Pre prints.org

Article Not peer-reviewed version

Pre-configured Error Pattern
Ordered Statistics Decoding for
CRC-Polar Codes

Xuanyu Li, Kai Niu : , Yuxin Han, Jincheng Dai , Zhiyuan Tan , Zhiheng Guo

Posted Date: 9 August 2023
doi: 10.20944/preprints202308.0790.v1

Keywords: OSD; GRAND; channel decoding; polar code

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3051277
https://sciprofiles.com/profile/1917762

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0790.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Pre-Configured Error Pattern Ordered Statistics
Decoding for CRC-Polar Codes

Xuanyu Li 1@, Kai Niu *, Yuxin Han !, Jincheng Dai !, Zhiyuan Tan ? and Zhiheng Guo ?

1 Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts

and Telecommunications, Beijing, China; {lixuanyu, niukai, hanyx, daijincheng}@bupt.edu.cn
Huawei Technologies. Co., Ltd, Shenzhen, Guangdong, China.; {tanzhiyuan, guozhiheng}@huawei.com
* Correspondence: niukai@bupt.edu.cn

2

Abstract: In this paper, we propose a pre-configured error pattern ordered statistics decoding
(PEPOSD) algorithm and discuss its application to short cyclic redundancy check (CRC)-polar
codes. Unlike the traditional OSD that changes the most reliable independent symbols, we regard
the decoding process as testing the error patterns, like guessing random additive noise decoding
(GRAND). Also, the pre-configurator referred from ordered reliability bits (ORB) GRAND can better
control the range and testing order of EPs. Offline-online structure can accelerate the decoding
process. Additionally, we also introduce two orders to optimize the search order for testing EPs.
Compared with CRC-aided OSD and list decoding, PEPOSD can achieve a better trade-off between
accuracy and complexity.

Keywords: OSD; GRAND; channel decoding; polar code

1. Introduction

In ultra-reliable and low latency communications (URLLC), the high reliability of short block codes
becomes the key requirement [1]. To do this, cyclic redundancy check (CRC-polar codes are particularly
effective [2]. For decoding short CRC-polar codes, the state-of-the-art method is CRC-Aided (CA) -
successive cancellation list (SCL) decoding [3].

Two cutting-edge short code decoding algorithms are ordered statistics decoding (OSD) [4]
and guessing random additive noise decoding (GRAND) [5]. OSD is a decoder near the maximum
likelihood (ML) and ideal for parallel design. However, the decoding complexity of s-order OSD can
be too high to address.

Therefore, many pieces of early research have been done to reduce the complexity of OSD [6-9].
Recently, a threshold-based OSD decoder can reduce the number of tested codewords [10]. CA-OSD
[10] and segmentation-discarding decoding [11] limit the number of valid codewords to improve
performance. Probability-based OSD [12] calculates the promising probability and success probability
to discard the candidate codewords.

Moreover, on the other hand, GRAND provides a new perspective for ML decoding by
estimating the noise sequence [5]. Ordered reliability bits GRAND (ORBGRAND) [13] is proposed to
improve decoding throughput by generating possible error patterns (EPs). Its high-throughput and
energy-efficient very large-scale integration (VLSI) circuit architecture is given in [14].

In this paper, we propose a new scheme called pre-configured error pattern (PEP) OSD that
considers OSD from a new perspective. The main innovations and the advantages of this scheme are
summarized as follows:

(1) Decoding process: Instead of concentrating on completing queries of the most reliable
independent symbols [4] on Hamming balls as s-order OSD, we use plenty of pre-configured EPs
like ORBGRAND onto the transformed information bits. Before decoding, massive EPs can be
pre-configured, so the EPs can be continuously read and tested on the hard-decision bits to see if these
EPs can fix the errors in the information bits of the permuted systematic polar codes. After a Euclidean
distance competition of 6 codewords that can pass the CRC check, the most possible result can be

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0002-9693-956X
https://doi.org/10.20944/preprints202308.0790.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0790.v1

20f11

obtained. Due to the characteristics of CRC-polar codes, introducing the maximum number of valid
codewords ¢ can early stop the decoding to achieve lower complexity.

