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Abstract

A popular approach to learning about admixture from population genetic data
is by computing the allele-sharing summary statistics known as f-statistics. Com-
pared to some methods in population genetics, f-statistics are relatively simple, but
interpreting them can still be complicated at times. In addition, f-statistics can
be used to build admixture graphs (multi-population trees allowing for admixture
events), which provide more explicit and thorough modeling capabilities but are
correspondingly more complex to work with. Here, I discuss some of these issues
to provide users of these tools with a basic guide for protocols and procedures. My
focus is on the kinds of conclusions that can or cannot be drawn from the results of
fa-statistics and admixture graphs, illustrated with real-world examples involving

human populations.

Keywords: f-statistics, admixture graphs, admixture, parameter estimation

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202003.0237.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 March 2020 d0i:10.20944/preprints202003.0237.v1

Introduction

f-statistics (Reich et al., 2009; Patterson et al., 2012) are a widely used toolkit for making
inferences about phylogeny and admixture from population genetic data, particularly in
humans. The statistics measure correlations in allele frequencies among sets of two, three,
or four populations. Observed values reflect degrees of shared ancestry and can serve as a
means for testing hypotheses regarding population split orders and past gene flow events
under historical models.

As compared to some other common methods in population genetics, f-statistics are
quite simple and flexible, but interpreting them is not always straightforward. Addition-
ally, one of the primary applications of f-statistics is in building admixture graphs (i.e.,
phylogenetic trees augmented with admixture events) with more than four populations,
which introduces a greater level of complexity. In this note, I hope to clarify some of these
potential difficulties and provide a range of tips for practitioners. Some of the topics have
previously been addressed in other places (as cited) but are covered here as well for the

sake of completeness.

f-statistics and admixture

Basic definitions and properties

More complete introductions to f-statistics have been published elsewhere (Reich et al.,
2009; Patterson et al., 2012; Lipson et al., 2013), but the following are some basics that are
used in other sections of the paper. The most general definition is that of the fj-statistic
f1(A, B; C, D), which measures the average correlation in allele frequency differences be-

tween (i) populations A and B and (ii) populations C' and D (i.e., (pa — pg) * (pc — pp),


https://doi.org/10.20944/preprints202003.0237.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 March 2020 d0i:10.20944/preprints202003.0237.v1

for allele frequencies p, typically averaged over many biallelic single-nucleotide polymor-
phisms [SNPs]). This fy-statistic is the same as the (perhaps more familiar) D-statistic
up to a normalization factor. If the four populations are related by the (unrooted) phy-
logeny ((A, B),(C, D)), then the expected value of f4(A, B; C, D) will be zero, while the
expected values of f4(A, C; B, D) and f4;(A, D; B, C) will be positive. Simple algebra

shows that

f4(A7B;Ca D) = f4<CvD;A7 B),
f1(A,B;C D) = —f4(B,A;C,D) = —f4(A,B; D, C),

f4<A, B, O, D) == f4<A,C, B, D) + f4(A, D, C, B)

The other two basic definitions are of the fo- and f3-statistics, which can be formulated
as fa(A, B) = fu(A, B; A, B) and f3(A; B, O) = fi(A, B; A, C).

The most important usage for f-statistics is in the context of admixture. If a popu-
lation C has a mixture of ancestry derived from sources C’ and C” in proportions a and
(1 — «), then in expectation,

fi(A, B; C, D) = af4(A, B; C', D) + (1 —«)fi(A, B; C", D).

Expected values of f-statistics can be visualized in terms of overlapping paths in an
admixture graph (Fig. 1; a more extensive illustration is also given in Figure 2 of Patterson
et al. (2012)). In the case of admixture, the equations can be derived by forming linear
combinations from the constituent ancestry components; the typical expected value is a

branch length times a mixture proportion (Fig. 1).


https://doi.org/10.20944/preprints202003.0237.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 March 2020 d0i:10.20944/preprints202003.0237.v1

Figure 1. Expected values of f;-statistics under specified admixture graph models. (A)
The expected value of f4(A, B; C, D) is given by the intersection between the path from
A to B with the path from C to D. Under the model shown, E[f4(A, B; C, D)] = 0.
(B) The expected value of f4(A, D; B, C) is given by the intersection between the path
from A to D with the path from B to C. Under the model shown, E[f,(A, D; B, C)]| =
y. (C) With population C' admixed, the path from B to C can be decomposed into two
components. Under the model shown, with a proportion of o B-related ancestry and

1 — a D-related ancestry, the former yields a path (lighter red) that has a weight of «
but does not intersect the path from A to D, while the latter yields a path (darker red)
that has a weight of 1 — o and intersects the path from A to D over the branch with
length y. In total, E[f4(A, D; B, C)] = (1 — a)y.

