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Abstract: Due to the nature of composites, the ability to accurately locate low-energy impacts is crucial
for Structural Health Monitoring (SHM) in the aerospace sector. For this purpose, several techniques
have been developed in the past and, among them, Artificial Intelligence (AI) has demonstrated
promising results with high performance. The non-linear behaviour of Al-based solutions has made
them able to withstand scenarios where complex structures and different impact configuration have
been introduced; making accurate location predictions. However, the black-box nature of Al poses
a challenge in the aerospace field, where reliability, trustworthiness, and validation capability are
paramount. To overcome this problem, eXplainable Artificial Intelligence (XAI) techniques emerge
as a solution, enhancing model transparency, trust, and validation. This research places a previously

trained [1] Impact-Locator-Al under the spotlight, revealing whether it is truly reliable and worthy
of application in aerospace industry.

Keywords: explainable Al; embedded Al; SHM; low-energy impact, CFRP, Neural Network; aerospace

1. Introduction

Nowadays, in the aerospace industry, composite structures represent a very substantial part of
aerospace structures. Although their use is widespread and their stiffness-to-mass ratio is astonishing,
there is one characteristic that invalidates their use in some applications: they have no plasticity.
Low-energy impacts (under 5] [2]) can cause various types of damage, such as cracks in the polymer
matrix, fiber fractures, or delamination [3]. This represents a big issue because, even if a notorious
delamination will appear in the opposite side of the impact, a visual external examination will not
locate an obvious damage. This means that for these structures an exhaustive (and expensive) non
destructive inspection must be performed in order to ensure a safe operation along the whole lifespan
of the vehicles [4-9]. This is why Structural Health Monitoring (SHM) was created [10-12]: assessing
the integrity of structures using sensors and data analysis.

Impact localization is performed using triangulation based on the Time of Arrival (ToA). However,
ToA-based triangulation requires knowledge of the propagation velocity of the Lamb waves generated
by the impact [13]. In composite materials, this velocity varies depending on the stacking sequence
at each point of the structure. Furthermore, Lamb waves decompose into symmetric and antisym-
metric modes. The symmetric mode propagates faster but has a lower amplitude, often making it
indistinguishable from sensor noise. In contrast, the antisymmetric mode—associated with structural
bending—exhibits a slower propagation velocity. However, its detection is complicated by the prior
arrival of the symmetric mode, which interferes with the onset identification of the impact event.

Artificial Intelligence (AI) models can address a higher performance at the time of locating an
impact because of their no-linear behaviour. In this case, piezoelectric (PTZ) sensors were embedded
in a test plate and were used as receptors (passive function) to record impact vibrations. These impacts
were performed by an autonomous CNC impactor machine. With the recordings of these impact
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vibrations a dataset of different impacts was created and, with it, an Artificial Intelligence trained. The
results of this method were previously presented in del Rio et al. [1].

However, in order to enhance the trustworthiness of this tool, a deeper analysis has been per-
formed using eXplainable Artificial Intelligence (XAI) techniques. The idea is to examinate Al be-
haviour when dealing with time-series where different inputs are related among them, especially
considering that the trained model is a Deep Neural Network (DNN) rather than a Convolutional
Neural Network (CNN) or a Recurrent Neural Network) RNN, in which the relation between inputs is
inherent to their own architecture. For this purpose, existing XAI techniques [14-16] were studied,
evaluated and modified to understand how the model is taking into account different sensor’s signals
to make predictions and which signal features are more relevant.

2. Materials and Methods

As it was previously pointed out, the creation of the dataset and the design, training and evalua-
tion of the model’s performance was previously described in [1]. However, a brief insight into these
aspects is given below.

2.1. Impactor and Dataset

The impacted specimen is a 752.3 x 752.7 x 2 mm?® CFRP panel composed of a quasi-isotropic
stacking sequence of unidirectional prepreg with a T-beam stiffener which can be seen in Figure 1(a).
A detailed description of the geometry is provided in Figure 1(b) where 20 mm diameter 7BB-20-3 PTZ
sensors are also located.
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Figure 1. (a) Photography of the specimen showcasing the integrated sensors. (b) Schematic layout of the
specimen, values in mm. Please note that the specimen is impacted upside down.

Signals from these sensors are recorded using a National Instruments NI-USB-6356 data acquisi-
tion card with a sampling rate of 125 kHz. This acquisition card is synchronized with a CNC-based
Autonomous Impact Machine (see Figure 2) which autonomously performs the database generation.
The impacted grid and boundary conditions are shown in Figure 3. At each point of the grid, impacts
were performed with a different combination of 5 masses (from 60 to 260 g with 50 g spacing) and
10 velocities (corresponding to a free fall from heights from 35 to 260 mm with 25 mm spacing) and
repeated 5 times per combination. Before training the models, a process of detection of poorly recorded
impacts is carried out and they are eliminated from the database ending with almost 35000 impacts.
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Figure 2. Autonomous Impactor Machine performing an impact round.
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Figure 3. Coordinate grid of impacts on the specimen and its boundary conditions (aluminum profiles clamp the
along-Y edges whereas along-x edges are free)

To evaluate the performance of the models, four random training, validation, and test distributions
(k-Cross Validation with k = 4) are generated. The signals of the impacts and coordinates are
normalized with the minimum and maximum values of each training group to avoid data leakage
between sets. For this study, only sensors have been used because of the coupling between sensors
detected in del Rio et al. [1].

