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Abstract: The infrared (IR) satellite remote sensing of sea surface skin temperature (SSTskin) is
challenging in the northern high latitude region, especially in the Arctic because of its extreme
environmental conditions, and thus the accuracy of SSTsin retrievals is questionable. Several
Saildrone uncrewed surface vehicles were deployed at the Pacific side of the Arctic in 2019, and two
of them, SD-1036 and SD-1037, were equipped with a pair of IR pyrometers on the deck whose
measurements have been shown to be useful in the derivation of SSTsin with sufficient accuracy for
scientific applications, providing an opportunity to validate satellite SSTskin retrievals. This study
aims to assess the accuracy of MODIS-retrieved SSTskin from both Aqua and Terra satellites by
comparisons with collocated Saildrone-derived SSTsin data. The mean differences in SSTskin from
the SD-1036 and SD-1037 measurements are different by ~0.4 K, largely resulting from differences
in the atmospheric conditions experienced by the two Saildrones. The performance of MODIS on
Aqua and Terra in retrieving SSTs«in is comparable. Negative brightness temperature (BT)
differences between 11 pm and 12 um channels are identified as being physically based, but are
removed from the analyses as they present anomalous conditions for which the atmospheric
correction algorithm is not suited. Overall, the MODIS SSTskin retrievals show negative mean biases,
-0.234 K for Aqua and -0.295 K for Terra. The variations in the retrieval inaccuracies show an
association with diurnal warming events in the upper ocean from long periods of sunlight in the
Arctic. Also contributing to inaccuracies in the retrieval is the surface emissivity effect in BT
differences characterized by the Emissivity-introduced BT difference (EABT) index. This study
demonstrates the characteristics of MODIS-retrieved SSTskin in the Arctic, at least at the Pacific side,
and underscores that more in situ SSTskn data at high latitudes are needed for further error
identification and algorithm development of IR SSTskin.
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1. Introduction

Satellite remote sensing offers the best way of providing long-period, frequent, global sea surface
temperature (SST) maps, which are vital for understanding the climate [1,2], monitoring long-term
climate trends [3] and studying some weather systems, such as hurricanes [4,5] and El Nifio/La Nifia
events [6,7], and in supporting weather and ocean forecasting. Currently, measurements from both
infrared (IR) and microwave radiometers aboard satellites can be used to derive SSTs, but the IR
sensors have a higher spatial resolution with a longer historical record, including the Advanced Very
High-Resolution Radiometer (AVHRR) [8], Moderate Resolution Imaging Spectro-radiometer
(MODIS) [9], Visible Infrared Imaging Radiometer Suite (VIIRS) [10], Sea and Land Surface
Temperature Radiometer (SLSTR) [11] and Visible and Infrared Scanning Radiometer (VIRR) [12].
They use radiometric measurements at wavelengths of 3.7-4.1 um and/or 10-12 um interval to derive
SSTs. However, both bands are sensitive to the presence of clouds, interactions with aerosols and
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absorption by atmospheric water vapor. Thus, thermal IR measurements for deriving SST require
atmospheric correction of the measured signals and can only be made in cloud-free conditions.
Furthermore, the retrieval of IR satellite SST at high latitudes, particularly in the Arctic region, poses
several challenges [13,14], primarily due to the extreme environmental conditions in this area, such
as the persistent cloud cover and long twilight [15], sea ice presence introducing complications in
distinguishing open water from ice-covered regions [16] and the occurrence of extremely cold and
dry atmospheres compared with other areas of the global ocean [17].

In addition to being a climatological extreme, the Arctic is a vast and remote region with limited
access for in situ measurements, resulting in difficulties in the accuracy assessment of satellite-
derived SST and larger uncertainties in the retrievals. As elsewhere, in situ measurements of
subsurface SST taken by drifting buoys are the main source of validating data at high latitudes. Their
sparsity is much more significant at the northern Pacific side of the Arctic region, incorporating
Beaufort Sea, Chukchi Sea and East Siberian Sea, in contrast to the Greenland, Norwegian, and
Barents Seas in the Atlantic Ocean sector, which feature extensive year-round open water at similar
latitudes. However, the sea ice melt-back in recent years, especially during warmer months, has led
to an improvement in the number of in situ SST data in the Arctic, which is advantageous to the
accuracy assessment and refinement of the atmospheric correction algorithms for SST retrieval [17-
19].

