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Abstract: Heart disease is a global health concern of paramount importance, causing a significant number of 

fatalities and disabilities. Precise and timely diagnosis of heart disease is pivotal in preventing adverse 

outcomes and improving patient well-being, thereby creating a growing demand for intelligent approaches to 

predict heart disease effectively. This paper introduces an Ensemble Heuristic-Metaheuristic Feature Fusion 

Learning (EHMFFL) algorithm for heart disease diagnosis. Within the EHMFFL algorithm, a diverse ensemble 

learning model is crafted, featuring different feature subsets for each heterogeneous base learner, including 

support vector machine, K-nearest neighbors, logistic regression, random forest, naive bayes, decision tree, and 

XGBoost. The primary objective is to identify the most pertinent features for each base learner, leveraging a 

combined heuristic-metaheuristic approach that integrates the heuristic knowledge of Pearson correlation 

coefficient with the metaheuristic-driven grey wolf optimizer. The second objective is to aggregate the decision 

outcomes of the various base learners through ensemble learning, aimed at constructing a robust prediction 

model. The performance of the EHMFFL algorithm is rigorously assessed using the Cleveland and Statlog 

datasets yielding remarkable results with an accuracy of 91.8% and 88.9%, respectively, surpassing state-of-

the-art machine learning, ensemble learning, and feature selection techniques in heart disease diagnosis. These 

findings underscore the potential of the EHMFFL algorithm in enhancing diagnostic accuracy for heart disease 

and providing valuable support to clinicians in making more informed decisions regarding patient care.  

Keywords: heart disease diagnosis; ensemble learning; feature selection; heuristics; metaheuristics; Pearson 

correlation coefficient (PCC); grey wolf optimizer (GWO) 

 

1. Introduction 

Currently, a person's workload has significantly increased as a result of more work. There is a 

great likelihood that the person would get heart disease as a result of this terrible situation, which 

cannot be avoided [1–3].  Heart diseases are brought on by a reduction in the amount of blood 

circulating to the brain, heart, lungs, and other vital organs. The most prevalent and least serious 

kind of cardiovascular illness is congestive heart failure. Blood is transported to the heart by blood 

veins in the human anatomy. Defective heart valves, which can cause heart failure, are one of the 

additional causes of heart disease. Anaesthesia may also be present together with upper abdominal 

muscle pain, which is a characteristic indication of heart illness. It is advised to reduce blood pressure, 

lower cholesterol, and exercise frequently to reduce the risk of heart disease. Angina pectoris, dilated 

cardiomyopathy, stroke, and congestive heart failure are among the conditions most closely 

associated with heart disease. As a result, it is important to keep an eye on indicators for 

cardiovascular disease and speak with medical professionals [4–6]. 

Cardiovascular diseases stand as one of the most prevalent causes of global mortality, and their 

diagnosis and prediction have consistently posed substantial challenges due to their dynamic nature. 

Risk factors contributing to the elevated risk of heart disease encompass age, gender, smoking habits, 
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family medical history, cholesterol levels, poor dietary choices, high blood pressure, obesity, physical 

inactivity, and alcohol consumption. Additionally, hereditary factors like high blood pressure and 

diabetes heighten the susceptibility to heart disease. Certain risk factors can be influenced by 

individual choices. In conjunction with the aforementioned risk factors, lifestyle decisions, such as 

dietary patterns, sedentary behavior, and obesity, are recognized as significant contributors [7–9]. 

Heart conditions manifest in various forms, including myocarditis, angina pectoris, congestive heart 

failure, cardiomyopathy, congenital heart disease, and coronary heart disease. Manual calculations 

to assess the likelihood of heart disease based on these risk factors are intricate, necessitating the 

adoption of computer-assisted techniques for efficient and accurate evaluation [10]. 

Machine learning is effective for a wide range of problems. Utilizing the values of independent 

variables to predict the value of a dependent variable is one use for this technique. Since the 

healthcare industry has huge data resources that are challenging to manage manually, it is an 

application area for data mining. Even in wealthy nations, heart disease has been found to be one of 

the leading causes of death. The hazards are either not recognized or are recognized until much later, 

which is one of the causes of fatalities from heart disease. Machine learning techniques, on the other 

hand, can be helpful in overcoming this issue and early risk prediction [11]. 

In this study, we introduce an advanced method for detecting and predicting heart patients 

using ensemble learning, feature selection, and heuristic-metaheuristic optimization. The presented 

method has two stages. In the first stage, we utilize a combined heuristic-metaheuristic feature 

selection algorithm based on Pearson correlation coefficient (PCC) and grey wolf optimizer (GWO), 

called PCC-GWO, to increase the accuracy and performance of each machine learning model. In the 

second stage, a  heterogeneous ensemble learning model is applied to generate the final outputs 

based on the aggregation of the opinion of the different base learners. As a result, the following 

significantly contributes to this evolved diagnosis model of heart disease: 

Introducing an advanced ensemble heuristic-metaheuristic feature fusion learning (EHMFFL) 

algorithm as a robust model in predicting heart diseases. 

Constructing a heterogeneous ensemble learning model for heart disease diagnosis comprising 

seven base learners: support vector machine (SVM), K-nearest neighbors (KNN), logistic regression 

(LR), random forest (RF), naive bayes (NB), decision tree (DT), and XGBoost. 

Presenting a combined heuristic-metaheuristic algorithm (called PCC-GWO) to select an optimal 

feature subset for each machine learning model, separately. In the PCC-GWO model, at first, PCC is 

used to calculate an importance score for each feature. Then, these scores are used as heuristic 

knowledge to guide the search process of GWO for obtaining the best achievable feature subset. 

In addition to typical performance metrics, we apply advanced statistical tools to evaluate the 

performance of the EHMFFL algorithm. These tools include the receiver operating characteristic 

(ROC) curve and correlation heat map (CHM), which allow us to statistically compare the system's 

accuracy and performance.    