(2) EP pre-configuring process: The EPs can be either pre-configured once for all kinds of codes
(with different lengths or rates) to achieve higher decoding speed or dynamically generated before
decoding to save the hardware resource. As optimizing the test order of the pre-configured EPs can
further leverage the soft information, queries can be obviously saved. Two orders are introduced:
index weight (IW) & Hamming weight (HW) order and priority weight (PW) order. IW&HW relates to
the error possibility of a specific EP, and IW similar to the logical weight in ORBGRAND [13], though
only for the transformed information bits in this scheme. Thus the possible calculating complexity is
reduced. Moreover, PW, in a quantitative relationship related to IW and HW, is designed to direct an
efficient way to use the possible EPs.

The remainder of this work is structured as follows: Preliminaries are provided in Section 2. The
design of a PEPOSD decoder is given in Section 3. The generating theory and mechanism of PEP and
testing order are given in Section 4. The simulations are evaluated in Section 5. Finally, conclusions are
drawn in Section 6.

2. Preliminaries

2.1. CRC-Polar Codes

A CRC-polar code is characterized by its code length n, k-length information bits, and m-length
CRC, thus denoted by [, k 4 m]. For CRC-polar codes, the information bits are assigned to the channels
with indices in the information set A4, related to the more reliable subchannels, and |A| = k + m. The
frozen bits, which have the default values, all zeros, are assigned to the complementary set .A°. The
channel input depends on the encoding function

fire=u-Gy, @

where u and c are the source and code block, respectively. The source block u consists of information
bits u 4 and frozen bits u 4¢, and then modulated into BPSK vector x. Suppose that x is transmitted
over a noisy channel, and the received vector y is represented as

y=x+z2,)
where z is the additive Gaussian noise. Therefore, there is
O(y) =xde, ®3)

where 6(y) denotes the hard decision sequence of the received vector, and e denotes the EP where the
“1” bits result in the flips of bits between the sequence sent and the hard decision of the received.

Note that the i-th element of a vector is expressed by [|, for example, the i-th bit of the code is
denoted by cli].

2.2. OSD Algorithm

In OSD, two permutations A4, A, are performed over y and G before decoding. After these, the
received signals § and the hard decision 8(y) are all respectively reordered. For example, y is reordered
by

y = A2(Aa(y)). 4)

Meanwhile, the permutations and Gaussian elimination transform the generator matrix G into its
systematic form G [3]. Therefore, only the k 4 m most reliable positions of § are considered.

https://doi.org/10.20944/preprints202308.0790.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0790.v1

30f11

Then a number of tested codewords are compared to find the most likely estimate. In traditional
OSD, codeword estimates are tested in the increasing order of the EP’s Hamming weights. For instance,
in s-order OSD, codeword estimates with Hamming weight from 1 to s of the corresponding EP are
compared. After performing inverse permutations, the best result of the codeword estimates is chosen
as the output.

3. PEPOSD Decoder

In this section, we introduce the details of PEPOSD. The whole decoder that can generate and test
the EPs in parallel and relative processes is shown in Figure 1. There are two key units in PEPOSD: the
offline pre-configurator and the online EP estimator. The pre-configurator can generate and reorder all
the EPs and only once for all codes. The related details are described in Section 6. Meanwhile, the EP
estimator consists of 3 modules: pre-processor, EP tester, and validity checker.

‘/ g=q+1

Valid results< 6

€lipg Do—> C11ipq 9 Cripg
€y P> Crop > oy Validity
PEP
@ e Checker

Generator

| €pipg Do —» €1, p+pg—> Cping

Offline Pre-configurator

(Only once for all codes) =
=== —| o(y)

Decoding
Result

Pre-
processor

Online EP Estimator

Figure 1. The offline-online structure of a PEPOSD decoder.

We also summarize the decoding process in Algorithm 1. Here we introduce the decoding process
in detail.

Before decoding, the signals should be preprocessed by permutations A; and A. Thereby, the
hard decision of the signal with k 4- m systematic bits can be obtained. The EP tester then tests one or
several EPs in parallel on the processed sequences and attains the possible result. The validity checker
would decide if the result can pass the CRC check. The valid results will be stored in the list until the
number reaches its limit . Otherwise, backtrack and another EP will be adopted and tested. Finally,
the Euclidean distances of the § results will be compared, and the most possible result will be selected
as the decoding output.

The pre-processor performs two permutations and the systematic transform. The first permutation
Aq sorts y by its absolute value |y|, and the second permutation finds k + m linearly independent
column vectors in G as the first k 4+ m columns. Then it performs Gaussian elimination (GE) to the
permuted generator matrix A»(A1(G)), so the systematic form of generator matrix G is obtained. Thus
the generator matrix becomes G = [Iy,,, P], where I, is a (k + m)-dimensional identity matrix and
P is the parity sub-matrix.

