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Abstract: Deadlock is a real problem that can cause expensive, time-dependent hang-ups or failures in 

distributed computing systems. Some studies have been conducted with deadlock detection and resolution in 

generalized request computing models, most of these studies are based on the diffusing computation scheme, 

where forward and backward propagated probe and reply messages respectively are diffused between 

dependent processes. The replies carry the dependency information between processes for the initiator. Using 

this dependency information initiator can detect and resolve the deadlock cycle. It has been proven in the 

literature that a deadlock cycle length distribution is skewed with a large majority of cycles (90%) having length 

two. Based on this fact an improved algorithm is proposed for handling deadlock detection in distributed 

computing systems under the distributed request model where each process has several requests at a time. The 

improved algorithm depends mainly on message propagation and timeout policy. Probe and reply messages 

are propagated between the initiator and its successors only to detect deadlock cycles between them. Global 

timeout policy is used to detect potential deadlock cycles with large length distribution. The proposed 

algorithm can handle concurrent executions. Simulation experiments are performed to see the effectiveness of 

the improved algorithm. It is found that the improved algorithm compares favorably with other existing 

algorithms and it shows better results for several performance metrics especially in reducing deadlock latency 

and execution time. 
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1. Introduction 

The distributed computing system consists of a set of sites connected by a network, each site has 

its controller and maintains some of the resources of the system. Processes with a globally unique 

identifier run over a distributed system. A process makes resource requests to its local controller. If 

the desired resource is at a remote site, then the process sends a request message to that site. Before 

granting the requested resource, the sender process is blocked and said to be dependent on the 

process that holds the desired resource. The distributed computing system offers many advantages 

over a single-site system, such as data and program sharing, higher system throughput, higher 

system availability, load sharing, and incremental expandability [5–7]. Distributed computing 

systems are vital to many real-time applications that require guaranteed response time and continued 

operation in the face of system crashes. Extensive research has been carried out on distributed 

computing systems. Research issues include scheduling algorithms, deadlock detection, deadlock 

prevention, concurrency control protocols, and resource scheduling algorithms [5–11]. This paper is 

concerned with deadlock detection and resolution in distributed computing systems. A deadlock 

situation can arise if and only if the following four conditions hold simultaneously in a computing 

system. 

1. Mutual exclusion: when a process accesses a resource, it is granted exclusive use of that resource 

in a non-sharable mode. 

2. Hold and wait: a process is holding at least one resource and is waiting for one or more 

additional resources that are currently being held by other processes. 

3. No preemption: a process cannot preempt or take away the resources held by another process. 
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4. Circular wait: there exists a set [P0, P1, P2, …, Pn] of waiting processes such that P0 is waiting 

for a resource which is held by P1, P1 is waiting for a resource which is held by P2, …, Pn-1 is 

waiting for a resource which is held by Pn, and Pn is waiting for a resource which is held by P0.  

There are three ways to deal with deadlocks; namely deadlock prevention, deadlock avoidance, 

and deadlock detection. Deadlock prevention is considered impractical except for systems, which 

have a predefined structure, where all the resources required by a process are predetermined. This 

constraint is not compatible with distributed computing systems. Also, deadlock avoidance is not 

practical in distributed computing systems because any attempt to avoid deadlock is inefficient 

[5,7,12]. Many researchers have tried to deal with the simpler problem of just detecting deadlocks. 

When a deadlock is detected in a system, it is resolved by aborting one or more processes. But when 

a process is aborted because it has contributed to a deadlock, the system first must be restored to the 

state it had before the process began. 

A detection scheme is evaluated by two criteria. First, if a deadlock exists, it must be detected in 

a finite amount of time. Second, the scheme must not find a deadlock that is not there. A well-known 

approach for deadlock detection in distributed computing systems is the Wait-For Graph (WFG). 

WFG is a graph used to model the state of process-resource interconnections. Using WFG to detect 

deadlocks in distributed computing systems is inefficient because it leads to detecting false deadlocks 

due to incomplete or delayed information. Deadlock handling in distributed computing systems can 

be performed in a centralized, hierarchical, or distributed manner. 