Successfully developing the EHMFFL algorithm in MATLAB R2022b for the heart disease 

prediction on Cleveland and Statlog datasets, respectively.   

The rest of the paper is organized as follows. In the second section, we examine related works. 

The third section provides the details of the two datasets used in this paper. The proposed EHMFFL 

algorithm is introduced in the fourth section. The results are provided and assessed in the fifth 

section, and finally, concluding remarks are presented in the sixth section.  

2. Literature Review 

In this section, we delve into the realm of machine learning, ensemble learning, and deep 

learning techniques. Machine learning methods for classification are widely adopted across various 

industries, and researchers continually work on advancing their categorization capabilities. One such 

approach is ensemble learning, which can be either homogeneous or heterogeneous. Early 

techniques, such as bootstrap aggregating (bagging) [12] and boosting [13], exemplify the power of 

ensemble learning, often leading to improved classification performance when implemented. In 
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addition to these, various strategies have been explored by researchers, including methods like 

majority voting, to effectively combine multiple classifiers or partitions for enhanced results. 

2.1. Machine Learning Approaches 

Miao et al. [14] underscored the critical significance of early detection and diagnosis of coronary 

heart disease (CHD), a leading global cause of mortality. To facilitate the training and evaluation of 

diverse deep neural network (DNN) architectures including convolutional neural networks and 

recurrent neural networks, they curated a comprehensive dataset comprising 303 patients and 14 

clinical attributes, encompassing factors like age, gender, and cholesterol levels. Their results 

demonstrated that the proposed DNN models outperformed established methods like logistic 

regression and decision trees, showcasing high accuracy in CHD detection. Furthermore, a feature 

importance analysis revealed that age, maximum heart rate, and ST segment depression were the 

three most critical variables for predicting CHD. 

Vijayashree et al. [15] introduced a machine learning framework designed for feature selection 

in heart disease classification, leveraging an enhanced particle swarm optimization (PSO) algorithm 

in conjunction with a SVM classifier. The innovative PSO algorithm, crafted with a unique blend of a 

hybrid mutation operator, velocity clamping, and adaptive inertia weight, aimed to overcome the 

limitations of conventional PSO methods. Evaluating the framework using the Cleveland heart 

disease dataset, the results showcased its superiority over alternative feature selection techniques. 

Notably, the framework exhibited a high degree of accuracy in classifying heart disease, underscoring 

its potential for improving the accuracy and effectiveness of heart disease diagnosis. 

Waigi et al. [16] presented a study focused on predicting the risk of heart disease by employing 

advanced machine learning techniques. The research explores innovative approaches to risk 

assessment in cardiovascular health, utilizing a diverse range of machine learning algorithms. By 

leveraging extensive data and applying advanced analytics, the study aims to enhance the accuracy 

and effectiveness of heart disease risk prediction. This work contributes to the field of cardiovascular 

medicine and underscores the potential of machine learning in improving heart disease risk 

assessment and patient care. 

Tuli et al. [17] presented HealthFog, a smart healthcare system that used ensemble deep learning 

techniques for the autonomous diagnosis of cardiac illnesses in an integrated Internet of Things (IoT) 

and fog computing environment. The system was able to effectively diagnose heart illnesses by 

processing real-time data from numerous sensors and devices, including blood pressure monitors 

and electrocardiogram (ECG) devices. The HealthFog system's patient monitoring module, data 

preprocessing module, feature extraction and selection module, and classification module were all 

covered in the authors' full architecture presentation. The findings demonstrated that the HealthFog 

system performed better than other current systems in terms of precision and timeliness. 

Jindal et al. [18] focused on heart disease prediction through the application of numerous 

algorithms including KNN, LR, and RF. Their research explores the utilization of these algorithms to 

enhance the accuracy of heart disease risk assessment and prediction. By leveraging advanced data 

analytics and machine learning techniques, the study aims to contribute to the field of cardiovascular 

medicine and improve the effectiveness of heart disease prediction, potentially leading to better 

patient care. 

Sarra et al. [19] reported a study that used machine learning and statistical analysis to increase 

the precision of heart disease prediction. They chose the most important candidate features from a 

list of candidate features using the two statistical models. On the basis of the chosen features, they 

then applied Support Vector Machine to create prediction models. According to the findings, the 2 

statistical model and SVM combination had the highest level of success in predicting heart disease. 

Aliyar Vellameeran et al. [20] introduced a new type of deep belief network (DBN) for 

diagnosing heart disease utilizing IoT wearable medical devices that was supported with optimal 

feature selection. The main objective of the study was to train the DBN model by analyzing and 

selecting the most important features from a big dataset. The proposed method was evaluated using 
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actual data gathered from wearable medical devices connected to the Internet of Things, and it has 

shown promising results in correctly identifying heart disease. 

2.2. Ensemble Learning Approaches 

In the case of ensemble learning models, Latha et al. [21] examined the effectiveness of several 

machine learning techniques, including support vector machines, decision trees, and random forests. 

They contrasted the distinct methods with an ensemble method that brought together these models. 

The results showed that the ensemble method outperformed the individual algorithms in terms of 

prediction accuracy, sensitivity, and specificity. The study also emphasized the importance of feature 

selection in raising the model's accuracy. 

Ali et al. [22] have innovated a smart healthcare monitoring system designed to integrate 

multiple clinical data sources for accurate heart disease prediction. This system employs a 

combination of deep learning models, outperforming traditional methods in accuracy. A standout 

feature of this system is its real-time patient data monitoring capability, facilitating timely 

intervention and heart disease prevention. By incorporating ECG readings, blood pressure, body 

temperature, and other pertinent clinical factors, the system provides precise cardiac illness 

prognosis.  