Meanwhile, perform A; and A, on the hard decision 6(y) and initial index rg, where rj is
set by rg[i] = i. Then the reliability index r is obtained by A;(A1(rp)), which corresponds to the
ascending-order index of reliability in the most reliable k + m bits. The reordered-form 8(y), r can
be obtained. Note that §(y) consists of the first (k + m) bits f(y)7 and the rest §(y)p, respectively
corresponding to I, and Pin G, i.e., 8(y) = [0(y)z,0(y)p], where Z and P denote the index set of
the information and parity bits respectively.

https://doi.org/10.20944/preprints202308.0790.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0790.v1

40f11

Algorithm 1: PEPOSD for CRC-polar codes
Input: N,y, G, W max, W1 max. 0
Output: u*

1 Read EPs from the memory

2 Ay < f :Sort(]y|), A2 < g : Find_Independent(G)
3 G = [, P] < GE(A2(A1(G))), T 4 A2(A1(x0))
s [0(y)7,8(y)p] = 8(y) A2(A1(8(y)))

5 forh =1:wc 4, do

6 | n < NumberofEP(wc =h) for/ =1:ndo

7 e—e, ez 0(y)zoe

8 ¢=[er,ep] ez G, e AT (A 1(R))

9 a+¢-G

10 if CRC_Check() = true then

11 tet+1,dF « |ly— (1-2¢)|?

12 ifdf < dt. then

13 u* <~ 1, dfm-n + dEift = 6 then

14 ‘ return u*

15 end

16 end

17 end

18 end
19 end

For each EP, the estimate of x, is denoted by a codeword ¢. The systematic bits ¢; are generated by
eliminating the error of hard decision (y)z,

ez =0(y)z®e, @)
where e; denotes the [-th EP. Then the whole codeword estimate ¢ can be calculated by
¢=¢;-G=[¢r,¢p] = [e1,¢7-P). (6)

Therefore, a possible candidate source block # can be attained. After this, the validity checker
will test if @ can pass the CRC check. If the CRC check is passed, i is determined as a valid result
and sent to the candidate list. Calculate the Euclidean distance d¥ = ||y — (1 — 2¢)||? and compare it
with the current minimum candidate df . . If the number of candidates reaches 4, the decoding will
be completed and the most likely candidate u* will be output. This leverages the characteristic of
CRC-polar codes to control the complexity.

If the candidate is invalid or the number is not enough, come back to the EP tester and read
another EP. Though the generator matrix of CRC can be calculated into the whole generator matrix, a

separate check is beneficial to control the number of queries.

4. Pre-Configured Error Patterns

In this section, we first discuss in IW&HW order, the theoretical basis of the PEP generating
mechanism. Then two integer splitting algorithms are introduced. Finally, PW order is introduced to
better control the testing order of the EPs.

4.1. IN&HW Order

As the reliability index r is obtained by A»(Aq(xp)), this indicates the necessary order to eliminate
the errors on these bits. Upon this, referring to ORBGRAND [13], we can define reliability weight

https://doi.org/10.20944/preprints202308.0790.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0790.v1

50f11

(RW), IW, and HW. The reliability weight is the sum of the approximate reliability of e, which can be
calculated by

wr(e) = Y, li] - eli], @)

i=1
RW collects the reliability prior information of all permuted systematic bits. However, as RW is
difficult to split and control, IW is introduced. For an error pattern e, the corresponding IW is defined

as
k+m

wy(e) =) rli] -elil, ®)
i=1
which means the accumulation of the reliability index of all the error bits e[i] given the specific EP e.
The smaller IW generally corresponds to the bigger RW, and also the more possible noise effect of the
specific EP. IW gives a quantitative integer indicator to evaluate the order to test EPs. The difference
between IW and logical weight [13] is that IW only consists of the information of the systematic bits,
which is determined endogenously by the OSD algorithm, and accordingly leads to different impacts.
Furthermore, wj 5, indicates the maximum IW in all the EPs.
Similarly, the HW of a given error pattern is defined as

wy(e) = 2 elil.)

WH max Presents the maximum HW of all the EPs. The smaller HW often leads to some more usual
errors. Without ambiguity, for all eligible e, w;(e), wi(e) are abbreviated as wy, wy.

