
Article

Not peer-reviewed version

Pre-configured Error Pattern

Ordered Statistics Decoding for

CRC-Polar Codes

Xuanyu Li , Kai Niu

*

 , Yuxin Han , Jincheng Dai , Zhiyuan Tan , Zhiheng Guo

Posted Date: 9 August 2023

doi: 10.20944/preprints202308.0790.v1

Keywords: OSD; GRAND; channel decoding; polar code

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3051277
https://sciprofiles.com/profile/1917762

Article

Pre-Configured Error Pattern Ordered Statistics
Decoding for CRC-Polar Codes

Xuanyu Li 1 , Kai Niu 1,*, Yuxin Han 1, Jincheng Dai 1, Zhiyuan Tan 2 and Zhiheng Guo 2

1 Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts

and Telecommunications, Beijing, China; {lixuanyu, niukai, hanyx, daijincheng}@bupt.edu.cn
2 Huawei Technologies. Co., Ltd, Shenzhen, Guangdong, China.; {tanzhiyuan, guozhiheng}@huawei.com

* Correspondence: niukai@bupt.edu.cn

Abstract: In this paper, we propose a pre-configured error pattern ordered statistics decoding

(PEPOSD) algorithm and discuss its application to short cyclic redundancy check (CRC)-polar

codes. Unlike the traditional OSD that changes the most reliable independent symbols, we regard

the decoding process as testing the error patterns, like guessing random additive noise decoding

(GRAND). Also, the pre-configurator referred from ordered reliability bits (ORB) GRAND can better

control the range and testing order of EPs. Offline-online structure can accelerate the decoding

process. Additionally, we also introduce two orders to optimize the search order for testing EPs.

Compared with CRC-aided OSD and list decoding, PEPOSD can achieve a better trade-off between

accuracy and complexity.

Keywords: OSD; GRAND; channel decoding; polar code

1. Introduction

In ultra-reliable and low latency communications (URLLC), the high reliability of short block codes

becomes the key requirement [1]. To do this, cyclic redundancy check (CRC-polar codes are particularly

effective [2]. For decoding short CRC-polar codes, the state-of-the-art method is CRC-Aided (CA) -

successive cancellation list (SCL) decoding [3].

Two cutting-edge short code decoding algorithms are ordered statistics decoding (OSD) [4]

and guessing random additive noise decoding (GRAND) [5]. OSD is a decoder near the maximum

likelihood (ML) and ideal for parallel design. However, the decoding complexity of s-order OSD can

be too high to address.

Therefore, many pieces of early research have been done to reduce the complexity of OSD [6–9].

Recently, a threshold-based OSD decoder can reduce the number of tested codewords [10]. CA-OSD

[10] and segmentation-discarding decoding [11] limit the number of valid codewords to improve

performance. Probability-based OSD [12] calculates the promising probability and success probability

to discard the candidate codewords.

Moreover, on the other hand, GRAND provides a new perspective for ML decoding by

estimating the noise sequence [5]. Ordered reliability bits GRAND (ORBGRAND) [13] is proposed to

improve decoding throughput by generating possible error patterns (EPs). Its high-throughput and

energy-efficient very large-scale integration (VLSI) circuit architecture is given in [14].

In this paper, we propose a new scheme called pre-configured error pattern (PEP) OSD that

considers OSD from a new perspective. The main innovations and the advantages of this scheme are

summarized as follows:

(1) Decoding process: Instead of concentrating on completing queries of the most reliable

independent symbols [4] on Hamming balls as s-order OSD, we use plenty of pre-configured EPs

like ORBGRAND onto the transformed information bits. Before decoding, massive EPs can be

pre-configured, so the EPs can be continuously read and tested on the hard-decision bits to see if these

EPs can fix the errors in the information bits of the permuted systematic polar codes. After a Euclidean

distance competition of δ codewords that can pass the CRC check, the most possible result can be

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0790.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0002-9693-956X
https://doi.org/10.20944/preprints202308.0790.v1
http://creativecommons.org/licenses/by/4.0/

2 of 11

obtained. Due to the characteristics of CRC-polar codes, introducing the maximum number of valid

codewords δ can early stop the decoding to achieve lower complexity.