Nevertheless, different from the sea surface skin temperature (SSTskin) derived from the IR
emission from within the conductive laminar sub-layer of ~10-20 um thickness beneath the air-sea
interface detected by IR radiometers, buoys take the ocean temperature referred to as SSTacptn at
depths of several centimeters to tens of meters [20]. The difference between SSTskin and SSTdepth mainly
comprise the cool skin effect and diurnal warming. The cool skin effect, which means SSTskinis cooler
than SSTaepm, nearly always exists, resulting from the heat loss through the oceanic skin layer to the
atmosphere, supplied by the sensible and latent heat fluxes and the net longwave radiation [21]. But
such difference can be overwhelmed by the thermal stratifications in the daytime caused by the
strong insolation under low wind speeds, i.e., diurnal warming [22,23]. Therefore, using subsurface
temperature, SSTaeptn, to validate IR satellite-derived SSTsin may wrongly attribute some
contributions of cool skin and diurnal warming to the inaccuracies of satellite retrievals, underscoring
the necessity of collecting SSTskin using measurements from IR radiometer systems on the ships or
other platforms. Some noteworthy progress has been made with several successful instruments being
deployed over the past few decades, such as the Marine Atmospheric Emitted Radiance
Interferometer (M-AERI) [24], the Calibrated Infrared In situ Measurement System (CIRIMS) [25] and
the Infrared Sea surface temperature Autonomous Radiometer (ISAR) [26]. However, the amount of
in situ SSTs«in data is still lacking with limited spatio-temporal extent, especially for high latitude
regions, primarily due to the difficulty and the high cost of deployment on ships, and maintenance
of those accurate IR radiometers.

The uncrewed surface vehicles (USVs) are more cost-effective than traditional research vessels.
To fill the gap of SSTsin data at high latitudes, especially at the Pacific sector of the Arctic, two
Saildrone USVs were deployed in the 2019 Arctic Cruise of the 3rd Multi-Sensor Improved Sea
Surface Temperature Project (MISST-3) [27,28] carrying a simple system with two IR radiation
pyrometers on the deck to collect the measurements for deriving SSTskin. Although this configuration
was experimental, Jia, et al. [29] have demonstrated that the accuracy of Saildrone-derived SSTskin is
sufficient for use in scientific research after controlling for quality. Few papers used the Saildrone
data to validate either Level-2 satellite SST products or Level-4 SST analyses [30,31], but only SSTdeptn
measurements at -0.6 m from CTD sensors were used for comparisons. Hence, this paper will utilize
the unique Saildrone SSTskin dataset at high latitudes to assess the accuracy of MODIS-retrieved SST
on the NASA Earth Observing System (EOS) satellites Terra and Aqua, improving the understanding
of error characteristics of MODIS SST in the northern Pacific side of the Arctic.

The paper will be organized as follows. The MODIS-retrieved SSTskin, Saildrone-derived SST'skin,
and other ancillary data are introduced in Section 2. The statistical results of the MODIS-Saildrone
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comparisons are presented in Section 3. The results of the error analysis are discussed in Section 4
associated with several influential factors. The conclusions are made in Section 5.

2. Data and Methods

2.1. MODIS SST Data

The goal of MODIS SSTeuin processing at NASA is to develop and apply consistent atmospheric
correction and cloud detection algorithms to long-wave IR (LWIR) measurements to derive SSTskin;
the algorithms were developed at the University of Miami's Rosenstiel School of Marine,
Atmospheric, and Earth Science [9,17,32,33]. The NASA Ocean Biology Processing Group (OBPG)
applies the algorithms to generate Level-2 SSTskin using the Multi-Sensor Level-1 to Level-2 software
(I2gen). The current MODIS LWIR SSTskin retrieval algorithm is a modified version of the nonlinear
SST formulation of Walton, et al. [34] as given below:

SSTou = ag + a3 BTy + ap(BT,y — BTy3)Ty + az(sec6 — 1)(BTyy — BTy,)
+a,(mirror) + as(8) + a;(62) (10

where SSTs is the satellite-derived SSTskin, BT11 and BT12 are brightness temperatures (BTs) in
the 11 um and 12 um wavelength bands; T is a reference SST; mirror represents the mirror side
number with a value 0 or 1; 0 is the sensor zenith angle. Coefficients ao-as are derived by regression
of matchups between the in situ and satellite measurements for each month of the year with latitude-
band dependence. The algorithm is described in detail by Kilpatrick, et al. [9] and Jia and Minnett
[17].

The standard Level-2 MODIS SST:uin fields can be accessed through the ocean color web or
Physical Oceanography Distributed Active Archive Center (PO.DAAC). Each SSTsin retrieval
contains a numeric Quality Level (QL) assigned by running a series of tests, with QL = 0 being the
best quality and QL = 4 being the worst. Note that data with QL > 1 are not recommended to be used
for scientific studies as they may have significant cloud contamination identified by the cloud
classifier algorithm presented in Kilpatrick, et al. [32] or other problems related to sea ice or dust.

2.2. Saildrone Cruises and Data

2.2.1. Saildrone Arctic Cruises

Saildrone is an advanced, wind-driven, USV manufactured by Saildrone Inc. located in
Alameda, CA. It carries a number of solar-powered scientific instruments to collect high-frequency
(1-min sampling interval) data including both oceanographic and meteorological parameters. A more
detailed introduction to Saildrones is given by Jia, et al. [29]. During a collaborative NOAA-NASA
mission in 2019, a fleet of six Saildrones were deployed from Dutch Harbor, Alaska in May. Five of
those vehicles navigated through the Bering Strait into the Chukchi Sea, reaching up to ~75°N before
making return voyages. This paper reports the assessment of accuracy of MODIS SSTsuin using
measurements from two Saildrones, SD-1036 and SD-1037, the deployments of which were funded
by NASA through the National Oceanographic Partnership Program (NOPP). The navigation tracks
and the configuration of two Saildrones are shown in Figure 1.

