ξ1

ξ2

dξα′2(ξ)
2 (168)
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This integral is elementary, but the expression is too long to be presented here. It can be found in the
Mathematica® notebook[24], where it is used to select the roots r0(∆) of g(r, ∆), minimizing Ac(r0(∆), ∆)
for a given value of ∆ ∈ (0, 1).

This lowest action root is plotted in Figure 7. The corresponding value of minimal action L(∆) =
Ac(r0(∆), ∆) is plotted in Figure 9.
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Figure 7. Log plot of r0(∆).
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Figure 8. Plot of Ac(r0(∆), ∆) for the three real solutions of the equation g(r, ∆) = 0. At ∆ = ∆1 and
∆ = ∆2, the action curves intersect; at ∆ = 1/2, there is a gap between the lowest action (= 0) and the
lowest of the other two. So, there are second-order phase transitions at ∆1, ∆2 and the first-order phase
transition at ∆ = 1/2.
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Figure 9. Log plot of L(∆) = Ac(r0(∆), ∆).

There are phase transitions at

∆ = {∆1, ∆2, ∆3}; (169)

∆1 = 0.157143; (170)

∆2 = 0.43015; (171)

∆3 = 1/2; (172)
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These branch points in ∆ correspond to the switch of the lowest action solution. At small positive
∆ − 1/2

r0(∆) → −48(∆ − 1/2)− 1536(∆ − 1/2)3

7
+ . . . ; (173)

A0(r0(∆), ∆) → 256(∆ − 1/2)2 + . . . (174)

At ∆ → 1 all solutions go to −∞ as

rn(∆) → − 6
1 − ∆

+ O(1) (175)

This behavior matches numerical computations in Mathematica® [24].
The constraint (159) is also reduced to elementary functions, too lengthy to quote here (see [24]).
This constraint yields the quadratic relation for the last unknown parameter a in our solution

a2 =
|⃗k|

√
νt

S(∆)y
√

X
; (176)

with universal function S(∆) presented in [24] and shown in Figure 10).
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Figure 10. Plot of S(∆).

The resulting integral (up to the pre-exponential factor Q) is equal to∫
[Dα]α′(ξ1)α

′(ξ2)δ
(∣∣∣Im V⃗(ξ1, ξ2)

∣∣∣− |⃗k|
√

νt
)

∝

Q
〈
α′(ξ1)α

′(ξ2)
〉

exp
(
−y

√
X |⃗k|

√
ν̃t

πL(∆)
2|S(∆)|

)
(177)

The factor ⟨α′(ξ1)α
′(ξ2)⟩ contains two terms :〈

α′(ξ1)α
′(ξ2)

〉
= α′1(ξ1)α

′
1(ξ2) +

〈
δα′(ξ1)δα′(ξ2)

〉
(178)

The first term is the contribution of the classical solution we have just found, and the second term
comes from Gaussian fluctuations δα(ξ) around this solution.

The classical term is calculable (see [24])
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α′1(ξ1)α
′
1(ξ2) =

|⃗k|
√

ν̃t
Ny

√
X

J(∆)
|S(∆)| ; (179)

J(∆) =
rA(r, ∆)B(r, ∆)

∆(∆ − 1)C(r, ∆)2

∣∣∣∣
r=r0(∆)

; (180)

A(r, ∆) = ∆ sin
(√

(∆ − 1)r
)
−
√
(∆ − 1)∆ sin

(√
∆r
)

; (181)

B(r, ∆) = ∆ sin
(√

(∆ − 1)r
)

cos
(√

∆r
)
−√

(∆ − 1)∆ sin
(√

∆r
)

cos
(√

(∆ − 1)r
)

; (182)

C(r, ∆) = cos
(√

(∆ − 1)r
)
− cos

(√
∆r
)

; (183)

(see Figure 11).

Out [ ] =

0.2 0.4 0.6 0.8 1.0
Δ

-100

100

200

300

J

J(Δ)

Figure 11. Plot of universal function J(∆).the four corves correspond to four phases (solutions for
r0(∆)).

The fluctuation term ⟨δα′(ξ1)δα′(ξ2)⟩ is also proportional to 1/N, therefore we must keep this
term as well.

As for the pre-exponential factor Q in the saddle point integral, it is given by the functional
determinant of the operator L̂ corresponding to linearized effective action (168) in the vicinity of the
saddle point λc, αc(ξ).

A[αc + δα, λc + δλ] → A[αc, λc] + 1/2tr
(

V† | L̂ | V
)

; (184)

V = {δλ, δα}; (185)

Q(∆, τ) = exp
(
−1/2tr

(
log L̂

L̂α

))
α→0

; (186)

τ = y
√

X; (187)

The fluctuation correction reduces to the inverse operator L̂, which we compute in the next section.
Now, we can reduce multiple sum/integral in (147) to the following
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〈
ω⃗(⃗0) · ω⃗(⃗k)

〉
=

ν̃3/2 H
(

k
√

ν̃t
)

√
t

; (188)

H(κ) =
1
Z

∞

∑
n=1

φ(n)
∫ 1/n

0
dτ
(

τ5/n5 − τ10
) ∫ 1

0
d∆(1 − ∆)G(∆, τ, κ); (189)

G(∆, τ, κ) = Q(∆, τ)

(
κ

Nτ

J(∆)
|S(∆)| +

〈
δα′(ξ1)δα′(ξ2)

〉)
exp

(
− τκL(∆)

2π|S(∆)|

)
(190)

where Z is the normalization constant to be determined later.

6.3. Functional Determinant in the Path Integral

As we have discussed in the previous section, in the limit a → 0 the classical solution α1,2(ξ) ∝
a → 0.