The rest of this paper is organized as follows. Section 2 addresses existing algorithms that deal 

with detecting deadlock cycles of skewed length distribution. Section 3 introduces the distributed 

computing system model as well as the new proposed deadlock detection and resolution algorithm. 

Section 4 presents and discusses the simulation model used for performance analysis. Section 5 

presents the results of the performance evaluation. Finally, Section 6 concludes the paper and 

highlights future work. 

2. Related Work 

The deadlock problem has been extensively studied in distributed operating systems [1–5]. 

Many algorithms for centralized and distributed deadlock detection, prevention, and avoidance have 

been proposed in the literature [6,7,9,12–14]. This section surveys the research work performed in the 

area of distributed deadlock detection for detecting skewed deadlock cycles. Several algorithms and 

their ability to detect deadlock are discussed. Deadlock detection for distributed computing systems 

can be distributed, centralized, or hierarchical. In a distributed computing model, information must 

be passed between sites to detect deadlock because no single site has all the information about all 

processes and resources of the system. In centralized deadlock detection algorithms, systems require 

that all the information represented by the graph be kept at the acting controller, which is responsible 

for running the deadlock detection and resolution algorithms. Hierarchical deadlock schemes are 

based on providing several levels of hierarchy, namely, local, regional, and global. The hierarchy 

should be established so that deadlocks can be detected by a site as close to the sites involved in the 

deadlock as possible. 

The main disadvantage of centralized and hierarchical detection schemes is that additional 

overhead is incurred due to the detection of cycles in the graph, abortion, and restart of processes 

upon detection of deadlocks. The distributed detection strategies may have additional overhead due 

to the intensive message transfers. The selection of the process to be aborted adds to the complexity 

of the scheme and the possibility of detecting false deadlocks. The performance of deadlock detection 

algorithms in distributed computing systems depends on three factors: the number of messages 

exchanged, the ability to detect a deadlock, and the ability to avoid detecting false deadlocks. While 

algorithm correctness requires that a deadlock detection algorithm detects deadlocks when they 

occur and does not detect false deadlocks, the number of exchange messages measures the amount 

of algorithm overhead to detect a deadlock. Therefore, the three criteria above are useful in 

determining the correctness and measuring the efficiency of a deadlock detection algorithm. 
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Soojung [1] proposed a centralized detection and resolution algorithm for distributed deadlocks 

in the generalized model. Her algorithm is based on diffusing computation techniques. She proposed 

two different algorithms one for single execution and the other for concurrent execution. Soojung 

reduces the number of propagation messages by assuming that replies to propagation are carried 

directly to the initiator of the algorithm. Her algorithm executes the probing phase by the initiator on 

the Wait-For-Graph (WFG). The initiator of the deadlock algorithm receives replies from leaf nodes 

only. A single execution of her suggested algorithm performs faster than the best other algorithms. It 

uses e2 messages and 2+d  time units e and d  refers to the number of edges and the diameter of 

the WFG involved in the algorithm execution. The proposed concurrent execution algorithm shows 

better results in several performance metrics such as deadlock latency, algorithm execution time, and 

message length. 

Badal proposed a three-level algorithm [3] extended from the Obermarch algorithm. Badal 

assumes that most of the deadlock cycles have only a length of two and the larger a deadlock cycle is 

the less frequently it occurs. This fact makes his algorithm more efficient in detecting shorter global 

deadlocks. The basic premise of his proposed algorithm is to detect deadlock cycles with the least 

possible delay and number of inter-site messages. 

Gray, Homan, Obermarck, and Korth [4] show in their study that deadlock cycles of length two 

occur more frequently than cycles of length three, cycles of length three occur more frequently than 

cycles of length four, and so on.  

Roberto Baldoni and Sivlio Salza [2] show that the distribution of the deadlock cycle length tends 

to be always very skewed, with most cycles being of length two (about 90% in typical situations). 

According to this remark, they also propose a new hybrid approach that consists of directly detecting 

all the potential global deadlocks of length two and detecting the remaining ones through a global 

timeout. Their proposed algorithm, which they called hybrid deadlock detection (HDD), is 

considerably simpler and more suited for a distributed implementation.  