To pre-configure the EPs with all IW and HW we set, the process of PEP generation is designed
as follows. We first generate EPs whose wy = 1. While generating “new” EPs whose wpy is from 2
to W max, the generator first reads the “old” EPs whose w}; = wy — 1, storing into E,j4. By splitting
only the biggest integer in old EPs and putting the small integers aside, corresponding new EPs can be
generated. The algorithm is summarized in Algorithm 2. While splitting the integer, b stands for the
biggest number and a1, 43,..., and b are in ascending order. Thus, all EPs needed can be pre-configured.
An integer-splitting algorithm for ORBGRAND [13] can also be referred to.

Algorithm 2: Generate PEPs

Input: Wy 1ax, Wi max
1 forw;=1: W, max do

2 | e[r[wr]] <~ 1// Gen. wpy =1 EP

3 for wy = 2 : Wi 4y do

4 Eold = ReadPEP(wH - 1)

5 fori =1: Row(E,;[i]) do

6 {a1,a2, ..., a0, —2,b} = Ey4li]

// a1, ap,..., and b are in ascending order
7 fora,, 1 = max{1,a,, >} :[(b—1)/2] do
// split b into 2 numbers

8 Enew = Enew U {al/ A2 vees Aoy —2, Aoy —1s b— awﬂfl}
9 end

10 end
11 end
12 end

There is an example for wg ;4 = 4 and w; = 10 shown in Figure 2. First the EP with wy = 11is
generated. Then 10 is divided into {9,1},- - -, {6,4}, and 4 EPs with wy = 2 are obtained. After that, 9 in

https://doi.org/10.20944/preprints202308.0790.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0790.v1

60f 11

{9,1} can be divided into {7,2}, {6,3} and {5,4}, while 8 in {8,2} can be divided into {5,3}, thus 4 EPs with
wy = 3 are obtained. Finally, one EP with wy = 4 is generated by dividing 7 in {7,2,1} into {4,3}.

PEP pre-configurator can produce all EPs stored in the memory before decoding numerous codes,
so the decoder can continuously read EPs to significantly reduce the decoding delay, and only once is
enough for all kinds of codes and all code blocks. On the other hand, while decoding a small number
of codes, each EP can also be dynamically generated just before being tested to ensure better energy

efficiency.
[o o
HW=1 HW=2 HW=3 HW=4
v { v
2] 8 2
¥ ¥ Y !
Figure 2. An example of generating for wp mex = 4 and w; = 10.

4.2. PW Order

As IW and HW are introduced and all the EPs have been pre-configured, PW can be defined by
wp(e) =wy +a- (wy)’. (10)

where & and are parameters to be set. The order of using the EPs depends on their PW, which
indicates a special order to prevent the decoder from trying some EPs with a super low possibility
even if its HW is small.

Figure 3 gives a hypothetical example to see the difference of the PEPOSD scheme between
IW&HW order and PW order. Figure 3(a) shows the IW&HW-order PEPOSD. The decoder first tests
the wy = 1 EPs in the order of w;. After that, it tests those with wy = 2, then 3, and so on. Meanwhile,
in our new proposed scheme, the decoder just tests the EPs in the order of PW. Figure 3(b) shows how
the PWs of the EPs correspond to their HW and PW. Therefore for instance, the EPs are tested from
wp = 2, to wp = 23. Obviously, the two EPs with wp = 7 are tested together, also for wp = §,9,10, 15.
In this way, the order of using EPs can be optimized and some less probable EPs will be tested far later.

https://doi.org/10.20944/preprints202308.0790.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0790.v1

7of 11

} 2 3 % 5 G 7 8 —9—
— - | —
2 4 Va
3 <+ &
B o
= v} Q 0 1.0 11
$ A)
q
6 o Q 0 109

(a) IW&HW order: w; in the boxes

p
5]
o

7 § O 10

E'S

HW

11 12 12 14 }’

2 = M7
e

15]]l 1.Q 1.0

v H Ho f S =

(b) PW order: wp = w; + w%{ in the boxes

Figure 3. The sketches of IN&HW order and PW order.

5. Performance Evaluation

In this section, for CRC-polar codes, we respectively compare the performance of PEPOSD with
3-order CA-OSD and CA-SCL (L = 32).