This observation simplifies the linearized theory corresponding to this quadratic form
〈
V | L̂ | V

〉
.

First, integrate the fluctuations δλ of λ around the saddle point solution.
The Lagrange multiplier at the saddle point vanishes, as we show in [24]

λ0 = τr0(∆)I(r0(∆)) = 0 (191)

The quadratic term comes from the first derivatives Iλ = ∂λ I, Ir = ∂r I, λr = ∂rλ , which can be
simplified by switching to λ(r) = τtI(r)

Aλλ = τ Iλ =
τ Ir

λr
=

τ Ir

τrIr
=

1
r

(192)

The bilinear term λδα also simplifies

Aαλ(δα) = ıτδλF[δα]; (193)

F[δα] =
∫ ξ2

ξ1

dξδα(ξ)

ξ2 − ξ1
−
∫ 1+ξ1

ξ2

dξδα(ξ)

1 + ξ1 − ξ2
(194)

We can integrate out λ, producing the extra pre-exponential factor Qλ =
√
|r0(∆)|/

√
N.

The bilinear term in the exponential after λ integration leads to the following effective quadratic
Action for δα

Ae f f [δα] =
τ2

2

∫ 1+ξ1

ξ1

δα′2 +
r0(∆)τ2

2
F[δα]2; (195)

There is a zero-mode δα(ξ) = const , related to translational invariance of Ae f f [δα]. Naturally, this
zero-mode must be eliminated from the spectrum when we compute the functional determinant and
the resolvent below.

After discarding the zero-mode, this effective action becomes a positive definite functional of δα

only in the region of ∆ where r0(∆) > 0, i.e., for ∆1 < ∆ < ∆2.
As we shall see below, the spectrum of fluctuations is positive only in this region. Therefore, we

restrict our integration to this region.
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The (δα)2 term corresponds to the linear eigenvalue equation with f1,2 = δα1,2

f ′′1,2(ξ)− µ1,2F[ f ] = −ω f1,2(ξ); (196)

µ1,2 =

{
r
∆

,
r

∆ − 1

}
; (197)

ϵ = ωτ2; (198)

r = r0(∆); (199)

The solution matching with first derivative at ξ = ξ2, ξ = (ξ1, 1 + ξ1) is built the same way as in (166).
Equations for f1,2 being linear homogeneous, we can fix the normalization as F[ f ] = 1,

f1(x) = a sin(
√

ω(ξ−ξ2)) + B1 cos(
√

ω(ξ−ξ2)) +
r

ω∆
; (200)

f2(ξ) = a sin(
√

ω(ξ−ξ2)) + B2 cos(
√

ω(ξ−ξ2)) +
r

ω(∆ − 1)
; (201)

The spectrum ω = ωn is defined by the transcendental equation (the discriminant of this linear
system of equations), which we found in [24]

f (ωn, ∆) = 0; (202)

f (ω, ∆) = (∆ − 1)∆
√

ω sin
(√

ω

2

)
((∆ − 1)∆ω + r) +

r cos
(

1
2
(1 − 2∆)

√
ω

)
− r cos

(√
ω

2

)
; (203)

r = r0(∆); (204)

The spectrum is positive in the whole interval 0 < ∆ < 1 except for the region ∆1 < ∆ < ∆2

where r0(∆) > 0 so that the stable solution for ωn(∆) does not exist. In the following, we only select
the stable region with positive r0(∆)
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Figure 12. The first levels of the spectrum satisfying equation f (ω, ∆) = 0. The colored lines
correspond to four phases. Red: 0 < ∆ < ∆1, Green: ∆1 < ∆ < ∆2, Blue: ∆2 < ∆ < 1/2, Brown:
1/2 < ∆ < 1. The green zone is left as stable, and others are eliminated because r0(∆) < 0 in these
zones. Naturally, we eliminate the zero-mode ϵ0 = 0 corresponding to translational invariance of the
effective Action.
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The functional determinant, resulting from the WKB approximation to the α path integral, would
be related to the infinite product of positive eigenvalues ϵn = τ2ωn, which can be written using a
contour integral

Qα(∆, τ) = ∏
ωn>0

(τ2ωn)
−1/2 = exp

(
1/2∂αIm

∮
Γ

f ′(ω)

f (ω)

dω

2π(ωτ2)α

)∣∣∣∣
α→0

; (205)

and the integration contour Γ encircles anticlockwise the positive real poles of the meromorphic
function f ′(ω)/ f (ω). The integral converges at α > 1/2 and should be analytically continued to α = 0.

For this purpose, let us introduce another function

Φ(ω) =
f (ω)

cos(
√

ω/2)
ω−3/2 (206)

We show in [24] that at large ω = ıy this function reaches finite limits

Φ(ıy) → ı sign y(∆ − 1)2∆2 +
(∆ − 1)∆r

|y| (207)

The logarithmic derivative of the original function differs from Φ′(ω)
Φ(ω)

by the following meromor-
phic function

f ′(ω)

f (ω)
− Φ′(ω)

Φ(ω)
= −

tan
(√

ω
2

)
4
√

ω
+

3
2ω

(208)

This difference produces a calculable contribution to our integral. By summing residues of the poles of
the tangent, we get

∮
Γ

−
tan
(√

ω
2

)
4
√

ω
+

3
2ω

 dω

2π(ωτ2)α
= ı
(

1 − 22α
)
(2πτ)−2αζ(2α) (209)

The derivative at α = 0 yields a constant

1/2∂αIm ı
(

1 − 22α
)
(2πτ)−2αζ(2α) → log(2)

