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Abstract: Heart disease is a global health concern of paramount importance, causing a significant number of
fatalities and disabilities. Precise and timely diagnosis of heart disease is pivotal in preventing adverse
outcomes and improving patient well-being, thereby creating a growing demand for intelligent approaches to
predict heart disease effectively. This paper introduces an Ensemble Heuristic-Metaheuristic Feature Fusion
Learning (EHMFFL) algorithm for heart disease diagnosis. Within the EHMFFL algorithm, a diverse ensemble
learning model is crafted, featuring different feature subsets for each heterogeneous base learner, including
support vector machine, K-nearest neighbors, logistic regression, random forest, naive bayes, decision tree, and
XGBoost. The primary objective is to identify the most pertinent features for each base learner, leveraging a
combined heuristic-metaheuristic approach that integrates the heuristic knowledge of Pearson correlation
coefficient with the metaheuristic-driven grey wolf optimizer. The second objective is to aggregate the decision
outcomes of the various base learners through ensemble learning, aimed at constructing a robust prediction
model. The performance of the EHMFFL algorithm is rigorously assessed using the Cleveland and Statlog
datasets yielding remarkable results with an accuracy of 91.8% and 88.9%, respectively, surpassing state-of-
the-art machine learning, ensemble learning, and feature selection techniques in heart disease diagnosis. These
findings underscore the potential of the EHMFFL algorithm in enhancing diagnostic accuracy for heart disease
and providing valuable support to clinicians in making more informed decisions regarding patient care.

Keywords: heart disease diagnosis; ensemble learning; feature selection; heuristics; metaheuristics; Pearson
correlation coefficient (PCC); grey wolf optimizer (GWO)

1. Introduction

Currently, a person's workload has significantly increased as a result of more work. There is a
great likelihood that the person would get heart disease as a result of this terrible situation, which
cannot be avoided [1-3]. Heart diseases are brought on by a reduction in the amount of blood
circulating to the brain, heart, lungs, and other vital organs. The most prevalent and least serious
kind of cardiovascular illness is congestive heart failure. Blood is transported to the heart by blood
veins in the human anatomy. Defective heart valves, which can cause heart failure, are one of the
additional causes of heart disease. Anaesthesia may also be present together with upper abdominal
muscle pain, which is a characteristic indication of heart illness. It is advised to reduce blood pressure,
lower cholesterol, and exercise frequently to reduce the risk of heart disease. Angina pectoris, dilated
cardiomyopathy, stroke, and congestive heart failure are among the conditions most closely
associated with heart disease. As a result, it is important to keep an eye on indicators for
cardiovascular disease and speak with medical professionals [4-6].

Cardiovascular diseases stand as one of the most prevalent causes of global mortality, and their
diagnosis and prediction have consistently posed substantial challenges due to their dynamic nature.
Risk factors contributing to the elevated risk of heart disease encompass age, gender, smoking habits,
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family medical history, cholesterol levels, poor dietary choices, high blood pressure, obesity, physical
inactivity, and alcohol consumption. Additionally, hereditary factors like high blood pressure and
diabetes heighten the susceptibility to heart disease. Certain risk factors can be influenced by
individual choices. In conjunction with the aforementioned risk factors, lifestyle decisions, such as
dietary patterns, sedentary behavior, and obesity, are recognized as significant contributors [7-9].
Heart conditions manifest in various forms, including myocarditis, angina pectoris, congestive heart
failure, cardiomyopathy, congenital heart disease, and coronary heart disease. Manual calculations
to assess the likelihood of heart disease based on these risk factors are intricate, necessitating the
adoption of computer-assisted techniques for efficient and accurate evaluation [10].

Machine learning is effective for a wide range of problems. Utilizing the values of independent
variables to predict the value of a dependent variable is one use for this technique. Since the
healthcare industry has huge data resources that are challenging to manage manually, it is an
application area for data mining. Even in wealthy nations, heart disease has been found to be one of
the leading causes of death. The hazards are either not recognized or are recognized until much later,
which is one of the causes of fatalities from heart disease. Machine learning techniques, on the other
hand, can be helpful in overcoming this issue and early risk prediction [11].

In this study, we introduce an advanced method for detecting and predicting heart patients
using ensemble learning, feature selection, and heuristic-metaheuristic optimization. The presented
method has two stages. In the first stage, we utilize a combined heuristic-metaheuristic feature
selection algorithm based on Pearson correlation coefficient (PCC) and grey wolf optimizer (GWO),
called PCC-GWO, to increase the accuracy and performance of each machine learning model. In the
second stage, a heterogeneous ensemble learning model is applied to generate the final outputs
based on the aggregation of the opinion of the different base learners. As a result, the following
significantly contributes to this evolved diagnosis model of heart disease:

Introducing an advanced ensemble heuristic-metaheuristic feature fusion learning (EHMFFL)
algorithm as a robust model in predicting heart diseases.

Constructing a heterogeneous ensemble learning model for heart disease diagnosis comprising
seven base learners: support vector machine (SVM), K-nearest neighbors (KNN), logistic regression
(LR), random forest (RF), naive bayes (NB), decision tree (DT), and XGBoost.

Presenting a combined heuristic-metaheuristic algorithm (called PCC-GWO) to select an optimal
feature subset for each machine learning model, separately. In the PCC-GWO model, at first, PCC is
used to calculate an importance score for each feature. Then, these scores are used as heuristic
knowledge to guide the search process of GWO for obtaining the best achievable feature subset.

In addition to typical performance metrics, we apply advanced statistical tools to evaluate the
performance of the EHMFFL algorithm. These tools include the receiver operating characteristic
(ROC) curve and correlation heat map (CHM), which allow us to statistically compare the system's
accuracy and performance.