(2) EP pre-configuring process: The EPs can be either pre-configured once for all kinds of codes

(with different lengths or rates) to achieve higher decoding speed or dynamically generated before

decoding to save the hardware resource. As optimizing the test order of the pre-configured EPs can

further leverage the soft information, queries can be obviously saved. Two orders are introduced:

index weight (IW) & Hamming weight (HW) order and priority weight (PW) order. IW&HW relates to

the error possibility of a specific EP, and IW similar to the logical weight in ORBGRAND [13], though

only for the transformed information bits in this scheme. Thus the possible calculating complexity is

reduced. Moreover, PW, in a quantitative relationship related to IW and HW, is designed to direct an

efficient way to use the possible EPs.

The remainder of this work is structured as follows: Preliminaries are provided in Section 2. The

design of a PEPOSD decoder is given in Section 3. The generating theory and mechanism of PEP and

testing order are given in Section 4. The simulations are evaluated in Section 5. Finally, conclusions are

drawn in Section 6.

2. Preliminaries

2.1. CRC-Polar Codes

A CRC-polar code is characterized by its code length n, k-length information bits, and m-length

CRC, thus denoted by [n, k+m]. For CRC-polar codes, the information bits are assigned to the channels

with indices in the information set A, related to the more reliable subchannels, and |A| = k + m. The

frozen bits, which have the default values, all zeros, are assigned to the complementary set Ac. The

channel input depends on the encoding function

f : c = u ·Gn, (1)

where u and c are the source and code block, respectively. The source block u consists of information

bits uA and frozen bits uAc , and then modulated into BPSK vector x. Suppose that x is transmitted

over a noisy channel, and the received vector y is represented as

y = x + z, (2)

where z is the additive Gaussian noise. Therefore, there is

θ(y) = x⊕ e, (3)

where θ(y) denotes the hard decision sequence of the received vector, and e denotes the EP where the

“1” bits result in the flips of bits between the sequence sent and the hard decision of the received.

Note that the i-th element of a vector is expressed by [], for example, the i-th bit of the code is

denoted by c[i].

2.2. OSD Algorithm

In OSD, two permutations λ1, λ2 are performed over y and G before decoding. After these, the

received signals ỹ and the hard decision θ̃(y) are all respectively reordered. For example, y is reordered

by

ỹ = λ2(λ1(y)). (4)

Meanwhile, the permutations and Gaussian elimination transform the generator matrix G into its

systematic form G̃ [3]. Therefore, only the k + m most reliable positions of ỹ are considered.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0790.v1

https://doi.org/10.20944/preprints202308.0790.v1

3 of 11

Then a number of tested codewords are compared to find the most likely estimate. In traditional

OSD, codeword estimates are tested in the increasing order of the EP’s Hamming weights. For instance,

in s-order OSD, codeword estimates with Hamming weight from 1 to s of the corresponding EP are

compared. After performing inverse permutations, the best result of the codeword estimates is chosen

as the output.

3. PEPOSD Decoder

In this section, we introduce the details of PEPOSD. The whole decoder that can generate and test

the EPs in parallel and relative processes is shown in Figure 1. There are two key units in PEPOSD: the

offline pre-configurator and the online EP estimator. The pre-configurator can generate and reorder all

the EPs and only once for all codes. The related details are described in Section 6. Meanwhile, the EP

estimator consists of 3 modules: pre-processor, EP tester, and validity checker.

Online EP Estimator

y
Pre-

processor

1 pq+ e

2 pq+ e

p pq+ e

,1
ˆ

pq+c

...

() y

,2
ˆ

pq+c

,
ˆ

p pq+c

...

EP

Tester

1
ˆ

pq+c

2
ˆ

pq+c

ˆ
p pq+c

G

Validity

Checker

Valid results≥δ

Decoding

Result

*u

Valid results<δ
1q q= +

...