An important point is that, unlike Fs7 (and normalized D-statistics, at least approx-
imately), the values of f-statistics depend on the absolute allele frequencies of the SNPs
used to calculate them (cf. Lipson et al. (2013)). For example, adding fixed sites to the
SNP set will shrink f-statistics toward zero. As a result, when comparing multiple f-
statistics, it is important that each one should be computed on the same set of SNPs
(or as similar as possible). In applications involving ancient DNA, where missing data is
common, I typically make the assumption that the SNPs covered for each individual or
population are a random subset with respect to allele frequency. By contrast, comparisons

across different genotyping arrays are likely to be biased.
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Interpreting non-zero f-statistics

If a set of four populations are unadmixed relative to each other, then some permutation
of them will yield an fy-statistic of zero (in expectation), as in Fig. 1A. Equivalently, if all
three permutations of fj-statistics for a certain set of four populations are (significantly)
non-zero, then at least one of the populations must be admixed; this is one of the most
common signals of admixture used in the literature. In this paper, I will use the example
of a quartet consisting of four present-day human populations: Mixe (from Mexico), Han,
French, and Baka (hunter-gatherers from Cameroon). As with all Native Americans, Mixe
are known to be descended from an (ancient) admixture event involving eastern and west-
ern Eurasian lineages, in proportions of approximately 70% and 30% (Raghavan et al.,
2014). I computed the three possible fj-statistics for this quartet and obtained signifi-
cantly non-zero values, with the signs as expected based on the known history (Table 1).
(These and all results in the paper are computed from previously published whole-genome
sequence data (Mallick et al., 2016; Fan et al., 2019), on a set of ~1.1 million autosomal
SNPs (Mathieson et al., 2015), using the implementation in ADMIXTOOLS (Patterson

et al., 2012), including standard errors estimated by block jackknife.)

Table 1. Observed f;-statistics (values and Z-scores for difference from zero)
for the example populations.

Populations fa(A, B; C, D)
A B C D Value Z-score
Mixe Baka Han  French | 0.011 27.1
Mixe French Han  Baka 0.013 35.8
Mixe Han Baka French | -0.0025 -8.9

In this case, there is prior knowledge available about the admixture in Mixe, but in
general, without additional information, the existence of such a quartet does not identify

which of the four populations is admixed. Here, for example, it could also be that Han is
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admixed with most of its ancestry related to Mixe but a small amount related to Baka,
and likewise for the other two (see further discussion in the admixture graph sections
below). In real-world applications, it can also be true that more than one population is
admixed, making the interpretation more complicated. Sometimes, in fact, two admixture
events together can cause an f;-statistic to be close to zero and thereby mask the signal
of admixture (at first glance).

Another observation is that as depicted in Fig. 1, fs-statistics are not only zero or
non-zero but also carry quantitative information about amounts of shared drift between
populations. One implication is that populations sharing more drift (i.e., yielding longer
intersecting paths in an admixture graph) will have greater-magnitude f;-statistics asso-
ciated with them. In some cases, this can allow one to identify which of a set of candidate
populations is the best proxy (in this phylogenetic sense) for a component of ancestry rep-
resented in a test population. However, in practice, this procedure is complicated by the
fact that the maximizing reference is not necessarily the closest proxy if the source for that
component was itself admixed (Pickrell et al., 2014). A related point is that if a certain
signal is weak compared to the noise in the data—for example, if the shared drift branch
is short—then one may not have enough power to identify it. Finally, f-statistics can
be subject to certain kinds of biases and batch effects (to varying degrees, as with other
methods) arising from SNP ascertainment, sample type and processing (ancient versus
present-day, sequencing platform, etc.), and other aspects of the data, so it is important

to keep such factors in mind when interpreting results.
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Admixture graphs: modeling and inference procedure

Fitting an admixture graph

In addition to their stand-alone usage, f-statistics can serve as a means to fit admixture
graphs from allele frequency data. In this context, an admixture graph consists of an
ordering of population splits, positions of admixture events, branch length parameters,
and mixture proportions. Given the first two, the third and fourth can be inferred by
solving a system of equations (linear in terms of the branch lengths) in which observed
f-statistic values are matched to their expectations in terms of the model parameters.

