
Article Not peer-reviewed version

An Improved Deadlock Detection and

Resolution Algorithm for Distributed

Computing Systems

Tarek Helmy *

Posted Date: 26 March 2024

doi: 10.20944/preprints202403.1310.v1

Keywords: Distributed Computing Systems; Deadlock Detection

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

Article

An Improved Deadlock Detection and Resolution

Algorithm for Distributed Computing Systems

Tarek Helmy

Information and Computer Science Department, Interdisciplinary Research Center for Intelligent Secure Systems, King

Fahd University of Petroleum & Minerals, Dhahran 31261, Mail Box 413, Saudi Arabia, helmy@kfupm.edu.sa1

Abstract: Deadlock is a real problem that can cause expensive, time-dependent hang-ups or failures in

distributed computing systems. Some studies have been conducted with deadlock detection and resolution in

generalized request computing models, most of these studies are based on the diffusing computation scheme,

where forward and backward propagated probe and reply messages respectively are diffused between

dependent processes. The replies carry the dependency information between processes for the initiator. Using

this dependency information initiator can detect and resolve the deadlock cycle. It has been proven in the

literature that a deadlock cycle length distribution is skewed with a large majority of cycles (90%) having length

two. Based on this fact an improved algorithm is proposed for handling deadlock detection in distributed

computing systems under the distributed request model where each process has several requests at a time. The

improved algorithm depends mainly on message propagation and timeout policy. Probe and reply messages

are propagated between the initiator and its successors only to detect deadlock cycles between them. Global

timeout policy is used to detect potential deadlock cycles with large length distribution. The proposed

algorithm can handle concurrent executions. Simulation experiments are performed to see the effectiveness of

the improved algorithm. It is found that the improved algorithm compares favorably with other existing

algorithms and it shows better results for several performance metrics especially in reducing deadlock latency

and execution time.

Keywords: distributed computing systems; deadlock handling

1. Introduction

The distributed computing system consists of a set of sites connected by a network, each site has

its controller and maintains some of the resources of the system. Processes with a globally unique

identifier run over a distributed system. A process makes resource requests to its local controller. If

the desired resource is at a remote site, then the process sends a request message to that site. Before

granting the requested resource, the sender process is blocked and said to be dependent on the

process that holds the desired resource. The distributed computing system offers many advantages

over a single-site system, such as data and program sharing, higher system throughput, higher

system availability, load sharing, and incremental expandability [5–7]. Distributed computing

systems are vital to many real-time applications that require guaranteed response time and continued

operation in the face of system crashes. Extensive research has been carried out on distributed

computing systems. Research issues include scheduling algorithms, deadlock detection, deadlock

prevention, concurrency control protocols, and resource scheduling algorithms [5–11]. This paper is

concerned with deadlock detection and resolution in distributed computing systems. A deadlock

situation can arise if and only if the following four conditions hold simultaneously in a computing

system.

1. Mutual exclusion: when a process accesses a resource, it is granted exclusive use of that resource

in a non-sharable mode.

2. Hold and wait: a process is holding at least one resource and is waiting for one or more

additional resources that are currently being held by other processes.

3. No preemption: a process cannot preempt or take away the resources held by another process.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1310.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

 2

4. Circular wait: there exists a set [P0, P1, P2, …, Pn] of waiting processes such that P0 is waiting

for a resource which is held by P1, P1 is waiting for a resource which is held by P2, …, Pn-1 is

waiting for a resource which is held by Pn, and Pn is waiting for a resource which is held by P0.

There are three ways to deal with deadlocks; namely deadlock prevention, deadlock avoidance,

and deadlock detection. Deadlock prevention is considered impractical except for systems, which

have a predefined structure, where all the resources required by a process are predetermined. This

constraint is not compatible with distributed computing systems. Also, deadlock avoidance is not

practical in distributed computing systems because any attempt to avoid deadlock is inefficient

[5,7,12]. Many researchers have tried to deal with the simpler problem of just detecting deadlocks.

When a deadlock is detected in a system, it is resolved by aborting one or more processes. But when

a process is aborted because it has contributed to a deadlock, the system first must be restored to the

state it had before the process began.