In this paper, an improved deadlock detection algorithm is proposed. This algorithm is mainly 

based on the previous fact that most deadlock cycles have a length of two. The proposed algorithm 

not only detects deadlock cycles of length two but also can detect deadlock cycles with length 

distribution of more than two. The proposed algorithm deals with both local and global deadlock at 

a time in distributed systems. To detect local deadlocks, we use a technique based on setting a local 

wait timer for every local process. According to this wait timer, the local controller controls the 

process of local deadlock detection using the local WFG approach. To deal with global deadlocks, 

after a certain timeout threshold value, the initiator starts to propagate probe messages to its 

successors. Based on the dependency information carried by reply messages, the initiator builds a 

partial WFG to detect and resolve all deadlocks of length two or more. All the remaining deadlocks 

that cannot be detected due to their large cycle distribution are detected through a global timeout 

policy. 

3. Proposed Deadlock Detection Algorithm 

In the proposed algorithm a partial WFG will be used for detecting deadlock cycles between the 

initiator process and its successors and any other deadlock cycles that could exist between successors 

themselves. A cycle in the WFG represents a deadlock. If all items in the circular wait belong to the 

same site, then a local deadlock is detected. If items belong to different sites, then global deadlock is 

detected. 

3.1. The Idea behind the Proposed Deadlock Detection Algorithm 

The length of most global deadlock cycles is much skewed, with a large majority of cycles having 

length two. This fact has been approved by many researchers [1–4]. Soojung proposed an efficient 

centralized deadlock detection algorithm. She didn’t explicitly mention this fact but her simulation 

results show that average algorithm execution time ranges between 60-70 time units, she used an 

AND-OR model in her study. She assumed in her model that message transmission between two 

sites needs 20 time units. Victim abortion requires an extra 20-time unit. Since her algorithm is 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 March 2024                   doi:10.20944/preprints202403.1310.v1



 4 

 

centralized, based on her results deadlock between two global nodes needs at least 60 time units. 

Since the average algorithm execution time is less than 70, this means that most of the deadlock cycles 

detected by her algorithm consist of two global processes. Based on this observation, we propose in 

this paper a new method. The new method uses the following strategy: detecting all global deadlocks 

that exist between two processes, detecting some deadlock cycles that are involved between three or 

more processes by analyzing processes dependencies that exist in backward report messages, using 

a global timeout to detect any other global deadlock corresponding to a cycle of length more than 

two, and detecting all local deadlocks at each site by its local process manager using waiting time 

policy with local WFG approach. This method for deadlock detection has several advantages over 

the other existing ones, which include: 

• Local and global deadlock detection: local deadlocks have their effect on global transaction 

management; this approach combines both local and global deadlock detection. Also, it can 

detect several deadlock cycles per single instance execution. 

• Latency: all deadlocks either local or global are detected within a short time. 

• Simplicity: building a WFG to detect global deadlocks within two global transactions in two 

different sites is simpler than building a complete WFG and more suitable for distributed 

implementation, which will reduce the total number of exchanged messages used to detect 

global deadlocks. Also, using a global timeout to detect other existing global deadlocks of length 

more than two chooses the threshold value of global timeout gt
is a less critical problem. 

3.2. Proposed Algorithm Implementation 

In the improved algorithm, we assume that the global process manager communicates by 

exchanging messages over reliable links. Also, we assume that the identifications for global processes 

are unique. Each global process manager at each site maintains complete information on successor 

sets for all its local processes. Process successors set ( )( iPSUCC ) is the set of global processes that 

hold resources requested by the process iP . This set is built dynamically. The successor is removed 

from the set as soon as iP grants the resource that is held by that successor. 

3.3. Global Process Manager Action 

The distributed model we consider in this paper consists of N sites. At each site iS there is a local 

and global process manager, a local process manager is responsible for handling local processes and 

detecting local deadlocks. The global process manager is responsible for handling global deadlocks. 