2.2. DNN Model Locator

All models trained in this study have the same architecture defined in Figure 4, a detailed
explanation of which can be found in del Rio et al. The input of the architecture is a 4x2000 array;,
corresponding to 4 time series of 2000 samples (16 ms as it was acquired at 125 kHz); and its output is
a 1x2 array, corresponding to the X and Y coordinates.

The training process was performed with the training set, but the absence of overfitting was
checked by analyzing the validation set behaviour. Figure 5 shows that the loss of both sets drops with
the iterations demonstrating that there is no overfitting in the training of the models.
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Figure 4. Diagram of the Deep Neural Network architecture. For more information [1].
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Figure 5. An example of the training process, demonstrating loss reduction over epochs.

Once all models are trained, their performance is evaluated with the test set, and their results
are collected in Table 1 (for a more detailed description and explanation, see [1]). For the following
sections, Model 1 was selected.

Table 1. Performance metrics for the trained models. For more information [1].

Model [k] #(EE) [mm] o (EE) [mm]
1 3.54 2.29
2 3.37 2.29
3 3.50 2.25
4 3.47 2.38

Average 3.47 2.30
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2.3. Explainable Artificial Intelligence

Among all available XAI techniques, Local Interpretable Model-Agnostic Explanations (LIME)
[14] was chosen because of its simplicity and versatility. The idea behind this technique is explaining
predictions of complex black-box machine learning models using simpler, interpretable models.

To create this model a sample of input data is perturbed, and the black-box model is fed with
this data. Then, a surrogate model is fitted by comparing the variation of the output according to the
proximity of the perturbed input with the original one. This surrogate model explains the behaviour of
the black-box model in the local region by regressing a coefficient of influence for each input element.
The prediction can be linearly explained as the weighted sum of these input elements’ values times its
influence coefficient.

When analyzing time-series data, rather than modifying punctual signal sample values, a slice
of the signal is selected and perturbed using various methods to assess its influence and determine
whether the model identifies key signal features [15,16]. In the present work, the objective is to
understand how the model interprets different sensor’s signals to predict the impact location. To
elucidate this behaviour, each sensor full signal is perturbed in a way that affects different key features:

e  Time delay: the signal is shifted and zeroes are appended to the beginning or the end of the signal
(see Figure 6).

®  Sensor cancellation: a sensor’s signal is substituted by its mean value as if it has no signal recorded
(see Figure 7).

*  Noise: white noise of 0.1 SNR is applied to one of the sensor’s signal (see Figure 8 and 9).
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Figure 6. Time delay perturbation example; Sensor 8 delayed 1.6 ms.
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Figure 7. Sensor cancellation example; Sensor 1 cancelled.
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Figure 8. Noise perturbation example; Sensor 1 affected by noise.
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Figure 9. Noise perturbation example (detail); Sensor 1 affected by noise.

As said before, out of these perturbed input data, the locator model (black-box) will make
predictions that will differ from the original unperturbed input data. In Figure 10 model predictions
from perturbed data are represented alongside the original prediction and the true location.
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Figure 10. Predictions from perturbed inputs around the original sample. In this case time delay perturbation
method was applied with a range of £ 1.6 ms.

By applying the LIME-XAI technique to a sample, the influence (as a value) of each sensor on
the final prediction can be retrieved. In Figure 11, the four sensor’s influence are plotted for different
impact location explanations.
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Figure 11. Example of sensor influence on the prediction of a certain coordinate for an impact performed in certain
position by applying a £1.6 ms time delay perturbation method.

3. Results

In order to visualize the explanations all over the plate, a heatmap per sensor is created where the
value represented in each coordinate is the influence of this sensor for this location prediction. For each
coordinate, more than one sample is available because impacts were performed with several masses
and velocities. Because of that, not only the mean value of each coordinate’s influence is represented,
but also the standard deviation is analyzed to understand how the model responds to these variables
(mass and velocity), which must not disturb the location prediction. Along this section, different
results obtained from different perturbation methods are shown.

In each set of heatmaps, upper and lower limits of the common color bar have been set. This
makes it possible to identify the greater or lesser influence of each sensor on the final prediction.