For example, one such equation for the model in Fig. 1B would be f3(B, C) =z +y + 2.

n

3) possible f3-statistics,

With n populations, there are 3 x (Z) possible fs-statistics, 3 x (
and (g) possible fa-statistics, but many of these are linearly dependent. In fact, there are
a total of () linearly independent f-statistic equations (possible bases include (1) the set
of all fy-statistics, and (2) the set of all fo- and fs-statistics with a given population in
the first position). More extensive descriptions of the admixture graph inference process
can be found in Patterson et al. (2012); Lipson et al. (2013); Leppala et al. (2017).

The software I typically use to build admixture graphs is ¢gpGraph (also referred to as
ADMIXTUREGRAPH) (Patterson et al., 2012). In gpGraph, the user manually specifies
the topology of the model, and the program then solves for the optimal values of the
parameters. In theory, one might wish to search the entire space of all topologies and
parameter values (for a given number of admixture events) to find the best-fitting model,
but the size of the space (exponential in the number of populations) makes this impractical
for larger graphs (Leppéld et al., 2017). The set of basis statistics used for fitting is the

set (2) alluded to in the previous paragraph, with the first population listed in the input

file as the “base” population.


https://doi.org/10.20944/preprints202003.0237.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 March 2020 d0i:10.20944/preprints202003.0237.v1

In its standard mode, gpGraph attempts to minimize the quantity S(G) = 1/2(g —
f)Q (g — f), known as the “score” of the model, where f is the vector of observed basis
f-statistics (of length (72’)), g is the vector of predicted f-statistics under the model, and
@ is the (estimated) covariance matrix of the statistics. Assuming multivariate normal
errors, the score gives the negative log-likelihood of the model. To help insure that Q!
does not become unstable, one can use the “diag” input parameter to add a small number
(0.0001 works well in my experience, but smaller values may be sufficient as well) to the
diagonal entries of (). The program can also be run using simple least-squares optimization
without the @ matrix (“lsqmode”), but in this case highly correlated statistics will be
treated as independent for the sake of the fitting, and the score will no longer represent
a log-likelihood, both of which make the full objective function preferable. Other input
parameters I typically set are “outpop: NULL” (meaning no specified outgroup population
in which SNPs are required to be polymorphic) and “lambdascale: 17 (leaving the f-
statistics in typical units rather than scaling into approximate Fsr).

By default, gpGraph utilizes the set of SNPs that have genotype calls for at least one
individual in each population in the model. With low-coverage data (for example, in some
ancient DNA applications), this can result in losing the majority of the sites in the initial
data set. The program allows an option to use all SNPs instead (“allsnps: YES” or “use-
allsnps: YES,” in which case each basis statistic is computed on as many sites as possible
for the two or three populations involved), but this mode can give unreliable results, in
particular when the base population is highly diverged. To the best of my knowledge, this
effect is caused by greater absolute noise when estimating larger-magnitude basis statis-
tics, such that the small relative fluctuations in empirical f-statistics caused by modest
changes in the SNP set become substantial in the context of the admixture graph. In

my own work, my preference has always been to avoid using the all-SNPs option. If this
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causes an undesirable loss of coverage, then the best approach given the current imple-
mentation of ¢gpGraph is probably to set as the base a population that (a) is not highly
diverged from the others in the model, and (b) preferably has multiple individuals with

diploid data (again to reduce the magnitudes of the statistics).

Parameters and constraints

An important consideration is whether the system of equations used to infer the param-
eters of an admixture graph is over- or under-determined. As mentioned above, a model
with n populations has (;) linearly independent constraints (i.e., equations). In the ab-
sence of admixture, there are 2n — 3 parameters, which is the number of branches in an
unrooted binary tree with n leaf nodes (with the settings [ have described, gpGraph results
should not depend on where the root of a graph is specified). Converting a population
from unadmixed to admixed adds two parameters: one for the mixture proportion and
one for the split position of the new source of ancestry. Thus, with a admixture events,
the total number of free parameters is 2n + 2a — 3. One point to note is that in the case
of an admixed population with two unsampled sources (which is the typical scenario), the
three branch lengths surrounding the admixture event (in Fig. 2A, from the node “East1”
to “East2,” from “West1” to “West2,” and from “pAM1” to Mixe) cannot be determined
individually but instead form a single compound parameter a?x+ (1—a)?*y+z (where a is
the mixture proportion, z and y are the branch lengths to the two corresponding sources,
and z is the terminal branch length). The only exception (to my knowledge) is the case
in which at least three populations are included that can be modeled as having different
proportions of ancestry from the same two sources, which allows the branch lengths to be

solved for individually.

