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Abstract: Deep learning has been widely used in various tasks such as computer vision, natural
language processing, and predictive analysis, recommendation systems in the past decade. However,
practical scenarios often lack labeled data, posing challenges for traditional supervised methods.
Semi-supervised classification methods address this by leveraging both labeled and unlabeled data
to enhance model performance, but they face challenges in effectively utilizing unlabeled data and
distinguishing reliable information from unreliable sources. This paper introduces ReliaMatch, a
semi-supervised classification method that addresses these challenges by using a confidence threshold.
It incorporates a curriculum learning stage, feature filtering, and pseudo-label filtering to improve
classification accuracy and reliability. The feature filtering module eliminates ambiguous semantic
features by comparing labeled and unlabeled data in the feature space. The pseudo-label filtering
module removes unreliable pseudo-labels with low confidence, enhancing algorithm reliability.
ReliaMatch employs a curriculum learning training mode, gradually increasing training dataset
difficulty by combining selected samples and pseudo-labels with labeled data. This supervised
approach enhances classification performance. Experimental results show that ReliaMatch effectively
overcomes challenges associated with the underutilization of unlabeled data and the introduction of
error information, outperforming the pseudo-label strategy in semi-supervised classification.

Keywords: deep learning; semi-supervised learning; pseudo labels; classification; reliable match

1. Introduction

In the past decade, deep learning has dominated the machine learning landscape in data
classification [1,2], predictive analysis [3], recommendation system [4], anomaly detection [5,6] and
so on. Within deep learning, supervised classification methods have significantly improved the
performance of deep learning in various classification tasks. However, it is still very difficult to obtain
labels provided by professionals in many big data application scenario. In contrast, unsupervised
classification methods have obvious advantages in dealing with unlabeled samples. Nevertheless,
they greatly sacrificed the accuracy of the model because can not directly evaluate and optimize the
performance of deep learning models by using the label information. Therefore, semi-supervised
learning [7] caught the attention of researchers, which significantly improved the model performance
of unsupervised learning by leveraging datasets with a small amount of label data. A more practical
value lies in that semi-supervised learning methods can reduce the cost and time of manually marking
data. Recently, many semi-supervised learning methods based on deep learning have been proposed
[8-10], which can achieve quite good performance by leveraging the small fraction of labeled samples
in the dataset.

However, semi-supervised learning faces two major challenges: i) how to transfer information
obtained from limited labeled data to unlabeled data, and ii) how to learn as accurate information
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as possible directly from a large amount of unlabeled data. To address these issues, semi-supervised
learning uses three key loss terms (i.e., entropy minimization, generalization regularization, and
consistency regularization) to better motivate the model to learn the corresponding downstream
tasks. Among them, entropy minimization can encourage the model to confidently predict the output
of unlabeled data, thereby improving the accuracy and robustness of the model. Generalization
regularization constrains the model’s parameters to avoid overfitting to the training data during
the training process, thereby improving the model’s generalization performance. According to the
consistency assumption, data points that are close to each other often have consistency in the same label
and structure [11]. Therefore, consistency regularization can improve the accuracy and generalization
ability of the model by making the data consistent on the manifold.

In addition, many studies have explored methods for solving the information propagation
problem between different data [12], providing ideas for addressing the first major issue in
semi-supervised learning. Among them, pseudo-labeling and consistency regularization methods
provide ideas for solving the second major issue in semi-supervised learning. The pseudo-labeling
method [13] uses the predictions of a classification model or a clustering algorithm as artificial
labels to retrain the model. The consistency regularization method [9,10,14] forces the model to
make the same prediction for the same sample under different transformations, learning from
unlabeled data. However, these semi-supervised learning methods do not consider the possibility of
introducing different levels of erroneous information during the training process, which can lead to
low classification accuracy.

In the feature extraction stage, as plotted in Figure 1(a)(left) the model may have difficulty
accurately differentiating between semantic differences at the classification boundary due to the
ambiguity of feature representation boundaries. Without setting anchors for each class, the model may
learn incorrect semantic information. However, by providing each class with an anchor, confidence
thresholds can be set using the similarity between each sample and the anchor, allowing low-confidence
features to be filtered out as shown in Figure 1(a)(right). When assigning pseudo-labels to unlabeled
data, as plotted in Figure 1(b), assigning labels to samples with low predicted confidence may lead to
confirmation bias [15], where the model overfits to incorrect labels and reduces its performance. Using
a fixed threshold method cannot adapt to the dynamic changes of the dataset. On the contrary, a global
dynamic threshold method dynamically adjusts the threshold based on the confidence distribution of
unlabeled samples in the current iteration, thus avoiding this problem.