Shorewala et al. [23] delved into the realm of coronary heart disease early detection, with a 

specific focus on harnessing the potential of ensemble methods. They pinpointed the most effective 

approach for early disease detection by rigorously analyzing a spectrum of models and algorithms, 

including DT, RF, SVM, KNN, and artificial neural networks. The results underscored the superiority 

of ensemble approaches, which seamlessly integrated multiple algorithms, yielding the highest 

accuracy in disease prediction. This research highlights the significance of ensemble techniques in 

enhancing early detection capabilities for coronary heart disease. 

Ghasemi Darehnaei et al. [24] introduced an approach known as Swarm Intelligence Ensemble 

Deep Transfer Learning (SI-EDTL), designed for the task of multiple vehicle detection in images 

captured by Unmanned Aerial Vehicles (UAVs). This method combines the power of swarm 

intelligence algorithms and deep transfer learning to enhance the accuracy of vehicle detection in 

UAV imagery. The research demonstrated the effectiveness of SI-EDTL, offering a solution for the 

challenging task of detecting multiple vehicles in aerial images, which has significant applications in 

fields such as surveillance and autonomous navigation. 

Shokouhifar et al. [25] have presented a novel approach for accurately measuring arm volume 

in patients with lymphedema. This method utilized a three-stage ensemble deep learning framework 

empowered by swarm intelligence techniques. By combining the power of deep learning and swarm 

intelligence, the research aimed to enhance the precision of arm volume measurement, which is 

crucial in the diagnosis and management of lymphedema. The proposed model demonstrated 

promising results, showcasing its potential to improve healthcare outcomes for individuals with 

lymphedema by providing more accurate and reliable measurements of arm volume. 

2.3. Feature Selection Algorithms 

There are also various feature selection techniques applied for the enhancement of prediction 

accuracy in heart diseases. For example, Nagarajan et al. [26] introduces a feature selection and 

classification model tailored for the prediction of heart disease. The research explores advanced 

techniques for selecting relevant features and enhancing the accuracy of heart disease prediction. 

Their results showed that this technique can efficiently improve the effectiveness of early detection 

and risk assessment for heart disease, potentially benefiting both patients and healthcare providers. 

Al-Yarimi et al. [27] presented a heart disease prediction model using supervised learning 

techniques. The focus of their study was on feature optimization, where they employ discrete weights 

to enhance the accuracy of heart disease prediction models. By selecting and assigning weights to 

relevant features, the research aims to improve the efficiency and precision of predictive models in 

diagnosing heart disease.  
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Ahmad et al. [28] conducted a comparative investigation on the optimal medical diagnosis of 

human heart disease using machine learning techniques. They specifically examined the impact of 

sequential feature selection, comparing its inclusion with conventional machine learning approaches 

that do not employ this feature selection method. The research aimed to enhance the efficiency and 

accuracy of heart disease diagnosis through the identification of the most relevant features. They 

provided some insights into the utility of sequential feature selection in improving the performance 

of machine learning-based heart disease diagnostic models. 

Pathan et al. [29] proposed an analysis to assess the influence of feature selection on the accuracy 

of heart disease prediction. The study specifically focused on understanding how different feature 

selection techniques could enhance or affect the accuracy of predictive models for heart disease. By 

investigating the impact of feature selection, the research aimed to optimize the heart disease 

prediction model. 

Zhang et al. [30] developed a heart disease prediction model that combines feature selection 

methods with deep neural networks. The research focused on optimizing the feature selection process 

to enhance the accuracy of heart disease prediction. By utilizing deep neural networks, they achieved 

more efficient results for diagnosing heart disease, resulted in development of a diagnostic tools for 

heart disease diagnosis. 

2.4. Our Contributions Compared with Literature 

This paper addresses a significant gap in the existing literature by introducing an innovative 

EHMFFL algorithm for heart disease diagnosis. While previous studies have often focused on 

individual techniques such as machine learning, ensemble learning, or feature selection in isolation, 

our approach stands out by seamlessly integrating all of these methods into a comprehensive 

framework. The EHMFFL algorithm not only leverages a diverse ensemble of base learners, including 

SVM, KNN, LR, RF, NB, DT, and XGBoost, but it also combines the advantages of heuristic-

metaheuristic approaches for the selection of effective features for each base learner within the 

ensemble learning model. This integration of PCC as a heuristic knowledge source with the 

metaheuristic-driven GWO sets our PCC-GWO feature selection algorithm apart. The proposed 

method has the potential to significantly advance the field of heart disease diagnosis by capitalizing 

on the strengths of each technique and offering a more accurate and reliable solution by combining 

different innovative techniques. 

3. Data Gathering 

In our analysis, we utilize two well-established datasets on cardiac illnesses sourced from the 

University of California at Irvine machine-learning repository, specifically the Cleveland and Statlog 

datasets [31,32]. Table 1 details the attributes common to both datasets, with the final attribute serving 

as an indicator of a person's heart disease status. To gain deeper insights into the feature distribution, 

we present Figures 1 and 2, which illustrate the relationship between maximum heart rate and age, 

as well as the distribution of the remaining 12 features, respectively.  

The Cleveland dataset comprises medical records from individuals who underwent heart 

disease evaluations at the Cleveland Clinic Foundation in the late 1980s, containing 303 instances, 

each representing a patient, and encompassing 13 features including critical factors like age, gender, 

blood pressure, cholesterol levels, chest pain presence, and results from various medical tests. This 

dataset has played a pivotal role in the development and testing of machine learning algorithms 

aimed at predicting cardiac disease. 

The Statlog dataset, part of a dataset collection, consists of 270 instances (patients) with 13 

attributes, including age, gender, blood pressure, cholesterol, fasting blood sugar, and various 

electrocardiography (ECG) and exercise stress test readings. Originally sourced from the Cleveland 

Clinic Foundation, this dataset has been widely employed in studies related to machine learning 

algorithms for medical diagnosis. The primary objective is to enable physicians to make more 

informed treatment decisions by accurately identifying patients based on their feature values. 
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Table 1. Description of attributes in the datasets. 