2.2.2. Saildrone Data

Other than one previous deployment, SD-1036 and SD-1037 are the only two Saildrones
equipped with a “unicorn”-structure IR broadband pyrometers (8-14 um) to facilitate the SSTskin
derivation. Two pyrometers, manufactured by Heitronics, were installed on the deck at a height of
0.8 m above sea level, viewing the sea surface and the sky at the same nadir angle and zenith angle
of 50° when the Saildrone is upright. The measurements from the sky-viewing CT09.10 sensor are
used to correct for the component of the upwards radiance due to reflected downwelling atmospheric
radiance at the ocean surface in the IR radiation measured by the sea-viewing CT15.10 sensor. Jia, et
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al. [29] provided the details of SSTskin retrieval algorithm with the error and uncertainty budget
analyses, demonstrating the uncertainty of Saildrone-derived SST:un is ~0.12 K without significant
systematic bias after quality control. They indicate the data are suitable for the accuracy assessment
of satellite SSTskin retrievals.

SSTaepin was taken by several instruments onboard SD-1036 and SD-1037, for each vehicle
including two CTDs, one SBE 37 and one RBR, both at a depth of -0.54 m, and seven additional SBE
56 self-recording thermometers at a range of depths from -0.33 to -1.71 m along the keel. Both CTDs
and temperature loggers make measurements of SST with an accuracy of +0.002 K, as stated in the
manufacturers' specifications.

The Saildrones also provide measurements of meteorological variables simultaneously with the
SST measurements (1-min interval), such as three-dimensional wind vector, surface air temperature
and relative humidity, barometric pressure, Photosynthetically Active Radiation (PAR) at the surface,
etc.

2.3. MERRA-2 Data

Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) [35], a
global atmospheric reanalysis produced by the NASA Global Modeling and Assimilation Office
(GMADO) provides useful input data for radiative transfer simulations, including atmospheric profiles
of temperature and specific humidity and single-level meteorological fields. The MERRA-2 data has
a spatial resolution of 0.5°(latitude) x 0.625° (longitude), and 1-hourly temporal-resolution for the
surface data; 3-hourly for the vertical profile fields.

2.4. Quality Control and Collocation

As mentioned above, the Saildrone SSTsin data must be subjected to rigorous quality control
before they can be used in this study. Initially, the measurements collected during the periods when
the Saildrone was near sea ice must be pinpointed using images captured by onboard cameras and
excluded from subsequent analyses, since the small-scale temperature variations caused by the
melting sea ice will not be appropriately sampled in the MODIS field of view. Furthermore, the tilt
angles of vehicle, resulting from both pitching and rolling, should be constrained to +1.5° and +5°
respectively to prevent significant inaccuracies in SSTskin [29,36].

To generate the coefficients in the atmospheric correction algorithm and to assess the accuracy
of MODIS SSTskin retrievals, a matchups data base (MUDB) has been established including collocated
satellite and in situ observations, mostly from buoys [37]. To be incorporated into the MUDB, the
MODIS-Saildrone matchups follow the same spatio-temporal criteria, i.e., the time window is within
30 min and the distance is within 10 km. However, due to the high observing frequency (1 min) of
Saildrone, there can be multiple Saildrone measurements (up to 60) matched with the same MODIS
pixel. For the independence of validation, only one of those is selected as a unique matchup in two
reasonable ways based on either the closest timestamp or the smallest separation. As shown in Figure
2, the Aqua MODIS-Saildrone SSTskin differences are sensitive to the spatial discrepancy but with
insignificant dependency on the time window for matchups determined by either time closest or
distance smallest; similar for Terra MODIS, not shown. Such patterns were also found in Jia and
Minnett [17] using the MODIS and in situ SST matchups at northern high latitudes, and were
explained as the matched satellite-derived SSTs«n away from center pixel may have a higher
likelihood of cloud contaminated retrieval if the center pixel is cloudy. Therefore, the distance-
smallest one-to-one MODIS-Saildrone matchups are selected for the following analyses to minimize
the separation dependence.
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Figure 1. The cruise trajectories of two NASA-funded Saildrone vehicles, SD-1036 (white) and SD-
1037 (magenta), deployed during the 2019 Arctic Cruise from 15 May to 11 October. The background
SST map is taken from the Multiscale Ultrahigh Resolution (MUR) Level-4 SST analysis data [38] on
September 16, 2019. The subplot is a picture of the Saildrones at the starting point is courtesy Saildrone
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Figure 2. Aqua MODIS-Saildrone SSTskin difference as a function of the (a) distance and (b) time
difference in the allowed spatial-temporal intervals in the matchup criteria. Data include both SD-
1036 and SD-1037 measurements. The one-to-one matchups were determined based on the smallest
separation between the Saildrone measurement and MODIS pixel. The black linear fitted lines are
given with the expression on the top right corner. (c) and (d) are similar to (a) and (b), but for the one-
to-one matchups determined by the closest timestamp.
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3. Results