Successfully developing the EHMFFL algorithm in MATLAB R2022b for the heart disease
prediction on Cleveland and Statlog datasets, respectively.

The rest of the paper is organized as follows. In the second section, we examine related works.
The third section provides the details of the two datasets used in this paper. The proposed EHMFFL
algorithm is introduced in the fourth section. The results are provided and assessed in the fifth
section, and finally, concluding remarks are presented in the sixth section.

2. Literature Review

In this section, we delve into the realm of machine learning, ensemble learning, and deep
learning techniques. Machine learning methods for classification are widely adopted across various
industries, and researchers continually work on advancing their categorization capabilities. One such
approach is ensemble learning, which can be either homogeneous or heterogeneous. Early
techniques, such as bootstrap aggregating (bagging) [12] and boosting [13], exemplify the power of
ensemble learning, often leading to improved classification performance when implemented. In
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addition to these, various strategies have been explored by researchers, including methods like
majority voting, to effectively combine multiple classifiers or partitions for enhanced results.

2.1. Machine Learning Approaches

Miao et al. [14] underscored the critical significance of early detection and diagnosis of coronary
heart disease (CHD), a leading global cause of mortality. To facilitate the training and evaluation of
diverse deep neural network (DNN) architectures including convolutional neural networks and
recurrent neural networks, they curated a comprehensive dataset comprising 303 patients and 14
clinical attributes, encompassing factors like age, gender, and cholesterol levels. Their results
demonstrated that the proposed DNN models outperformed established methods like logistic
regression and decision trees, showcasing high accuracy in CHD detection. Furthermore, a feature
importance analysis revealed that age, maximum heart rate, and ST segment depression were the
three most critical variables for predicting CHD.

Vijayashree et al. [15] introduced a machine learning framework designed for feature selection
in heart disease classification, leveraging an enhanced particle swarm optimization (PSO) algorithm
in conjunction with a SVM classifier. The innovative PSO algorithm, crafted with a unique blend of a
hybrid mutation operator, velocity clamping, and adaptive inertia weight, aimed to overcome the
limitations of conventional PSO methods. Evaluating the framework using the Cleveland heart
disease dataset, the results showcased its superiority over alternative feature selection techniques.
Notably, the framework exhibited a high degree of accuracy in classifying heart disease, underscoring
its potential for improving the accuracy and effectiveness of heart disease diagnosis.

Waigi et al. [16] presented a study focused on predicting the risk of heart disease by employing
advanced machine learning techniques. The research explores innovative approaches to risk
assessment in cardiovascular health, utilizing a diverse range of machine learning algorithms. By
leveraging extensive data and applying advanced analytics, the study aims to enhance the accuracy
and effectiveness of heart disease risk prediction. This work contributes to the field of cardiovascular
medicine and underscores the potential of machine learning in improving heart disease risk
assessment and patient care.

Tuli et al. [17] presented HealthFog, a smart healthcare system that used ensemble deep learning
techniques for the autonomous diagnosis of cardiac illnesses in an integrated Internet of Things (IoT)
and fog computing environment. The system was able to effectively diagnose heart illnesses by
processing real-time data from numerous sensors and devices, including blood pressure monitors
and electrocardiogram (ECG) devices. The HealthFog system's patient monitoring module, data
preprocessing module, feature extraction and selection module, and classification module were all
covered in the authors' full architecture presentation. The findings demonstrated that the HealthFog
system performed better than other current systems in terms of precision and timeliness.

Jindal et al. [18] focused on heart disease prediction through the application of numerous
algorithms including KNN, LR, and RF. Their research explores the utilization of these algorithms to
enhance the accuracy of heart disease risk assessment and prediction. By leveraging advanced data
analytics and machine learning techniques, the study aims to contribute to the field of cardiovascular
medicine and improve the effectiveness of heart disease prediction, potentially leading to better
patient care.

Sarra et al. [19] reported a study that used machine learning and statistical analysis to increase
the precision of heart disease prediction. They chose the most important candidate features from a
list of candidate features using the two statistical models. On the basis of the chosen features, they
then applied Support Vector Machine to create prediction models. According to the findings, the 2
statistical model and SVM combination had the highest level of success in predicting heart disease.

Aliyar Vellameeran et al. [20] introduced a new type of deep belief network (DBN) for
diagnosing heart disease utilizing IoT wearable medical devices that was supported with optimal
feature selection. The main objective of the study was to train the DBN model by analyzing and
selecting the most important features from a big dataset. The proposed method was evaluated using
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actual data gathered from wearable medical devices connected to the Internet of Things, and it has
shown promising results in correctly identifying heart disease.

2.2. Ensemble Learning Approaches

In the case of ensemble learning models, Latha et al. [21] examined the effectiveness of several
machine learning techniques, including support vector machines, decision trees, and random forests.
They contrasted the distinct methods with an ensemble method that brought together these models.
The results showed that the ensemble method outperformed the individual algorithms in terms of
prediction accuracy, sensitivity, and specificity. The study also emphasized the importance of feature
selection in raising the model's accuracy.

Ali et al. [22] have innovated a smart healthcare monitoring system designed to integrate
multiple clinical data sources for accurate heart disease prediction. This system employs a
combination of deep learning models, outperforming traditional methods in accuracy. A standout
feature of this system is its real-time patient data monitoring capability, facilitating timely
intervention and heart disease prevention. By incorporating ECG readings, blood pressure, body
temperature, and other pertinent clinical factors, the system provides precise cardiac illness
prognosis.

