Pre prints.org

Article Not peer-reviewed version

An Improved Deadlock Detection and
Resolution Algorithm for Distributed
Computing Systems

Tarek Helmy i
Posted Date: 26 March 2024
doi: 10.20944/preprints202403.1310v1

Keywords: Distributed Computing Systems; Deadlock Detection

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions.of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 d0i:10.20944/preprints202403.1310.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
An Improved Deadlock Detection and Resolution

Algorithm for Distributed Computing Systems

Tarek Helmy

Information and Computer Science Department, Interdisciplinary Research Center for Intelligent Secure Systems, King
Fahd University of Petroleum & Minerals, Dhahran 31261, Mail Box 413, Saudi Arabia, helmy@kfupm.edu.sal

Abstract: Deadlock is a real problem that can cause expensive, time-dependent hang-ups or failures in
distributed computing systems. Some studies have been conducted with deadlock detection and resolution in
generalized request computing models, most of these studies are based on the diffusing computation scheme,
where forward and backward propagated probe and reply messages respectively are diffused between
dependent processes. The replies carry the dependency information between processes for the initiator. Using
this dependency information initiator can detect and resolve the deadlock cycle. It has been proven in the
literature that a deadlock cycle length distribution is skewed with a large majority of cycles (90%) having length
two. Based on this fact an improved algorithm is proposed for handling deadlock detection in distributed
computing systems under the distributed request model where each process has several requests at a time. The
improved algorithm depends mainly on message propagation and timeout policy. Probe and reply messages
are propagated between the initiator and its successors only to detect deadlock cycles between them. Global
timeout policy is used to detect potential deadlock cycles with large length distribution. The proposed
algorithm can handle concurrent executions. Simulation experiments are performed to see the effectiveness of
the improved algorithm. It is found that the improved algorithm compares favorably with other existing
algorithms and it shows better results for several performance metrics especially in reducing deadlock latency
and execution time.

Keywords: distributed computing systems; deadlock handling

1. Introduction

The distributed computing system consists of a set of sites connected by a network, each site has
its controller and maintains some of the resources of the system. Processes with a globally unique
identifier run over a distributed system. A process makes resource requests to its local controller. If
the desired resource is at a remote site, then the process sends a request message to that site. Before
granting the requested resource, the sender process is blocked and said to be dependent on the
process that holds the desired resource. The distributed computing system offers many advantages
over a single-site system, such as data and program sharing, higher system throughput, higher
system availability, load sharing, and incremental expandability [5-7]. Distributed computing
systems are vital to many real-time applications that require guaranteed response time and continued
operation in the face of system crashes. Extensive research has been carried out on distributed
computing systems. Research issues include scheduling algorithms, deadlock detection, deadlock
prevention, concurrency control protocols, and resource scheduling algorithms [5-11]. This paper is
concerned with deadlock detection and resolution in distributed computing systems. A deadlock
situation can arise if and only if the following four conditions hold simultaneously in a computing
system.

1. Mutual exclusion: when a process accesses a resource, it is granted exclusive use of that resource
in a non-sharable mode.

2. Hold and wait: a process is holding at least one resource and is waiting for one or more
additional resources that are currently being held by other processes.

3. No preemption: a process cannot preempt or take away the resources held by another process.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 d0i:10.20944/preprints202403.1310.v1

4. Circular wait: there exists a set [P0, P1, P2, ..., Pn] of waiting processes such that PO is waiting
for a resource which is held by P1, P1 is waiting for a resource which is held by P2, ..., Pn-1is
waiting for a resource which is held by Pn, and Pn is waiting for a resource which is held by P0.

There are three ways to deal with deadlocks; namely deadlock prevention, deadlock avoidance,
and deadlock detection. Deadlock prevention is considered impractical except for systems, which
have a predefined structure, where all the resources required by a process are predetermined. This
constraint is not compatible with distributed computing systems. Also, deadlock avoidance is not
practical in distributed computing systems because any attempt to avoid deadlock is inefficient
[5,7,12]. Many researchers have tried to deal with the simpler problem of just detecting deadlocks.
When a deadlock is detected in a system, it is resolved by aborting one or more processes. But when
a process is aborted because it has contributed to a deadlock, the system first must be restored to the
state it had before the process began.