Feature  Description Type Values 

Age Age of the patients Numeric Years 

Sex Gender of patients Categorial M, F 

Ca Number of major vessels Categorial 0-4 

Chol Serum cholesterol Numeric mg/dl 

Exang Exercise induced angina Categorial Yes=1, No=0 

Cp Chest pain type Categorial Male=1, Female=0 

Oldpeak ST depression induced by exercise relative to rest Numeric 0-6.2 

Fbs Fasting blood sugar Categorial mg/dl 

Restecg    Resting electrocardiographic Categorial 0, 1, 2 

Thal Normal; Fixed defect; Reversible defect Categorial 0, 1, 2, 3 

Thalach Maximum heart rate achieved Numeric 71-202 

Slope the slope of the peak exercise ST segment Categorial 0, 1, 2 

Trestbps Resting blood pressure Numeric 94-200 

Num Heart disease status Categorial Yes/No 

 

Figure 1. Maximum heart rate versus age. 
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Figure 2. Distribution of all features. 

4. Proposed EHMFFL Algorithm 
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The proposed EHMFFL algorithm represents a heterogeneous ensemble learning framework, 

featuring seven base learners including SVM, KNN, LR, RF, NB, DT, and XGBoost. To optimize the 

performance of each machine learning model, a combined heuristic-metaheuristic algorithm known 

as PCC-GWO is performed on each base learner, separately. Initially, the PCC method is employed 

to calculate feature importance scores, serving as critical heuristic knowledge for guiding the GWO 

in selecting the most effective features for the heart disease diagnosis. Subsequently, the tuned 

machine learning models (SVM, KNN, LR, RF, NB, DT, and XGBoost) are employed to create the 

final ensemble learning model. The subsequent sections provide a detailed account of the feature 

selection process using the PCC-GWO algorithm and the comprehensive classification process with 

the tuned EHMFFL model.  

4.1. Feature Selection using PCC-GWO  

Feature selection is a crucial step in machine learning, particularly when dealing with datasets 

with a high dimensionality. Its primary objective is to streamline the dataset by reducing its 

dimensionality, thereby identifying the most relevant features that contribute significantly to 

predictive accuracy, while discarding irrelevant or noisy attributes. This process not only enhances 

computational efficiency but also minimizes redundancy among the selected features. Feature 

selection is essential in various domains, including text categorization, data mining, pattern 

recognition, and signal processing [33], where it aids in improving model performance by focusing 

on the most informative attributes and discarding superfluous ones.  

Feature selection poses a challenging problem, acknowledged as non-deterministic polynomial 

hard (NP-hard) [34], making exact (exhaustive) search methods impractical due to their 

computational complexity and time requirements. Therefore, heuristic and metaheuristic algorithms 

become essential in this context [35]. When crafting a metaheuristic algorithm for an NP-hard 

problem, a delicate balance between exploration and exploitation must be maintained [36–38]. 

Achieving this balance is crucial to optimize search algorithms [39]. The GWO is recognized in the 

literature for its adeptness in striking the right equilibrium between exploration and exploitation [25]. 

Simultaneously, the PCC stands out as a swift heuristic method for identifying and eliminating highly 

correlated features [40]. Hence, we have chosen to employ PCC and GWO as the heuristic and 

metaheuristic components of our integrated PCC-GWO feature selection algorithm. This strategy 

aims to harness the advantages of both methods concurrently, combining the speed of heuristic-based 

PCC with the precision of metaheuristic-driven GWO to enhance the feature selection process. 

The provided Algorithm 1 outlines the PCC-GWO feature selection approach, offering a hybrid 

method for selecting an optimal feature subset for each base learner within the ensemble learning 

model. Initially, the algorithm employs the PCC method to compute an importance score for each 

feature. Subsequently, these scores serve as heuristic knowledge to guide the GWO during the search 

process. To achieve this, the importance scores are normalized within the range of [0, 1], and a 

Roulette Wheel Selection method is utilized to choose features for each grey wolf within the initial 

population generation procedure. The subsequent sections delve into the specifics of the PCC-GWO 

algorithm, encompassing both the PCC and GWO phases, facilitating a comprehensive 

understanding of the feature selection process. 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 October 2023                   doi:10.20944/preprints202310.1945.v1

https://doi.org/10.20944/preprints202310.1945.v1


 9 

 

Algorithm 1. Feature Selection using PCC-GWO algorithm. 

Input: 

        Full heart disease dataset 

Output: 

        Optimal Feature Subset for Machine Learning Model 

Heuristic Feature Selection: Calculation of Importance Scores using PCC: 

1. For (i =1 : Number of Features) 

2.      Calculation of the correlation of feature i with the class: CCi 

3.      Calculation of the correlation of feature i in relation to the other 

features: CFi 

4.      Calculation of the PCC importance score of feature i: 

ISi=CCi/CFi 

5. End For 

Metaheuristic Feature Selection: Final Feature Subset Selection using GWO: 

1. t = 0  % Initial Population 

2. For (s = 1 : PopSize) 

3.      for (i = 1 : Number of Features) 

4.           Calculation of the probability of feature i in solution s 

using Equation (3) 

5.           Deciding to select or decline feature i using Roulette 

Wheel Selection 

6.      end for 

7.      Calculation of the fitness of each grey wolf s using Equation (4) 

8. End For 

9. Considering the best solution as alpha wolf: Xα 

10. Considering the second best solution as beta wolf: Xβ 

11. Considering the third best solution as delta wolf: Xδ 

12. For (t = 1 : MaxIter) 

     % Population Updating 

13.      for each grey wolf s 

14.           Updating a, Ai, and Ci, rAi, and rCi. 

15.           Calculation of updating factor towards alpha grey wolf 

using Equation (13) 