Table 1 presents the statistics of the Aqua and Terra MODIS-Saildrone SSTsuin differences during
the SD-1036 and SD-1037 cruises. As expected, the performance of MODIS sensors on Aqua and Terra
satellites shows comparable results. The mean biases are -0.263 K for Aqua and -0.291 K for Terra,
with the overall standard deviations (STDs) of 0.741 K and 0.734 K respectively. The robust standard
deviation (RSD; calculated as the interquartile range divided by 1.35) is less sensitive to the outliers
and is also reported here. The RSD is 0.669 K for Aqua, while it is slightly smaller for Terra (0.559 K)
indicating a fewer more extreme outliers as shown in Figure 3. Table 2 shows the statistics of
matchups in terms of QL for the MODIS SSTsuin products. The negative biases and variation are more
pronounced in QL1 retrievals due to their longer atmospheric path lengths. Even though there are
few scattered data points in Figure 3, the MODIS- and Saildrone-derived SSTskin demonstrate good
quantitative agreement generally. The distributions of SST biases plotted as histograms in Figure 3
show a higher kurtosis than the Gaussian distribution; most values are concentrated into the range
of -2 K to 1 K. However, there are still two things that merit attention. One is the mean and median
of SST difference are significantly different using SD-1036 and SD-1037 as sources of validation data.
The other one is the SST difference has an average negative bias. This section will try to address the
first question, and the second one will be discussed in the next section.

Table 1. Statistics of MODIS-Saildrone SSTskin difference (in K), including the mean, median, standard
deviation (STD), robust standard deviation (RSD), root mean square (RMS), Pearson correlation
coefficient (R) and the number of valid matchup data points (Num). The statistics are shown in terms
of two Saildrones and two satellites separately, including both quality level (QL) 0 and 1 data.

Aqua Terra

SD-1036 SD-1037 Total SD-1036 SD-1037 Total
Mean -0.073 -0.468 -0.263 -0.076 -0.490 -0.291
Median -0.036 -0.352 -0.214 -0.021 -0.379 -0.207
STD 0.727 0.701 0.741 0.649 0.752 0.734
RSD 0.656 0.588 0.669 0.551 0.565 0.559
RMS 0.730 0.842 0.786 0.653 0.897 0.789
R 0.943 0.947 0.948 0.956 0.945 0.947

Num 411 380 791 409 444 853

Table 2. As Table 1, but statistics for different QL (also shown for each Saildrone separated by
semicolon as SD1036; SD1037) of MODIS SSTskin retrievals.

Aqua Terra
QL=0 QL=1 QL=0 QL=1
-0.173 -0.505 -0.198 -0.559
Mean
(-0.004; -0.345) (-0.239; -0.844) (0.034; -0.412) (-0.394; -0.706)
-0.138 -0.496 -0.132 -0.492
Median
(0.057; -0.250) (0.315; -0.696) (0.064; -0.279) (-0.272; -0.667)
STD 0.674 0.855 0.690 0.788
(0.672; 0.631) (0.826; 0.770) (0.636; 0.670) (0.581; 0.913)
RSD 0.561 0.762 0.500 0.670
(0.562; 0.529) (0.804; 0.682) (0.538; 0.476) (0.639; 0.610)
RMS 0.695 0.991 0.717 0.965
(0.671; 0.718) (0.857; 1.140) (0.636; 0.786) (0.700; 1.152)
R 0.956 0.908 0.954 0.933
(0.955; 0.960) (0.914; 0.923) (0.959; 0.956) (0.960; 0.919)
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Figure 3. (a) Histogram (normal distribution fitted curve in blue) of the Aqua MODIS-Saildrone
SSTskin difference and (b) the scatter plot of Saildrone- and MODIS-derived SSTskin colored by the data
density. (c) and (d) are similar to (a) and (b), but for Terra MODIS-Saildrone matchups.

As presented in Jia, et al. [29], the Saildrone-derived SSTsin values do not possess significant
systematic biases, based on some post-cruise sensor calibrations in the laboratory and congruent
wind speed dependence of the cool skin effect with some previous studies [39-41]. Table 3 shows the
statistics of SST comparison at various depths between SD-1036 and SD-1037 when the two
Saildrones were within 1 km separation at the same time. The SSTaepth measurements are also filtered
by the platform pitch and roll angles as the SSTskin to minimize the tilting effect on the depth of
temperature measurement. Note the discrepancies in the number of paired data at different depths
are due to the missing values. The mean difference and variation of SSTsin are small, 0.041 K and
0.134 K, even though a little greater than those of SSTaepth, which can be explained by three distinct
factors. Firstly, the geophysical variability of ocean temperatures in the thermal skin boundary layer
is likely to be larger than the subsurface temperatures resulting from the rapid response to the change
of net air-sea heat flux and some surface wave processes [42]. Secondly, the inherent measurement
uncertainty of radiometric instruments for SSTswin retrieval is much higher than that of the
temperature sensors measuring at depths. Last but not least, the sampling issues may cause some
biases and larger variations as the number of Saildrone SSTskin data is substantially smaller due to
missing values. This is indicated in the SSTdept: taken at -0.47m as well in Table 3. Nevertheless, such
a difference for SD-1036 and SD-1037 SSTskn measurements collected within 1 km demonstrates no
significant systematic biases between the two vehicles, and obviously cannot account for the big
disparity (up to 0.4 K) in the mean biases of MODIS SSTskin when compared to the data from SD-1036
and SD-1037 separately.
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Table 3. Statistics of SST difference between SD-1036 and SD-1037 within 1 km separation measured
at one time at various depths. Note that the temperature logger at -1.04 m on SD-1036 did not function.