Signal

Receiver

PW Order

Offline Pre-configurator
(Only once for all codes)

PEP

Generator

PEP

Memory

PW Order

Offline Pre-configurator
(Only once for all codes)

PEP

Generator

PEP

Memory

PW

Calculating

PEP

Reordering

PW Order

Offline Pre-configurator
(Only once for all codes)

PEP

Generator

PEP

Memory

PW

Calculating

PEP

Reordering

Online EP Estimator

y
Pre-

processor

1 pq+ e

2 pq+ e

p pq+ e

,1
ˆ

pq+c

...

() y

,2
ˆ

pq+c

,
ˆ

p pq+c

...

EP

Tester

1
ˆ

pq+c

2
ˆ

pq+c

ˆ
p pq+c

G

Validity

Checker

Valid results≥δ

Decoding

Result

*u

Valid results<δ
1q q= +

...

Signal

Receiver

PW Order

Offline Pre-configurator
(Only once for all codes)

PEP

Generator

PEP

Memory

PW

Calculating

PEP

Reordering

Figure 1. The offline-online structure of a PEPOSD decoder.

We also summarize the decoding process in Algorithm 1. Here we introduce the decoding process

in detail.

Before decoding, the signals should be preprocessed by permutations λ1 and λ2. Thereby, the

hard decision of the signal with k + m systematic bits can be obtained. The EP tester then tests one or

several EPs in parallel on the processed sequences and attains the possible result. The validity checker

would decide if the result can pass the CRC check. The valid results will be stored in the list until the

number reaches its limit δ. Otherwise, backtrack and another EP will be adopted and tested. Finally,

the Euclidean distances of the δ results will be compared, and the most possible result will be selected

as the decoding output.

The pre-processor performs two permutations and the systematic transform. The first permutation

λ1 sorts y by its absolute value |y|, and the second permutation finds k + m linearly independent

column vectors in G as the first k + m columns. Then it performs Gaussian elimination (GE) to the

permuted generator matrix λ2(λ1(G)), so the systematic form of generator matrix G̃ is obtained. Thus

the generator matrix becomes G̃ = [Ik+m, P̃], where Ik+m is a (k + m)-dimensional identity matrix and

P̃ is the parity sub-matrix.

Meanwhile, perform λ1 and λ2 on the hard decision θ(y) and initial index r0, where r0 is

set by r0[i] = i. Then the reliability index r is obtained by λ2(λ1(r0)), which corresponds to the

ascending-order index of reliability in the most reliable k + m bits. The reordered-form θ̃(y), r can

be obtained. Note that θ̃(y) consists of the first (k + m) bits θ̃(y)I and the rest θ̃(y)P , respectively

corresponding to Ik+m and P̃ in G̃, i.e., θ̃(y) = [θ̃(y)I , θ̃(y)P], where I and P denote the index set of

the information and parity bits respectively.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0790.v1

https://doi.org/10.20944/preprints202308.0790.v1

4 of 11

Algorithm 1: PEPOSD for CRC-polar codes

Input: N, y, G, wH,max, wI,max, δ

Output: u∗

1 Read EPs from the memory

2 λ1 ← f : Sort(|y|), λ2 ← g : Find_Independent(G)

3 G̃ = [Ik+m, P̃]← GE(λ2(λ1(G))), r̃← λ2(λ1(r0))

4 [θ̃(y)I , θ̃(y)P] = θ̃(y)← λ2(λ1(θ(y)))

5 for h = 1 : wC,max do

6 n← NumberofEP(wC = h) for l = 1 : n do

7 e← el , ĉI ← θ̃(y)I ⊖ e

8 ĉ = [ĉI , ĉP]← ĉI · G̃, ĉ← λ−1
1 (λ−1

2 (ĉ))