A detection scheme is evaluated by two criteria. First, if a deadlock exists, it must be detected in
a finite amount of time. Second, the scheme must not find a deadlock that is not there. A well-known
approach for deadlock detection in distributed computing systems is the Wait-For Graph (WFG).
WEG is a graph used to model the state of process-resource interconnections. Using WFG to detect
deadlocks in distributed computing systems is inefficient because it leads to detecting false deadlocks
due to incomplete or delayed information. Deadlock handling in distributed computing systems can
be performed in a centralized, hierarchical, or distributed manner.

The rest of this paper is organized as follows. Section 2 addresses existing algorithms that deal
with detecting deadlock cycles of skewed length distribution. Section 3 introduces the distributed
computing system model as well as the new proposed deadlock detection and resolution algorithm.
Section 4 presents and discusses the simulation model used for performance analysis. Section 5
presents the results of the performance evaluation. Finally, Section 6 concludes the paper and
highlights future work.

2. Related Work

The deadlock problem has been extensively studied in distributed operating systems [1-5].
Many algorithms for centralized and distributed deadlock detection, prevention, and avoidance have
been proposed in the literature [6,7,9,12-14]. This section surveys the research work performed in the
area of distributed deadlock detection for detecting skewed deadlock cycles. Several algorithms and
their ability to detect deadlock are discussed. Deadlock detection for distributed computing systems
can be distributed, centralized, or hierarchical. In a distributed computing model, information must
be passed between sites to detect deadlock because no single site has all the information about all
processes and resources of the system. In centralized deadlock detection algorithms, systems require
that all the information represented by the graph be kept at the acting controller, which is responsible
for running the deadlock detection and resolution algorithms. Hierarchical deadlock schemes are
based on providing several levels of hierarchy, namely, local, regional, and global. The hierarchy
should be established so that deadlocks can be detected by a site as close to the sites involved in the
deadlock as possible.

The main disadvantage of centralized and hierarchical detection schemes is that additional
overhead is incurred due to the detection of cycles in the graph, abortion, and restart of processes
upon detection of deadlocks. The distributed detection strategies may have additional overhead due
to the intensive message transfers. The selection of the process to be aborted adds to the complexity
of the scheme and the possibility of detecting false deadlocks. The performance of deadlock detection
algorithms in distributed computing systems depends on three factors: the number of messages
exchanged, the ability to detect a deadlock, and the ability to avoid detecting false deadlocks. While
algorithm correctness requires that a deadlock detection algorithm detects deadlocks when they
occur and does not detect false deadlocks, the number of exchange messages measures the amount
of algorithm overhead to detect a deadlock. Therefore, the three criteria above are useful in
determining the correctness and measuring the efficiency of a deadlock detection algorithm.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 d0i:10.20944/preprints202403.1310.v1

3

Soojung [1] proposed a centralized detection and resolution algorithm for distributed deadlocks
in the generalized model. Her algorithm is based on diffusing computation techniques. She proposed
two different algorithms one for single execution and the other for concurrent execution. Soojung
reduces the number of propagation messages by assuming that replies to propagation are carried
directly to the initiator of the algorithm. Her algorithm executes the probing phase by the initiator on
the Wait-For-Graph (WFG). The initiator of the deadlock algorithm receives replies from leaf nodes
only. A single execution of her suggested algorithm performs faster than the best other algorithms. It
uses 2€ messagesand d +2 time units €and d refers to the number of edges and the diameter of
the WEG involved in the algorithm execution. The proposed concurrent execution algorithm shows
better results in several performance metrics such as deadlock latency, algorithm execution time, and
message length.

Badal proposed a three-level algorithm [3] extended from the Obermarch algorithm. Badal
assumes that most of the deadlock cycles have only a length of two and the larger a deadlock cycle is
the less frequently it occurs. This fact makes his algorithm more efficient in detecting shorter global
deadlocks. The basic premise of his proposed algorithm is to detect deadlock cycles with the least
possible delay and number of inter-site messages.

Gray, Homan, Obermarck, and Korth [4] show in their study that deadlock cycles of length two
occur more frequently than cycles of length three, cycles of length three occur more frequently than
cycles of length four, and so on.