To address these issues, we propose ReliaMatch, a semi-supervised classification method that
filters unreliable information based on a confidence threshold. ReliaMatch adopts a confidence
threshold filtering strategy, which matches the similarity of labeled data and unlabeled data in
feature space by setting anchor points, thus filtering out outliers and demarcation points with
ambiguous semantics. Dynamic threshold is used to select reliable pseudo-labels, so as to eliminate
the confirmation deviation of the model to pseudo-labels and improve classification performance.
Additionally, ReliaMatch adopts the training mode of Curriculum Learning [16], which combines the
screened samples and their pseudo-labels with labeled data, gradually increasing the difficulty of
training data sets and participating in model training in a supervised way, thus further improving the
classification performance. In summary, we make the following three main contributions:

1) We propose a semi-supervised classification method (Reliable Match), which addresses the
issue of confirmation bias that arises from unlabeled data having different semantics and low
prediction confidence near the classification boundary.

2) ReliaMatch employs a confidence threshold filtering strategy that matches the similarity of
labeled and unlabeled data in feature space by setting anchor points, which filters out outliers
and demarcation points with ambiguous semantics. To eliminate confirmation deviation of the
model to pseudo labels and improve classification performance, ReliaMatch uses a dynamic
threshold to select reliable pseudo-labels.
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3) ReliaMatch employs Curriculum Learning training mode, which combines the screened samples
and their pseudo-labels with labeled data and gradually increases the difficulty of the training
dataset, thereby participating in model training in a supervised manner and further improving
classification performance.

Adjacent features with different semantics Filtering features by anchor and thresholds

(a) The left figure shows hows the semantic inconsistency between adjacent samples, and the
right figure illustrates how to use anchors to set confidence thresholds to filter features.
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(b) Comparison of different strategies for pseudo-label generation. The maximum predicted
probability strategy may cause confusion in the early stages but improves in the later stages.
The fixed threshold strategy may lead to either insufficient or incorrect labeling. The dynamic
threshold strategy, however, can adjust the threshold based on the confidence of unlabeled
samples and achieve higher accuracy in pseudo-labeling.

Figure 1. Unreliable information that may be introduced in the model training process.

2. Related Work

2.1. Semi-supervised Classification

Semi-supervised learning (SSL) has been extensively studied in various fields, including image
classification [17], object detection [18], and semantic segmentation [19]. SSL methods in image
classification aim to reduce reliance on labeled data by leveraging unlabeled data. In SSL, labeled results
are typically obtained through consistent regularization [20-22], pseudo-labeling [13], and entropy
minimization [23]. Consistent regularization ensures that the model produces consistent predictions
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for different transformations of the same image. Pseudo-labeling employs model confidence to
assign labels and guide the training process, while entropy minimization encourages the model to
produce highly confident predictions. These labeling strategies have been widely adopted in many
SSL approaches.

2.2. Consistency regularization

Consistency regularization plays a crucial role in modern semi-supervised learning (SSL)
algorithms. The core idea behind consistency regularization is that the same input sample should
produce consistent outputs under different perturbations. Early works such as [9,24,25] proposed this
concept, which was further developed in [8,14,22]. The fundamental form of consistency regularization
in SSL is often achieved through a loss term. The equation below represents this basic form:

pm(yA(x);0) — pm(y|A(x);0)| 13, 6)

where A refers to stochastic functions, resulting in different values for A(x), while p,, represents the
model’s output probability. In [25], random data augmentation, dropout, and random maximum
pooling are employed as A to ensure similarity among the predictions of neural networks. On the
other hand, [10] adopts adversarial transformations for augmentation. Another related approach,
presented in [9], extends the perturbations to different time periods, requiring the current prediction of
a sample to be similar to the prediction set of the same sample in the past. These perturbations mainly
arise from different network states and data augmentations.

In SSL, consistency regularization techniques aim to ensure that the same input sample produces
consistent output predictions under different perturbations. Different approaches have been proposed
to achieve this goal. For example, in [25], random data augmentation, dropout, and random maximum
pooling are used to promote similarity among the predictions of neural networks. Adversarial
transformations are employed for augmentation in [10]. Additionally, [9] extends the perturbations to
different time periods, enforcing similarity between current and past predictions for the same sample.
In [14], two networks with the same structure are utilized, and the consistency constraint is enforced by
comparing the predicted distributions using KL divergence or cross-entropy functions. This approach
is further developed in [26], where uncertainty weighting is applied to unlabeled samples, focusing
on samples with lower uncertainty. Virtual adversarial training, proposed by Miyato et al. [10],
introduces adversarial noise as interference into data samples, followed by unified regularization of
the resulting predictions. Another recent idea by Luo et al. [27] suggests using a comparison loss as
the regularization term, ensuring that predictions from the same (or different) categories are similar (or
different). This extends the scope of consistency regularization to cover consistency between different
samples and can be combined with other methods like [14] or [10] for improved performance. To
address model memorization and sensitivity to adversarial data, Mixup, proposed by Zhang et al. [28],
pairs examples and labels by training a convex combination of neural networks. Verma et al. [29] build
on Mixup with interpolation consistency training, which encourages consistency between unlabeled
samples and the interpolation prediction of a single sample. Moreover, in [22], consistent regularization
is achieved through estimating low-entropy labels, generating data-augmented unlabeled samples,
and utilizing Mixup to combine labeled and unlabeled samples.