9 û← ĉ ·G

10 if CRC_Check(û) = true then

11 t← t + 1, dE ← ‖y− (1− 2ĉ)‖2

12 if dE
< dE

min then

13 u∗ ← û, dE
min ← dE if t = δ then

14 return u∗

15 end

16 end

17 end

18 end

19 end

For each EP, the estimate of x, is denoted by a codeword ĉ. The systematic bits ĉI are generated by

eliminating the error of hard decision θ̃(y)I ,

ĉI = θ̃(y)I ⊕ el , (5)

where el denotes the l-th EP. Then the whole codeword estimate ĉ can be calculated by

ĉ = ĉI · G̃ = [ĉI , ĉP] = [ĉI , ĉI · P̃]. (6)

Therefore, a possible candidate source block û can be attained. After this, the validity checker

will test if û can pass the CRC check. If the CRC check is passed, û is determined as a valid result

and sent to the candidate list. Calculate the Euclidean distance dE = ‖y− (1− 2ĉ)‖2 and compare it

with the current minimum candidate dE
min. If the number of candidates reaches δ, the decoding will

be completed and the most likely candidate u∗ will be output. This leverages the characteristic of

CRC-polar codes to control the complexity.

If the candidate is invalid or the number is not enough, come back to the EP tester and read

another EP. Though the generator matrix of CRC can be calculated into the whole generator matrix, a

separate check is beneficial to control the number of queries.

4. Pre-Configured Error Patterns

In this section, we first discuss in IW&HW order, the theoretical basis of the PEP generating

mechanism. Then two integer splitting algorithms are introduced. Finally, PW order is introduced to

better control the testing order of the EPs.

4.1. IW&HW Order

As the reliability index r is obtained by λ2(λ1(r0)), this indicates the necessary order to eliminate

the errors on these bits. Upon this, referring to ORBGRAND [13], we can define reliability weight

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0790.v1

https://doi.org/10.20944/preprints202308.0790.v1

5 of 11

(RW), IW, and HW. The reliability weight is the sum of the approximate reliability of e, which can be

calculated by

wR(e) =
k+m

∑
i=1

ỹ[i] · e[i], (7)

RW collects the reliability prior information of all permuted systematic bits. However, as RW is

difficult to split and control, IW is introduced. For an error pattern e, the corresponding IW is defined

as

wI(e) =
k+m

∑
i=1

r[i] · e[i], (8)

which means the accumulation of the reliability index of all the error bits e[i] given the specific EP e.

The smaller IW generally corresponds to the bigger RW, and also the more possible noise effect of the

specific EP. IW gives a quantitative integer indicator to evaluate the order to test EPs. The difference

between IW and logical weight [13] is that IW only consists of the information of the systematic bits,

which is determined endogenously by the OSD algorithm, and accordingly leads to different impacts.

Furthermore, wI,max indicates the maximum IW in all the EPs.

Similarly, the HW of a given error pattern is defined as

wH(e) =
k+m

∑
i=1

e[i]. (9)

wH,max presents the maximum HW of all the EPs. The smaller HW often leads to some more usual

errors. Without ambiguity, for all eligible e, wI(e), wH(e) are abbreviated as wI , wH .

To pre-configure the EPs with all IW and HW we set, the process of PEP generation is designed

as follows. We first generate EPs whose wH = 1. While generating “new” EPs whose wH is from 2

to wH,max, the generator first reads the “old” EPs whose w∗H = wH − 1, storing into Eold. By splitting

only the biggest integer in old EPs and putting the small integers aside, corresponding new EPs can be

generated. The algorithm is summarized in Algorithm 2. While splitting the integer, b stands for the

biggest number and a1, a2,..., and b are in ascending order. Thus, all EPs needed can be pre-configured.

An integer-splitting algorithm for ORBGRAND [13] can also be referred to.