These N sites are connected via a computer network. Each process performs a sequence of read-and-

write operations on a set of resources located at each site. In this model, we will consider that 

resources are accessed for writing by the processes. Local processes access items from a single site 

and are directly managed by the local process manager, while global processes access resources on 

multiple sites, and are managed by the global process manager. In this model, we consider the AND 

model (each process has several requests at a time). 

A global process gP
at the site iS  is submitted to the global process manager, who will become 

its coordinator. A timer is started, and if the timeout value reaches the global timeout threshold value

gt
before the process is committed, then the process is aborted due to the expected global deadlock 

of length more than two. When gP
 requests a resource on a different site jS

 , the global process 

manager at the site iS , which is the coordinator of the process, gP
sends a request message to the site

jS
 where the required resource is located. The global process manager at the site jS

 receives this 

request message and sends a reply message after checking the status of the resource. A reply message 

is a response from a site jS
to a site iS

telling whether the resource requested by the site iS
is granted 

or is locked by another process. If the reply message is of type lock, this means that a process locks 
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the resource gP
, and the process gP

may proceed. If the reply message is of type wait, this means that 

the requested resource is locked by another active process kP . The wait-reply message carries the 

identifier of the resource holder kP . As process gP
gets the wait reply message it adds process kP  to 

its successor set
)( gPSUCC

. When the global process manager at the site iS receives the wait-reply 

message, a local timeout lt  for the process gP
at the site iS is set, if this timeout expires before a lock 

message is received, then the procedure to detect a global deadlock is started. 

3.4. Detection Deadlock Cycles of Length Two 

After the local timeout value expires before a lock messages are received. The initiator process 

starts sending probe messages to its successor processes. These probe messages represent the 

initiation phase for deadlock detection, by receiving these probe messages from successors. The 

successor starts responding to the received message by sending a report message. Information carried 

out by the report message depends on the status of the probed process. If the probed process is active, 

the report message will carry no useful information other than that this process is active. But if the 

probed process is blocked, probed by some other process initiator or the successor process itself 

initiates another instance of the algorithm, then information sent by the probed process depends on 

the priority of the recent initiator. If the recent initiator has a higher priority than the previous initiator 

then the probed process sends its successor set to the recent initiator, otherwise if the recent initiator 

has a lower priority than the previous initiator, the report message will state that the probed node is 

active. Active report message in case of low initiator priority is sent to the grantee avoiding 

unnecessary victim selection and keeping system consistency. One of the most common problems of 

distributed deadlock detection algorithms is synchronization. To guarantee synchronization, our 

proposed algorithm prevents processes from being involved in more than one algorithm instance. 

This prevention can be achieved by: 

• Ignoring any abort messages that could be received from low-priority initiators. Process judge 

on the priority of abort message according to the priority of probed messages it received from 

other initiators by holding a variable pricur
 this variable is updated only if the process receives 

a probe message from an initiator with higher priority than what it is stored in pricur
variable. 

• Priority distribution is based on two things, time of initiation and process identifier. The old 

process has a higher priority than recent ones. 

• Responding to the probed messages from low-priority initiators always implies that the probed 

process is active because the probed node assumes that the high initiator will resolve the 

deadlock cycle the probed process is involved in. 

• Initiators with low priority will terminate the execution of their initiated algorithms upon 

receiving a probe message from high high-priority initiator. Terminating algorithm execution is 

done by ignoring all report messages that will be received from their successors. 

• The initiation phase ends with receiving all report messages from initiator successors. 

• Any process that receives a probe message must send a report message as a reply to it, the 

content of this report message depends on process status, initiator priority, and process priority. 

• In case of sending a probe message to a process that is selected as a victim and killed by some 

other initiator. Then it’s the responsibility of the global process manager of that process to send 

the abort message indicating to the initiator that this process has been aborted before. 

By receiving all report messages initiator starts the detection phase. In the detection phase, it is 

possible to detect deadlock cycles of length two or more. Deadlock cycles of length two could occur 

between the initiator and one of its successors or between two successors directly. The initiator detects 

this deadlock cycle by checking the contents of the successor’s successor sets. Using this proposed 

algorithm, the initiator can detect deadlock cycles that could have more than two processes by 

constructing a global WFG based on the information it receives from the report messages. These extra 

deadlock cycles could be of length three, four, or more depending on the number of initiator 
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successors and the number of inactive report messages that carry successors of the initiator 

successors. After detecting all possible deadlock cycles, the initiator starts the victim selection phase. 