n

2) > 2n + 2a — 3 is satisfied for an admixture graph as a

Even if the inequality (
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whole, there can be some parameters that are not uniquely determined because of rep-
etition across the different equations caused by multiple populations in phylogenetically
equivalent positions. Further discussion of this phenomenon can be found in the exam-
ple sections below. Additionally, the notion of sufficient constraint is not absolute. A
model can have enough populations in distinct positions in order to be able to estimate
a mixture proportion, but if two of them are only slightly separated, then the precision
of the estimate will generally be lower. Similarly, if one of the populations providing the

constraint is itself admixed, then the power will often be reduced.

Fit quality

To my knowledge, no absolute measure of model fit has been developed for admixture
graphs, but there are several ways to evaluate how well a given model fits the data (see
also Lipson and Reich (2017); Lipson et al. (2017, 2020)). The following discussion is
tailored for gpGraph, but the ideas also apply more generally. First, the program returns
a list of residual poorly-predicted f-statistics and their Z-scores (drawn from the set
of all possible f-statistics, not only those in the basis), which can give a good sense
for the performance of the model and some idea of which populations are responsible
for the greatest inaccuracies. There is no general rule for what threshold constitutes
a significantly non-zero residual; the situation is complicated because there are many
statistics being tested simultaneously, but many of those are also correlated with each
other.

Deviations between model predictions and the observed data can be caused either by
an incorrectly specified topology or un-modeled admixture. In the first case, assuming that
the program does not get stuck at a local optimum, it will try to move the populations as

close as possible to their correct positions but will be constrained by the input topology.

10
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Thus, an incorrectly specified split order usually manifests as an inferred length-zero
internal branch; when such branches (i.e., trifurcations) appear in the results, the order of
splits should be adjusted and re-tried. (The default gpGraph visualization output rounds
branch lengths to the nearest integer, so some non-zero-length but very short branches
may initially appear as zero.) As noted in the f-statistics section above, however, one
may not have sufficient power to resolve short branches, so some sets of three lineages may
be found to be statistically consistent with forming a trifurcation, with all three possible
split orders having similar fit quality.

In the case of un-modeled admixture, the observed deviations could potentially reflect
admixture in one of multiple different populations. Often one can gain information by
examining the full list of residuals and noting which populations occur repeatedly. An-
other approach is to remove one population from the model and see if the fit improves,
although even if it does, that could imply either that the population in question had un-
modeled admixture or that it provided a constraint enabling the detection of un-modeled
admixture among the other populations.

The score of the final graph is also returned as an output from the program, so it can
be used to compare the fit quality of different models with the same set of populations,
preferring the one with the lower score. (If the equations being fit were independent,
then one could apply a chi-squared test for the overall fit, but in practice they are heavily
correlated. ¢qpGraph returns a naive degrees of freedom count and p-value alongside the
score, but they are not well calibrated.) As above, while this approach provides a useful
heuristic, evaluating statistical significance is complicated, and I do not have a rigorous
set of recommendations. One recent direction that seems promising is using the score to
compare alternative models with the same populations and same number of admixture

events. In that case, the score difference can be interpreted in an AIC/BIC framework,

11
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with the likelihood difference as a Bayes factor (Leppélé et al., 2017; Flegontov et al., 2019;
Shinde et al., 2019). The same idea could also be applied in cases with unequal numbers
of free parameters—for example, adding one admixture event and testing whether the
score improvement is significant. However, defining the change in degrees of freedom is
not straightforward in this situation: as noted above, a new admixture event creates two
additional parameters in the model, but that does not account for whether the admixture
comes from a pre-specified source or from a source that is allowed to be located anywhere
in the graph. Finally, the score can additionally be used to compute confidence intervals
on parameters (by considering the likelihood as a function of different values of a single
branch length or mixture proportion), although it is worth keeping in mind that the

results are model-dependent.

Admixture graphs: examples

Four populations

The first examples I will present are four-population admixture graphs containing Mixe,
Han, French, and Baka. Given the observed non-zero fs-statistics in Table 1, there must
be at least one admixture event present in order to fit the data. However, in light of the
discussions above about determining which population is admixed and about parameters
and constraints in admixture graphs, it would be expected that these models should be
insufficiently constrained to determine which population is admixed. Indeed, they have
(;) = 6 constraints but 2(4)+2(1) —3 = 7 free parameters. And, as expected, the inferred
model in which Mixe is specified as admixed fits the data perfectly (i.e., a set of branch

length and mixture proportion parameters can be chosen so that the six basis f-statistics

are predicted exactly by the model, yielding S(G) = 0; Fig. 2A), but perfect fits can

12
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also be obtained when the other three populations are (incorrectly) specified as admixed

instead (Fig. 2B-D).