Shorewala et al. [23] delved into the realm of coronary heart disease early detection, with a
specific focus on harnessing the potential of ensemble methods. They pinpointed the most effective
approach for early disease detection by rigorously analyzing a spectrum of models and algorithms,
including DT, RF, SVM, KNN, and artificial neural networks. The results underscored the superiority
of ensemble approaches, which seamlessly integrated multiple algorithms, yielding the highest
accuracy in disease prediction. This research highlights the significance of ensemble techniques in
enhancing early detection capabilities for coronary heart disease.

Ghasemi Darehnaei et al. [24] introduced an approach known as Swarm Intelligence Ensemble
Deep Transfer Learning (SI-EDTL), designed for the task of multiple vehicle detection in images
captured by Unmanned Aerial Vehicles (UAVs). This method combines the power of swarm
intelligence algorithms and deep transfer learning to enhance the accuracy of vehicle detection in
UAYV imagery. The research demonstrated the effectiveness of SI-EDTL, offering a solution for the
challenging task of detecting multiple vehicles in aerial images, which has significant applications in
fields such as surveillance and autonomous navigation.

Shokouhifar et al. [25] have presented a novel approach for accurately measuring arm volume
in patients with lymphedema. This method utilized a three-stage ensemble deep learning framework
empowered by swarm intelligence techniques. By combining the power of deep learning and swarm
intelligence, the research aimed to enhance the precision of arm volume measurement, which is
crucial in the diagnosis and management of lymphedema. The proposed model demonstrated
promising results, showcasing its potential to improve healthcare outcomes for individuals with
lymphedema by providing more accurate and reliable measurements of arm volume.

2.3. Feature Selection Algorithms

There are also various feature selection techniques applied for the enhancement of prediction
accuracy in heart diseases. For example, Nagarajan et al. [26] introduces a feature selection and
classification model tailored for the prediction of heart disease. The research explores advanced
techniques for selecting relevant features and enhancing the accuracy of heart disease prediction.
Their results showed that this technique can efficiently improve the effectiveness of early detection
and risk assessment for heart disease, potentially benefiting both patients and healthcare providers.

Al-Yarimi et al. [27] presented a heart disease prediction model using supervised learning
techniques. The focus of their study was on feature optimization, where they employ discrete weights
to enhance the accuracy of heart disease prediction models. By selecting and assigning weights to
relevant features, the research aims to improve the efficiency and precision of predictive models in
diagnosing heart disease.
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Ahmad et al. [28] conducted a comparative investigation on the optimal medical diagnosis of
human heart disease using machine learning techniques. They specifically examined the impact of
sequential feature selection, comparing its inclusion with conventional machine learning approaches
that do not employ this feature selection method. The research aimed to enhance the efficiency and
accuracy of heart disease diagnosis through the identification of the most relevant features. They
provided some insights into the utility of sequential feature selection in improving the performance
of machine learning-based heart disease diagnostic models.

Pathan et al. [29] proposed an analysis to assess the influence of feature selection on the accuracy
of heart disease prediction. The study specifically focused on understanding how different feature
selection techniques could enhance or affect the accuracy of predictive models for heart disease. By
investigating the impact of feature selection, the research aimed to optimize the heart disease
prediction model.

Zhang et al. [30] developed a heart disease prediction model that combines feature selection
methods with deep neural networks. The research focused on optimizing the feature selection process
to enhance the accuracy of heart disease prediction. By utilizing deep neural networks, they achieved
more efficient results for diagnosing heart disease, resulted in development of a diagnostic tools for
heart disease diagnosis.

2.4. Our Contributions Compared with Literature

This paper addresses a significant gap in the existing literature by introducing an innovative
EHMFFL algorithm for heart disease diagnosis. While previous studies have often focused on
individual techniques such as machine learning, ensemble learning, or feature selection in isolation,
our approach stands out by seamlessly integrating all of these methods into a comprehensive
framework. The EHMFFL algorithm not only leverages a diverse ensemble of base learners, including
SVM, KNN, LR, RF, NB, DT, and XGBoost, but it also combines the advantages of heuristic-
metaheuristic approaches for the selection of effective features for each base learner within the
ensemble learning model. This integration of PCC as a heuristic knowledge source with the
metaheuristic-driven GWO sets our PCC-GWO feature selection algorithm apart. The proposed
method has the potential to significantly advance the field of heart disease diagnosis by capitalizing
on the strengths of each technique and offering a more accurate and reliable solution by combining
different innovative techniques.

3. Data Gathering

In our analysis, we utilize two well-established datasets on cardiac illnesses sourced from the
University of California at Irvine machine-learning repository, specifically the Cleveland and Statlog
datasets [31,32]. Table 1 details the attributes common to both datasets, with the final attribute serving
as an indicator of a person's heart disease status. To gain deeper insights into the feature distribution,
we present Figures 1 and 2, which illustrate the relationship between maximum heart rate and age,
as well as the distribution of the remaining 12 features, respectively.

The Cleveland dataset comprises medical records from individuals who underwent heart
disease evaluations at the Cleveland Clinic Foundation in the late 1980s, containing 303 instances,
each representing a patient, and encompassing 13 features including critical factors like age, gender,
blood pressure, cholesterol levels, chest pain presence, and results from various medical tests. This
dataset has played a pivotal role in the development and testing of machine learning algorithms
aimed at predicting cardiac disease.