In the victim selection phase, the initiator tries to select the optimum number of victims. The victim 

selection procedure is out of our study. The performance of the proposed algorithm will be evaluated 

by simulating the proposed algorithm. Figure 1 shows the formal description of the improved 

algorithm executed in the process iP . 

init : Algorithm initiator; 

iPSucc : the set of successor processes of iP  

PROPE (init) A probe sent by initP ; 

REPORT ( ii RCP , ) sent as reply to PROBE message 

initPi . : is a flag to indicate whether the initiate algorithm, initially set to false  

iP  sends REQUEST messages to the site lS where its requested resources kR exist. 

 Send REQUEST ( iP , kR , lS ), lk SR  ;. 

 If ( kR  available) 

  lS  sends GRANT( kR ) message to node iP ; 

 If ( kR  hold by some node kP ) 

  lS  sends WAIT( kP )message to node iP ; 

Process iP  receive REPLY message 

 If (REPLY message is) 

  GRANT: fPP PSuccSucc
ii
−= , fP  is the previous process that holds kR ; 

  WAIT ( kP ): kPP PSuccSucc
ii
= ; 

  If (timeout ( ) 0=iP )starts timeout counter; 

III. Process iP  initiates the algorithm 

 If (timeout ( ) li tP  ) 

  trueinitPi =.  
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  Probing ( i , ( )iPprcur _ ) 

If (process kP  receives PROBE (init, priority)) 

   If ( ( ) ( )( ))(_)(_ ikk PpricurPprcuroractiveP =   

    Send active report message to iP  

   Else 

    If ( kP  has released the resource requested by iP ) 

     Send ACTIVE report message to iP  

    If ( kP has been aborted) 

   The Site lS  where kP  exists Send ACTIVE report message to iP   

If ( ) ( )( )( )ikk PprcurPcurorblockedP _)Pr(_ =  

ik PP prcurprcur __ =  

Send REPORT message ( )(, kk PSuccP ) to init; 

If ( )trueinitPk =. Ignore all received REPORT messages 

 If (timeout ( ) gi tP  ) ABORT process timeout iP  

When the initiator init   receives the REPORT message ( )(, kk PSuccP ) 

 If ( init  receive all REPORT messages) 

  Build partial WFG using the information in received REPORT messages 

 Search for deadlock cycles 

 If deadlock cycles exist 

  Repeat 

   Select victim 

   Send ABORT( ( )iPprcur _ ) to victimP  

   Modify WFG  

  Until (no deadlock cycles exist) 

Procedure Probing (init, priority)){ 

 /* executed at a node init  */ 

 /* send a PROBE among the successors. */ 
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 Send PROBE (priority, init) to
iPj SuccP   

Figure 1. Formal description of the proposed algorithm. 

4. Discussion 

In this section, we present the simulation model used for the distributed system and present the 

results of the proposed approach for deadlock detection. In this simulation model, the distributed 

computing system is represented as N sites. Each site runs several processes. These sites are identical 

and connected via a computer network. This computer network topology is a fully connected 

network. Each site manages the same number of resources M , and has the same process workload. 

At each site, there are two types of processes, global and local processes. The number of resources per 

process is generated randomly. The proposed algorithm uses an AND model, where processes 

request a set of resources and these resources are either local resources or global ones. The process is 

sustained until all requested resources are acquired then starts processing. The processing time 

depends on several acquired resources. Several processes P   are kept constant during simulation 

time, and these processes are distributed evenly among all nodes. A new process is generated if any 

process is committed, and aborted processes are restarted after some random time rest . The number 

of global transactions exceeds the number of local transactions, and the probability of generating local 

process is lp , where 1.0=lp . The execution of the process is done as follows: 

• The process requests its resources in parallel, by submitting each request to the corresponding 

site. 

• Each lock is a write lock. For the simplicity of the simulated model, no replication for resources 

is assumed. 