A detection scheme is evaluated by two criteria. First, if a deadlock exists, it must be detected in

a finite amount of time. Second, the scheme must not find a deadlock that is not there. A well-known

approach for deadlock detection in distributed computing systems is the Wait-For Graph (WFG).

WFG is a graph used to model the state of process-resource interconnections. Using WFG to detect

deadlocks in distributed computing systems is inefficient because it leads to detecting false deadlocks

due to incomplete or delayed information. Deadlock handling in distributed computing systems can

be performed in a centralized, hierarchical, or distributed manner.

The rest of this paper is organized as follows. Section 2 addresses existing algorithms that deal

with detecting deadlock cycles of skewed length distribution. Section 3 introduces the distributed

computing system model as well as the new proposed deadlock detection and resolution algorithm.

Section 4 presents and discusses the simulation model used for performance analysis. Section 5

presents the results of the performance evaluation. Finally, Section 6 concludes the paper and

highlights future work.

2. Related Work

The deadlock problem has been extensively studied in distributed operating systems [1–5].

Many algorithms for centralized and distributed deadlock detection, prevention, and avoidance have

been proposed in the literature [6,7,9,12–14]. This section surveys the research work performed in the

area of distributed deadlock detection for detecting skewed deadlock cycles. Several algorithms and

their ability to detect deadlock are discussed. Deadlock detection for distributed computing systems

can be distributed, centralized, or hierarchical. In a distributed computing model, information must

be passed between sites to detect deadlock because no single site has all the information about all

processes and resources of the system. In centralized deadlock detection algorithms, systems require

that all the information represented by the graph be kept at the acting controller, which is responsible

for running the deadlock detection and resolution algorithms. Hierarchical deadlock schemes are

based on providing several levels of hierarchy, namely, local, regional, and global. The hierarchy

should be established so that deadlocks can be detected by a site as close to the sites involved in the

deadlock as possible.

The main disadvantage of centralized and hierarchical detection schemes is that additional

overhead is incurred due to the detection of cycles in the graph, abortion, and restart of processes

upon detection of deadlocks. The distributed detection strategies may have additional overhead due

to the intensive message transfers. The selection of the process to be aborted adds to the complexity

of the scheme and the possibility of detecting false deadlocks. The performance of deadlock detection

algorithms in distributed computing systems depends on three factors: the number of messages

exchanged, the ability to detect a deadlock, and the ability to avoid detecting false deadlocks. While

algorithm correctness requires that a deadlock detection algorithm detects deadlocks when they

occur and does not detect false deadlocks, the number of exchange messages measures the amount

of algorithm overhead to detect a deadlock. Therefore, the three criteria above are useful in

determining the correctness and measuring the efficiency of a deadlock detection algorithm.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1310.v1

 3

Soojung [1] proposed a centralized detection and resolution algorithm for distributed deadlocks

in the generalized model. Her algorithm is based on diffusing computation techniques. She proposed

two different algorithms one for single execution and the other for concurrent execution. Soojung

reduces the number of propagation messages by assuming that replies to propagation are carried

directly to the initiator of the algorithm. Her algorithm executes the probing phase by the initiator on

the Wait-For-Graph (WFG). The initiator of the deadlock algorithm receives replies from leaf nodes

only. A single execution of her suggested algorithm performs faster than the best other algorithms. It

uses e2 messages and 2+d time units e and d refers to the number of edges and the diameter of

the WFG involved in the algorithm execution. The proposed concurrent execution algorithm shows

better results in several performance metrics such as deadlock latency, algorithm execution time, and

message length.

Badal proposed a three-level algorithm [3] extended from the Obermarch algorithm. Badal

assumes that most of the deadlock cycles have only a length of two and the larger a deadlock cycle is

the less frequently it occurs. This fact makes his algorithm more efficient in detecting shorter global

deadlocks. The basic premise of his proposed algorithm is to detect deadlock cycles with the least

possible delay and number of inter-site messages.

Gray, Homan, Obermarck, and Korth [4] show in their study that deadlock cycles of length two

occur more frequently than cycles of length three, cycles of length three occur more frequently than

cycles of length four, and so on.