Roberto Baldoni and Sivlio Salza [2] show that the distribution of the deadlock cycle length tends
to be always very skewed, with most cycles being of length two (about 90% in typical situations).
According to this remark, they also propose a new hybrid approach that consists of directly detecting
all the potential global deadlocks of length two and detecting the remaining ones through a global
timeout. Their proposed algorithm, which they called hybrid deadlock detection (HDD), is
considerably simpler and more suited for a distributed implementation.

In this paper, an improved deadlock detection algorithm is proposed. This algorithm is mainly
based on the previous fact that most deadlock cycles have a length of two. The proposed algorithm
not only detects deadlock cycles of length two but also can detect deadlock cycles with length
distribution of more than two. The proposed algorithm deals with both local and global deadlock at
a time in distributed systems. To detect local deadlocks, we use a technique based on setting a local
wait timer for every local process. According to this wait timer, the local controller controls the
process of local deadlock detection using the local WFG approach. To deal with global deadlocks,
after a certain timeout threshold value, the initiator starts to propagate probe messages to its
successors. Based on the dependency information carried by reply messages, the initiator builds a
partial WFG to detect and resolve all deadlocks of length two or more. All the remaining deadlocks
that cannot be detected due to their large cycle distribution are detected through a global timeout

policy.
3. Proposed Deadlock Detection Algorithm

In the proposed algorithm a partial WFG will be used for detecting deadlock cycles between the
initiator process and its successors and any other deadlock cycles that could exist between successors
themselves. A cycle in the WFG represents a deadlock. If all items in the circular wait belong to the
same site, then a local deadlock is detected. If items belong to different sites, then global deadlock is
detected.

3.1. The Idea behind the Proposed Deadlock Detection Algorithm

The length of most global deadlock cycles is much skewed, with a large majority of cycles having
length two. This fact has been approved by many researchers [1-4]. Soojung proposed an efficient
centralized deadlock detection algorithm. She didn’t explicitly mention this fact but her simulation
results show that average algorithm execution time ranges between 60-70 time units, she used an
AND-OR model in her study. She assumed in her model that message transmission between two
sites needs 20 time units. Victim abortion requires an extra 20-time unit. Since her algorithm is

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 d0i:10.20944/preprints202403.1310.v1

centralized, based on her results deadlock between two global nodes needs at least 60 time units.
Since the average algorithm execution time is less than 70, this means that most of the deadlock cycles
detected by her algorithm consist of two global processes. Based on this observation, we propose in
this paper a new method. The new method uses the following strategy: detecting all global deadlocks
that exist between two processes, detecting some deadlock cycles that are involved between three or
more processes by analyzing processes dependencies that exist in backward report messages, using
a global timeout to detect any other global deadlock corresponding to a cycle of length more than
two, and detecting all local deadlocks at each site by its local process manager using waiting time
policy with local WFG approach. This method for deadlock detection has several advantages over
the other existing ones, which include:

e Local and global deadlock detection: local deadlocks have their effect on global transaction
management; this approach combines both local and global deadlock detection. Also, it can
detect several deadlock cycles per single instance execution.

e Latency: all deadlocks either local or global are detected within a short time.

e Simplicity: building a WFG to detect global deadlocks within two global transactions in two
different sites is simpler than building a complete WFG and more suitable for distributed
implementation, which will reduce the total number of exchanged messages used to detect
global deadlocks. Also, using a global timeout to detect other existing global deadlocks of length

more than two chooses the threshold value of global timeouttg is a less critical problem.

3.2. Proposed Algorithm Implementation

In the improved algorithm, we assume that the global process manager communicates by
exchanging messages over reliable links. Also, we assume that the identifications for global processes
are unique. Each global process manager at each site maintains complete information on successor

sets for all its local processes. Process successors set (Succ(r,)) is the set of global processes that
hold resources requested by the process P This set is built dynamically. The successor is removed

from the set as soon as "' grants the resource that is held by that successor.

3.3. Global Process Manager Action

The distributed model we consider in this paper consists of N sites. At each site Sithere is a local
and global process manager, a local process manager is responsible for handling local processes and
detecting local deadlocks. The global process manager is responsible for handling global deadlocks.
These N sites are connected via a computer network. Each process performs a sequence of read-and-
write operations on a set of resources located at each site. In this model, we will consider that
resources are accessed for writing by the processes. Local processes access items from a single site
and are directly managed by the local process manager, while global processes access resources on
multiple sites, and are managed by the global process manager. In this model, we consider the AND
model (each process has several requests at a time).