Depth Mean Median STD RSD RMS R N
0 m (skin) 0.041 0.040 0.134 0.125 0.140 0.951 237
-0.33m 0.008 0.008 0.113 0.051 0.113 0.993 903
-0.47 m 0.023 0.010 0.095 0.080 0.097 0.993 299
-0.54 m 0.003 0.011 0.095 0.043 0.095 0.995 889
-0.81 m -0.001 0.007 0.094 0.041 0.094 0.996 903
-1.20 m -0.014 0.003 0.093 0.034 0.094 0.995 742
-1.42 m -0.013 0.003 0.094 0.034 0.095 0.995 742
-1.71m -0.011 0.003 0.096 0.031 0.097 0.995 742

Taking the Aqua MODIS-Saildrone matchups for example, Figure 4a,b show the histogram
distributions of the MODIS BT difference between 11 um and 12 pum channels and the air-sea
temperature difference (ASTD) derived from the Saildrone measurements, using SSTsin and surface
air temperature. For the matchup dataset from the SD-1037 cruise, a larger fraction of BT differences
are > 0.5 K, but with much fewer ASTDs < 0 K compared to those for the SD-1036 cruise. Figure 4c
demonstrates a distinct negative relationship between the BT difference and ASTD, consistent with
the distribution patterns in Figure 4a,b. Figure 5 presents the maps of ASTD and bivariate histogram
for the longitude and latitude of the Aqua MODIS pixels matched with Saildrone measurements,
which can further explain the more positive ASTD cases for SD-1036 matchups. Apparently, there
are much more matchups during SD-1036 cruise concentrated within the range of 70-71.5°N, 160-165°
W, where it has been shown that the near-surface air is likely to have been heated by its preceding
passage over land [43] based on the Hybrid Single-Particle Lagrangian Integrated Trajectory
(HYSPLIT; [44]) model developed by NOAA's Air Resources Laboratory, resulting in warmer air over
the ocean surface. Thus, the spatial distribution difference leads to the ASTD distribution difference
in the two matchup datasets that might also affect the BT difference distribution.

Theoretically, the BT difference is determined by both the sea surface boundary conditions and
intervening atmosphere between surface and the satellite sensor apertures. Relevant atmospheric
data from MERRA-2 have been integrated into the MODIS-Saildrone matchups based on the optimal
solution for the spatio-temporal difference. Figure 6a,b are the MERRA-2 vertical profiles of specific
humidity and air temperature in the lower troposphere beneath the 500 hPa level. Both of them
display some differences between the matchups during SD-1036 and SD-1037 cruises. For SD-1037,
the near-surface (below 940 hPa pressure level) water vapor content is significantly lower on average,
and the mean air temperature is also lower at each level with a larger variability. One possible
interpretation is that a few measurements in September and October are in the matchup data for SD-
1037 since the IR pyrometers carried on SD-1036 were shut down because of solar power constraints
starting early August while those on SD-1037 still operated until the end of mission. Similarly, there
are differences in the total column water vapor distribution (Figure 6c) as well. Using MERRA-2
vertical profiles along with the surface meteorological fields taken by Saildrone as input to the
RTTOV (Radiative Transfer for TIROS Operational Vertical Sounder) v13.1 model [45], results in
simulated MODIS BT differences between 11 um and 12 um given in Figure 7. Despite possible
inaccuracies in the model simulations, the general pattern shows a similarity to the observations in
Figure 4a, with more frequent large BT differences in the SD-1037 matchups, confirming the
dissimilar vertical atmospheric conditions contribute to diverse BT difference distributions.