Roberto Baldoni and Sivlio Salza [2] show that the distribution of the deadlock cycle length tends

to be always very skewed, with most cycles being of length two (about 90% in typical situations).

According to this remark, they also propose a new hybrid approach that consists of directly detecting

all the potential global deadlocks of length two and detecting the remaining ones through a global

timeout. Their proposed algorithm, which they called hybrid deadlock detection (HDD), is

considerably simpler and more suited for a distributed implementation.

In this paper, an improved deadlock detection algorithm is proposed. This algorithm is mainly

based on the previous fact that most deadlock cycles have a length of two. The proposed algorithm

not only detects deadlock cycles of length two but also can detect deadlock cycles with length

distribution of more than two. The proposed algorithm deals with both local and global deadlock at

a time in distributed systems. To detect local deadlocks, we use a technique based on setting a local

wait timer for every local process. According to this wait timer, the local controller controls the

process of local deadlock detection using the local WFG approach. To deal with global deadlocks,

after a certain timeout threshold value, the initiator starts to propagate probe messages to its

successors. Based on the dependency information carried by reply messages, the initiator builds a

partial WFG to detect and resolve all deadlocks of length two or more. All the remaining deadlocks

that cannot be detected due to their large cycle distribution are detected through a global timeout

policy.

3. Proposed Deadlock Detection Algorithm

In the proposed algorithm a partial WFG will be used for detecting deadlock cycles between the

initiator process and its successors and any other deadlock cycles that could exist between successors

themselves. A cycle in the WFG represents a deadlock. If all items in the circular wait belong to the

same site, then a local deadlock is detected. If items belong to different sites, then global deadlock is

detected.

3.1. The Idea behind the Proposed Deadlock Detection Algorithm

The length of most global deadlock cycles is much skewed, with a large majority of cycles having

length two. This fact has been approved by many researchers [1–4]. Soojung proposed an efficient

centralized deadlock detection algorithm. She didn’t explicitly mention this fact but her simulation

results show that average algorithm execution time ranges between 60-70 time units, she used an

AND-OR model in her study. She assumed in her model that message transmission between two

sites needs 20 time units. Victim abortion requires an extra 20-time unit. Since her algorithm is

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1310.v1

 4

centralized, based on her results deadlock between two global nodes needs at least 60 time units.

Since the average algorithm execution time is less than 70, this means that most of the deadlock cycles

detected by her algorithm consist of two global processes. Based on this observation, we propose in

this paper a new method. The new method uses the following strategy: detecting all global deadlocks

that exist between two processes, detecting some deadlock cycles that are involved between three or

more processes by analyzing processes dependencies that exist in backward report messages, using

a global timeout to detect any other global deadlock corresponding to a cycle of length more than

two, and detecting all local deadlocks at each site by its local process manager using waiting time

policy with local WFG approach. This method for deadlock detection has several advantages over

the other existing ones, which include:

• Local and global deadlock detection: local deadlocks have their effect on global transaction

management; this approach combines both local and global deadlock detection. Also, it can

detect several deadlock cycles per single instance execution.

• Latency: all deadlocks either local or global are detected within a short time.

• Simplicity: building a WFG to detect global deadlocks within two global transactions in two

different sites is simpler than building a complete WFG and more suitable for distributed

implementation, which will reduce the total number of exchanged messages used to detect

global deadlocks. Also, using a global timeout to detect other existing global deadlocks of length

more than two chooses the threshold value of global timeout gt
is a less critical problem.

3.2. Proposed Algorithm Implementation

In the improved algorithm, we assume that the global process manager communicates by

exchanging messages over reliable links. Also, we assume that the identifications for global processes

are unique. Each global process manager at each site maintains complete information on successor

sets for all its local processes. Process successors set ()(iPSUCC) is the set of global processes that

hold resources requested by the process iP . This set is built dynamically. The successor is removed

from the set as soon as iP grants the resource that is held by that successor.

3.3. Global Process Manager Action

The distributed model we consider in this paper consists of N sites. At each site iS there is a local

and global process manager, a local process manager is responsible for handling local processes and

detecting local deadlocks. The global process manager is responsible for handling global deadlocks.