The Statlog dataset, part of a dataset collection, consists of 270 instances (patients) with 13
attributes, including age, gender, blood pressure, cholesterol, fasting blood sugar, and various
electrocardiography (ECG) and exercise stress test readings. Originally sourced from the Cleveland
Clinic Foundation, this dataset has been widely employed in studies related to machine learning
algorithms for medical diagnosis. The primary objective is to enable physicians to make more
informed treatment decisions by accurately identifying patients based on their feature values.


https://doi.org/10.20944/preprints202310.1945.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 October 2023 doi:10.20944/preprints202310.1945.v1

6
Table 1. Description of attributes in the datasets.

Feature Description Type Values
Age Age of the patients Numeric Years
Sex Gender of patients Categorial M, F
Ca Number of major vessels Categorial 0-4
Chol Serum cholesterol Numeric mg/dl
Exang Exercise induced angina Categorial Yes=1, No=0
Cp Chest pain type Categorial =~ Male=1, Female=0
Oldpeak ST depression induced by exercise relative to rest Numeric 0-6.2
Fbs Fasting blood sugar Categorial mg/dl
Restecg Resting electrocardiographic Categorial 0,12
Thal Normal; Fixed defect; Reversible defect Categorial 0,1,2,3
Thalach Maximum heart rate achieved Numeric 71-202
Slope the slope of the peak exercise ST segment Categorial 0,12
Trestbps Resting blood pressure Numeric 94-200
Num Heart disease status Categorial Yes/No
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Figure 1. Maximum heart rate versus age.
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4. Proposed EHMFFL Algorithm
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The proposed EHMFFL algorithm represents a heterogeneous ensemble learning framework,
featuring seven base learners including SVM, KNN, LR, RF, NB, DT, and XGBoost. To optimize the
performance of each machine learning model, a combined heuristic-metaheuristic algorithm known
as PCC-GWO is performed on each base learner, separately. Initially, the PCC method is employed
to calculate feature importance scores, serving as critical heuristic knowledge for guiding the GWO
in selecting the most effective features for the heart disease diagnosis. Subsequently, the tuned
machine learning models (SVM, KNN, LR, RF, NB, DT, and XGBoost) are employed to create the
final ensemble learning model. The subsequent sections provide a detailed account of the feature
selection process using the PCC-GWO algorithm and the comprehensive classification process with
the tuned EHMFFL model.

4.1. Feature Selection using PCC-GWO

Feature selection is a crucial step in machine learning, particularly when dealing with datasets
with a high dimensionality. Its primary objective is to streamline the dataset by reducing its
dimensionality, thereby identifying the most relevant features that contribute significantly to
predictive accuracy, while discarding irrelevant or noisy attributes. This process not only enhances
computational efficiency but also minimizes redundancy among the selected features. Feature
selection is essential in various domains, including text categorization, data mining, pattern
recognition, and signal processing [33], where it aids in improving model performance by focusing
on the most informative attributes and discarding superfluous ones.

Feature selection poses a challenging problem, acknowledged as non-deterministic polynomial
hard (NP-hard) [34], making exact (exhaustive) search methods impractical due to their
computational complexity and time requirements. Therefore, heuristic and metaheuristic algorithms
become essential in this context [35]. When crafting a metaheuristic algorithm for an NP-hard
problem, a delicate balance between exploration and exploitation must be maintained [36-38].
Achieving this balance is crucial to optimize search algorithms [39]. The GWO is recognized in the
literature for its adeptness in striking the right equilibrium between exploration and exploitation [25].
Simultaneously, the PCC stands out as a swift heuristic method for identifying and eliminating highly
correlated features [40]. Hence, we have chosen to employ PCC and GWO as the heuristic and
metaheuristic components of our integrated PCC-GWO feature selection algorithm. This strategy
aims to harness the advantages of both methods concurrently, combining the speed of heuristic-based
PCC with the precision of metaheuristic-driven GWO to enhance the feature selection process.

The provided Algorithm 1 outlines the PCC-GWO feature selection approach, offering a hybrid
method for selecting an optimal feature subset for each base learner within the ensemble learning
model. Initially, the algorithm employs the PCC method to compute an importance score for each
feature. Subsequently, these scores serve as heuristic knowledge to guide the GWO during the search
process. To achieve this, the importance scores are normalized within the range of [0, 1], and a
Roulette Wheel Selection method is utilized to choose features for each grey wolf within the initial
population generation procedure. The subsequent sections delve into the specifics of the PCC-GWO
algorithm, encompassing both the PCC and GWO phases, facilitating a comprehensive
understanding of the feature selection process.


https://doi.org/10.20944/preprints202310.1945.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 October 2023 doi:10.20944/preprints202310.1945.v1

Algorithm 1. Feature Selection using PCC-GWO algorithm.
Input:

Full heart disease dataset

Output:
Optimal Feature Subset for Machine Learning Model

Heuristic Feature Selection: Calculation of Importance Scores using PCC:
1. For (i =1 : Number of Features)

2. Calculation of the correlation of feature i with the class: CCi

3. Calculation of the correlation of feature i in relation to the other
features: CFi

4. Calculation of the PCC importance score of feature i:
IS=CCi/CF;

5. End For

Metaheuristic Feature Selection: Final Feature Subset Selection using GWO:
1. t=0 % Initial Population
2. For(s=1: PopSize)

3. for (i = 1 : Number of Features)

4. Calculation of the probability of feature i in solution s
using Equation (3)

5. Deciding to select or decline feature i using Roulette
Wheel Selection

6. end for

7. Calculation of the fitness of each grey wolf s using Equation (4)

8. End For

9. Considering the best solution as alpha wolf: Xa
10. Considering the second best solution as beta wolf: Xj
11. Considering the third best solution as delta wolf: Xs
12. For (t =1 : MaxlIter)