5.1. BLER Analysis

First we compare the BLER performance with low complexity of these algorithms. Figure 4 shows
the BLER comparison between PEPOSD (IW&HW) and CA-SCL with different rates with the code
length n = 64 and CRC length m = 6. In this figure, there is (IW/HW/J) = (75/4/20) for PEPOSD.
This demonstrates that PEPOSD outperforms CA-SCL by about 0.3 dB with the close complexity for
the high rates. Increasing the CRC length can improve the performance of PEPOSD while this worsens
CA-5CL, so the advantage can be more obvious.

107t E

1072 L

BLER

1072 ¢

—+— PEPOSD,R=0.5
—&— PEPOSD,R=0.69
—%— PEPOSD,R=0.83
—%— CA-SCL,R=0.5
—*— CA-SCL,R=0.69
—=&A— CA-SCL,R=0.83
T T

1074 ¢

-1 0 1 2 3 4 5
Es/NO(dB)

Figure 4. The comparison of BLER performance between PEPOSD and CA-SCL with different rates
with the code length n = 64.

https://doi.org/10.20944/preprints202308.0790.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0790.v1

8of 11

Figure 5 shows when Ej, /Ny = 4.0, the BLER comparison with different code rates from 0.5 to
0.85 among PEPOSD, CA-OSD, and CA-SCL. This shows that PEPOSD, (75/4/20) can achieve close
accuracy with CA-OSD. Moreover, when R = 0.5 and R = 0.68 or higher, PEPOSD outperforms
CA-SCL obviously. More detailed analysis about PEPOSD related to its complexity is given in section
5.2.

—e—CA-SCL(32)
—a—CA-0SD(3)
—o—PEPOSD, (60/3/8)

—— PEPOSD2(75/4/20)
—a—PEPOSD 3(100/4/ 100)

1072

BLER

1073

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
Rate

Figure 5. When SNR is 4.0dB, the BLER comparison with different code rate among PEPOSD, CA-OSD
and CA-SCL.

Then we analyze the ultimate performance with higher complexity. Figure 6 shows the
performance comparison for [128,108+11] CRC-polar code. PEPOSD(IW&HW) is here with
(IW/HW) = (100/4) and different . Meanwhile, PEPOSD(PW) with (IW/HW/§/a/B) =
(100 /4/1/2/ 3) and CA-SCL(L = 32) are shown. The average decoding time is got from the same CPU.
It can be concluded that PEPOSD can achieve better performance at a high rate for 128-bit CRC-polar
codes and the decoding complexity can also be smaller than CA-SCL in high SNR areas. Also PW
order performs better for this code.

Therefore, the simulation results show that PEPOSD achieves a better trade-off between accuracy
and complexity than CA-OSD, and also can perform better for some short codes than CA-SCL. What's
more, the parameters can be configured flexibly and the decoding process can be parallelized to further
increase its throughput.

https://doi.org/10.20944/preprints202308.0790.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0790.v1

9of11

102 . . .

10-1 L ZL\A\A\A\A\A_.
=
Q N
2
S
& E
=102} g
= 10t
i
z] i
—&— PEPOSD, /=1 :
1031 PEPOSD(PW), 6=1 .
—A—PEPOSD, 0=2
—%— PEPOSD, §=8 X
—+—CA-SCL
2 3 4 2 3 4
Es/NO(dB) Es/NO(dB)

Figure 6. For [128,108+11] code, the comparison of BLER performance between PEPOSD and CA-SCL.
5.2. Complexity Analysis

First, we compare the computational complexity of the proposed scheme with CA-SCL.
Specifically, it should be noted that all operations are modulo-two operations (XOR) in this scheme, so
the hardware resources and time spent will be obviously less with the same quantity in the engineering
practice and hardware implementations. As most of the OSD research does, we focus on the queries
needed in the decoding process, also the number of the EPs tested. Therefore, the number of bit flipping
in this period can be calculated by Zigzl wyy(e[i]), where Q denotes the queries. Another key complexity
that we consider compared with SCL, GRAND or other algorithms is GE in the pre-processor, of which
the complexity can be calculated by O(n - (min(k,n — k))%). Moreover, there are some parallel or other
efficient implementations can optimize the process like in [16].