2
(210)

leading to an irrelevant renormalization of Q(α, τ) by a factor
√

2.
The remaining integral with f (ω) ⇒ Φ(ω) already converges at Re α > −1, so that we can set

α = 0 and rotate the integration contour Γ parallel to the imaginary axis at Re Γ = ϵ > 0:

Qα(∆, τ) =

exp
(

1/2Im
∫ ϵ+ı∞

ϵ−ı∞

Φ′(ω)

Φ(ω)

log(ωτ2) dω

2π

)
(211)

The remarkable property of this functional determinant is the factorization of the τ dependence

Qα(∆, τ) = τµ(∆)Qα(∆, 1); (212)

µ(∆) = Im
∫ ϵ+ı∞

ϵ−ı∞

Φ′(ω)

Φ(ω)

dω

2π
(213)

The index µ(∆) has a topological origin and can be computed analytically.
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µ(∆) =
arg Φ(ı∞)− arg Φ(−ı∞)

2π
= 1/2 (214)

Our result for the correlation function is given by (188) with

Q(∆, τ) = Qα(∆, 1)τ1/2
√

r0(∆) (215)

and Qα(∆, 1) given by (211). All the constant factors we have omitted here are absorbed by the
normalization factor Z , which we determine at the end of the next section.

6.4. The Fluctuation Term in α′(ξ1)α
′(ξ2)

The last missing term is the fluctuation contribution to α′(ξ1)α
′(ξ2). In the Gaussian approxima-

tion, valid at N → ∞, this term equals

〈
δα′(ξ1)δα′(ξ2)

〉
=

−1
Nτ2

[
∂ξ∂ξ ′G(ξ, ξ ′)

]
ξ=ξ1,ξ ′=ξ2

(216)

where G(ξ, ξ ′) is a resolvent for the effective quadratic Action (195). This resolvent satisfies the
equation

∂2
ξ G(ξ, ξ ′)− µ(ξ)F[G] = δ(ξ − ξ ′); (217)

G(ξ1, ξ ′) = G(ξ1 + 1, ξ ′) = 0; (218)

F[G] =
∫ ξ2

ξ1

dξG(ξ, ξ ′)

ξ2 − ξ1
−
∫ 1+ξ1

ξ2

dξG(ξ, ξ ′)

1 + ξ1 − ξ2
; (219)

µ(ξ) =

{
r
∆ if ξ1 ≤ ξ < ξ2

r
∆−1 if ξ2 ≤ ξ < 1 + ξ1

(220)

The solution of this equation, matching with the first derivative at ξ = ξ2 is

G(ξ, ξ ′) =

A + |ξ−ξ ′ |
2 + B(ξ − ξ2) +

F[G]r(ξ−ξ2)
2

2∆ if ξ1 ≤ ξ < ξ2

A + |ξ−ξ ′ |
2 + B(ξ − ξ2) +

F[G]r(ξ−ξ2)
2

2(∆−1) if ξ2 ≤ ξ < 1 + ξ1
(221)

The linear functional F[G] on this solution becomes a linear function of these unknown parameters
A, B. Two boundary conditions G(ξ1, ξ ′) = G(ξ1 + 1, ξ ′) = 0 fix these parameters as functions of
ξ1, ξ2, ξ ′.

The result derived in [24] is too lengthy to present here. The desired quantity (216) is quite simple

1
Nτ2

[
∂ξ∂ξ ′G(ξ, ξ ′)

]
ξ=ξ1,ξ ′=ξ2

=
2(r − 6)

(r + 12)Nτ2 (222)

Finally, we get the following correlation (188) (absorbing the constant factors in Z)
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〈
ω⃗(⃗0) · ω⃗(⃗k)

〉
=

ν̃3/2 H
(

k
√

ν̃t
)

√
t

; (223a)

H(κ) =
∫ ∆2

∆1

d∆(1 − ∆)
∞

∑
n=1

φ(n)
∫ 1/n

0

dτ

τ
5
2

(
τ5/n5 − τ10

)
G(∆, τκ); (223b)

G(∆, x) =
Qα(∆, 1)

√
r0(∆)

Z

(
x

J(∆)
S(∆)

+
2(r0(∆)− 6)
(12 + r0(∆))

)
exp

(
− xL(∆)

2πS(∆)

)
(223c)

7. The Decaying Energy in Finite System

The vorticity correlation in Fourier space doubles as an energy spectrum

E(k, t) = 4π⃗k2 ⟨⃗v · v⃗k⟩ = 4π⟨ω⃗ · ω⃗k⟩ (224)

The energy spectrum in a finite system with size L is bounded from below. At low |⃗k| ≤ π/L, the
spectrum is no longer related to the turbulence but is given by the energy pumping by external forces
at the boundaries.

This energy pumping [34] takes place at t < t0, after which the pumping stops. At this moment,
the energy spectrum is growing with wavevector by one of two possible laws (with P being the net
momentum of the fluid and M being the rotation moment){

E(k, t0) ∝ Pk2

E(k, t0) ∝ Mk4
(225)

At t > t0, without the forcing, the pumped energy dissipates at large k corresponding to smaller
spatial scales of the hierarchy of vortex structures of all scales, ending with dissipative scales, or
wavevectors k ≫ π/L. After sufficient time, the universal regime kicks in, corresponding to the
decaying turbulence. It is implied that a large amount of energy was pumped in, so it takes a long
time to reach this decaying regime, corresponding to some fixed trajectory.

Our solution would apply to this regime. This solution corresponds to zero net momentum, which
leaves the second regime with k4 spectrum at small k and some universal decay at large k, reflecting
these distributed vortex structures.