These N sites are connected via a computer network. Each process performs a sequence of read-and-

write operations on a set of resources located at each site. In this model, we will consider that

resources are accessed for writing by the processes. Local processes access items from a single site

and are directly managed by the local process manager, while global processes access resources on

multiple sites, and are managed by the global process manager. In this model, we consider the AND

model (each process has several requests at a time).

A global process gP
at the site iS is submitted to the global process manager, who will become

its coordinator. A timer is started, and if the timeout value reaches the global timeout threshold value

gt
before the process is committed, then the process is aborted due to the expected global deadlock

of length more than two. When gP
 requests a resource on a different site jS

 , the global process

manager at the site iS , which is the coordinator of the process, gP
sends a request message to the site

jS
 where the required resource is located. The global process manager at the site jS

 receives this

request message and sends a reply message after checking the status of the resource. A reply message

is a response from a site jS
to a site iS

telling whether the resource requested by the site iS
is granted

or is locked by another process. If the reply message is of type lock, this means that a process locks

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1310.v1

 5

the resource gP
, and the process gP

may proceed. If the reply message is of type wait, this means that

the requested resource is locked by another active process kP . The wait-reply message carries the

identifier of the resource holder kP . As process gP
gets the wait reply message it adds process kP to

its successor set
)(gPSUCC

. When the global process manager at the site iS receives the wait-reply

message, a local timeout lt for the process gP
at the site iS is set, if this timeout expires before a lock

message is received, then the procedure to detect a global deadlock is started.

3.4. Detection Deadlock Cycles of Length Two

After the local timeout value expires before a lock messages are received. The initiator process

starts sending probe messages to its successor processes. These probe messages represent the

initiation phase for deadlock detection, by receiving these probe messages from successors. The

successor starts responding to the received message by sending a report message. Information carried

out by the report message depends on the status of the probed process. If the probed process is active,

the report message will carry no useful information other than that this process is active. But if the

probed process is blocked, probed by some other process initiator or the successor process itself

initiates another instance of the algorithm, then information sent by the probed process depends on

the priority of the recent initiator. If the recent initiator has a higher priority than the previous initiator

then the probed process sends its successor set to the recent initiator, otherwise if the recent initiator

has a lower priority than the previous initiator, the report message will state that the probed node is

active. Active report message in case of low initiator priority is sent to the grantee avoiding

unnecessary victim selection and keeping system consistency. One of the most common problems of

distributed deadlock detection algorithms is synchronization. To guarantee synchronization, our

proposed algorithm prevents processes from being involved in more than one algorithm instance.

This prevention can be achieved by:

• Ignoring any abort messages that could be received from low-priority initiators. Process judge

on the priority of abort message according to the priority of probed messages it received from

other initiators by holding a variable pricur
 this variable is updated only if the process receives

a probe message from an initiator with higher priority than what it is stored in pricur
variable.

• Priority distribution is based on two things, time of initiation and process identifier. The old

process has a higher priority than recent ones.

• Responding to the probed messages from low-priority initiators always implies that the probed

process is active because the probed node assumes that the high initiator will resolve the

deadlock cycle the probed process is involved in.

• Initiators with low priority will terminate the execution of their initiated algorithms upon

receiving a probe message from high high-priority initiator. Terminating algorithm execution is

done by ignoring all report messages that will be received from their successors.

• The initiation phase ends with receiving all report messages from initiator successors.

• Any process that receives a probe message must send a report message as a reply to it, the

content of this report message depends on process status, initiator priority, and process priority.

• In case of sending a probe message to a process that is selected as a victim and killed by some

other initiator. Then it’s the responsibility of the global process manager of that process to send

the abort message indicating to the initiator that this process has been aborted before.

By receiving all report messages initiator starts the detection phase. In the detection phase, it is

possible to detect deadlock cycles of length two or more. Deadlock cycles of length two could occur

between the initiator and one of its successors or between two successors directly. The initiator detects

this deadlock cycle by checking the contents of the successor’s successor sets. Using this proposed

algorithm, the initiator can detect deadlock cycles that could have more than two processes by

constructing a global WFG based on the information it receives from the report messages. These extra

deadlock cycles could be of length three, four, or more depending on the number of initiator

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1310.v1

 6

successors and the number of inactive report messages that carry successors of the initiator

successors. After detecting all possible deadlock cycles, the initiator starts the victim selection phase.