• A transmission time commt  is needed to send a request message to the other site, and a processing 

time proct
  for processing the acquired item. The transmission time commt   is dependent on 

network topology. For fully connected network commt will be equal for all messages. 

• The local processes have similar structures, but request resources from their sites, and spend all 

processing time on their sites. For simplicity, we assume that the requesting and acquiring time 

for local resources is negligible. 

• If the requested resource is granted by some other process, then the requested site sends a wait-

reply message to the requestor indicating the identifier of the process that holds the requested 

resource, the needed time for the wait-reply message is commt  and the process identifier is added 

to the requestor successor set.  

• A requestor that cannot grant all requested resources will initiate a deadlock detection algorithm 

after some timeout value lt . 

• Initiation deadlock algorithm implies sending probe messages for all requestor’s successors. 

Each successor sends back a report message to the initiator. Report message carries process 

status and its successor set if it exists. 

• After receiving all report messages, the initiator starts executing the deadlock algorithm to detect 

deadlock cycles by constructing a partial WFG based on the received information. Detecting 

cycles exhibits dlmsgt
time units. 

• If either a local or global deadlock is detected, one of the deadlocked processes is aborted and 

all locked resources by that process are released, and the aborted process is restarted after a time 

rest . If the waiting time for any process exceeds the global timeout value gt
 then this process is 

assumed deadlocked and it aborts itself. 

Table 1 provides a summary of the system parameters that are used in our simulation. These 

parameters’ values are adopted in [1] study for evaluating the efficiency of Soojung’s proposed 

algorithm for deadlock detection in a generalized model. 
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Table 1. System Parameters used by the simulation. 

Parameter Mean Value Description 

proct
 

30 Processing time for each acquired resource 

commt
 

20 communication time of a message 

dlmsgt
 

1.5 Time to execute the routine corresponding to a deadlock 

detection message 

lt  
20-60 Timeout threshold for initiating the algorithm 

gt
 

100-200 Global timeout value 

pret
 

100 Execution time of a process before making a resource request. 

rest
 

Random  Restart time for the aborted process. 

R  100-350 Total number of resources 

N  4-64 Total number of nodes 

P  25-50 Total number of processes 

5. Performance Evaluation Metrics 

The number of submitted processes P  has been used as a running parameter in some 

experiments to represent the workload intensity. Two values were considered to represent different 

intensities; for lightly loaded systems 25=P  , and heavy workloads. The same other parameter 

values were used for all the sites in all the experiments. As for the performance metrics we considered 

four main indices: 

• Percentage of the real and global timeout deadlock cycles detected by the proposed algorithm 

to the total number of deadlock cycles 

• Average deadlock latency; where deadlock latency is considered as the elapsed time from the 

instance of initiating the algorithm till the time of aborting the deadlocked process involved in 

the deadlock cycle. In the case of global time-out deadlocks, time latency is considered as the 

global timeout threshold value gt
. 

• Throughput is the expected number of committed transactions to the total number of 

transactions submitted to the system. 

• Average number of deadlock detection messages 

5.1. Algorithm Correctness 

Figures 2–4 show the number of real deadlocks to the total number of detected potential global 

deadlocks. Figure 3 shows the percentage of real deadlock detected by the proposed algorithm for 

different numbers of resources. Figures 4 and 5 show that the number of real deadlocks is more than 

87% of total deadlocks for different numbers of nodes and algorithm initiation timeout. These three 

figures justify the claim that this algorithm is based on. 
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Figure 2. The percentage of real deadlock cycles detected by the proposed the versus number of 

resources. 

 

Figure 3. Number of real and global timeout deadlock cycles detected by the proposed algorithm 

versus number of nodes. 
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Figure 4. Number of real and global timeout deadlocks detected by the proposed algorithm versus 

local timeout. 