All the results presented above manifest both surface and vertical atmospheric conditions are
not homogeneous between the MODIS-Saildrone matched data for the SD-1036 and SD-1037 cruises,
resulting in the divergence of BT difference distribution and then the statistics of the MODIS-
Saildrone SSTsuin comparisons. These differences permit the examination of the performance of the
MODIS atmospheric correction algorithm in different environmental conditions. Note that the
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coefficients of SSTskin retrieval algorithm for MODIS in Equation (1) are derived from datasets with
much bigger populations involving more variability of atmospheric conditions.
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Figure 4. Histograms of (a) Aqua MODIS BT difference between 11 um and 12 pm channels and (b)
air-sea temperature difference (ASTD) for the matchup data during the SD-1036 (light blue) and SD-
1037 (light red) cruises. (c) Data density scatter plot of the BT difference and ASTD in Aqua MODIS-
Saildrone matchups with the fitted dashed line.
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To summarize, the stark differences in the mean and median values of the comparisons between
the MODIS and Saildrone SSTskin are:

* Not caused by instrumental artifacts in the Terra and/or Aqua MODIS measurements as the
comparisons are very similar for both.

¢ For the same reasons, they are not caused by different overpass times of the two satellites.

¢ For the same reasons, they are not caused by inadvertent errors in the coding or applications
of cloud screening and atmospheric correction algorithms, nor in the MUDB generation for the two
satellite instruments.

* Not caused by differences in the SSTsuin retrievals from the two Saildrones, as when they were
operating close together, the differences in the SSTsin values were small and within expectations.

The remaining likely cause of the discrepancies is in the response of the atmospheric correction
algorithm to relatively small differences in the atmospheric conditions when the two Saildrones were
not operating near each other; namely the different distributions of the ASTD and the lower
tropospheric inversions.

4. Discussion

The major contribution to inaccuracies in the MODIS-Saildrone SSTsin comparisons stems from
the atmospheric conditions not being fully congruent with those samples used to derive the high-
latitude coefficients for the MODIS atmospheric correction algorithm [17]. As shown in Figure 4a, the
majority of BT differences are positive, which is the standard situation as water vapor renders the
atmosphere more emissive at 12 pm wavelengths than at 11 pm, and the normal negative
atmospheric temperature lapse rate causes the signal at 12 um wavelengths to be lower than at 11pum.
This is the basis of the multi-channel algorithm that corrects atmospheric water vapor effects to derive
the surface temperature. But here there are some negative values of BT differences, which can occur
when temperature inversions exist in the lower troposphere, i.e., where the air temperature increases
with height (Figure 6b), resulting in stronger atmospheric emission at 12 um at these levels. The
effects of negative BT differences are worthy of further study with a larger dataset or by using
radiative transfer simulations. The negative BT differences in the MODIS-Saildrone matchups are
discarded from part of our analyses since the current algorithm for computing SSTskin in Equation (1)
cannot make appropriate atmospheric corrections for those anomalous conditions. Another issue is
the current MODIS R2019 SSTskin products have a new latitude band above 60°N to derive coefficients
to better represent Arctic atmospheres [17], but here there are a few matched data points located
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below 60°N (Figure 5). To be consistent with the latitudinal boundary of the algorithm coefficient
generation, only measurements above 60°N are used for the following analyses. The updated
statistics for the MODIS-Saildrone SSTsin difference after applying filters mentioned above are
presented in Table 4. The mean and median MODIS SSTskin biases are changed slightly, but the STDs
and RSDs are reduced indicating the MODIS SST:uin data retrieved from negative BT differences likely
have larger biases. A two-sample t-test does not reject the null hypothesis and thus the SSTskin mean
biases for MODIS on Aqua and Terra are statistically equivalent. The following analysis will take
Aqua MODIS-Saildrone matchups as the example (similar for Terra MODIS, not shown) and combine
the datasets for two Saildrones to identify some representative error characteristics.

Table 4. As Table 1, but after removing the MODIS-Saildrone matchups with negative BT differences
and those measured below 60°N.

Aqua Terra

SD-1036 SD-1037 Total SD-1036 SD-1037 Total
Mean -0.057 -0.417 -0.234 -0.072 -0.501 -0.295
Median -0.007 -0.335 -0.193 -0.022 -0.392 -0.219
STD 0.670 0.635 0.677 0.647 0.739 0.728
RSD 0.590 0.570 0.638 0.496 0.534 0.532
RMS 0.671 0.759 0.716 0.650 0.892 0.785
R 0.953 0.957 0.953 0.958 0.947 0.949
Num 325 316 641 342 370 712

Of course, the statistics of the MODIS-Saildrone SSTskin differences are not simply an assessment
of the accuracy of the MODIS retrievals as there are some inaccuracies in the Saildrone SSTskin data
despite of rigorous quality control, and it is conceivable that different contributions from the IR
radiometers on the two Saildrone radiometer systems could cause the observed discrepancies in the
statistics when compared with each Saildrone. However, Table 5 shows that there are also distinct
discrepancies with comparisons between the MODIS SSTskin retrievals and Saildrone subsurface
temperatures, which are independent of the inaccuracies in the Saildrone SSTskin data from each USV.
This brings attention back to the inability of the atmospheric correction algorithm to compensate
adequately for the surface and atmospheric effects on the measured BTs.

Table 5. Statistics of Aqua MODIS SSTskin difference compared with the subsurface SSTdaepth measured
by temperature loggers at -0.33 m depth on the two Saildrones.