In the victim selection phase, the initiator tries to select the optimum number of victims. The victim

selection procedure is out of our study. The performance of the proposed algorithm will be evaluated

by simulating the proposed algorithm. Figure 1 shows the formal description of the improved

algorithm executed in the process iP .

init : Algorithm initiator;

iPSucc : the set of successor processes of iP

PROPE (init) A probe sent by initP ;

REPORT (ii RCP ,) sent as reply to PROBE message

initPi . : is a flag to indicate whether the initiate algorithm, initially set to false

iP sends REQUEST messages to the site lS where its requested resources kR exist.

 Send REQUEST (iP , kR , lS), lk SR  ;.

 If (kR available)

 lS sends GRANT(kR) message to node iP ;

 If (kR hold by some node kP)

 lS sends WAIT(kP)message to node iP ;

Process iP receive REPLY message

 If (REPLY message is)

 GRANT: fPP PSuccSucc
ii
−= , fP is the previous process that holds kR ;

 WAIT (kP): kPP PSuccSucc
ii
= ;

 If (timeout () 0=iP)starts timeout counter;

III. Process iP initiates the algorithm

 If (timeout () li tP )

 trueinitPi =.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1310.v1

 7

 Probing (i , ()iPprcur _)

If (process kP receives PROBE (init, priority))

 If (() ()())(_)(_ ikk PpricurPprcuroractiveP =

 Send active report message to iP

 Else

 If (kP has released the resource requested by iP)

 Send ACTIVE report message to iP

 If (kP has been aborted)

 The Site lS where kP exists Send ACTIVE report message to iP

If () ()()()ikk PprcurPcurorblockedP _)Pr(_ =

ik PP prcurprcur __ =

Send REPORT message ()(, kk PSuccP) to init;

If ()trueinitPk =. Ignore all received REPORT messages

 If (timeout () gi tP ) ABORT process timeout iP

When the initiator init receives the REPORT message ()(, kk PSuccP)

 If (init receive all REPORT messages)

 Build partial WFG using the information in received REPORT messages

 Search for deadlock cycles

 If deadlock cycles exist

 Repeat

 Select victim

 Send ABORT(()iPprcur _) to victimP

 Modify WFG

 Until (no deadlock cycles exist)

Procedure Probing (init, priority)){

 /* executed at a node init */

 /* send a PROBE among the successors. */

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1310.v1

 8

 Send PROBE (priority, init) to
iPj SuccP 

Figure 1. Formal description of the proposed algorithm.

4. Discussion

In this section, we present the simulation model used for the distributed system and present the

results of the proposed approach for deadlock detection. In this simulation model, the distributed

computing system is represented as N sites. Each site runs several processes. These sites are identical

and connected via a computer network. This computer network topology is a fully connected

network. Each site manages the same number of resources M , and has the same process workload.

At each site, there are two types of processes, global and local processes. The number of resources per

process is generated randomly. The proposed algorithm uses an AND model, where processes

request a set of resources and these resources are either local resources or global ones. The process is

sustained until all requested resources are acquired then starts processing. The processing time

depends on several acquired resources. Several processes P are kept constant during simulation

time, and these processes are distributed evenly among all nodes. A new process is generated if any

process is committed, and aborted processes are restarted after some random time rest . The number

of global transactions exceeds the number of local transactions, and the probability of generating local

process is lp , where 1.0=lp . The execution of the process is done as follows:

• The process requests its resources in parallel, by submitting each request to the corresponding

site.

• Each lock is a write lock. For the simplicity of the simulated model, no replication for resources

is assumed.

• A transmission time commt is needed to send a request message to the other site, and a processing

time proct
 for processing the acquired item. The transmission time commt is dependent on

network topology. For fully connected network commt will be equal for all messages.