3.1. Time Delay

Heatmaps of time delay perturbation analysis are shown in Figures 12 and 14 for £0.16 ms (for X
and Y predictions respectively); and in Figures 13 and 15 for 1.6 (for X and Y predictions respectively).
In all of them, the mean value of sensors’ influence for each coordinate’s different impacts explanation.
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Figure 12. Mean of sensor perturbation influences on impacts X location prediction all over the plate. Perturbation:
time delay in range +0.16 ms.
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Figure 13. Mean of sensor perturbation influences on impacts X location prediction all over the plate. Perturbation:
time delay in range +1.6 ms.
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Figure 14. Mean of sensor perturbation influences on impacts Y location prediction all over the plate. Perturbation:
time delay in range 4-0.16 ms.
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Figure 15. Mean of sensor perturbation influences on impacts Y location prediction all over the plate. Perturbation:
time delay in range 1.6 ms.
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3.2. Sensor Cancellation

Heatmaps of sensor cancellation analysis are shown in Figures 16 and 18 (for X and Y predictions
respectively); and also in Figures 17 and 19 (for X and Y predictions respectively). In the first two
Figures, the mean value of sensors’ influence for each coordinate’s different impacts explanation; and
in the second two the standard deviation.
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Figure 16. Mean of sensor perturbation influences on impacts X location prediction all over the plate. Perturbation:
sensor cancellation.
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Figure 17. Cont.
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Figure 17. Standard deviation of sensor perturbation influences on impacts X location prediction all over the plate.
Perturbation: sensor cancellation.
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Figure 18. Mean of sensor perturbation influences on impacts Y location prediction all over the plate. Perturbation:
sensor cancellation.
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Figure 19. Standard deviation of sensor perturbation influences on impacts Y location prediction all over the plate.
Perturbation: sensor cancellation.

3.3. Noise

Heatmaps of 0.1 SNR white noise perturbation analysis are shown in Figures 20 and 21 (for X and
Y predictions respectively). In all of them, the mean value of sensors’ influence for each coordinate’s
different impacts explanation.
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Figure 20. Mean of sensor perturbation influences on impacts X location prediction all over the plate. Perturbation:
white noise with 0.1 SNR.
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Figure 21. Mean of ensor perturbation influences on impacts Y location prediction all over the plate. Perturbation:
white noise with 0.1 SNR.

4. Discussion
4.1. Time Delay
When a time delay is introduced to the signal of one sensor (Figures 12 12), the predicted

coordinates have not a major perturbation, which means that the model is handling this perturbation
relating different signals and not computing the Time of Arise of one sensor as the main feature.
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Additionally, when the time delay range is varied (Figures 13 and 15), the behaviour is consistent
with this variation.

It is remarkable that, among a general reduced effect, Sensor 1 has even less influence on the final
decision. This can be related to the fact that, in order to make a triangulation, only three sensors are
needed.

4.2. Sensor Cancellation

When a sensor’s signal is replaced by its mean value (Figures 16 and 18) there is a substantial
perturbation in the predictions. Again, Sensor 1 seems to be discarded by the model: its influence is
reduced in comparison with other sensors.

Also, perturbations around impacts with different mass and velocity configurations have not a
huge dispersion (Figures 17 and 19). This suggests that the model is not considering these magnitudes’
influence on the signal, and it distinguishes only the effects related to impact location.

4.3. Noise

When a sensor’s signal is perturbed with white noise (Figures 20 and 21) the influence of the
perturbed sensor is negligible. Heatmaps show homogeneous values all over the plate and only
some random points are slightly highlighted, additionally, no sensor is more affected than the others.
Therefore, the model is filtering the signal, prior to making the prediction.

5. Conclusions

Out of the present work, the following conclusions can be drawn:

e  Even though time delay must be the most relevant perturbation at the time of making a prediction,
the model is not highly affected by this effect. This leads to the conclusion that the model compares
different sensors’ signals to make a more robust prediction relating Times of Arise between sensors.
When different time delay ranges of perturbation are studied, the model seems to have a consistent
response, which is a desirable characteristic.

e  When a sensor’s signal is cancelled the influence is significant. This behaviour is consistent with
the time-delay results. Due to the lack of a signal, the relationship between sensors cannot be
properly obtained and the model prediction is highly influenced.

*  Noise perturbation has no remarkable influence over the sensors and no sensor is more especially
affected. This means that the model is filtering the signal prior to making the prediction, which is
a valuable characteristic if the SHM system is embedded in an aeronautical structure.

*  Mass and velocity have no influence on the locator model when the perturbations are performed,
which means that the model is able to understand the signal correctly.

*  Sensor 0 perturbations do not have a major influence on the final decision. This means that the
model is discarding it, which is absolutely logical considering that only three sensors are needed
to triangulate a position.

*  The two values predicted by the model (X and Y impact coordinates) has an slightly different
behaviour. This can be related to the stiffener presence and the different boundary conditions in
the structure.
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