Algorithm 2: Generate PEPs

Input: wH,max, wI,max

1 for wI = 1 : wI,max do

2 e1[r[wI]]← 1 // Gen. wH = 1 EP

3 for wH = 2 : wH,max do

4 Eold = ReadPEP(wH − 1)

5 for i = 1 : Row(Eold[i]) do

6 {a1, a2, ..., awH−2, b} = Eold[i]

// a1, a2,..., and b are in ascending order

7 for awH−1 = max{1, awH−2} : ⌊(b− 1)/2⌋ do

// split b into 2 numbers

8 Enew = Enew ∪ {a1, a2, ..., awH−2, awH−1, b− awH−1}

9 end

10 end

11 end

12 end

There is an example for wH,max = 4 and wI = 10 shown in Figure 2. First the EP with wH = 1 is

generated. Then 10 is divided into {9,1},· · · , {6,4}, and 4 EPs with wH = 2 are obtained. After that, 9 in

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0790.v1

https://doi.org/10.20944/preprints202308.0790.v1

6 of 11

{9,1} can be divided into {7,2}, {6,3} and {5,4}, while 8 in {8,2} can be divided into {5,3}, thus 4 EPs with

wH = 3 are obtained. Finally, one EP with wH = 4 is generated by dividing 7 in {7,2,1} into {4,3}.

PEP pre-configurator can produce all EPs stored in the memory before decoding numerous codes,

so the decoder can continuously read EPs to significantly reduce the decoding delay, and only once is

enough for all kinds of codes and all code blocks. On the other hand, while decoding a small number

of codes, each EP can also be dynamically generated just before being tested to ensure better energy

efficiency.

Figure 2. An example of generating for wH,max = 4 and wI = 10.

4.2. PW Order

As IW and HW are introduced and all the EPs have been pre-configured, PW can be defined by

wP(e) = wI + α · (wH)
β. (10)

where α and β are parameters to be set. The order of using the EPs depends on their PW, which

indicates a special order to prevent the decoder from trying some EPs with a super low possibility

even if its HW is small.

Figure 3 gives a hypothetical example to see the difference of the PEPOSD scheme between

IW&HW order and PW order. Figure 3(a) shows the IW&HW-order PEPOSD. The decoder first tests

the wH = 1 EPs in the order of wI . After that, it tests those with wH = 2, then 3, and so on. Meanwhile,

in our new proposed scheme, the decoder just tests the EPs in the order of PW. Figure 3(b) shows how

the PWs of the EPs correspond to their HW and PW. Therefore for instance, the EPs are tested from

wP = 2, to wP = 23. Obviously, the two EPs with wP = 7 are tested together, also for wP = 8, 9, 10, 15.

In this way, the order of using EPs can be optimized and some less probable EPs will be tested far later.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0790.v1

https://doi.org/10.20944/preprints202308.0790.v1

7 of 11

(a) IW&HW order: wI in the boxes

(b) PW order: wP = wI + w2
H in the boxes

Figure 3. The sketches of IW&HW order and PW order.

5. Performance Evaluation

In this section, for CRC-polar codes, we respectively compare the performance of PEPOSD with

3-order CA-OSD and CA-SCL (L = 32).

5.1. BLER Analysis

First we compare the BLER performance with low complexity of these algorithms. Figure 4 shows

the BLER comparison between PEPOSD (IW&HW) and CA-SCL with different rates with the code

length n = 64 and CRC length m = 6. In this figure, there is (IW/HW/δ) = (75/4/20) for PEPOSD.

This demonstrates that PEPOSD outperforms CA-SCL by about 0.3 dB with the close complexity for

the high rates. Increasing the CRC length can improve the performance of PEPOSD while this worsens

CA-SCL, so the advantage can be more obvious.

Es/N0(dB)

B
L

E
R

PEPOSD,R=0.5

PEPOSD,R=0.69

PEPOSD,R=0.83

CA-SCL,R=0.5

CA-SCL,R=0.69

CA-SCL,R=0.83

Figure 4. The comparison of BLER performance between PEPOSD and CA-SCL with different rates

with the code length n = 64.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0790.v1

https://doi.org/10.20944/preprints202308.0790.v1

8 of 11

Figure 5 shows when Eb/N0 = 4.0, the BLER comparison with different code rates from 0.5 to

0.85 among PEPOSD, CA-OSD, and CA-SCL. This shows that PEPOSD2, (75/4/20) can achieve close

accuracy with CA-OSD. Moreover, when R = 0.5 and R = 0.68 or higher, PEPOSD outperforms

CA-SCL obviously. More detailed analysis about PEPOSD related to its complexity is given in section

5.2.