• The local processes have similar structures, but request resources from their sites, and spend all

processing time on their sites. For simplicity, we assume that the requesting and acquiring time

for local resources is negligible.

• If the requested resource is granted by some other process, then the requested site sends a wait-

reply message to the requestor indicating the identifier of the process that holds the requested

resource, the needed time for the wait-reply message is commt and the process identifier is added

to the requestor successor set.

• A requestor that cannot grant all requested resources will initiate a deadlock detection algorithm

after some timeout value lt .

• Initiation deadlock algorithm implies sending probe messages for all requestor’s successors.

Each successor sends back a report message to the initiator. Report message carries process

status and its successor set if it exists.

• After receiving all report messages, the initiator starts executing the deadlock algorithm to detect

deadlock cycles by constructing a partial WFG based on the received information. Detecting

cycles exhibits dlmsgt
time units.

• If either a local or global deadlock is detected, one of the deadlocked processes is aborted and

all locked resources by that process are released, and the aborted process is restarted after a time

rest . If the waiting time for any process exceeds the global timeout value gt
 then this process is

assumed deadlocked and it aborts itself.

Table 1 provides a summary of the system parameters that are used in our simulation. These

parameters’ values are adopted in [1] study for evaluating the efficiency of Soojung’s proposed

algorithm for deadlock detection in a generalized model.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1310.v1

 9

Table 1. System Parameters used by the simulation.

Parameter Mean Value Description

proct

30 Processing time for each acquired resource

commt

20 communication time of a message

dlmsgt

1.5 Time to execute the routine corresponding to a deadlock

detection message

lt
20-60 Timeout threshold for initiating the algorithm

gt

100-200 Global timeout value

pret

100 Execution time of a process before making a resource request.

rest

Random Restart time for the aborted process.

R 100-350 Total number of resources

N 4-64 Total number of nodes

P 25-50 Total number of processes

5. Performance Evaluation Metrics

The number of submitted processes P has been used as a running parameter in some

experiments to represent the workload intensity. Two values were considered to represent different

intensities; for lightly loaded systems 25=P , and heavy workloads. The same other parameter

values were used for all the sites in all the experiments. As for the performance metrics we considered

four main indices:

• Percentage of the real and global timeout deadlock cycles detected by the proposed algorithm

to the total number of deadlock cycles

• Average deadlock latency; where deadlock latency is considered as the elapsed time from the

instance of initiating the algorithm till the time of aborting the deadlocked process involved in

the deadlock cycle. In the case of global time-out deadlocks, time latency is considered as the

global timeout threshold value gt
.

• Throughput is the expected number of committed transactions to the total number of

transactions submitted to the system.

• Average number of deadlock detection messages

5.1. Algorithm Correctness

Figures 2–4 show the number of real deadlocks to the total number of detected potential global

deadlocks. Figure 3 shows the percentage of real deadlock detected by the proposed algorithm for

different numbers of resources. Figures 4 and 5 show that the number of real deadlocks is more than

87% of total deadlocks for different numbers of nodes and algorithm initiation timeout. These three

figures justify the claim that this algorithm is based on.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1310.v1

 10

Figure 2. The percentage of real deadlock cycles detected by the proposed the versus number of

resources.

Figure 3. Number of real and global timeout deadlock cycles detected by the proposed algorithm

versus number of nodes.

100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of resources

P
er

ce
nt

ag
e

of
 r

ea
l d

ea
dl

oc
k

cy
cl

es

4 8 16 32 64
0

100

200

300

400

500

600

Number of nodes

N
um

be
r o

f d
ea

dl
oc

k
cy

cl
es

Total number of deadlock cycles

Number of real deadlock cycles

Number of global timeout cycles

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1310.v1

 11

Figure 4. Number of real and global timeout deadlocks detected by the proposed algorithm versus

local timeout.

Figure 5. Throughput versus number of processes, number of resources =200, global timeout

value=200, and number of nodes=4.