Therefore, the decaying energy, given by the part of the spectrum k > k0 ∼ 1/L, has the following
form

E(t) =
∫ ∞

k0

dkE(k, t) =
4πν̃

t

∫ ∞

k0
√

ν̃t
H(κ)dκ (226)

On top of the trivial decrease ν̃
t , as prescribed by dimensional counting in an infinite system, there

is some extra decrease related to the increase of the lower limit.
The energy in our theory does not have a finite statistical limit as the integral in (226) diverges at

the lower limit when k0 → 0. Thus, we compute the energy as

E(t) =
∫ ∞

t
E(t′)dt′ (227)

This energy dissipation rate E(t′) is calculable

E(t) = 4πν
∫

dk k2
〈

ω⃗(⃗0) · ω⃗(⃗k)
〉
= 4π

ν̃

t2

∫ ∞

k0
√

ν̃t
κ2H(κ)dκ (228)

In our theory, this integral has a finite limit in an infinite system (k0 = 0).
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This limit was computed in [21] in a slightly different grand canonical ensemble, where N was
fluctuating with the weight exp(−µN), µ → 0.

With our current ensemble of fixed even N → ∞ the results of [21] read:

E∞(t) =
ν̃

t2
π2

864ζ(3)
; (229)

In our present theory, the same quantity is given by the above integral at k0 = 0

E∞(t) = 4π
ν̃

t2

∫ ∞

0
κ2H(κ)dκ (230)

Comparing these two expressions, we get the normalization of H(κ)

4π
∫ ∞

0
κ2H(κ)dκ =

π2

864ζ(3)
(231)

The integral on the left can be further reduced [24] to the following normalization condition:

Z =
276480ζ(3)ζ

(
15
2

)
119ζ

(
17
2

) ∫ ∆2

∆1

d∆
(1 − ∆)

√
r0(∆)S(∆)Qα(∆, 1)(π J(∆)(r0(∆) + 12) + L(∆)(r0(∆)− 6))

L(∆)2(r0(∆) + 12)
(232)

This normalization constant Z can be used in equation (226) for the energy decay in a finite
system. All the functions of ∆ were defined above.

As for the energy spectrum, this is not an independent function in our theory. Comparing the two
expressions (224) and (228), we arrive at the following relation

t2E(t) = 4πν̃F(
(

k0
√

ν̃t
)

; (233a)

F(κ) =
∞∫

κ

H(x)x2 dx, (233b)

√
tE(k, t) = 4πν̃

√
ν̃H
(

k
√

ν̃t
)

; (233c)

Both the energy dissipation and the energy spectrum are related to the same function H(κ), but the
energy spectrum related to this function at large argument κ = k

√
ν̃t, whereas the energy dissipation

is related to integral of this function from small argument κ = k0
√

ν̃t to infinity.
We computed this universal function F(κ) in [24], and plotted at Figure 13.
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Figure 13. Plot of the universal function F(κ) interpolated from exact values computed by numerical
integration over ∆

The behavior of this function at large arguments is quite different from the behavior of the integral
from the small lower limit to infinity, and these two asymptotic expansions do not match.
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Figure 14. Plot of the asymptotic tail (A7) of universal function H(κ → ∞)

The behavior of this function at large arguments is quite different from the behavior of the
integral from the small lower limit to infinity, and these two asymptotic expansions do not match.
We investigate these expansions in the Appendix A and we conclude, that asymptotically, at large
κ = k

√
ν̃t the energy spectrum decays as

E(k, t) ∝
ν̃
√

ν̃√
t

(
k
√

ν̃t
)−7/2

(234)

We computed the effective decay index

n(t) = −t∂t log E − 1 (235)

numerically in the Appendix C, using Mathematica®. The accuracy is just 4-5 digits, but it can be easily
improved by taking more CPU time once experimental data gets more precise. This curve is universal,
apart from an arbitrary time scale (measured in k2

0ν̃).
The effective index grows, starting around 1.2 at t = 0 (with artificial initial point t0 and scale

T0 = 1
ν̃k2

0
) and asymptotically reaching 7

4 at T = ∞, covering the same range as experimental data [34].

Current data for the energy decay index n [34] are inconsistent. There are large discrepancies
between various experiments, which are presumably explained by attempts to fit the energy decay to
a single power. In our theory, the energy decay is a nonlinear function on the log-log scale.

The best approach to experimental data is to present it as an effective curve n(t), as it was done in
[34] and presented here in Figure 4 with permission from Sreeni.

One of these curves (the green one) closely matches our theoretical prediction in Figure 3.
These universal curves were computed directly from the analytic solution of the loop equation in

the turbulent limit without any fitting parameters.

8. Discussion

Some parts of the following discussion was already published in my paper [21]. We are using
them here with some significant modifications, reflecting our increased understanding of this dual
theory.

8.1. Stochastic Solution of the Navier-Stokes Equation and Ergodic Hypothesis

Statistical "analysis of circulating or turbulent fluids" was defined by Feynman [7] as the last
unsolved problem of classical physics. We are pursuing this problem by finding a stochastic solution of
the Navier-Stokes equation covering a certain manifold. Our singularities arise in correlation functions
after averaging over this manifold in the statistical limit when the manifold’s dimension goes to infinity.
We find this manifold (Euler ensemble) by solving the loop equation (a subset of the Hopf functional
equation for generating the functional of velocity field probability). None of the particular solutions in
this manifold has a finite-time blow-up. The singularity emerges from averaging the distribution of
these solutions over the infinite Euler ensemble.