% Population Updating

13. for each grey wolf s

14. Updating a, A;, and C;, rai, and rci.

15. Calculation of updating factor towards alpha grey wolf
using Equation (13)

16. Calculation of updating factor towards beta grey wolf
using Equation (14)

17. Calculation of updating factor towards delta grey wolf
using Equation (15)

18. if (1Ail >1)

19. Updating the wolf s using search for prey by
Equation (16)

20. elseif (1 Ail <1)

21. Updating the wolf s using attacking prey by
Equation (16)

22. end if

23. end for

% Fitness Evaluation

24. for (s=1: PopSize)

25. Calculation of the fitness of each grey wolf s using
Equation (4)

26. End for

27. Updating the best solution as alpha wolf: X«
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28. Updating the second best solution as beta wolf: X3
29. Updating the third best solution as delta wolf: Xs
30. End For

Return X. as the optimized feature subset

4.1.1. Calculating Importance Score of Features using PCC

PCC is a measure of the degree and direction of a relationship between two variables [41]. The
PCC values vary from -1 to +1. A value of zero shows that there is no correlation between the two
variables, while values near -1 or +1 suggest that there is a strong association between the two
variables. The PCC is determined by:

DT )
rxﬂy - —\2 —\2 ’ (1)
V-0 -9

where ¥ and ¥y are the means of the two variables x and y, respectively. xi denotes the i-th value of
the variable x, and y: denotes the i-th value of the variable y.

By computing the correlation coefficient between each feature and the target variable, the
method identifies the most informative features for an accurate classification. Then, by considering
the correlation of each feature with respect to all other features in the dataset, the method identifies
redundant or highly correlated features that may not provide much additional information. The
selection status of each feature is then determined based on a threshold value derived from its
correlation coefficients. Finally, the GWO algorithm is used to repeat the selection process multiple
times, and the feature subset with the highest fitness value is selected as the final solution. This
method provides an effective way to identify and select the most valuable features in high-
dimensional datasets, leading to improved predictive accuracy and better performance of machine
learning models. The overall operation of PCC can be summarized as follows:

1) The correlation coefficient of each feature i with the class is computed as CCi.
2) The correlation coefficient of each feature i in relation to the other features is calculated
as CFi.

3) The importance score of each feature i can be calculated as IS=CCi/CF:.

In PCC, if the value of 1S: is greater than a specific threshold TH (IS>TH), the feature i is selected;
otherwise, it is not chosen. However, in the proposed combined PCC-GWO algorithm, the
importance scores obtained by PCC are used to guide the search process of GWO for achieving a
better convergence.

4.1.2. Feature Subset Selection using GWO

GWO was originally introduced by Mirjalili et al. [42]. It is based on the hunting behavior and
social order of grey wolves found in nature. The social hierarchy of grey wolves is described by four
types of wolves, which are the following:

Alpha (a): the finest solution

Beta (B): the second best solution
Delta (6): the third best solutions
Omega (w): the rest of grey wolves

Similar to other metaheuristic algorithms, the GWO initiates its search procedure by creating an
initial population of viable solutions. Subsequently, it undergoes iterative phases, comprising fitness
assessment and population adaptation, until it fulfills a predefined stopping condition, such as
reaching a specific number of iterations.

Representation of Feasible Solutions: Encoding of a feasible solution X (i.e., a grey wolf) is depicted
in Figure 3. If the quantity of i-th variable is equal to 1, the feature i selected by the grey wolf;
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otherwise, it is not picked. Consequently, a value of 1 is used to represent the feature subset's scope
which is expressed as follows:

. 1 if featureiis selected
X@)= { . )

0 otherwise

Features

1 0 1 1 0 1 1 0

] U

Not Selected feature Selected feature

Figure 3. Representation of a feasible solution.

Initial Population Generation: As mentioned above, the original GWO algorithm starts its search
process by a random population of grey wolves. However, in the proposed combined PCC-GWO
algorithm, the importance scores of features obtained by PCC are utilized to generate a set of near-
optimal initial solutions for GWO. To achieve this purpose, at first the normalized importance score
for each feature i is calculated, and then, the probability of feature i to be selected in each solution
(grey wolf) s can be expressed using Roulette Wheel Selection method as follows:

_ 1S, —min(/Ss)
" max(ISs) —min(ISs)

®)

Fitness Evaluation: The original dataset is separated into train and test datasets. The train dataset
is considered for the optimization procedure via GWO by means of K-Fold Cross Validation.
However, the test dataset is subjected to be unseen for final evaluation of the generalizability of the
trained model. The following is the fitness function of GWO to assign the quality of each solution,
aims to be maximized:

Number of all features j @

maximize Fitness =| jptxaccuracy+(1- u)x
Numbe of selected features

where accuracy is the total accuracy of the base learner on the validation dataset, and p is a
parameter (0<u<l) that determines the relative importance of accuracy and the number of selected
features on the fitness value. The higher y, the higher impact of accuracy on the fitness value. We
consider u=0.99 to ensure achieving high-accuracy solutions, while minimization of the number of
features is in the second rank.

Population Updating: At every iteration of GWO, after fitness evaluation of all wolves, the first
three best wolves, a, f, and §, are in charge of the optimizer's leading hunting process, while w simply
obeys and follows them. Encircling, hunting, and attacking are the three well-organized steps that
GWO does during the optimization process. The following equations were used to determine the
encircling process:

D=|C-X,(-X(), (5)

X(t+D)=X,0)+A-D, (6)

where t indicates the number of iterations, X represents the location vector of the wolf, X
represents the location vector of the prey. Moreover, A and C represent the vector coefficients
expressed as follows:
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C=2%,

where [0,1] is a random range for the vectors r: and r2, and the elements within the vector a start
at 2 and fall linearly to 0 during the execution of the algorithm as follows:

2

a=2—-t———,
Maxlter

where MaxIter denotes the maximum number of iterations.