A global process Ry at the site >' is submitted to the global process manager, who will become
its coordinator. A timer is started, and if the timeout value reaches the global timeout threshold value

t before the process is committed, then the process is aborted due to the expected global deadlock
of length more than two. When Py requests a resource on a different site S , the global process
manager at the site S , which is the coordinator of the process, Py sends a request message to the site

5 where the required resource is located. The global process manager at the site 5 receives this
request message and sends a reply message after checking the status of the resource. A reply message

is a response from a site 5 to a site > telling whether the resource requested by the site Siis granted
or is locked by another process. If the reply message is of type lock, this means that a process locks

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 d0i:10.20944/preprints202403.1310.v1

the resource Py , and the process Py may proceed. If the reply message is of type wait, this means that
the requested resource is locked by another active process Pe. The wait-reply message carries the

identifier of the resource holder Fx. As process Py gets the wait reply message it adds process Pc to

succ(p,)

its successor set . When the global process manager at the site Sireceives the wait-reply

message, a local timeout Y for the process Py at the site >'is set, if this timeout expires before a lock
message is received, then the procedure to detect a global deadlock is started.

3.4. Detection Deadlock Cycles of Length Two

After the local timeout value expires before a lock messages are received. The initiator process
starts sending probe messages to its successor processes. These probe messages represent the
initiation phase for deadlock detection, by receiving these probe messages from successors. The
successor starts responding to the received message by sending a report message. Information carried
out by the report message depends on the status of the probed process. If the probed process is active,
the report message will carry no useful information other than that this process is active. But if the
probed process is blocked, probed by some other process initiator or the successor process itself
initiates another instance of the algorithm, then information sent by the probed process depends on
the priority of the recent initiator. If the recent initiator has a higher priority than the previous initiator
then the probed process sends its successor set to the recent initiator, otherwise if the recent initiator
has a lower priority than the previous initiator, the report message will state that the probed node is
active. Active report message in case of low initiator priority is sent to the grantee avoiding
unnecessary victim selection and keeping system consistency. One of the most common problems of
distributed deadlock detection algorithms is synchronization. To guarantee synchronization, our
proposed algorithm prevents processes from being involved in more than one algorithm instance.
This prevention can be achieved by:

e Ignoring any abort messages that could be received from low-priority initiators. Process judge
on the priority of abort message according to the priority of probed messages it received from

other initiators by holding a variable Ulori this variable is updated only if the process receives

a probe message from an initiator with higher priority than what it is stored in Ui variable.

e Priority distribution is based on two things, time of initiation and process identifier. The old
process has a higher priority than recent ones.

e Responding to the probed messages from low-priority initiators always implies that the probed
process is active because the probed node assumes that the high initiator will resolve the
deadlock cycle the probed process is involved in.

e Initiators with low priority will terminate the execution of their initiated algorithms upon
receiving a probe message from high high-priority initiator. Terminating algorithm execution is
done by ignoring all report messages that will be received from their successors.

e The initiation phase ends with receiving all report messages from initiator successors.

e Any process that receives a probe message must send a report message as a reply to it, the
content of this report message depends on process status, initiator priority, and process priority.

e In case of sending a probe message to a process that is selected as a victim and killed by some
other initiator. Then it’s the responsibility of the global process manager of that process to send
the abort message indicating to the initiator that this process has been aborted before.

By receiving all report messages initiator starts the detection phase. In the detection phase, it is
possible to detect deadlock cycles of length two or more. Deadlock cycles of length two could occur
between the initiator and one of its successors or between two successors directly. The initiator detects
this deadlock cycle by checking the contents of the successor’s successor sets. Using this proposed
algorithm, the initiator can detect deadlock cycles that could have more than two processes by
constructing a global WFG based on the information it receives from the report messages. These extra
deadlock cycles could be of length three, four, or more depending on the number of initiator

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 d0i:10.20944/preprints202403.1310.v1