We take the most natural invariant measure from the point of the number theory: each element of
the Euler ensemble enters with equal weight. We call it our ergodic hypothesis. This hypothesis is
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unnecessary to solve the loop (i.e., Hopf) equation, as any linear superposition of the found solutions
would satisfy the loop equation. The singularities of our Euler grand canonical ensemble at µ → 0
remain in local variables such as enstrophy and its PDF, indicating singularities of the Navier-Stokes
equation in the inviscid limit.

The Euler ensemble with this particular invariant measure is singled out by its equivalence to
a quantum statistical system: the Fermi particles on a ring in the external field related to random
fractions of π. Every distinct state in the discrete quantum statistical system enters a partition function
with unit weight. In our case, this is equivalent to counting every element in the Euler ensemble with
equal weight.

This quantum representation opened the way to the analytic solution in the turbulent limit,
equivalent to the quasiclassical limit of this Fermi system.

8.2. The Physical Meaning of the Loop Equation and Dimensional Reduction

The long-term evolution of Newton’s dynamical system with many particles eventually covers
the energy surface (microcanonical ensemble). The ergodic hypothesis (accepted in Physics but still not
proven mathematically) states that this energy surface is covered uniformly. The Turbulence theory
aims to find a replacement of the microcanonical ensemble for the Navier-Stokes equation. This surface
would also take part in the decay in the pure Navier-Stokes equation without artificial forcing. In both
cases, Newton and Navier-Stokes, the probability distribution must satisfy the Hopf equation, which
follows from the dynamics without specification of the mechanism of the stochastization. Indeed, the
Gibbs, as well as the microcanonical distributions in Newton’s dynamics, satisfy the Hopf equation in a
rather trivial way: It reduces to the conservation of the probability measure (Liouville theorem), which
suggests the energy surface as the only additive integral of motion to use as a fixed point manifold.

In the case of the decaying turbulence, the loop equations represent a closed subset of the Hopf
equations, which subset is still sufficient to generate the dynamics of vorticity. In this case, the exact
solution we have found for the Hopf functional also follows from the integrals of motion, this time, the
conservation laws in the loop space. The loop space Hamiltonian we have derived from the unforced
Navier-Stokes equation does not have any potential terms (those with explicit dependence upon the
shape of the loop). The Schrödinger equation with only kinetic energy in the Hamiltonian conserves
the momentum. The corresponding wave function is the plane wave exp(ı p⃗ · x⃗). This plane wave is
the solution we have found, except the dot product p⃗ · x⃗ becomes a symplectic form

∮
P⃗(θ) · dC⃗(θ) in

the loop space. Our momentum P⃗(θ, t) is not an integral of motion, but simple scaling properties of the
pure Navier-Stokes equation lead to the solution with P⃗(θ, t) ∝ F⃗(θ)/

√
t, with F⃗(θ) being the integral

of motion. The rest is a purely technical task: substituting this scaling solution into the Navier-Stokes
equation and solving the resulting universal equation for a fixed point F⃗(θ).

This equation led us to the Fermi ring in the quasiclassical limit. This limit resulted in the energy
spectrum and dissipation in a finite system found in the last section 7.

8.3. Classical Flow and Quantum Geometry

Our computations heavily rely on the number theory, particularly Jordan’s multitotients φl(q),
generalizing [28] the Euler totient function. What could the number theory have in common with the
turbulent flow? The quantization of parameters of the fixed manifold of decaying turbulence stems
from the deep quantum correspondence we have discovered. The statistical distribution of a nonlinear
classical Navier-Stokes PDE is exactly related to the wave functional of a linear Schrödinger equation
in the loop space. The quantization mechanism is the same as in ordinary quantum mechanics; this is
a requirement of the solution’s periodicity.

An expert in the traditional approach to turbulence may wonder why the loop equation’s solutions
are related to the velocity field’s statistics in a decaying turbulent flow. How could this fractal curve in
complex momentum space P⃗(θ) ∈ C3 describe velocity field in a physical space v⃗(⃗r) ∈ R3? Is this a
miracle or a mirage?
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The equivalence of a strong coupling phase of the fluctuating vector field to quantum geometry
is a well-known duality phenomenon in gauge theory (the ADS/CFT duality), ringing a bell to the
modern theoretical physicist. In our case, this is a simpler quantum geometry: a fractal curve in
complex space.

Miracles are known to happen in nonlinear PDE: some lucky nonlinear equations are related to
linear problems in higher dimensions [8]. In our case, the Navier-Stokes equation is related to the
linear problem in infinite-dimensional loop space. The miracle already happened when Hopf derived
his linear functional equation. The loop equation is a reduced version of the Hopf equation, luckily
solvable by a plane wave in loop space due to translational invariance.

The loop technology was thoroughly discussed in the last few decades in the gauge theories,
including QCD[2,12,17,27] where the loop equations were derived first [13,16]. The short answer is
that duality only applies to the correlation functions of two theories with different dynamical variables;
there is no correspondence between these variables, but the correlation functions are identical.

Mathematical physics sometimes has alternative languages for the same phenomena; examples
are the duality between Schrödinger wave equation and Heisenberg’s matrix mechanics, between
dynamical triangulation and Liouville theory in 2D quantum gravity.

Extra complications in the gauge theory are the short-distance singularities related to the infinite
number of fluctuating degrees of freedom in quantum field theory. The Wilson loop functionals in
coordinate space are singular in the gauge field theory and cannot be multiplicatively renormalized.