5.2. Throughput

Figure 5 shows the throughput as a function of the workload intensity P . The throughput is

defined as the number of committed transactions to the total number of transactions submitted to the

system. The number of sites in this figure is four and the global timeout value is
200=gt

. From this

figure, for a light workload, the possibility of deadlock is too low due to a large number of available

resources, and the probability of requesting the same resources by the different processes is too low,

therefore the throughput will be too high and it could reach 100%. But with an increasing number of

nodes possibility of requesting the same resources is increased too, therefore the number of deadlocks

starts increasing which yields a decrease throughout, for a large number of processes throughput

reaches about 50%. Further increases in several processes will degrade the throughput, therefore,

there should be a limitation on the number of processes for a certain number of resources.

10 15 20 25 30 35 40 45 50 55 60
0

200

400

600

800

1000

1200

local timeout

N
um

be
r o

f d
ea

dl
oc

k
cy

cl
es

Total number of deadlock cycles

Number of real deadlock cycles

Number of global timeout deadlock cycles

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of processes

Th
ro

ug
hp

ut

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1310.v1

 12

5.3. Average Latency

Figure 6 shows the mean deadlock latency versus number of resources. This figure shows that

deadlock latency increases with an increasing number of resources. This increase in deadlock latency

is because with the increasing number of resources for the low number of processes the number of

deadlocks detected by the proposed algorithm will start decreasing; this decrease in the number of

detected deadlock cycles will increase the number of potential deadlocks detected by global time out

method. The latency for deadlocks detected by the global timeout method is larger than the latency

for deadlocks detected by the proposed algorithm; therefore, average latency will start increasing due

to an increase in the number of deadlocks detected by the global timeout method. To reduce this

latency global timeout must be changed dynamically according to system parameters, number of

resources, and number of processes. For a large number of resources and a low number of processes

global timeout value must be minimized. For the low number of resources and large number of

processes global timeout value will be increased to allow the proposed algorithm to detect all

deadlocks before detected by the global timeout method. The effect of the number of processes and

global timeout value in average latency can be deduced from Figures 7 and 8 respectively.

Figure 6. Average latency versus the number of resources where the number of processes=25.

Figure 7. Average latency versus the number of resources.

100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

Number of resources

A
ve

ra
ge

 la
te

nc
y

100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

Number of resources

A
ve

ra
ge

 la
te

nc
y

Number of processes=25

Number of processes=50

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1310.v1

 13

Figure 8. Average latency versus global timeout value where the number of processes is 25.

5.4. Average Number of Deadlock Detection Messages

The improved algorithm reduced the number of messages needed to detect the deadlock, these

messages include: sending probe messages to successors and receiving report messages from

successors. The number of these messages depends mainly on the number of successors. But number

of successors per request is a randomly generated number between 1 and 7. Therefore, the average

number of successors is 3.5 and the number of needed messages is 8, these eight messages include

seven probes and report messages and an additional message for aborting the victim. But the

proposed algorithm can detect more than one deadlock cycle in each instance execution then the

mean number of needed messages will be less than eight. Figure 9 shows this fact. From Figure 9 we

find that the mean number of messages is less than three. This result justifies that the proposed

algorithm can detect multiple cycles per instance initiation. The extra deadlock cycles detected by the

algorithm will need only one message to abort the selected victim. Deadlocks detected by the global

timeout method need no further messages because the victim in this case is the process itself. Figure

9 shows that for the low number of processes number of detections, and messages is low compared

with the high number of processes. This low number of messages is because with the low number of

processes most deadlock cycles are local ones. The local process controller could detect these local

deadlocks without the need to send any probing message.

Figure 9. The average number of deadlock detection messages versus the number of resources for the

number of processes=25.

100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

Global timeout

A
ve

ra
ge

 la
te

nc
y

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

Number of processes

A
ve

ra
ge

 n
um

be
r o

f m
es

sa
ge

s

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1310.v1

 14

6. Conclusions and Future Work

This paper focuses on the resolution of generalized deadlocks in the AND model. Recent studies

have shown that most deadlock cycles exist between two nodes, for this reason, we proposed an

improvement algorithm that concentrates on detecting such minimal cycles. The proposed algorithm

gathers information required for deadlock detection from a minimal number of processes and it can

detect more than one deadlock cycle per instance initiation using the dependency information

included in the feedback report messages. Global timeout policy is used for detecting potential global

deadlock cycles that have large length distribution. This method is very suitable for a distributed

computing implementation due to the limited number of messages needed to trace cycles of length

two, the selection of global timeout value is less critical than it is in the global timeout approach, and

most of the potential deadlocks detected in the system are real deadlocks, and the proposed algorithm

reduces the deadlock average latency. The proposed improvements show better results in deadlock

latency than the existing distributed algorithms and are slightly more efficient than the current best

algorithm regarding message length. However, the improved algorithm outperforms other

algorithms with promising performance metrics. We are going to scale up the simulation models to

thoroughly evaluate their performance.