GWO keeps the top three solutions (a, 5, and 0) obtained so far and compels w to modify their
placements in order to follow them. As a result, a series of equations that run for each search
candidate is used to simulate the GWO hunting process. To achieve this, at first, the parameters of D
for alpha, beta, and delta wolves are expressed as follows:

I}
[}

doi:10.20944/preprints202310.1945.v1

7)

(8)

)

(10)

(11)

a: I'Xa_}z’
p =G X=X,
D, =|C,-X,-X|,

Then, the moving vectors of the grey wolf X towards the alpha, beta, and delta wolves can be
calculated as Equations (12) — (14), respectively. Finally, the movement of the grey wolf X is obtained
through the aggregation of the three moving vectors according to Equation (15).

X, =X,-A-(D,),
X,=X,—-A,-(Dy).,

Xs =25—A3'(D—5),

X=Xt X ”§2+X3 .

4.2. Ensemble Learning Model

Ensemble learning is a technique for improving the performance of a classifier. It is an efficient
classification strategy that combines a weak classifier with a strong classifier to improve the
effectiveness of the weak learner [43]. The proposed EHMFFL algorithm utilizes the ensemble
technique to improve the accuracy of SVM, KNN, LR, RF, NB, DT, and XGBoost base learners for
diagnosing heart disease. When compared to a single classification, the goal of integrating numerous
learning models is to get better performance with more robustness. Figure 4 illustrates how the
ensemble learning is used to improve heart disease diagnosis using these seven base learners.

Finally, using a weighted averaging method, we predict heart disease in each dataset. The
weights of the different base learners are adjusted so that each learner with a higher accuracy has a
higher weight in the ensemble learning model. The algorithm involves separately predicting each
class and then using a weighted function to combine the outcomes. In contrast to hard voting with
equal chance for each base learner, each prediction receives a weight, and the final results are
combined by computing the weighted average. More specifically, the weight of base learner b is
proportional to its normalized accuracy on the validation dataset against all base learners withing the
ensemble model.

(12)

(13)
(14)

(15)

(16)
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Figure 4. The proposed ensemble learning model.

5. Evaluation and Findings

This section offers a comprehensive view of the performance metrics and results obtained in our
study. All simulations were meticulously conducted on a PC, featuring an Intel i7 CPU with 2.6 GHz
and 16 GB of RAM, and executed on MATLAB R2022b within the Windows 10 environment. Table 2
provides a snapshot of the parameter set applied to the GWO algorithm, facilitating a clearer
understanding of the experimental setup. In the following, we evaluate the performance of the
proposed EHMFFL algorithm against its seven base learners as well as the state-of-the-art techniques.

Table 2. Parameter settings for GWO.

Parameter Value
Number of grey wolves (PopSize) 30
Number of iterations (MaxIter) 100
Search domain {0,1}
Solution dimension No. Features

5.1. Performance Metrics

In this paper, each dataset was splitted into 80% and 20% to train and test datasets. The train
dataset (using K-Fold Cross Validation with K=10) was applied to optimize the model, while the test
dataset was used to assess the generalizability of the tuned model on new unseen data samples.
Considering True Positive (TP), True Negative (TN), False positive (FP), and False Negative (FN), we
utilized different performance measures to evaluate the performance of the different techniques:

e True Positive (TP): the number of correctly identified positive instances inside the desired
class.

e True Negative (TN): the number of correctly identified negative instances outside the desired
class.

e False Positive (FP): the number of incorrectly predicted positive samples when the actual
target was negative.

e False Negative (FN): the number of incorrectly predicted negative samples when the actual
target was positive.
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Accuracy: It is the proportion of occurrences correctly classified by the classification learner
means the proportion of correctly predicted samples to the total number of examples, which can be
calculated as follow:

TP+TN
TP+FP+TN +FN’

Accuracy = (17)
Precision: It is one of the performance indicators that will be used to determine how many correct
positive forecasts were made. So, precision measures the minority class's accuracy; then, the ratio of
correctly predicted positive instances divided by the total number of positive cases predicted is
utilized to compute it using:
.. TP
Precision = ———. (18)
TP+ FP
Recall: It is a measurement that quantifies the proportion of actual positive predictions correctly
identified out of all potential positive predictions. Unlike precision, which considers the correctly
predicted positives relative to all positive predictions, recall focuses on the positives that were
overlooked. Essentially, in this approach, recall signifies the extent to which the positive class is
comprehensively captured, which is calculated as follows:
1P
Recall = ———. (19)
TP+FN
F1-score: In an ideal classifier, we aim for both accuracy and recall to be maximized, equating to
values of one. This optimal scenario indicates that both FP and FN are reduced to zero, highlighting
the classifier's ability to make accurate and comprehensive predictions, ultimately minimizing errors
in both positive and negative classifications. As a result, we need a statistic that takes precision and
recall into account. The F1-score is a precision and recall-based measure that is defined as follows:

2 x Precisionx recall
Fl-score = — . (20)
Precision+ recall

Specificity: It is the proportion of true negative samples to all actual negative samples, which
indicates the ratio of projected presence to total samples with heart disease presence. The specificity
is expressed as follows:

IN

Specificity =——. 21
P y TN + FP @)

5.2. Experimental Findings

As mentioned above, 80% of each dataset has been used for the training of the proposed model,
while the remaining 20% of data samples were kept unseen for the validation of the tuned model.
More specifically, 61 and 54 data samples are used to test the proposed model and compare it with
the other techniques on Cleveland and Statlog datasets, respectively. The obtained confusion matrix
by the proposed EHMFFL algorithm on both datasets can be seen in Figure 5.