6

successors and the number of inactive report messages that carry successors of the initiator
successors. After detecting all possible deadlock cycles, the initiator starts the victim selection phase.
In the victim selection phase, the initiator tries to select the optimum number of victims. The victim
selection procedure is out of our study. The performance of the proposed algorithm will be evaluated
by simulating the proposed algorithm. Figure 1 shows the formal description of the improved

algorithm executed in the process P

init : Algorithm initiator;

Succy,, : the set of successor processes of P,
PROPE (init) A probe sent by P,
REPORT (P,,RC;) sent as reply to PROBE message
P.init : is a flag to indicate whether the initiate algorithm, initially set to false
P, sends REQUEST messages to the site S, where its requested resources R, exist.
Send REQUEST (P, R,,S,), R, €S,
If (R, available)
S, sends GRANT(R,) message to node P,;
If (R, hold by some node P,)
S, sends WAIT(P,)message to node P,;

Process P, receive REPLY message

If (REPLY message is)

GRANT: Succ, =3Succ, —P;, Py is the previous process that holds R, ;
WAIT (P,): Succ, = Succ, UR,;
If (timeout (P,) = 0)starts timeout counter;
II1. Process P, initiates the algorithm
If (timeout (P,) > t,)

P..init =true

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 d0i:10.20944/preprints202403.1310.v1

Probing (i, cur _pr(P))
If (process P, receives PROBE (init, priority))

If (((P, = active)or(cur _ pr(R,) > cur _ pri(P)))

Send active report message to P,

Else

If (P, has released the resource requested by P,)
Send ACTIVE report message to P,
If (P, has been aborted)
The Site S, where P, exists Send ACTIVE report message to P,
If ((P, =blocked Jor(cur _Pr(P,) <cur _pr(P)))
cur _ pr, =cur_ pry
Send REPORT message (P, Succ(P,)) to init;
If (P, .init = true)Ignore all received REPORT messages
If (timeout (P,) > t,) ABORT process timeout P,

When the initiator init receives the REPORT message (P, Succ(P,))

If (init receive all REPORT messages)
Build partial WFG using the information in received REPORT messages
Search for deadlock cycles
If deadlock cycles exist
Repeat
Select victim

Send ABORT(cur _pr(P)) to P,

ictim
Modify WFG
Until (no deadlock cycles exist)
Procedure Probing (init, priority)){
/* executed at a node init */
/* send a PROBE among the successors. */

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 d0i:10.20944/preprints202403.1310.v1

Send PROBE (priority, init) to VP; € Succ,

Figure 1. Formal description of the proposed algorithm.

4. Discussion

In this section, we present the simulation model used for the distributed system and present the
results of the proposed approach for deadlock detection. In this simulation model, the distributed
computing system is represented as N sites. Each site runs several processes. These sites are identical
and connected via a computer network. This computer network topology is a fully connected
network. Each site manages the same number of resources M and has the same process workload.
At each site, there are two types of processes, global and local processes. The number of resources per
process is generated randomly. The proposed algorithm uses an AND model, where processes
request a set of resources and these resources are either local resources or global ones. The process is
sustained until all requested resources are acquired then starts processing. The processing time
depends on several acquired resources. Several processes P are kept constant during simulation
time, and these processes are distributed evenly among all nodes. A new process is generated if any

process is committed, and aborted processes are restarted after some random time tes . The number
of global transactions exceeds the number of local transactions, and the probability of generating local

p, <=0.1

process is Pi, where . The execution of the process is done as follows:

e The process requests its resources in parallel, by submitting each request to the corresponding
site.

e Each lock is a write lock. For the simplicity of the simulated model, no replication for resources
is assumed.

e Atransmissiontime ‘o™ isneeded tosenda request message to the other site, and a processing
time P for processing the acquired item. The transmission time Leomm g dependent on

network topology. For fully connected network Leomm will be equal for all messages.

e The local processes have similar structures, but request resources from their sites, and spend all
processing time on their sites. For simplicity, we assume that the requesting and acquiring time
for local resources is negligible.

e If the requested resource is granted by some other process, then the requested site sends a wait-
reply message to the requestor indicating the identifier of the process that holds the requested

resource, the needed time for the wait-reply message is teonm - and the process identifier is added
to the requestor successor set.
e Arequestor that cannot grant all requested resources will initiate a deadlock detection algorithm

after some timeout value .