16.           Calculation of updating factor towards beta grey wolf 

using Equation (14) 

17.           Calculation of updating factor towards delta grey wolf 

using Equation (15) 

18.           if (|Ai| ≥ 1) 
19.                Updating the wolf s using search for prey by 

Equation (16) 

20.           elseif (|Ai| < 1) 

21.                 Updating the wolf s using attacking prey by 

Equation (16) 

22.           end if 

23.      end for 

     % Fitness Evaluation 

24.      for (s = 1 : PopSize) 

25.           Calculation of the fitness of each grey wolf s using 

Equation (4) 

26.      End for 

27.      Updating the best solution as alpha wolf: Xα 
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28.      Updating the second best solution as beta wolf: Xβ 

29.      Updating the third best solution as delta wolf: Xδ 

30. End For 

Return Xα as the optimized feature subset 

4.1.1. Calculating Importance Score of Features using PCC 

PCC is a measure of the degree and direction of a relationship between two variables [41]. The 

PCC values vary from -1 to +1. A value of zero shows that there is no correlation between the two 

variables, while values near -1 or +1 suggest that there is a strong association between the two 

variables. The PCC is determined by: 

,
2 2

( )(y y)
,

(x x) (y y)

i i

x y

i i

x x
r

− −
=

− −

 

 (1) 

where 𝑥̅ and 𝑦̅ are the means of the two variables x and y, respectively. xi denotes the i-th value of 

the variable x, and yi denotes the i-th value of the variable y. 

By computing the correlation coefficient between each feature and the target variable, the 

method identifies the most informative features for an accurate classification. Then, by considering 

the correlation of each feature with respect to all other features in the dataset, the method identifies 

redundant or highly correlated features that may not provide much additional information. The 

selection status of each feature is then determined based on a threshold value derived from its 

correlation coefficients. Finally, the GWO algorithm is used to repeat the selection process multiple 

times, and the feature subset with the highest fitness value is selected as the final solution. This 

method provides an effective way to identify and select the most valuable features in high-

dimensional datasets, leading to improved predictive accuracy and better performance of machine 

learning models. The overall operation of PCC can be summarized as follows: 

1) The correlation coefficient of each feature i with the class is computed as CCi. 

2) The correlation coefficient of each feature i in relation to the other features is calculated 

as CFi. 

3) The importance score of each feature i can be calculated as ISi=CCi/CFi. 

In PCC, if the value of ISi is greater than a specific threshold TH (ISi>TH), the feature i is selected; 

otherwise, it is not chosen. However, in the proposed combined PCC-GWO algorithm, the 

importance scores obtained by PCC are used to guide the search process of GWO for achieving a 

better convergence. 

4.1.2. Feature Subset Selection using GWO 

GWO was originally introduced by Mirjalili et al. [42]. It is based on the hunting behavior and 

social order of grey wolves found in nature. The social hierarchy of grey wolves is described by four 

types of wolves, which are the following: 

Alpha (α): the finest solution 

Beta (β): the second best solution 

Delta (δ): the third best solutions 

Omega (ω): the rest of grey wolves 

Similar to other metaheuristic algorithms, the GWO initiates its search procedure by creating an 

initial population of viable solutions. Subsequently, it undergoes iterative phases, comprising fitness 

assessment and population adaptation, until it fulfills a predefined stopping condition, such as 

reaching a specific number of iterations.  

Representation of Feasible Solutions: Encoding of a feasible solution X (i.e., a grey wolf) is depicted 

in Figure 3. If the quantity of i-th variable is equal to 1, the feature i selected by the grey wolf; 
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otherwise, it is not picked. Consequently, a value of 1 is used to represent the feature subset's scope 

which is expressed as follows: 

1
( ) .

0

if featurei is selected
X i

otherwise


= 


 (2) 

 

Figure 3. Representation of a feasible solution. 

Initial Population Generation: As mentioned above, the original GWO algorithm starts its search 

process by a random population of grey wolves. However, in the proposed combined PCC-GWO 

algorithm, the importance scores of features obtained by PCC are utilized to generate a set of near-

optimal initial solutions for GWO. To achieve this purpose, at first the normalized importance score 

for each feature i is calculated, and then, the probability of feature i to be selected in each solution 

(grey wolf) s can be expressed using Roulette Wheel Selection method as follows: 

min( )
.

max( ) min( )

i
i

IS ISs
NIS

ISs ISs

−
=

−
 (3) 

Fitness Evaluation: The original dataset is separated into train and test datasets. The train dataset 

is considered for the optimization procedure via GWO by means of K-Fold Cross Validation. 

However, the test dataset is subjected to be unseen for final evaluation of the generalizability of the 

trained model. The following is the fitness function of GWO to assign the quality of each solution, 

aims to be maximized: 

( )maximize 1 ,
Number of all features

Fitness accuracy
Numbeof selected features

 
 

=  + −  
 

 (4) 

where accuracy is the total accuracy of the base learner on the validation dataset, and μ is a 

parameter (0<μ<1) that determines the relative importance of accuracy and the number of selected 

features on the fitness value. The higher μ, the higher impact of accuracy on the fitness value. We 

consider μ=0.99 to ensure achieving high-accuracy solutions, while minimization of the number of 

features is in the second rank.  

Population Updating: At every iteration of GWO, after fitness evaluation of all wolves, the first 

three best wolves, α, β, and δ, are in charge of the optimizer's leading hunting process, while ω simply 

obeys and follows them. Encircling, hunting, and attacking are the three well-organized steps that 

GWO does during the optimization process. The following equations were used to determine the 

encircling process: 

( ) ( ) ,pD C X t X t −=  (5) 

,( 1) ( )pX t X t A D+ = +   (6) 

where t indicates the number of iterations, X represents the location vector of the wolf, Xp 

represents the location vector of the prey. Moreover, A and C represent the vector coefficients 

expressed as follows: 
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1 - ,2a r aA =  (7) 

2 ,2C r=  

(8) 

where [0,1] is a random range for the vectors r1 and r2, and the elements within the vector a start 

at 2 and fall linearly to 0 during the execution of the algorithm as follows: 

2
2 ,a t

Maxlter
= −  (9) 

where MaxIter denotes the maximum number of iterations. 