To find the effectiveness of the proposed ensemble EHMFFL algorithm against its base learners,
a comparison of various performance measures on the test data samples of the Cleveland and Statlog
datasets is provided in Tables 3 and 4, respectively. While some algorithms may display higher
performance than the EHMFFL algorithm on a measure, the proposed method outperforms all
techniques on average for both datasets. Figures 5 and 6 show the accuracy of EHMFFL using various
methods. The EHMFFL algorithm surpasses all other methods, as illustrated in Figures 6 and 7.

According to the different performance metrics for various classification techniques on the
Cleveland dataset, the EHMFFL algorithm outperforms all base learners with an accuracy of 91.8%,
precision of 91.4%, recall of 94.1%, F1-score of 92.8%, and specificity of 88.9. This shows that the
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EHMEFFL algorithm is the most effective and efficient for the supplied dataset. Other algorithms also
perform well in some cases, with accuracies ranging from 82% to 90.2%. When comparing the other
algorithms, RF is the best base learner with an accuracy of 90.2%, and then, XGBosst and SVM with
accuracies of 88.5% and 86.9% are in the next orders. Also, based on the results in Table 4, the
EHMEFFL algorithm exceeds all other algorithms with an accuracy score of 88.9%. After the EHMFFL,
XGBoost, RF, and SVM, have obtained better results than the other base learners with accuracy scores
of 85.2%, 84.4%, and 83.3%, indicating that these three methods are the most accurate base learners
as same as observed for the Cleveland dataset. The results show that the EHMFFL again shines out
in terms of all performance metrics, on average.

Cleveland Statlog

True Class
True Class

Predicted Class Predicted Class

Figure 5. Confusion matrix of the proposed EHMFFL algorithm on Cleveland and Statlog datasets.

Table 3. Comparison of the EHMFFL algorithm with existing methods on Cleveland dataset.

Algorithms Accuracy Precision Recall Specificity Fl-score
LR 85.2 90.3 82.4 88.9 86.2
DT 82 84.8 82.4 81.5 83.6
RF 90.2 96.7 85.3 96.3 90.6
NB 85.2 87.9 85.3 85.2 86.6
SVM 86.9 88.2 88.2 85.2 88.2
KNN 83.6 87.5 82.4 85.2 84.8
XGBoost 88.5 96.6 82.4 96.3 88.9
EHMFFL (Proposed) 91.8 91.4 94.1 88.9 92.8

Table 4. Comparison of the EHMFFL algorithm with existing methods on Statlog dataset.

Algorithms Accuracy Precision Recall Specificity Fl1-score

LR 79.6 80 82.8 76 814

DT 81.5 85.2 79.3 84 82.1

RF 84.4 86.2 85.5 76 87.4

NB 77.8 79.3 79.3 76 79.3
SVM 83.3 81.3 89.7 76 85.2
KNN 80.8 84.5 78.9 83 81.6
XGBoost 85.2 88.9 82.8 88 85.7

EHMFFL (Proposed) 88.9 92.6 86.2 92 89.3
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Figure 6. Comparison of the results of different methods on Cleveland dataset in terms of Precision,
Recall, and Accuracy.
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Figure 7. Comparison of the results of different methods on Statlog dataset in terms of Precision,
Recall, and Accuracy.

5.3.1. Analysis of Correlation Heat Map (CHM)

This section presents the CHM illustrating the relationships between different variables within
the cardiovascular data for both the Cleveland and Statlog datasets. Figures 8 and 9 display these
CHMs, where each column signifies a specific variable, and each row visualizes its correlations with
other variables. The numerical values within the tables convey the strength and direction of these
correlations, which can span from -1, indicating a perfect inverse correlation, to 1, representing a
perfect positive correlation. This visual representation offers valuable insights into the interplay
among the dataset variables and their potential impacts on heart disease prediction.

In Figure 8, the CHM of the Cleveland dataset illustrates the comparisons among various
variables. These variables include age, gender, blood pressure (trestbps), cholesterol level (chol),
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fasting blood sugar (fbs), electrocardiogram results (restecg), maximum heart rate achieved (thalach),
exercise-induced angina (exang), ST depression induced by exercise relative to rest (oldpeak), the
number of major vessels colored by fluoroscopy (ca), type of chest pain (cp), and slope of the peak
exercise ST segment (slope). Additionally, the presence of two types of thalassemia, indicated as thal
and thal?2, is considered. The values within the matrix fall within the -1 to 1 range, where positive
values signify a positive correlation, negative values indicate a negative correlation, and a value of 0
denotes no discernible correlation between the variables. Analysis of the CHM for the Cleveland
dataset concludes the following insights:

e The first section of the matrix compares age, sex, and blood pressure. The correlation between
age and blood pressure is weakly positive (0.28), while the correlation between sex and blood
pressure is weakly negative (-0.098).

e The second section compares cholesterol and blood sugar. Cholesterol and blood sugar have a
weakly negative correlation (-0.057).

e The third section compares restecg, thalach, exang, and oldpeak. Resting electrocardiogram
results (restecg) and exercise-induced angina (exang) have a weakly positive correlation (0.14), while
maximum heart rate achieved during exercise (thalach) has a weakly negative correlation (-0.044)
with ST depression induced by exercise relative to rest (oldpeak).

e The fourth section compares the number of major vessels colored by fluoroscopy (ca) with the
other variables. There is a weakly positive correlation between ca and age (0.12), and a weakly
positive correlation between ca and cholesterol (0.097).

e The fifth section compares the different types of chest pain (cp) and their correlations with the
other variables. Chest pain type 0 (cp_0) has a weakly positive correlation with ca (0.14), while chest
pain type 1 (cp_1) has a weakly negative correlation with thal2 (-0.15). Chest pain type 2 (cp_2) has a
weakly positive correlation with fbs (0.084), and chest pain type 3 (cp_3) has a weakly positive
correlation with age (0.048).