e Initiation deadlock algorithm implies sending probe messages for all requestor’s successors.
Each successor sends back a report message to the initiator. Report message carries process
status and its successor set if it exists.

e Afterreceiving all report messages, the initiator starts executing the deadlock algorithm to detect
deadlock cycles by constructing a partial WFG based on the received information. Detecting

cycles exhibits tamss time units.
e If either a local or global deadlock is detected, one of the deadlocked processes is aborted and
all locked resources by that process are released, and the aborted process is restarted after a time

tres | If the waiting time for any process exceeds the global timeout value Y then this process is
assumed deadlocked and it aborts itself.

Table 1 provides a summary of the system parameters that are used in our simulation. These
parameters’ values are adopted in [1] study for evaluating the efficiency of Soojung’s proposed
algorithm for deadlock detection in a generalized model.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 d0i:10.20944/preprints202403.1310.v1

Table 1. System Parameters used by the simulation.

Parameter Mean Value Description
toroc 30 Processing time for each acquired resource
teomm 20 communication time of a message
taimsg 1.5 Time to execute the routine corresponding to a deadlock
detection message
t, 20-60 Timeout threshold for initiating the algorithm
tg 100-200 Global timeout value
tore 100 Execution time of a process before making a resource request.
tres Random Restart time for the aborted process.
R 100-350 Total number of resources
N 4-64 Total number of nodes
P 25-50 Total number of processes

5. Performance Evaluation Metrics

The number of submitted processes P has been used as a running parameter in some
experiments to represent the workload intensity. Two values were considered to represent different
intensities; for lightly loaded systems P =25, and heavy workloads. The same other parameter
values were used for all the sites in all the experiments. As for the performance metrics we considered
four main indices:

e Percentage of the real and global timeout deadlock cycles detected by the proposed algorithm
to the total number of deadlock cycles

e Average deadlock latency; where deadlock latency is considered as the elapsed time from the
instance of initiating the algorithm till the time of aborting the deadlocked process involved in
the deadlock cycle. In the case of global time-out deadlocks, time latency is considered as the

global timeout threshold value L .

e Throughput is the expected number of committed transactions to the total number of
transactions submitted to the system.

e Average number of deadlock detection messages

5.1. Algorithm Correctness

Figures 2—4 show the number of real deadlocks to the total number of detected potential global
deadlocks. Figure 3 shows the percentage of real deadlock detected by the proposed algorithm for
different numbers of resources. Figures 4 and 5 show that the number of real deadlocks is more than
87% of total deadlocks for different numbers of nodes and algorithm initiation timeout. These three
figures justify the claim that this algorithm is based on.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 d0i:10.20944/preprints202403.1310.v1

10

0.8 ~—

0.7

0.6

0.5

0.4

0.3

0.2

Percentage of real deadlock cycles

0.1

0
100 150 200 250 300 350 400
Number of resources

Figure 2. The percentage of real deadlock cycles detected by the proposed the versus number of
resources.

T T T

600

g 500

(&S]

>

o

< 400

k=)

3

S 300

ks B Total number of deadlock cycles

3 [] Number of real deadlock cycles

§ 200 I Number of global timeout cycles | |
100

16 32 64
Number of nodes

Figure 3. Number of real and global timeout deadlock cycles detected by the proposed algorithm
versus number of nodes.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 d0i:10.20944/preprints202403.1310.v1

11

]
1

1200

I Total number of deadlock cycles -
[] Number of real deadlock cycles
I \umber of global timeout deadlock cycles

1000

]

800 -

600 - -

400 -

Number of deadlock cycles
\
\

200 -

o N N

10 15 20 25 30 35 40 45 50 55 60
local timeout

Figure 4. Number of real and global timeout deadlocks detected by the proposed algorithm versus
local timeout.

0.9

0.8 \ —
0.7 \
0.6 \\

0.5

Throughput

0.4

0.3

0.2

0.1

5 10 15 20 25 30
Number of processes

Figure 5. Throughput versus number of processes, number of resources =200, global timeout
value=200, and number of nodes=4.