Also, multiplication and addition operations needed in CA-SCL can be expressed as O(n - L -
log(n)). Thus, Table 1 displays the complexity estimation of PEPOSD, CA-OSD, and CA-SCL. The
queries of PEPOSD mainly based on 4, if IW and HW are relatively high enough. In conclusion,
PEPOSD can obviously achieve lower complexity for high-rate codes, and for lower rates, PEPOSD
may outperform CA-SCL as it’s with modulo-two operations, which needs more hardware analysis to
prove.

Table 1. Complexity Estimation of PEPOSD, CA-OSD and CA-SCL with different CRC-polar codes.
For GE and CA-SCL, the number denotes the needed operations. For OSD algorithms, the number
denotes the number of bit flipping.

Code GE' PEPOSD;” PEPOSD, PEPOSD; CA-OSD CA-SCL
a.[64,32+6] 43264 898 2975 18535 8436 12288
b.[64,44+6] 12544 887 2722 18159 19600 12288
c.[64,53+6] 1600 899 2620 18108 32509 12288

d.[128,108+11] 28672 16 103 844 273819 10368

* Gaussian Eliminate is necessary in all OSD algorithms. ~* For PEPOSD; ,PEPOSD,,PEPOSD;: n = 64,6 =
8,20,100;n = 128,56 = 1,2,8.

https://doi.org/10.20944/preprints202308.0790.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0790.v1

10 of 11

Observing together with Figure 5, it’s obvious that PEPOSD;, (75/4/20) can achieve close
accuracy with CA-OSD while its average number of bit flipping is 1/9 to 1/36 of 3-order CA-OSD.
Also, PEPOSD3, (100/4/100) can obtain better accuracy than CA-OSD and the queries can be greatly
reduced at the same time. For high-rate codes, PEPOSD can outperforms CA-SCL and CA-OSD both
in accuracy and complexity.

Finally, as PW is introduced, the queries reduction of the schemes with IW&HW and PW order
is compared in Table 2. For [64,46+6] and [128,108+11] CRC-polar codes, using PEPOSD with
(IW/HW/6) = (100/4/1), the number of queries is reduced by 10%-30%.

Table 2. The average queries of IW&HW and PW order with (IW/HW/§) = (100/4/1) for the
CRC-polar codes.

Order SNR=2.0dB' SNR=2.5dB SNR=3.0dB SNR=3.5dB SNR=4.0dB

@)n =64 k = 46 m=6
TW&HW 231 11 6.8 39 2.1
PW 165 11 5.9 35 2.1

(b) n = 128 k =108 m=11
IW&HW 925 641 275 101 25
PW 928 514 188 75 2

1 SNR denotes Eyp/Np.

6. Conclusion

In this paper, we introduce the PEPOSD algorithm to enhance the performance of short CRC-polar
codes. It integrates the generating mechanism of noise queries in ORBGRAND to the generation of
error patterns in OSD. Therefore, all the EPs can be pre-generated to allow the pipeline decoding for
better speed. Also, early stop by CRC check can significantly reduce the complexity.

To optimize the decoding order of the proposed scheme, two options are introduced. IN&HW
order is suitable for the most circumstances while PW shows lower complexity with bigger IW. In this
way, the range of error patterns can be more controllable than I-order CA-OSD.

Simulation results show that there are several advantages in the performance and complexity
of PEPOSD compared with CA-OSD and CA-SCL for CRC-polar codes, which shows a promising
prospect.

Funding: This research was funded by the National Natural Science Foundation of China under Grant 92067202,
Grant 62071058

Abbreviations

The following abbreviations are used in this manuscript:

PEPOSD Pre-configured error pattern ordered statistics decoding

CRC Cyclic redundancy check

GRAND Guessing random additive noise decoding
ORB Ordered reliability bits

URLLC Ultra-reliable and low latency communications
CA CRC-Aided

SCL Successive cancellation list

ML Maximum likelihood

EPs Error patterns

VLSI Very large-scale integration

W Index weight

HW Hamming weight

PW Priority weight

https://doi.org/10.20944/preprints202308.0790.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0790.v1

11 0f 11

References

1. Liva G.; Gaudio L.; Ninacs T.; Jerkovits T. Code Design for Short Blocks: A Survey. arXiv:1610.00873, 2016.
[CrossRef].

2. Niu K,; Zhang P; Dai J.; Si Z.; Dong C. A golden decade of polar codes: From basic principle to 5G
applications. China Communications, 2023, 20, 94-121. [CrossRef].