GWO keeps the top three solutions (α, β, and δ) obtained so far and compels ω to modify their 
placements in order to follow them. As a result, a series of equations that run for each search 

candidate is used to simulate the GWO hunting process. To achieve this, at first, the parameters of D 

for alpha, beta, and delta wolves are expressed as follows: 

1 ,D C X X = −  (10) 

2 ,D C X X = −  (11) 

3 ,D C X X = −  (12) 

Then, the moving vectors of the grey wolf X towards the alpha, beta, and delta wolves can be 

calculated as Equations (12) – (14), respectively. Finally, the movement of the grey wolf X is obtained 

through the aggregation of the three moving vectors according to Equation (15). 

1 1 ( ,)X X A D = −  (13) 

2 2 ( ,)X X A D = −  (14) 

3 3 ,( )X X A D = −  (15) 

1 2 3(t 1) .
3

X X X
X

+ +
+ =  (16) 

4.2. Ensemble Learning Model 

Ensemble learning is a technique for improving the performance of a classifier. It is an efficient 

classification strategy that combines a weak classifier with a strong classifier to improve the 

effectiveness of the weak learner [43]. The proposed EHMFFL algorithm utilizes the ensemble 

technique to improve the accuracy of SVM, KNN, LR, RF, NB, DT, and XGBoost base learners  for 

diagnosing heart disease. When compared to a single classification, the goal of integrating numerous 

learning models is to get better performance with more robustness. Figure 4 illustrates how the 

ensemble learning is used to improve heart disease diagnosis using these seven base learners. 

Finally, using a weighted averaging method, we predict heart disease in each dataset. The 

weights of the different base learners are adjusted so that each learner with a higher accuracy has a 

higher weight in the ensemble learning model. The algorithm involves separately predicting each 

class and then using a weighted function to combine the outcomes. In contrast to hard voting with 

equal chance for each base learner, each prediction receives a weight, and the final results are 

combined by computing the weighted average. More specifically, the weight of base learner b is 

proportional to its normalized accuracy on the validation dataset against all base learners withing the 

ensemble model.  
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Figure 4. The proposed ensemble learning model. 

5. Evaluation and Findings 

This section offers a comprehensive view of the performance metrics and results obtained in our 

study. All simulations were meticulously conducted on a PC, featuring an Intel i7 CPU with 2.6 GHz 

and 16 GB of RAM, and executed on MATLAB R2022b within the Windows 10 environment. Table 2 

provides a snapshot of the parameter set applied to the GWO algorithm, facilitating a clearer 

understanding of the experimental setup. In the following, we evaluate the performance of the 

proposed EHMFFL algorithm against its seven base learners as well as the state-of-the-art techniques.   

Table 2. Parameter settings for GWO. 

Parameter Value 

Number of grey wolves (PopSize) 30 

Number of iterations (MaxIter) 100 

Search domain {0,1} 

Solution dimension No. Features 

5.1. Performance Metrics 

In this paper, each dataset was splitted into 80% and 20% to train and test datasets. The train 

dataset (using K-Fold Cross Validation with K=10) was applied to optimize the model, while the test 

dataset was used to assess the generalizability of the tuned model on new unseen data samples. 

Considering True Positive (TP), True Negative (TN), False positive (FP), and False Negative (FN), we  

utilized different performance measures to evaluate the performance of the different techniques: 

• True Positive (TP): the number of correctly identified positive instances inside the desired 

class. 

• True Negative (TN): the number of correctly identified negative instances outside the desired 

class.  

• False Positive (FP): the number of incorrectly predicted positive samples when the actual 

target was negative.  

• False Negative (FN): the number of incorrectly predicted negative samples when the actual 

target was positive. 
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Accuracy: It is the proportion of occurrences correctly classified by the classification learner 

means the proportion of correctly predicted samples to the total number of examples, which can be 

calculated as follow: 

Accuracy .
TP TN

TP FP TN FN

+
=

+ + +
 (17) 

Precision: It is one of the performance indicators that will be used to determine how many correct 

positive forecasts were made. So, precision measures the minority class's accuracy; then, the ratio of 

correctly predicted positive instances divided by the total number of positive cases predicted is 

utilized to compute it using: 

Precision .
TP

TP FP
=

+
 (18) 

Recall: It is a measurement that quantifies the proportion of actual positive predictions correctly 

identified out of all potential positive predictions. Unlike precision, which considers the correctly 

predicted positives relative to all positive predictions, recall focuses on the positives that were 

overlooked. Essentially, in this approach, recall signifies the extent to which the positive class is 

comprehensively captured, which is calculated as follows: 

Recall .
TP

TP FN
=

+
 (19) 

F1-score: In an ideal classifier, we aim for both accuracy and recall to be maximized, equating to 

values of one. This optimal scenario indicates that both FP and FN are reduced to zero, highlighting 

the classifier's ability to make accurate and comprehensive predictions, ultimately minimizing errors 

in both positive and negative classifications. As a result, we need a statistic that takes precision and 

recall into account. The F1-score is a precision and recall-based measure that is defined as follows: 

2 Precision recall
F1-score .

Precision recall

 
=

+
 (20) 

Specificity: It is the proportion of true negative samples to all actual negative samples, which 

indicates the ratio of projected presence to total samples with heart disease presence. The specificity 

is expressed as follows: 

Specificity = .
TN

TN FP+
 (21) 

5.2. Experimental Findings 

As mentioned above, 80% of each dataset has been used for the training of the proposed model, 

while the remaining 20% of data samples were kept unseen for the validation of the tuned model. 