Mean Median STD RSD RMS R Num

SD-1036 0.296 0.390 0.656 0.564 0.718 0.953 325
SD-1037 0.017 0.146 0.679 0.635 0.678 0.949 316
Total 0.158 0.255 0.681 0.605 0.699 0.949 641

Due to the midnight sun during the Arctic summer, only very few (< 5%) nighttime data are in
the valid matchups. As introduced in Section 1, the SSTskin can be expressed as the combination of
SSTaepth, cool skin effect and diurnal warming, if present, in the upper ocean:

SSTskin = SSTdepth (Z) + ﬂ‘Tc + ﬂlwa (Z) ()

where AT, represents the cool skin effect and ATy, is the diurnal warming at the depth z. AT, can
be parameterized with a single dependence of the wind speed as presented in some previous studies
[39—41,46,47] with the same form of exponential equation but different coefficients derived using
different datasets under various environmental conditions in the global ocean. Jia, et al. [43] used the
nighttime data from both SD-1036 and SD-1037 to provide new parameterizations for the cool skin
effect in the Pacific sector of the Arctic Ocean:
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AT, = —0.41 * exp(—U,,/2.5) — 0.15 3)

where U_10 is the 10 m wind speed converted from Saildrone anemometer measurements using
a logarithmic wind profile. Equation (3) then could be reasonably used to estimate the cool skin effect
for the MODIS matched data along the Saildrone deployment tracks in this study. Further, the
magnitudes of diurnal warming in the top 1.7 m of the ocean can also be estimated based on
Equations (2) and (3). As shown in Figure 8a, large diurnal warming events (> 3 K) were identified in
the matchups, and have been analyzed in detail by Jia, et al. [43]. The MODIS-Saildrone SSTskin
differences tend to be more negative with greater amplitude of warming, indicating the
underestimation of MODIS SSTskin retrievals under strong diurnal warming conditions. This can be
interpreted as the non-representative algorithm coefficients in Equation (1) for those cases since the
coefficients are derived based on a high-quality subset in the MUDB under wind speeds > 6 m/s with
other constraints, whereas the strong diurnal warming occurs at low winds. Similarly, both Merchant,
et al. [48] and Zhang, et al. [49] demonstrate the IR satellite SSTsuin retrievals noticeably underestimate
the diurnal variability, in the tropical Atlantic and Pacific Oceans. Note that the warming events > 0.5
Kin the matchups during the SD-1037 cruise are ~10% more than those for the SD-1036 deployment,
and such distribution differences might also contribute to the MODIS SSTsuin mean biases discrepancy
validated by the data from two USVs.

Another insight is that it is inappropriate to use subsurface SSTdeptn measurements to validate
the satellite data mostly collected in the daytime at high latitudes in summer. Using SST-0.33 m taken
from Saildrones to compare with the MODIS SSTskin, Table 5 shows the statistics of mean and median
become positive due to the existence of diurnal warming, and those would apparently mislead the
error characteristics analysis for MODIS SSTsuin in terms of the performance of the atmospheric
correction algorithm.

Since the algorithm coefficients in Equation (1) are derived using buoy measured SSTdept, the
first term, a constant ao, is reduced by 0.17 K to compensate for the cool skin effect. However, based
on Equation (3), the mean cool skin effect for MODIS SSTskin retrievals along the tracks of SD-1036
and SD-1037 are estimated as -0.242 K and -0.238 K respectively, indicating the use of -0.17 K which
is considered as the global average cool skin effect is inappropriate, at least for the northern high
latitude regions. Such biases are not explicit in the statistics mainly because of being overwhelmed
by diurnal warming. The more negative cool skins imply the generally stronger surface net heat loss
from the thermal skin layer into the atmosphere. A physical skin effect scheme would be preferable
instead of the -0.17 K correction for the retrieval algorithm, including the models of cool skin, but also
the possible warm skin effect [36].

Jia and Minnett [17] revealed the reality of a weak correlation between the MODIS BT difference,
BT11-BT12, and the total column water vapor at latitudes above 60°N, and proved that the sea surface
emissivity effect could be dominant in the measured BT difference, amplified by the temperature
difference between the sea surface and the atmospheric column throughout surface to the satellite
sensor. To correct this emissivity effect, Jia and Minnett [17] introduce an index, Emissivity-
introduced BT Difference (EABT), with the functional form as:

EABT = (&1 —&10) * (T, — T,) 4)

where €11 and £;; are the sea surface emissivities at 11 pum and 12 um wavelengths. Ty is the
surface temperature and T_a is the effective air temperature at 11 pm and 12 pm associated with the
atmospheric downward radiance reaching the surface.