Acknowledgments: The author would like to thank the King Fahd University of Petroleum and Minerals for

providing the support and facilities to perform this research work.

Conflicts of Interest: Declare conflicts of interest or state “The authors declare no conflicts of interest.” Authors

must identify and declare any personal circumstances or interests that may be perceived as inappropriately

influencing the representation or interpretation of reported research results. Any role of the funders in the design

of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or in the

decision to publish the results must be declared in this section. If there is no role, please state “The funders had

no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the

manuscript; or in the decision to publish the results”.

References

1. Soojung Lee, “Fast, Centralized Detection and Resolution of Distributed Deadlocks in the Generalized

Model.”, “IEEE Trans on Software Engineering”, Vol. 30, no. 9, pp. 561-573. September 2004.

2. Roberto Baldoni and Sivlio Salza, “Deadlock Detection in Multidatabase Systems: A Performance

Analysis”, “Distributed System Engineering” vol. 4, pp. 244-252, 1997.

3. D. Z. Badal, “The distributed deadlock detection algorithm.”, “ACM Trans. Computer Systems”, Vol. no.

4, pp. 320–337, November 1986.

4. Gray, J., Homan, P., Obermarck, R., Korth, H.: A Straw Man Analysis of Probability of Waiting and

Deadlock. IBM Research Report RJ 3066, San Jose, 1981.

5. Jinho Ahn, “Adaptive Sender-based Message Logging and Checkpointing Protocol for Large-Scale

Distributed Systems” January 2022, Journal of Korean Institute of Information Technology 20(1):41-48,

doi:10.14801/jkiit.2022.20.1.41.

6. Houssem Mansouri, Al-Sakib Khan Pathan, “A Communication-Induced Checkpointing Algorithm for

Consistent-Transaction in Distributed Database Systems”, Security in Computing and Communications

(pp.21-32), 2021, doi:10.1007/978-981-16-0422-5_2

7. Masoomeh Ghodrati, Ali Harounabadi, “Provide a New Mapping for Deadlock Detection and Resolution

Modeling of Distributed Database to Colored Petri Net”, June 2014, International Journal of Computer

Applications 95(5):1-7, doi:10.5120/16587-6289.

8. Hisao Kameda, Jie Li, Chonggun Kim, Yongbing Zhang, “Optimal Load Balancing in Distributed

Computer Systems, 2012.

9. Shigang Chen, Yibei Ling, “Stochastic Analysis of Distributed Deadlock Scheduling.”, PODC’05, July 17-

20, 2005 Las Vegas, Nevada, USA.

10. M. van Steen and A.S. Tanenbaum, Distributed Systems, 3rd ed., distributed-systems.net, 2020.

11. Maarten van Steen, Andrew S. Tanenbaum, “A brief introduction to distributed systems”, 2016, https://d-

nb.info/1113645695/34.

12. David Ola, “Deadlock Detection and Resolution in Distributed Database System”, 2015.

13. Marwan H. Hassan, Saad Darwish, Saleh M. Elkaffas, “An Efficient Deadlock Handling Model Based on

Neutrosophic Logic: Case Study on Real-Time Healthcare Database Systems”, January 2022, IEEE Access

10(6):1-1, doi:10.1109/ACCESS.2022.3192414

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1310.v1

 15

14. Wei Lu, Stephen Yong, Liqiang Wang, Weiwei Xing, “A Novel Concurrent Generalized Deadlock Detection

Algorithm in Distributed Systems” November 2015, doi:10.1007/978-3-319-27122-4_33.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1310.v1