Rate

B
L

E
R

CA-SCL(32)

CA-OSD(3)

PEPOSD
1
(60/3/8)

PEPOSD
2
(75/4/20)

PEPOSD
3
(100/4/100)

Figure 5. When SNR is 4.0dB, the BLER comparison with different code rate among PEPOSD, CA-OSD

and CA-SCL.

Then we analyze the ultimate performance with higher complexity. Figure 6 shows the

performance comparison for [128,108+11] CRC-polar code. PEPOSD(IW&HW) is here with

(IW/HW) = (100/4) and different δ. Meanwhile, PEPOSD(PW) with (IW/HW/δ/α/β) =

(100/4/1/2/3) and CA-SCL(L = 32) are shown. The average decoding time is got from the same CPU.

It can be concluded that PEPOSD can achieve better performance at a high rate for 128-bit CRC-polar

codes and the decoding complexity can also be smaller than CA-SCL in high SNR areas. Also PW

order performs better for this code.

Therefore, the simulation results show that PEPOSD achieves a better trade-off between accuracy

and complexity than CA-OSD, and also can perform better for some short codes than CA-SCL. What’s

more, the parameters can be configured flexibly and the decoding process can be parallelized to further

increase its throughput.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0790.v1

https://doi.org/10.20944/preprints202308.0790.v1

9 of 11

Es/N0(dB)

B
L

E
R

PEPOSD, =1

PEPOSD(PW), =1

PEPOSD, =2

PEPOSD, =8

CA-SCL

Es/N0(dB)

A
v
g
.

T
im

e(
m

s/
b
lo

ck
)

Figure 6. For [128,108+11] code, the comparison of BLER performance between PEPOSD and CA-SCL.

5.2. Complexity Analysis

First, we compare the computational complexity of the proposed scheme with CA-SCL.

Specifically, it should be noted that all operations are modulo-two operations (XOR) in this scheme, so

the hardware resources and time spent will be obviously less with the same quantity in the engineering

practice and hardware implementations. As most of the OSD research does, we focus on the queries

needed in the decoding process, also the number of the EPs tested. Therefore, the number of bit flipping

in this period can be calculated by ∑
Q
i=1 wH(e[i]), where Q denotes the queries. Another key complexity

that we consider compared with SCL, GRAND or other algorithms is GE in the pre-processor, of which

the complexity can be calculated by O(n · (min(k, n− k))2). Moreover, there are some parallel or other

efficient implementations can optimize the process like in [16].

Also, multiplication and addition operations needed in CA-SCL can be expressed as O(n · L ·

log(n)). Thus, Table 1 displays the complexity estimation of PEPOSD, CA-OSD, and CA-SCL. The

queries of PEPOSD mainly based on δ, if IW and HW are relatively high enough. In conclusion,

PEPOSD can obviously achieve lower complexity for high-rate codes, and for lower rates, PEPOSD

may outperform CA-SCL as it’s with modulo-two operations, which needs more hardware analysis to

prove.

Table 1. Complexity Estimation of PEPOSD, CA-OSD and CA-SCL with different CRC-polar codes.

For GE and CA-SCL, the number denotes the needed operations. For OSD algorithms, the number

denotes the number of bit flipping.