Figure 2. Four-population admixture graphs modeling (A) Mixe, (B) Baka, (C) Han,
or (D) French as admixed. All four versions provide perfect fits to the data (exact
agreement between observed and predicted f-statistics). In this and all following figures,
branch lengths (in f-statistic units, multiplied by 1000) are rounded to the nearest

integer.

13
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Interestingly, for some parameter values, the admixed population can be determined
even with only four populations in the model: if a negative fs-statistic can be formed
for some triple, then the “target” population of the statistic must be admixed. To give
an example, I replaced Mixe with Kyrgyz in the four-population model. With Kyrgyz
modeled as admixed, the fit is perfect as before (Fig. 3A). With Baka modeled as admixed,
however, the fit is very poor, with residuals up to Z = 27 (Fig. 3B). The most extreme
residual is the statistic f3(Kyrgyz; Han, French), which has an observed value of -0.0064
(Z = 27 for difference from zero) but can only be negative if Kyrgyz (in the position of
the test population in a “three-population test” for admixture) is admixed (Reich et al.,

2009; Patterson et al., 2012).

Baka DG

Figure 3. Four-population admixture graphs with Kyrgyz in place of Mixe, modeling
either (A) Kyrgyz or (B) Baka as admixed. The first provides a perfect fit to the data,
whereas the second has residuals up to Z = 27.

Another note is that in these examples, I have been focusing on the primary signal

of deep eastern/western Eurasian admixture in Mixe. The other populations are also

14
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admixed in their own ways; for example, all of the non-Africans have small proportions
of Neanderthal ancestry, and Baka are admixed with ancestry related to nearby Bantu-
speaking farmers (Fan et al., 2019). However, the first signal is not evident in the data
without deeper outgroups present, and the second without other African populations.
Conversely, if the model contained several sub-Saharan African populations plus Mixe as
the only non-Africans, then the primary signal in our examples here would not be visible.
In some ways, this inability to detect certain admixture events is beneficial, as it means
that models can be constructed so as to focus on events of interest while ignoring some

that are outside the desired scope.

Five populations

In general, in order to be able to solve for the parameters of an admixture graph including
one admixture event, it is necessary to use at least five populations, providing (g) =10
constraints for the 2n + 2a — 3 = 9 free parameters. Concurrently, in contrast to the four-
population examples above, having five populations present allows one to determine which
of the populations is admixed, as long as the topological relationships of the populations
are all unique relative to the true mixing sources. More detail on this last point can
be found elsewhere (Pease and Hahn, 2015; Lipson and Reich, 2017). A simple version
of this statement is that, at least in the case of a single admixture event, one four-
population subset will be unadmixed, whereas the other four subsets will include the
admixed population. Similarly, in order to solve for a given mixture proportion in a larger
graph, there must four populations present (aside from the admixed one in question) in
distinct positions, yielding a non-redundant five-population subgraph; three populations
in distinct positions allows one to detect the signal of admixture but not to determine the

proportion uniquely.

15
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As an example, I added Ulchi (from the Amur River Basin of northeastern Asia)
as a fifth population alongside the four from above. Ulchi splits closer to the eastern
Eurasian source population for Mixe than does Han, which provides the additional degree
of constraint. The five-population model is a good fit to the data (Z = 1.9 for the most
significant residual), but not a perfect one (Fig. 4A). By contrast, if Baka are modeled as
admixed instead of Mixe, the fit is poor (Z = 4.7; Fig. 4B). I also show an example where
the topology is incorrectly specified, with Han closer than Ulchi to the eastern Eurasian
source population for Mixe (Fig. 4C); this version fits poorly (Z = 5.7), and the branch

connecting the split positions of Ulchi and Han collapses to length zero.
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Figure 4. Five-population admixture graphs. (A) Standard four-population example
plus Ulchi; all f-statistics are predicted to within 1.9 standard errors of their observed
values. (B) Same five populations, but with Baka modeled as admixed; residual statistics
are present up to Z = 4.7 (C) Same five populations, with Mixe modeled as admixed,
but with the positions of Han and Ulchi reversed; residual statistics are present up to

Z =5.7. (D) Original four populations plus Hungarian, with Baka modeled as admixed;
all f-statistics are predicted to within 1.2 standard errors of their observed values.