Perturbatively, there is no short-distance divergence in the Navier-Stokes equations nor the
Navier-Stokes loop dynamics. The Euler equations represent the singular limit, which, as we argued,
should be resolved using singular topological solitons regularized by the Burgers vortex. In the present
theory, we do not encounter any singularities in coordinate space. The anomalous dissipation is
achieved in our solution via a completely different mechanism: large fluctuations of the fractal curve
at p ≪ q. However, these singularities only happen in the inviscid limit ν ∝ 1/N2 → 0.

Therefore, these singularities correspond to the Euler singularities, such as line vortexes. Those
vortexes are regularized by finite viscosity, just like our singularities.

8.4. Stokes-Type Functionals and Vorticity Correlations

The loop equation describes the gauge invariant sector of the gauge field theory. Therefore, the
gauge degrees of freedom are lost in the loop functional. However, the gauge-invariant correlations of
the field strength are recoverable from the solutions of the loop equation[13,16].

There is no gauge invariance regarding the velocity field in fluid dynamics (though there is such
invariance in the Clebsch variables [20]). The longitudinal, i.e., a potential part of the velocity, has a
physical meaning – it is responsible for pressure and energy pumping. This part is lost in the loop
functional but is recoverable from the rotational part (the vorticity) using the Biot-Savart integral.

In the Fourier space, the correlation functions of the velocity field are algebraically related to

those of vorticity v⃗k =
ı⃗k×ω⃗k

k⃗2 . Thus, the general solution for the Wilson loop functional Ψ[γ, C] allows
computing both vorticity and velocity correlation functions.

We demonstrated that by computing the moments of the enstrophy and resulting anomalous
dissipation. This computation is nonperturbative: it corresponds to the extreme turbulent limit and
cannot be expanded in inverse powers of viscosity.

8.5. Relation of Our Solution to the Weak Turbulence

The solution of the loop equation with finite area derivative, satisfying Bianchi constraint, belongs
to the so-called Stokes-type functionals [13], the same as the Wilson loop for Gauge theory and fluid
dynamics.

The Navier-Stokes Wilson loop is a case of the Abelian loop functional, with commuting compo-
nents of the vector field v⃗. As we discussed in detail in [13,16,20], any Stokes-type functional Ψ[γ, C]
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satisfying boundary condition at shrunk loop Ψ[0] = 1, and solving the loop equation can be iterated
in the nonlinear term in the Navier-Stokes equations (which iterations would apply at large viscosity).

The resulting expansion in inverse powers of viscosity (weak turbulence) exactly coincides with
the ordinary perturbation expansion of the Navier-Stokes equations for the velocity field, averaged
over the distribution of initial data or boundary conditions at infinity.

We have demonstrated in [19,20] (and also here, in Section 3.2) how the velocity distribution for
the random uniform vorticity in the fluid was reproduced by a singular momentum loop P⃗(θ).

The solution for P⃗(θ) in this special fixed point of the loop equation was random complex and
had slowly decreasing Fourier coefficients, leading to a discontinuity sign(θ − θ′) in a pair correlation
function (33). The corresponding Wilson loop was equal to the Stokes-type functional (25).

Using this example, we demonstrated how a discontinuous momentum loop describes the
vorticity distribution in the stochastic Navier-Stokes flow. In this example, the vorticity is a global
random variable corresponding to a random uniform fluid rotation: a well-known exact solution of
the Navier-Stokes equation.

This example corresponds to a special fixed point for the loop equation, not general enough
to describe the turbulent flow but mathematically ideal as a toy model for the loop technology. It
demonstrates how the momentum loop solution sums up all the terms of the 1/ν expansion in the
Navier-Stokes equation.

In our general solution, with the Euler ensemble, the summation of a divergent perturbation
expansion occurs at an extreme level, leading to a universal fixed point independent of viscosity.

At a given initial condition, after a finite time, the solution will still depend on viscosity and initial
condition. At the large time, though, it will approach our universal fixed manifold and (supposedly,
for random initial data) cover it uniformly, according to the Euler ensemble measure. The vorticity will
become a random variable with a singular distribution in the local limit, corresponding to the inviscid
limit of the Navier-Stokes equation.

9. Remaining Problems

• We performed all the calculations up to numerical factors in the vorticity correlation function,
which we recovered from the previously computed

〈
ω⃗2〉 (see [21] ). It would be useful to

compute all the normalization factors and thus double-check the solution.
• Our asymptotic energy spectrum contains calculable oscillations on top of power decay cor-

rections (see Appendix B). These contributions scale as κ−8, and they oscillate due to factors
cos(tk log κ + arg Wk) where tk are imaginary parts of the zeros of the ζ function. Computing the
universal function H(κ) in the intermediate region, connecting small and large κ expansions is a
well-defined but difficult problem in Number Theory. Detecting these oscillations in experiments
will require the next level of precision of the experimental/DNS data.

• The spectrum of indexes for deviations from our fixed trajectory [21] can be evaluated in the
scaling limit, with finite ν̃. This will provide the solution for the vorticity correlations in the
Navier-Stokes equation, perturbed by an infinitesimal random force.
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Appendix A. Computation of the Energy Spectrum

The solution we have found for the spectrum function H(κ) applies at arbitrary argument κ.
However, the energy dissipation is determined by the integral over the wide range of variable κ,
starting from some low value κ = k0

√
ν̃t. The physical spectrum at k ≫ k0 corresponds to the opposite

limit (the right tail of the spectrum).
Let us first find the asymptotic behavior of H(κ) at large arguments. The analytic and numerical

computations are presented in [25]. Interchanging summation over n and integration over τ we get
the integral of the form

∫ 1

0
dτ(A + Bτκ)e−Cτκ

(
τ5/2Φ5(τ)− τ15/2Φ0(τ)