 

Figure 5. Throughput versus number of processes, number of resources =200, global timeout 

value=200, and number of nodes=4. 
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Figure 5 shows the throughput as a function of the workload intensity P . The throughput is 

defined as the number of committed transactions to the total number of transactions submitted to the 

system. The number of sites in this figure is four and the global timeout value is
200=gt

. From this 

figure, for a light workload, the possibility of deadlock is too low due to a large number of available 

resources, and the probability of requesting the same resources by the different processes is too low, 

therefore the throughput will be too high and it could reach 100%. But with an increasing number of 

nodes possibility of requesting the same resources is increased too, therefore the number of deadlocks 

starts increasing which yields a decrease throughout, for a large number of processes throughput 

reaches about 50%. Further increases in several processes will degrade the throughput, therefore, 

there should be a limitation on the number of processes for a certain number of resources. 
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5.3. Average Latency 

Figure 6 shows the mean deadlock latency versus number of resources. This figure shows that 

deadlock latency increases with an increasing number of resources. This increase in deadlock latency 

is because with the increasing number of resources for the low number of processes the number of 

deadlocks detected by the proposed algorithm will start decreasing; this decrease in the number of 

detected deadlock cycles will increase the number of potential deadlocks detected by global time out 

method. The latency for deadlocks detected by the global timeout method is larger than the latency 

for deadlocks detected by the proposed algorithm; therefore, average latency will start increasing due 

to an increase in the number of deadlocks detected by the global timeout method. To reduce this 

latency global timeout must be changed dynamically according to system parameters, number of 

resources, and number of processes. For a large number of resources and a low number of processes 

global timeout value must be minimized. For the low number of resources and large number of 

processes global timeout value will be increased to allow the proposed algorithm to detect all 

deadlocks before detected by the global timeout method. The effect of the number of processes and 

global timeout value in average latency can be deduced from Figures 7 and 8 respectively. 

 

Figure 6. Average latency versus the number of resources where the number of processes=25. 

 

Figure 7. Average latency versus the number of resources. 
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Figure 8. Average latency versus global timeout value where the number of processes is 25. 

5.4. Average Number of Deadlock Detection Messages 

The improved algorithm reduced the number of messages needed to detect the deadlock, these 

messages include: sending probe messages to successors and receiving report messages from 

successors. The number of these messages depends mainly on the number of successors. But number 

of successors per request is a randomly generated number between 1 and 7. Therefore, the average 

number of successors is 3.5 and the number of needed messages is 8, these eight messages include 

seven probes and report messages and an additional message for aborting the victim. But the 

proposed algorithm can detect more than one deadlock cycle in each instance execution then the 

mean number of needed messages will be less than eight. Figure 9 shows this fact. From Figure 9 we 

find that the mean number of messages is less than three. This result justifies that the proposed 

algorithm can detect multiple cycles per instance initiation. The extra deadlock cycles detected by the 

algorithm will need only one message to abort the selected victim. Deadlocks detected by the global 

timeout method need no further messages because the victim in this case is the process itself. Figure 

9 shows that for the low number of processes number of detections, and messages is low compared 

with the high number of processes. This low number of messages is because with the low number of 

processes most deadlock cycles are local ones. The local process controller could detect these local 

deadlocks without the need to send any probing message. 

 

Figure 9. The average number of deadlock detection messages versus the number of resources for the 

number of processes=25. 
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6. Conclusions and Future Work 

This paper focuses on the resolution of generalized deadlocks in the AND model. Recent studies 

have shown that most deadlock cycles exist between two nodes, for this reason, we proposed an 

improvement algorithm that concentrates on detecting such minimal cycles. The proposed algorithm 

gathers information required for deadlock detection from a minimal number of processes and it can 

detect more than one deadlock cycle per instance initiation using the dependency information 

included in the feedback report messages. Global timeout policy is used for detecting potential global 

deadlock cycles that have large length distribution. This method is very suitable for a distributed 

computing implementation due to the limited number of messages needed to trace cycles of length 

two, the selection of global timeout value is less critical than it is in the global timeout approach, and 

most of the potential deadlocks detected in the system are real deadlocks, and the proposed algorithm 

reduces the deadlock average latency. The proposed improvements show better results in deadlock 

latency than the existing distributed algorithms and are slightly more efficient than the current best 

algorithm regarding message length. However, the improved algorithm outperforms other 

algorithms with promising performance metrics. We are going to scale up the simulation models to 

thoroughly evaluate their performance. 
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