More specifically, 61 and 54 data samples are used to test the proposed model and compare it with 

the other techniques on Cleveland and Statlog datasets, respectively. The obtained confusion matrix 

by the proposed EHMFFL algorithm on both datasets can be seen in Figure 5. 

To find the effectiveness of the proposed ensemble EHMFFL algorithm against its base learners, 

a comparison of various performance measures on the test data samples of the Cleveland and Statlog 

datasets is provided in Tables 3 and 4, respectively. While some algorithms may display higher 

performance than the EHMFFL algorithm on a measure, the proposed method outperforms all 

techniques on average for both datasets. Figures 5 and 6 show the accuracy of EHMFFL using various 

methods. The EHMFFL algorithm surpasses all other methods, as illustrated in Figures 6 and 7. 

According to the different performance metrics for various classification techniques on the 

Cleveland dataset, the EHMFFL algorithm outperforms all base learners with an accuracy of 91.8%, 

precision of 91.4%, recall of 94.1%, F1-score of 92.8%, and specificity of 88.9. This shows that the 
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EHMFFL algorithm is the most effective and efficient for the supplied dataset. Other algorithms also 

perform well in some cases, with accuracies ranging from 82% to 90.2%. When comparing the other 

algorithms, RF is the best base learner with an accuracy of 90.2%, and then, XGBosst and SVM with 

accuracies of 88.5% and 86.9% are in the next orders. Also, based on the results in Table 4, the 

EHMFFL algorithm exceeds all other algorithms with an accuracy score of 88.9%. After the EHMFFL, 

XGBoost, RF, and SVM, have obtained better results than the other base learners with accuracy scores 

of 85.2%, 84.4%, and 83.3%, indicating that these three methods are the most accurate base learners 

as same as observed for the Cleveland dataset. The results show that the EHMFFL again shines out 

in terms of all performance metrics, on average.  

 

Figure 5. Confusion matrix of the proposed EHMFFL algorithm on Cleveland and Statlog datasets. 

Table 3. Comparison of the EHMFFL algorithm with existing methods on Cleveland dataset. 

Algorithms Accuracy Precision Recall Specificity F1-score 

LR 85.2 90.3 82.4 88.9 86.2 

DT 82 84.8 82.4 81.5 83.6 

RF 90.2 96.7 85.3 96.3 90.6 

NB 85.2 87.9 85.3 85.2 86.6 

SVM 86.9 88.2 88.2 85.2 88.2 

KNN 83.6 87.5 82.4 85.2 84.8 

XGBoost 88.5 96.6 82.4 96.3 88.9 

EHMFFL (Proposed) 91.8 91.4 94.1 88.9 92.8 

Table 4. Comparison of the EHMFFL algorithm with existing methods on Statlog dataset. 

Algorithms Accuracy Precision Recall Specificity F1-score 

LR 79.6 80 82.8 76 81.4 

DT 81.5 85.2 79.3 84 82.1 

RF 84.4 86.2 85.5 76 87.4 

NB 77.8 79.3 79.3 76 79.3 

SVM 83.3 81.3 89.7 76 85.2 

KNN 80.8 84.5 78.9 83 81.6 

XGBoost 85.2 88.9 82.8 88 85.7 

EHMFFL (Proposed) 88.9 92.6 86.2 92 89.3 
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Figure 6. Comparison of the results of different methods on Cleveland dataset in terms of Precision, 

Recall, and Accuracy. 

 

Figure 7. Comparison of the results of different methods on Statlog dataset in terms of Precision, 

Recall, and Accuracy. 

5.3.1. Analysis of Correlation Heat Map (CHM) 

This section presents the CHM illustrating the relationships between different variables within 

the cardiovascular data for both the Cleveland and Statlog datasets. Figures 8 and 9 display these 

CHMs, where each column signifies a specific variable, and each row visualizes its correlations with 

other variables. The numerical values within the tables convey the strength and direction of these 

correlations, which can span from -1, indicating a perfect inverse correlation, to 1, representing a 

perfect positive correlation. This visual representation offers valuable insights into the interplay 

among the dataset variables and their potential impacts on heart disease prediction. 

In Figure 8, the CHM of the Cleveland dataset illustrates the comparisons among various 

variables. These variables include age, gender, blood pressure (trestbps), cholesterol level (chol), 
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fasting blood sugar (fbs), electrocardiogram results (restecg), maximum heart rate achieved (thalach), 

exercise-induced angina (exang), ST depression induced by exercise relative to rest (oldpeak), the 

number of major vessels colored by fluoroscopy (ca), type of chest pain (cp), and slope of the peak 

exercise ST segment (slope). Additionally, the presence of two types of thalassemia, indicated as thal 

and thal2, is considered. The values within the matrix fall within the -1 to 1 range, where positive 

values signify a positive correlation, negative values indicate a negative correlation, and a value of 0 

denotes no discernible correlation between the variables. Analysis of the CHM for the Cleveland 

dataset concludes the following insights: 

• The first section of the matrix compares age, sex, and blood pressure. The correlation between 

age and blood pressure is weakly positive (0.28), while the correlation between sex and blood 

pressure is weakly negative (-0.098). 

• The second section compares cholesterol and blood sugar. Cholesterol and blood sugar have a 

weakly negative correlation (-0.057).  

• The third section compares restecg, thalach, exang, and oldpeak. Resting electrocardiogram 

results (restecg) and exercise-induced angina (exang) have a weakly positive correlation (0.14), while 

maximum heart rate achieved during exercise (thalach) has a weakly negative correlation (-0.044) 

with ST depression induced by exercise relative to rest (oldpeak). 

• The fourth section compares the number of major vessels colored by fluoroscopy (ca) with the 

other variables. There is a weakly positive correlation between ca and age (0.12), and a weakly 

positive correlation between ca and cholesterol (0.097). 