3. Niu K.; Chen K. CRC-aided decoding of polar codes. IEEE Commun. Lett., 2012, 16, 1668-1671.[CrossRef].

4. Fossorier M. P. C.; Lin S. Soft-decision decoding of linear block codes based on ordered statistics. IEEE Trans. Inf.
Theory, 1995, 41, 1379-1396. [CrossRef].

5. Duffy K. R.; Li].; Médard M. Guessing noise, not code-words. In IEEE Int. Symp. Inf. Theory, 2018, pp. 671-675.
[CrossRef].

6. Valembois A.; Fossorier M. An improved method to compute lists of binary vectors that optimize a given weight
function with application to soft-decision decoding. IEEE Commun. Lett., 2001, 5, 456-458. [CrossRef].

7. Valembois A.; Fossorier. M. Box and match techniques applied to soft-decision decoding. IEEE Trans. Inf. Theory,
2004, 50, 796-810. [CrossRef].

8. Jin W.; Fossorier M. Efficient box and match algorithm for reliability-based soft decision decoding of linear block codes.
In Proc. Inf. Theory Appl. Workshop, La Jolla, CA, USA, Jan. 2007. [CrossRef].

9. Wu'Y.; Hadjicostis C. N. Soft-Decision Decoding Using Ordered Recodings on the Most Reliable Basis. IEEE Trans.
Inf. Theory, 2007, 53, 829-836. [CrossRef].

10. Wu D.; Li Y.; Guo X.; Sun'Y. Ordered Statistic Decoding for Short Polar Codes. IEEE Commun. Lett., 2016, 20,
1064-1067. [CrossRef].

11. Yue C.; Shirvanimoghaddam M.; Li Y.; Vucetic B. Segmentation-discarding ordered-statistic decoding for linear block
codes. In Proc. IEEE Global Commun. Conf. (GLOBECOM), Waikoloa, HI, USA, 9-13 Dec. 2019, 1-6. [CrossRef].

12. Yue C.; Shirvanimoghaddam M.; Park G.; Park O.; Vucetic B.; Li Y. Probability-Based Ordered-Statistics Decoding for
Short Block Codes. IEEE Commun. Lett., 2021, 25, 1791-1795. [CrossRef].

13. Duffy K. R.; An W.; Médard M. Ordered Reliability Bits Guessing Random Additive Noise Decoding. IEEE Trans.
Signal Process., 2022, 70, 4528-4542. [CrossRef].

14. Abbas S. M.; Tonnellier T.; Ercan F.; Jalaleddine M. High-Throughput and Energy-Efficient VLSI Architecture for
Ordered Reliability Bits GRAND. IEEE Trans. on VLSI Systems, 2022, 30. [CrossRef].

15. Arikan E. Channel polarization: a method for constructing capacity achieving codes for symmetric binary-input
memoryless channels. IEEE Trans. Inf. Theory, 2009, 55, 3051-3073. [CrossRef].

16. Scholl S.; Stumm C.; Wehn N. Hardware implementations of Gaussian elimination over GF(2) for channel decoding
algorithms. In 2013 Africon, Pointe aux Piments, Mauritius, Sept. 2013, 1-5. [CrossRef].

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://arxiv.org/abs/1610.00873
https://doi.org/10.23919/JCC.2023.02.015
https://doi.org/10.1109/LCOMM.2012.090312.121501
https://doi.org/10.1109/LCOMM.2021.3097322
https://doi.org/10.1109/ISIT.2018.8437648
https://doi.org/10.1109/4234.966032
https://doi.org/10.1109/ISIT.2002.1023415
https://doi.org/10.1109/4234.966032
https://doi.org/10.1109/TIT.2006.889699
https://doi.org/10.1109/LCOMM.2016.2539170
https://doi.org/10.1109/GLOBECOM38437.2019.9014173
https://doi.org/10.1109/LCOMM.2021.3058978
https://doi.org/10.1109/TSP.2022.3203251
https://doi.org/10.1109/TVLSI.2022.3153605
https://doi.org/10.1109/TIT.2009.2021379
https://doi.org/10.1109/AFRCON.2013.6757620
https://doi.org/10.20944/preprints202308.0790.v1

	Introduction
	Preliminaries
	CRC-Polar Codes
	OSD Algorithm

	PEPOSD Decoder
	Pre-Configured Error Patterns
	IW&HW Order
	PW Order

	Performance Evaluation
	BLER Analysis
	Complexity Analysis

	Conclusion
	References