By running the RTTOV model with the same inputs described in Section 3, both surface
emissivity and the downwelling emitted radiation (then converted to T, by a modified Planck’s
function [17]) can be determined. As shown in Figure 8b, the MODIS SSTskin biases appear to be more
negative for increasing EABT values when EABT > 1 K, while the relationship is not evident for EABT
<1 K. This threshold is close to the value of 0.95 determined in Jia and Minnett [17] using the MUDB
where data are mostly distributed at the Atlantic side of the Arctic. Note that there are some negative
outliers at low EABT values, which were also found in Jia and Minnett [17], indicating the effects of
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other error sources, such as undetected cloud contamination or improper atmospheric corrections.
Most EABT values are < 1 K since water vapor effect in the BT difference can still be pronounced in
summer. Due to the limited number of data, the relationship at large EABT, especially > 1.5 K, is not
very solid. However, the patterns demonstrated here are encouraging since the theory of emissivity
effect on MODIS SSTskin retrievals raised by Jia and Minnett [17] is further proven using SSTekin
derivations from in situ measurements as validation data.
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Figure 8. Scatter plots (colored by data density) of the Aqua MODIS-Saildrone SST:kin difference as a
function of (a) the amplitude of diurnal warming with fitted black dashed line when diurnal warming
exists and (b) the Emissivity-introduced BT difference (EABT) with red dots and error bars indicating
the mean and STD of temperature differences, calculated at 0.16 K intervals. The histogram
distributions of diurnal warming and EABT are also plotted as the background for the data during
SD-1036 and SD-1037 cruises separately.

5. Conclusions

Accurate satellite-retrieved SSTskin is important for climate change studies and weather
prediction, particularly for high latitude regions which draw attention due to the Arctic
Amplification [50,51]. The deployment in the Pacific sector of the Arctic in the 2019 summer of two
Saildrones carrying the “unicorn”-structured IR pyrometers on the deck, produced SSTsin with
sufficient accuracy [29] which are used to validate the MODIS SSTskin retrievals in this study.

Multiple Saildrone measurements can be matched with the same MODIS pixel using the
standard collocation time and space windows due to the high sampling frequency of Saildrone.
Therefore, the Saildrone-MODIS matchup with the smallest separation is considered as the unique
paired data for a high-quality MODIS pixel since the SSTskin biases are sensitive to the distance rather
than time difference. The mean biases are significantly different (~0.4 K) for the matchups from the
SD-1036 and SD-1037 data. Considering the relatively small numbers of comparisons and the
divergent environmental conditions along the tracks of two Saildrones, the differences of large mean
biases indicate statistics from neither of the two datasets are themselves representative of the
characteristics of the conditions in the wider region of the Pacific Sector of the Arctic Ocean, and
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neither alone, would provide meaningful information about the capacities of the atmospheric
correction algorithm when applied to MODIS measurements on a larger scale. But the combined data
should provide a better representation. The statistics for MODIS on Aqua and Terra are very similar,
even for the matchups with individual Saildrones, indicating that the performances of two MODIS
sensors are comparable.

For further analysis of error characteristics, measurements with negative BT difference are
discarded given the inappropriateness of the atmospheric correction algorithm. In addition, only data
points measured above 60°N are analyzed to be consistent with the boundary of the high latitude
band for algorithm coefficients. Overall, the average MODIS SSTskin biases for Aqua and Terra are -
0.234 K and -0.295 K, with STDs of 0.677 K and 0.728 K. The negative biases in MODIS SSTskin retrievals
are noteworthy. Due to the midnight sun in the Arctic summer, over 95% of total matchups are
daytime data with possible presence of diurnal warming layers in the upper ocean. Figure 8a shows
the MODIS SSTsuin products are underestimated especially under large warming events > 2 K because
of the lack of such conditions included in the derivation of the algorithm coefficients in Equation (1).
Figure 8b demonstrates the MODIS SSTsuin biases tend to be more negative when the surface
emissivity effect is dominant in the BT difference between 11 um and 12 um bands, scaled by an
index EABT, defined by Jia and Minnett [17]. The patterns in Figure 8b are similar to those found in
Jia and Minnett [17], and it is very encouraging the retrieval errors resulting from the emissivity effect
at high latitudes are further verified by the Saildrone-derived SSTskin data.

Additional research is necessary to improve the accuracy of IR SSTskin retrievals at high northern
latitudes. Firstly, the causes of negative BT differences and their impact on the SSTskin retrieval should
be investigated. A consequence of the current SSTsun retrievals in conditions where atmospheric
temperature inversions occur leading to negative BT differences, is that spatial features in a satellite-
derived SSTskin field are likely to contain contributions, probably significant and possibly dominant,
from uncorrected atmospheric variability. It might be also possible the surface-generated aerosols
contribute to the anomalous BT difference measurements, but here we lack aerosol data to examine
such an effect, and so the possible influence of Arctic aerosols remains an open question, Moreover,
the seemingly inappropriate cool skin correction using a constant value of -0.17 K for the MODIS
SSTskin should be re-examined with more matchups with in situ SSTsin measurements, especially at
night. The EABT index expression requires optimization, probably in terms of parameterizations of
the relevant variables, refraining from running radiative transfer simulation for each pixel. Finally,
more in situ SSTs«in data with high accuracy at high latitudes are needed to further improve the
understanding of inaccuracies in IR satellite-derived SSTsin and to refine the algorithms for satellite
SSTskin retrievals in this challenging but vitally important area.
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