5.2. Throughput

Figure 5 shows the throughput as a function of the workload intensity P . The throughput is
defined as the number of committed transactions to the total number of transactions submitted to the

system. The number of sites in this figure is four and the global timeout value is ty =200 . From this

figure, for a light workload, the possibility of deadlock is too low due to a large number of available
resources, and the probability of requesting the same resources by the different processes is too low,
therefore the throughput will be too high and it could reach 100%. But with an increasing number of
nodes possibility of requesting the same resources is increased too, therefore the number of deadlocks
starts increasing which yields a decrease throughout, for a large number of processes throughput
reaches about 50%. Further increases in several processes will degrade the throughput, therefore,
there should be a limitation on the number of processes for a certain number of resources.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 d0i:10.20944/preprints202403.1310.v1

12

5.3. Average Latency

Figure 6 shows the mean deadlock latency versus number of resources. This figure shows that
deadlock latency increases with an increasing number of resources. This increase in deadlock latency
is because with the increasing number of resources for the low number of processes the number of
deadlocks detected by the proposed algorithm will start decreasing; this decrease in the number of
detected deadlock cycles will increase the number of potential deadlocks detected by global time out
method. The latency for deadlocks detected by the global timeout method is larger than the latency
for deadlocks detected by the proposed algorithm; therefore, average latency will start increasing due
to an increase in the number of deadlocks detected by the global timeout method. To reduce this
latency global timeout must be changed dynamically according to system parameters, number of
resources, and number of processes. For a large number of resources and a low number of processes
global timeout value must be minimized. For the low number of resources and large number of
processes global timeout value will be increased to allow the proposed algorithm to detect all
deadlocks before detected by the global timeout method. The effect of the number of processes and
global timeout value in average latency can be deduced from Figures 7 and 8 respectively.

80 - - - N

70 /
v
60 o~ /

50 e

40

Average latency

30

20

10

o L L L L L
100 150 200 250 300 350 400
Number of resources

Figure 6. Average latency versus the number of resources where the number of processes=25.

90
D
80 /’G
- ,O—e/e/
z * /e\e/e/
[&)
5]
g 50 -
© D
S c;\/ e 3 i -+
g 40 R
g e
< 30 —©— Number of processes=25 |
==-#=- Number of processes=50
20
10
o L L
100 150 200 250 300 350

Number of resources

Figure 7. Average latency versus the number of resources.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 d0i:10.20944/preprints202403.1310.v1

13

" | | | //
70

60 ~

- B /\/

40

Average latency

30

20

10

ot L L L
100 150 200 250 300 350
Global timeout

Figure 8. Average latency versus global timeout value where the number of processes is 25.

5.4. Average Number of Deadlock Detection Messages

The improved algorithm reduced the number of messages needed to detect the deadlock, these
messages include: sending probe messages to successors and receiving report messages from
successors. The number of these messages depends mainly on the number of successors. But number
of successors per request is a randomly generated number between 1 and 7. Therefore, the average
number of successors is 3.5 and the number of needed messages is 8, these eight messages include
seven probes and report messages and an additional message for aborting the victim. But the
proposed algorithm can detect more than one deadlock cycle in each instance execution then the
mean number of needed messages will be less than eight. Figure 9 shows this fact. From Figure 9 we
find that the mean number of messages is less than three. This result justifies that the proposed
algorithm can detect multiple cycles per instance initiation. The extra deadlock cycles detected by the
algorithm will need only one message to abort the selected victim. Deadlocks detected by the global
timeout method need no further messages because the victim in this case is the process itself. Figure
9 shows that for the low number of processes number of detections, and messages is low compared
with the high number of processes. This low number of messages is because with the low number of
processes most deadlock cycles are local ones. The local process controller could detect these local
deadlocks without the need to send any probing message.