)
; (A1)

Φλ(τ) =
⌊1/τ⌋

∑
n=1

n−λ (A2)

Later, this expression will be integrated over ∆ ∈ (∆1, ∆2).
At large κ the dominant τ ∼ 1/κ → 0. In this limit

Φ5(τ) → Φ5(0) =
ζ(4)
ζ(5)

; (A3)

Φ0(τ) →
3

π2τ2 (A4)

These asymptotic terms yield ( with actual values of the coefficients A, B, C used)

π8Q
√

r(1−∆)S7/2(7π J(r+12)+2L(r−6))
3
√

2L9/2(r+12)ζ(5)
κ−7/2 − 31185

√
2π5Q

√
r(1−∆)S13/2(13π J(r+12)+2L(r−6))

(r+12)L15/2 κ−13/2 (A5)

Here, all parameters Q, r, L, S, J depend on ∆ as we discussed in the text.
It remains to integrate over ∆ ∈ (∆1, ∆2). We computed in Mathematica® the parallel table of

values of these coefficients. The integral in the exponential of Qα(∆, 1) in (211) was tabulated on a fine
grid with δ∆ = 0.0001 and then interpolated with the third-order polynomial. This interpolation was
sufficient for the floating number precision in the interval (∆1, ∆2) where this function is smooth and
close to a parabola.

The normalization constant Z was computed the same way.

Z = 7.56011 × 106 (A6)

Then, we integrated by ∆ these coefficients divided by Z in (A5) using interpolated function on the
same fine grid for all the parameters Q, r, L, S, J. We found the following asymptotic formula

H(κ) → 0.00644138
κ7/2 − 349.557

κ13/2 ; (A7)

The first term is O(κ3) compared to the second one, but at κ ∼ 1 the correction term in H(κ) is fifty
thousand times larger than the leading term. This is how the Number Theory plays with numbers.
The large κ asymptotics starts only after κ ∼ 40. Here is the plot of this H(κ) function in this region
(see Figure 14).
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This spectrum makes sense for the decaying turbulence, though the data from [34] is not accurate
enough and varies from experiment to experiment. The numerical value of the asymptotic spectrum
index 7/2 = 3.5 is far from K41 value 5/3 ≈ 1.67, but there is no theoretical reason for K41 value in
decaying turbulence.

Finding the Taylor expansion of H(κ) is a rather simple job. After some elementary integra-
tion/expansion in Mathematica® using the relation

∞

∑
n=1

n−λ =
ζ(λ − 1)

ζ(λ)
(A8)

and numerically integrating over ∆ with the same interpolation over fine grid of exact values, we find

F(κ) = 1.0091119953186063̀*∧-25κ12 − 1.4827737803916974̀*∧-23κ11

+1.968471621599006̀*∧-21κ10 − 2.332212488998857̀*∧-19κ9 + 2.4265820298969718̀*∧-17κ8

−2.1687583538229794̀*∧-15κ7 + 1.6120814115570012̀*∧-13κ6 − 9.461629026053765̀*∧-12κ5

+3.976341576207503̀*∧-10κ4 − 9.29549230302537̀*∧-9κ3 + 0.000536642 + O(κ13) (A9)

Judging by the decrease of coefficients, one would expect this expansion to converge at κ < 50, so
it would overlap with the asymptotic expansion at large κ. This, however, turned out to be a wrong
assumption (see Figure A1).
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Figure A1. The small κ expansion (blue) does not meet the large κ asymptotics (red)

There is a huge gap of one order of magnitude between these two curves, which means that a
nontrivial behavior of F(κ) exists between these two extremes.

We fill that gap using an integral transformation in the next section.

Appendix B. Sum over Riemann Zeta Zeros

There is a beautiful representation of H(κ) as a sum over the zeros of the zeta function. Let us
represent the theta function as Laplace integral (at n > 0, τ > 0)

θ(− log(nτ)) =

+0+ı∞∫
+0−ı∞

dp
2πıp

n−pτ−p (A10)

Substituting this representation into our integral in (223), we find

∞

∑
n=1

φ(n)
+0+ı∞∫

+0−ı∞

dp
2πıp

n−p
∫ ∞

0

(
t5/2

n5 − t15/2

)
t−p(A + Btκ)e−Ctκ dt (A11)

This integral reduces to Gamma functions and powers of n, after which the sum over n reduces to
zeta functions
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1
p

∞

∑
n=1

φ(n)n−p
∫ ∞

0

(
t5/2

n5 − t15/2

)
t−p(A + Btκ)e−Ctκ dt =

κζ(p + 4)(Cκ)p− 9
2
(

ACΓ
( 7

2 − p
)
+ BΓ

( 9
2 − p

))
pζ(p + 5)

κζ(p − 1)(Cκ)p− 19
2

(
ACΓ

(
17
2 − p

)
+ BΓ

(
19
2 − p

))
pζ(p)

(A12)

This expression should be integrated by p along the imaginary axis (shifted to the right). The Γ
functions all have the poles on the positive real axis. According to the Riemann hypothesis, the function
ζ(p) in the denominator has trivial zeros at negative even points p = −2,−4, . . . and nontrivial zeros
at the critical line Re p = 1/2. The function ζ(p + 4) in the numerator has a single pole in the left
semiplane at p = −3 with the residue

P0 = −10395(2AC + 13B)
64π3/2C15/2κ13/2

∼ O
(

κ−13/2
)

(A13)

The function ζ(p + 5) in another denominator has zeros at negative odd points p = −7,−9, . . . plus
nontrivial zeros at Re p = −9/2.