Code GE* PEPOSD1
** PEPOSD2 PEPOSD3 CA-OSD CA-SCL

a.[64,32+6] 43264 898 2975 18535 8436 12288

b.[64,44+6] 12544 887 2722 18159 19600 12288

c.[64,53+6] 1600 899 2620 18108 32509 12288

d.[128,108+11] 28672 16 103 844 273819 10368
* Gaussian Eliminate is necessary in all OSD algorithms. ** For PEPOSD1,PEPOSD2,PEPOSD3: n = 64, δ =

8, 20, 100; n = 128, δ = 1, 2, 8.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0790.v1

https://doi.org/10.20944/preprints202308.0790.v1

10 of 11

Observing together with Figure 5, it’s obvious that PEPOSD2, (75/4/20) can achieve close

accuracy with CA-OSD while its average number of bit flipping is 1/9 to 1/36 of 3-order CA-OSD.

Also, PEPOSD3, (100/4/100) can obtain better accuracy than CA-OSD and the queries can be greatly

reduced at the same time. For high-rate codes, PEPOSD can outperforms CA-SCL and CA-OSD both

in accuracy and complexity.

Finally, as PW is introduced, the queries reduction of the schemes with IW&HW and PW order

is compared in Table 2. For [64,46+6] and [128,108+11] CRC-polar codes, using PEPOSD with

(IW/HW/δ) = (100/4/1), the number of queries is reduced by 10%-30%.

Table 2. The average queries of IW&HW and PW order with (IW/HW/δ) = (100/4/1) for the

CRC-polar codes.

Order SNR=2.0dB1 SNR=2.5dB SNR=3.0dB SNR=3.5dB SNR=4.0dB

(a) n = 64 k = 46 m = 6

IW&HW 23.1 11 6.8 3.9 2.1
PW 16.5 11 5.9 3.5 2.1

(b) n = 128 k = 108 m = 11

IW&HW 925 641 275 101 25
PW 928 514 188 75 22

1 SNR denotes Eb/N0.

6. Conclusion

In this paper, we introduce the PEPOSD algorithm to enhance the performance of short CRC-polar

codes. It integrates the generating mechanism of noise queries in ORBGRAND to the generation of

error patterns in OSD. Therefore, all the EPs can be pre-generated to allow the pipeline decoding for

better speed. Also, early stop by CRC check can significantly reduce the complexity.

To optimize the decoding order of the proposed scheme, two options are introduced. IW&HW

order is suitable for the most circumstances while PW shows lower complexity with bigger IW. In this

way, the range of error patterns can be more controllable than l-order CA-OSD.

Simulation results show that there are several advantages in the performance and complexity

of PEPOSD compared with CA-OSD and CA-SCL for CRC-polar codes, which shows a promising

prospect.

Funding: This research was funded by the National Natural Science Foundation of China under Grant 92067202,
Grant 62071058

Abbreviations

The following abbreviations are used in this manuscript:

PEPOSD Pre-configured error pattern ordered statistics decoding

CRC Cyclic redundancy check

GRAND Guessing random additive noise decoding

ORB Ordered reliability bits

URLLC Ultra-reliable and low latency communications

CA CRC-Aided

SCL Successive cancellation list

ML Maximum likelihood

EPs Error patterns

VLSI Very large-scale integration

IW Index weight

HW Hamming weight

PW Priority weight

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0790.v1

https://doi.org/10.20944/preprints202308.0790.v1

11 of 11

References

1. Liva G.; Gaudio L.; Ninacs T.; Jerkovits T. Code Design for Short Blocks: A Survey. arXiv:1610.00873, 2016.

[CrossRef].

2. Niu K.; Zhang P.; Dai J.; Si Z.; Dong C. A golden decade of polar codes: From basic principle to 5G

applications. China Communications, 2023, 20, 94–121. [CrossRef].

3. Niu K.; Chen K. CRC-aided decoding of polar codes. IEEE Commun. Lett., 2012, 16, 1668–1671.[CrossRef].

4. Fossorier M. P. C.; Lin S. Soft-decision decoding of linear block codes based on ordered statistics. IEEE Trans. Inf.

Theory, 1995, 41, 1379–1396. [CrossRef].

5. Duffy K. R.; Li J.; Médard M. Guessing noise, not code-words. In IEEE Int. Symp. Inf. Theory, 2018, pp. 671–675.

[CrossRef].