£
4

Average number of messages

0.5

5 10 15 20 25 30 35 40 45 50
Number of processes

Figure 9. The average number of deadlock detection messages versus the number of resources for the
number of processes=25.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 d0i:10.20944/preprints202403.1310.v1

14

6. Conclusions and Future Work

This paper focuses on the resolution of generalized deadlocks in the AND model. Recent studies
have shown that most deadlock cycles exist between two nodes, for this reason, we proposed an
improvement algorithm that concentrates on detecting such minimal cycles. The proposed algorithm
gathers information required for deadlock detection from a minimal number of processes and it can
detect more than one deadlock cycle per instance initiation using the dependency information
included in the feedback report messages. Global timeout policy is used for detecting potential global
deadlock cycles that have large length distribution. This method is very suitable for a distributed
computing implementation due to the limited number of messages needed to trace cycles of length
two, the selection of global timeout value is less critical than it is in the global timeout approach, and
most of the potential deadlocks detected in the system are real deadlocks, and the proposed algorithm
reduces the deadlock average latency. The proposed improvements show better results in deadlock
latency than the existing distributed algorithms and are slightly more efficient than the current best
algorithm regarding message length. However, the improved algorithm outperforms other
algorithms with promising performance metrics. We are going to scale up the simulation models to
thoroughly evaluate their performance.

Acknowledgments: The author would like to thank the King Fahd University of Petroleum and Minerals for
providing the support and facilities to perform this research work.

Conflicts of Interest: Declare conflicts of interest or state “The authors declare no conflicts of interest.” Authors
must identify and declare any personal circumstances or interests that may be perceived as inappropriately
influencing the representation or interpretation of reported research results. Any role of the funders in the design
of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or in the
decision to publish the results must be declared in this section. If there is no role, please state “The funders had
no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results”.

References

1. Soojung Lee, “Fast, Centralized Detection and Resolution of Distributed Deadlocks in the Generalized
Model.”, “IEEE Trans on Software Engineering”, Vol. 30, no. 9, pp. 561-573. September 2004.

2. Roberto Baldoni and Sivlio Salza, “Deadlock Detection in Multidatabase Systems: A Performance
Analysis”, “Distributed System Engineering” vol. 4, pp. 244-252, 1997.

3. D. Z.Badal, “The distributed deadlock detection algorithm.”, “ACM Trans. Computer Systems”, Vol. no.
4, pp. 320-337, November 1986.

4. Gray,], Homan, P., Obermarck, R., Korth, H.: A Straw Man Analysis of Probability of Waiting and
Deadlock. IBM Research Report RJ 3066, San Jose, 1981.

5. Jinho Ahn, “Adaptive Sender-based Message Logging and Checkpointing Protocol for Large-Scale
Distributed Systems” January 2022, Journal of Korean Institute of Information Technology 20(1):41-48,
doi:10.14801/jkiit.2022.20.1.41.

6. Houssem Mansouri, Al-Sakib Khan Pathan, “A Communication-Induced Checkpointing Algorithm for
Consistent-Transaction in Distributed Database Systems”, Security in Computing and Communications
(pp-21-32), 2021, doi:10.1007/978-981-16-0422-5_2

7. Masoomeh Ghodrati, Ali Harounabadi, “Provide a New Mapping for Deadlock Detection and Resolution
Modeling of Distributed Database to Colored Petri Net”, June 2014, International Journal of Computer
Applications 95(5):1-7, doi:10.5120/16587-6289.

8. Hisao Kameda, Jie Li, Chonggun Kim, Yongbing Zhang, “Optimal Load Balancing in Distributed
Computer Systems, 2012.

9. Shigang Chen, Yibei Ling, “Stochastic Analysis of Distributed Deadlock Scheduling.”, PODC’05, July 17-
20, 2005 Las Vegas, Nevada, USA.

10. M. van Steen and A.S. Tanenbaum, Distributed Systems, 3rd ed., distributed-systems.net, 2020.

11. Maarten van Steen, Andrew S. Tanenbaum, “A brief introduction to distributed systems”, 2016, https://d-
nb.info/1113645695/34.

12. David Ola, “Deadlock Detection and Resolution in Distributed Database System”, 2015.

13. Marwan H. Hassan, Saad Darwish, Saleh M. Elkaffas, “An Efficient Deadlock Handling Model Based on
Neutrosophic Logic: Case Study on Real-Time Healthcare Database Systems”, January 2022, IEEE Access
10(6):1-1, doi:10.1109/ACCESS.2022.3192414

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 d0i:10.20944/preprints202403.1310.v1

15

14. Wei Lu, Stephen Yong, Ligiang Wang, Weiwei Xing, “A Novel Concurrent Generalized Deadlock Detection
Algorithm in Distributed Systems” November 2015, doi:10.1007/978-3-319-27122-4_33.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