• The fifth section compares the different types of chest pain (cp) and their correlations with the 

other variables. Chest pain type 0 (cp_0) has a weakly positive correlation with ca (0.14), while chest 

pain type 1 (cp_1) has a weakly negative correlation with thal2 (-0.15). Chest pain type 2 (cp_2) has a 

weakly positive correlation with fbs (0.084), and chest pain type 3 (cp_3) has a weakly positive 

correlation with age (0.048). 

• The final section of the matrix compares the slope of the peak exercise ST segment (slope) and 

the two types of thalassemia (thal and thal2). There is a weakly positive correlation between slope 

and thal2 (0.18), and a weakly negative correlation between slope and thal (-0.42). 

Also, according to the results of the CHM of the proposed model for the Statlog dataset in Figure 

9, it can be understood that: 

• The values in the matrix represent the correlations between each pair of variables. A positive 

value indicates a positive correlation (as one variable increases, so does the other), while a negative 

value indicates a negative correlation (as one variable increases, the other decreases). 

• For example, we can see that age is highly negatively correlated with itself (correlation 

coefficient of -1.00) since it is impossible for someone's age to be negatively correlated with their own 

age. Sex is negatively correlated with BP and positively correlated with cholesterol levels. We can 

also see that the ST depression is positively correlated with exercise-induced angina, Thallium stress 

test results, and chest pain types 3 and 4. 

• Some notable correlations include a positive correlation between age and BP (r=0.27), a negative 

correlation between age and max HR (r=-0.4), and a positive correlation between chest pain type 3 

and ST depression (r=0.35). There also appear to be some negative correlations between certain 

variables, such as sex and chest pain type 3 (r=-0.26) and slope of ST 3 and thal2 (r=-0.24). 
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Figure 8. CHM of the proposed EHMFFL algorithm for the Cleveland dataset. 

 

Figure 9. CHM of the proposed EHMFFL algorithm for the Statlog dataset. 

5.3.2. Analysis of Receiver Operating Characteristic (ROC)  

In Figures 10 and 11, we present the ROC curves, which illustrate the performance of various 

heart disease prediction models, encompassing the seven base learners within our ensemble learning 

model, the EHMFFL algorithm as a whole, and random classification. These curves showcase the 

trade-off between sensitivity and specificity at different decision thresholds. To gauge the diagnostic 

value of these tests, we calculate the area under the ROC curve (AUC), where a larger AUC signifies 

a more effective test. According to the obtained results, the EHMFFL algorithm outperforms all other 

compared techniques, achieving AUC values of 0.95 for the Cleveland dataset and 0.88 for the Statlog 

dataset, underscoring its superior predictive capability in heart disease diagnosis. 
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Figure 10. Analyzing the ROC curves of the different techniques for the Cleveland dataset. 

 

Figure 11. Analyzing the ROC curves of the different techniques for the Statlog dataset. 

5.3. Comparison With Existing Techniques 

In this section, we conduct a comparative analysis of the EHMFFL algorithm against three other 

heart disease diagnosis techniques. These techniques include a machine learning approach by Jindal 

et al. (2021) [18] (referred to as ML), an ensemble learning model developed by Shorewala (2021) [23] 

(referred to as EL), and a feature selection method by Ahmed et al. (2022) [28] (referred to as FS). We 

assess the precision, recall, and accuracy achieved by these different approaches, as depicted in 
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Figures 12 and 13 for the Cleveland and Statlog datasets, respectively. The results in Figure 12 

indicate that the EL model outperforms the EHMFFL algorithm in terms of recall for the Cleveland 

dataset. A similar trend is observed in Figure 13 for the Statlog dataset, where the FS method excels 

in achieving the highest recall among all techniques. However, when considering overall 

performance and emphasizing accuracy as the main metric, the proposed EHMFFL model 

demonstrates its superiority over all the compared techniques in both datasets, underscoring its 

effectiveness in heart disease diagnosis. 

 

Figure 12. Comparison of the results of the EHMFFL algorithm with the existing techniques for the 

Cleveland dataset. 

 

Figure 13. Comparison of the results of the EHMFFL algorithm with the existing techniques for the 

Statlog dataset. 

6. Conclusion 

In this study, we have introduced an ensemble heuristic-metaheuristic feature fusion learning 

(EHMFFL) algorithm, as a powerful tool for heart disease diagnosis. EHMFFL's first phase employed 

a hybrid feature selection approach, combining heuristic-based PCC and metaheuristic-driven GWO 

ML [18] EL [23] FS [28] EHMFFL

Precision 85.3 86.5 91.2 91.4

Recall 85.3 94.1 91.2 94.1

Accuracy 83.6 88.5 90.2 91.8
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techniques through the innovative PCC-GWO method. This approach effectively selects essential 

features for each machine learning model, facilitating the construction of a robust predictive model 

through ensemble learning. We evaluated the performance of the EHMFFL algorithm on the 

Cleveland and Statlog datasets. With an accuracy rate of 91.8% for the Cleveland dataset and 88.9% 

for the Statlog dataset, our method outperformed the base learners and state-of-the-art approaches. 

These outcomes highlight the potential of our strategy to elevate cardiac disease prediction accuracy 

and support healthcare professionals in making more informed patient care decisions. Looking 

ahead, the application of the EHMFFL algorithm could be expanded to a broader range of medical 

datasets, investigating its potential in diagnosing various health conditions beyond heart disease. 

Additionally, the integration of real-time patient data streams and the development of a user-friendly 

interface could lead to a transformative healthcare tool for timely disease detection and proactive 

intervention. Furthermore, we plan to explore further enhancements to our algorithm by delving into 

more advanced feature selection methods and metaheuristic algorithms, continually striving to 

optimize diagnostic accuracy and efficiency in healthcare.  
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