6. Valembois A.; Fossorier M. An improved method to compute lists of binary vectors that optimize a given weight

function with application to soft-decision decoding. IEEE Commun. Lett., 2001, 5, 456-458. [CrossRef].

7. Valembois A.; Fossorier. M. Box and match techniques applied to soft-decision decoding. IEEE Trans. Inf. Theory,

2004, 50, 796-810. [CrossRef].

8. Jin W.; Fossorier M. Efficient box and match algorithm for reliability-based soft decision decoding of linear block codes.

In Proc. Inf. Theory Appl. Workshop, La Jolla, CA, USA, Jan. 2007. [CrossRef].

9. Wu Y.; Hadjicostis C. N. Soft-Decision Decoding Using Ordered Recodings on the Most Reliable Basis. IEEE Trans.

Inf. Theory, 2007, 53, 829–836. [CrossRef].

10. Wu D.; Li Y.; Guo X.; Sun Y. Ordered Statistic Decoding for Short Polar Codes. IEEE Commun. Lett., 2016, 20,

1064-1067. [CrossRef].

11. Yue C.; Shirvanimoghaddam M.; Li Y.; Vucetic B. Segmentation-discarding ordered-statistic decoding for linear block

codes. In Proc. IEEE Global Commun. Conf. (GLOBECOM), Waikoloa, HI, USA, 9-13 Dec. 2019, 1-6. [CrossRef].

12. Yue C.; Shirvanimoghaddam M.; Park G.; Park O.; Vucetic B.; Li Y. Probability-Based Ordered-Statistics Decoding for

Short Block Codes. IEEE Commun. Lett., 2021, 25, 1791-1795. [CrossRef].

13. Duffy K. R.; An W.; Médard M. Ordered Reliability Bits Guessing Random Additive Noise Decoding. IEEE Trans.

Signal Process., 2022, 70, 4528-4542. [CrossRef].

14. Abbas S. M.; Tonnellier T.; Ercan F.; Jalaleddine M. High-Throughput and Energy-Efficient VLSI Architecture for

Ordered Reliability Bits GRAND. IEEE Trans. on VLSI Systems, 2022, 30. [CrossRef].

15. Arıkan E. Channel polarization: a method for constructing capacity achieving codes for symmetric binary-input

memoryless channels. IEEE Trans. Inf. Theory, 2009, 55, 3051–3073. [CrossRef].

16. Scholl S.; Stumm C.; Wehn N. Hardware implementations of Gaussian elimination over GF(2) for channel decoding

algorithms. In 2013 Africon, Pointe aux Piments, Mauritius, Sept. 2013, 1-5. [CrossRef].

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0790.v1

https://arxiv.org/abs/1610.00873
https://doi.org/10.23919/JCC.2023.02.015
https://doi.org/10.1109/LCOMM.2012.090312.121501
https://doi.org/10.1109/LCOMM.2021.3097322
https://doi.org/10.1109/ISIT.2018.8437648
https://doi.org/10.1109/4234.966032
https://doi.org/10.1109/ISIT.2002.1023415
https://doi.org/10.1109/4234.966032
https://doi.org/10.1109/TIT.2006.889699
https://doi.org/10.1109/LCOMM.2016.2539170
https://doi.org/10.1109/GLOBECOM38437.2019.9014173
https://doi.org/10.1109/LCOMM.2021.3058978
https://doi.org/10.1109/TSP.2022.3203251
https://doi.org/10.1109/TVLSI.2022.3153605
https://doi.org/10.1109/TIT.2009.2021379
https://doi.org/10.1109/AFRCON.2013.6757620
https://doi.org/10.20944/preprints202308.0790.v1

	Introduction
	Preliminaries
	CRC-Polar Codes
	OSD Algorithm

	PEPOSD Decoder
	Pre-Configured Error Patterns
	IW&HW Order
	PW Order

	Performance Evaluation
	BLER Analysis
	Complexity Analysis

	Conclusion
	References