¢ The final section of the matrix compares the slope of the peak exercise ST segment (slope) and
the two types of thalassemia (thal and thal2). There is a weakly positive correlation between slope
and thal2 (0.18), and a weakly negative correlation between slope and thal (-0.42).

Also, according to the results of the CHM of the proposed model for the Statlog dataset in Figure
9, it can be understood that:

e The values in the matrix represent the correlations between each pair of variables. A positive
value indicates a positive correlation (as one variable increases, so does the other), while a negative
value indicates a negative correlation (as one variable increases, the other decreases).

e For example, we can see that age is highly negatively correlated with itself (correlation
coefficient of -1.00) since it is impossible for someone's age to be negatively correlated with their own
age. Sex is negatively correlated with BP and positively correlated with cholesterol levels. We can
also see that the ST depression is positively correlated with exercise-induced angina, Thallium stress
test results, and chest pain types 3 and 4.

¢ Some notable correlations include a positive correlation between age and BP (r=0.27), a negative
correlation between age and max HR (r=-0.4), and a positive correlation between chest pain type 3
and ST depression (r=0.35). There also appear to be some negative correlations between certain
variables, such as sex and chest pain type 3 (r=-0.26) and slope of ST 3 and thal2 (r=-0.24).
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Figure 8. CHM of the proposed EHMFFL algorithm for the Cleveland dataset.
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Figure 9. CHM of the proposed EHMFFL algorithm for the Statlog dataset.

5.3.2. Analysis of Receiver Operating Characteristic (ROC)

In Figures 10 and 11, we present the ROC curves, which illustrate the performance of various
heart disease prediction models, encompassing the seven base learners within our ensemble learning
model, the EHMFFL algorithm as a whole, and random classification. These curves showcase the
trade-off between sensitivity and specificity at different decision thresholds. To gauge the diagnostic
value of these tests, we calculate the area under the ROC curve (AUC), where a larger AUC signifies
a more effective test. According to the obtained results, the EHMFFL algorithm outperforms all other
compared techniques, achieving AUC values of 0.95 for the Cleveland dataset and 0.88 for the Statlog
dataset, underscoring its superior predictive capability in heart disease diagnosis.
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Figure 10. Analyzing the ROC curves of the different techniques for the Cleveland dataset.
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Figure 11. Analyzing the ROC curves of the different techniques for the Statlog dataset.

5.3. Comparison With Existing Techniques

In this section, we conduct a comparative analysis of the EHMFFL algorithm against three other
heart disease diagnosis techniques. These techniques include a machine learning approach by Jindal
et al. (2021) [18] (referred to as ML), an ensemble learning model developed by Shorewala (2021) [23]
(referred to as EL), and a feature selection method by Ahmed et al. (2022) [28] (referred to as FS). We
assess the precision, recall, and accuracy achieved by these different approaches, as depicted in
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Figures 12 and 13 for the Cleveland and Statlog datasets, respectively. The results in Figure 12
indicate that the EL model outperforms the EHMFFL algorithm in terms of recall for the Cleveland
dataset. A similar trend is observed in Figure 13 for the Statlog dataset, where the FS method excels
in achieving the highest recall among all techniques. However, when considering overall
performance and emphasizing accuracy as the main metric, the proposed EHMFFL model
demonstrates its superiority over all the compared techniques in both datasets, underscoring its
effectiveness in heart disease diagnosis.
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Figure 12. Comparison of the results of the EHMFFL algorithm with the existing techniques for the
Cleveland dataset.
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Figure 13. Comparison of the results of the EHMFFL algorithm with the existing techniques for the
Statlog dataset.

6. Conclusion

In this study, we have introduced an ensemble heuristic-metaheuristic feature fusion learning
(EHMFFL) algorithm, as a powerful tool for heart disease diagnosis. EHMFFL's first phase employed
a hybrid feature selection approach, combining heuristic-based PCC and metaheuristic-driven GWO
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techniques through the innovative PCC-GWO method. This approach effectively selects essential
features for each machine learning model, facilitating the construction of a robust predictive model
through ensemble learning. We evaluated the performance of the EHMFFL algorithm on the
Cleveland and Statlog datasets. With an accuracy rate of 91.8% for the Cleveland dataset and 88.9%
for the Statlog dataset, our method outperformed the base learners and state-of-the-art approaches.
These outcomes highlight the potential of our strategy to elevate cardiac disease prediction accuracy
and support healthcare professionals in making more informed patient care decisions. Looking
ahead, the application of the EHMFFL algorithm could be expanded to a broader range of medical
datasets, investigating its potential in diagnosing various health conditions beyond heart disease.
Additionally, the integration of real-time patient data streams and the development of a user-friendly
interface could lead to a transformative healthcare tool for timely disease detection and proactive
intervention. Furthermore, we plan to explore further enhancements to our algorithm by delving into
more advanced feature selection methods and metaheuristic algorithms, continually striving to
optimize diagnostic accuracy and efficiency in healthcare.
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