Only the zeros at p = 0,−2,−4,−6,−7,−8,−9, . . . and those at Re p = −9/2 contribute to this
integral. We get, before integration over ∆, the following residue at zero

Z0 =

√
π
(
32π4C5κ5(2AC + 7B)− 2027025ζ(5)(2AC + 17B)

)
3072C19/2κ17/2ζ(5)

∼ O
(

κ−7/2
)
+ O

(
κ−17/2

)
(A14)

The residues at the critical line Re p = −9/2 are all calculable in Mathematica® in [26]. These terms
have the structure

Re
(

Wk(∆)κ
−8+ıtk

)
(A15)

The residues at the even negative p = −2k and at the odd negative p = −5 − 2k have the same form
[26]

Gk(∆)κ
− 17+4k

2 , k = 1, 2, 3 . . . (A16)

The leading terms come from the residue (A14) at p = 0, and at the pole (A13) at p = −3, which terms
we kept in our asymptotic formula in section A. The next corrections are oscillating terms from the
Riemann zeta zeros (A15). Their absolute value decreases as κ−8. Last come the contributions (A16)
from trivial zeros of the zeta function at negative integers. They start with κ−21/2. These corrections are
calculable using numerical integration of the coefficients by ∆, as we did for the leading term.

Appendix C. Computation of the Energy Dissipation

First of all, we can analytically integrate the equation for the energy dissipation rate over the κ

variable
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E(t) =
4πν̃

t2

∫ ∆2

∆1

(1 − ∆)d∆
∞

∑
n=1

φ(n)W
(

n, k0
√

t, Q(∆, 1), S(∆), L(∆), J(∆), r(∆)
)

; (A17)

W(n, κ, Q, S, L, J, r) =

2πQ
√

r
L4(r + 12)

∫ 1/n

0
dτ

(1 − (nτ)5) exp
(
− κLτ

2πS

)
n5
√

τ

(
A + Bτ + Cτ2 + Dτ3

)
; (A18)

A = 16π2S3a; (A19)

B = 8πκLS2a; (A20)

C = 2κ2L2Sa; (A21)

D = κ3 JL3(r + 12); (A22)

a = 3π J(r + 12) + L(r − 6); (A23)

This function W reduces to an error function erf(x), polynomial, and exponential (see [24]).
Its value at κ = 0 and its sum over n with Euler totient are finite and calculable

W(n, 0, Q, S, L, J, r) =
640π3Q

√
rS3(3π J(r + 12) + L(r − 6))
39n13/2L4(r + 12)

; (A24)

∞

∑
n=1

φ(n)W(n, 0, Q, S, L, J, r) =
640π3Q

√
rS3ζ

(
11
2

)
(3π J(r + 12) + L(r − 6))

39L4(r + 12)ζ
(

13
2

) (A25)

We use these exact values to accelerate the convergence of the sum over n

∞

∑
n=1

φ(n)W(n, κ, Q, S, L, J, r) =

640π3Q
√

rS3ζ
(

11
2

)
(3π J(r + 12) + L(r − 6))

39L4(r + 12)ζ
(

13
2

) +

∞

∑
n=1

φ(n)(W(n, κ, Q, S, L, J, r)− W(n, 0, Q, S, L, J, r)); (A26)

The normalization constant Z was computed in [24] by numerical integration over ∆ ( see
(A6)). Restoring the normalization produces a well-defined expression involving an error function, an
exponential integral, and Euler totients. The hardest part of the calculation is the integral in exponential
for Q(∆, 1) in (211). After regularization, it converges, but there are some oscillations on top of the
power decay of the integrated.
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Figure A2. The function I(∆) related to Q(∆, 1) = exp
(

I(∆)
8π

)
.

We used the Mathematica® integration by the method "DoubleExponentialOscillatory" [29], which
applies to oscillating functions in the infinite interval.

The remaining sum over n with the weight φ(n) converges at infinity; we compute it utilizing
the "NSum" method of Mathematica®. This method extrapolates to N = ∞ the finite sum up to n = N.
With the Euler totient this extrapolation converges slowly, which increases the CPU time.

Still, we compute this function fixed ∆ for ∼ 0.1sec. Next, we have to integrate over ∆, which we
did numerically, interpolating the values at the grid with the step δ∆ = 0.001. The estimated error
∼ δ∆3 ∼ 10−9 is about the same as the accuracy of our integral for Q.

We preprocessed the table of values of the integral

I(∆) = Im
∫ ϵ+ı∞

ϵ−ı∞

Φ′(ω)

Φ(ω)
log(ω) dω; (A27)

Q(∆, 1) = exp
(

I(∆)
8π

)
; (A28)

in the exponential in Q(∆, 1) at the fine grid with step 0.00005 in the integration range ∆1 < ∆ < ∆2.
Then, we used third-order interpolation to further integrate over ∆. This function I(∆) has no
singularities in the integration region ∆1 < ∆ < ∆2 and is close to the second-order polynomial.
Therefore, our cubic interpolation over the grid with step δ∆ = 10−5 produces very accurate results.

The remaining functions are either elementary or the solution r0(∆) of a trigonometric equation,
so we know them with arbitrary accuracy.

We tabulated F(κ) on a grid of κ ∈ (1, 1000) with the steps ∆κ = (1, 10, 20) in various ranges of κ.
The function log F(κ) behaved smoothly so that the fifth-order polynomial interpolation produced
small errors (less than 10−5 ). Here is the plot of this function in Figure 13.

The effective index n(t) and the other two plots were obtained by analytical differentiation of this
fifth-order interpolation. Results were presented above, in Figure 3.
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