Having five populations present (with a single admixture event) also provides the

17
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ability to infer uniquely optimal parameter values. In the four-population example model,
the initial estimate of eastern Eurasian ancestry in Mixe was 71%, but with the proportion
manually set at 75%, the fit is still perfect (Fig. 5A). Outside of a certain range of mixture
proportions (dependent on the values of the branch lengths), the fit will become worse, but
within a finite interval, the likelihood is entirely flat. In terms of f;-statistics, the observed
non-zero value is being fit as equal to a branch length in the admixture graph times the
mixture proportion (as in Fig. 1C), but without additional constraint, that product can
remain the same while the branch length and mixture proportion covary (where the range
is determined by bounds on the individual parameter values, e.g., positivity). With five
populations, however, there is a unique optimal solution; for example, if I set the mixture
proportion at 70% eastern Eurasian ancestry (as compared to the point estimate of 76%
in the five-population model), there are residuals up to Z = 2.6 (Fig. 5B), and the score is
more than 10 units worse. Even in the example above with Kyrgyz (i.e., a four-population
model where the admixed population can be determined because of a negative f3-statistic;

Fig. 3), the parameters remain not uniquely determined.
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Figure 5. Admixture graphs with pre-specified mixture proportion parameters. (A)
Four-population model, with the proportion locked at 75%; the fit is perfect. Note that
the branch lengths shift slightly relative to Fig. 2A. (B) Five-population model, with the
proportion locked at 70%; residual statistics (indicating a need for more eastern
Eurasian ancestry in Mixe) are present up to Z = 2.6.

Finally, in Fig. 4D, I show a model with the original four populations plus Hungarian
instead of Ulchi. Although there are five populations present, French and Hungarian can
be modeled as sister groups, so equations relating parameters in the graph to statistics
of the form fy(French, X) and fy(Hungarian, X) are linearly dependent (up to their
terminal branch lengths) and hence do not contribute fully independent constraints. This
can be seen in the results, as Baka can successfully be modeled as the admixed population
(with residuals up to Z = 1.2 reflecting small observed asymmetries between French and
Hungarian). This contrasts with Ulchi, which has a distinct phylogenetic position from

Han (relative to the other populations in the model) and thus adds new constraints
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(although it is worth noting again that a population with only a slightly different position

would add constraint but only weakly).

Discussion

Most of the results in this paper pertaining to admixture graphs have been formulated
from the perspective of the gpGraph software, but other fitting methods are also available.
At the level of optimization scheme, the results have assumed that models are fit based
on a distance metric (specifically, f-statistics). There are also other possibilities; for
example, the TreeMiz algorithm (Pickrell and Pritchard, 2012) is conceptually similar,
and the results are comparable, but it is based on a maximum-likelihood framework.

Different methods also take different approaches to automation and the selection of
which populations to model as admixed. ¢pGraph leaves the choice of how many ad-
mixture events to include (and which populations are admixed) up to the user; some
guidelines pertaining to this choice have been discussed above. For smaller models, it
can also be possible to search some or all of the full graph space (Shinde et al., 2019) to
determine best-fitting topologies for a given number of admixture events (for example,
using the similar admizturegraph implementation in R (Leppéla et al., 2017)). MizMap-
per (Lipson et al., 2013) provides an intermediate level of automation by attempting to
infer an unadmixed sub-model and then fitting one or two admixed populations onto this
scaffold. With a small set of populations, this can sometimes be a useful approach, but
it can largely be recapitulated within ¢pGraph, and the software does not support large
models with more admixture events.

At the most automated end of the spectrum is TreeMiz (Pickrell and Pritchard, 2012),

which only asks the user to supply the list of populations and the number of admixture
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events and then returns a single best-fitting model. The advantage of this strategy is that
the program does all of the work of building the model, which is especially useful if one has
limited prior knowledge about the populations. The main drawback, in my view, is that
the way the program builds the model is by starting with an optimal mixture-free tree and
then adding admixture events to account for deviations between the predictions of the
tree model and the observed data. Depending on the true histories of the populations, this
approach can be successful, but it can also increase the chances of falling into local optima
imposed by the initial tree (especially if many populations are admixed). Additionally,
the choice of how many admixture events to include, which can sometimes be difficult, is
still left to the user.

In my experience, I have found f-statistics and admixture graphs to be very useful
tools for learning about phylogeny and admixture. I hope that this guide will help others

to get the most out of these tools in a wide range of real-world applications.
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