2.3. Pseudo-labeling

Pseudo labels are artificial labels generated by the model itelf, which are used to further train the
model. Through the pseudo-labeling method, we can use both labeled samples and pseudo labeled
samples as new training data to update the model, thus greatly improving the utilization rate of
unlabeled samples.

Lee et al. [13] chose the class with the highest prediction probability of the model as the pseudo
label, however, pseudo labels are only used in the fine-tuning stage, and the network needs to be
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pre-trained. Mandal et al. [30] propose a new deep semi-supervised framework, which can seamlessly
process marked and unlabeled data. The framework is trained by two parts in turn: firstly, the label
prediction component is used to predict the label of the unlabeled part of the training data, and then the
common representation of two patterns is learned for cross-modal retrieval. Caron et al. [31] proposed a
deep clustering algorithm combining K-means clustering algorithm and convolutional neural network,
which used the clustering results of K-menas with unlabeled data as false labels to assist CNN
in classification. Based on the extreme value theory, Cascante-Bonilla et al. [32] put forward the
Curriculum Labeling (CL), which uses careful curriculum selection as pacing standard to strengthen the
pseudo labeling. Hu et al. [33] design a new end-to-end Iterative Feature Clustering Graph Convolution
Network (IFC-GCN) to enhance the standard GCN through the iterative feature clustering module,
and design an EM-like framework to improve the network performance by alternately correcting false
labels and the node characteristics.

3. Method

The core idea of ReliaMatch is to match the correlation between labeled and unlabeled data, by
filtering reliable unlabeled data and generating pseudo-labels, which are then used as new training
data in the supervised learning process of the model. The detailed process of ReliaMatch is shown in
Figure 2.

(3)Re-training by supervised learning Supervised Loss

—t
——p Classifier —p
A Feature M | .-I
(DTrain

Prediction Result True Label

Labeled data
Labeled data
@Predict .al
Unlabeled data ‘{’5
Pseudo Label Prediction Result
Filter 1
Feature Selected data with

Feature Filter —— Classifier hi
igh confidence

—» Labeled data flow — Unlabeled data flow —» Next iteration data flow
Figure 2. Illustration of the ReliaMatch framework.

This method uses confidence threshold to filter unreliable information, that is, feature vectors on
the boundary of unlabeled data classification or outlier feature vectors and artificially marked false
labels that may be incorrect. ReliaMatch adopts a self-training framework, that is, by iteratively learning
the information in unlabeled datasets and labeled datasets, the performance of deep learning model is
improved. In the training process, ReliaMatch uses the trained model to predict the unlabeled data,
and adds the reliable data points in the prediction results and their pseudo-labels to the pseudo-label
dataset. Then the pseudo-labeled dataset and the labeled dataset are merged to train the next round
model. This process is repeated until a preset number of iterations or performance convergence is
achieved.

For labeled samples, ReliaMatch trains them using the feature extraction model and the
classification model. After training, feature extraction and classification prediction are performed
on the labeled samples. At the same time, the average feature vector of each category of the labeled
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samples is calculated and used as a feature anchor for filtering reliable features of the unlabeled
samples.

For unlabeled samples, ReliaMatch first performs data processing by using data augmentation
techniques to expand the unlabeled samples. Next, the enhanced unlabeled samples are input into
the model for feature extraction. Then, the feature filter module calculates the similarity between
the extracted features of the unlabeled samples and the feature anchor, and sets a feature similarity
threshold to filter out the unlabeled samples with low similarity. This process is called filtering 1. The
unlabeled samples selected by filtering 1 are labeled with the class label of the nearest feature anchor,
and are used as pseudo-labels (hard labels). Next, ReliaMatch inputs these feature-filtered samples into
classifier for classification prediction. For each unlabeled sample, it compares whether the class label
of its maximum predicted probability (soft label) is consistent with the class label of the pseudo-label.
If the classes are inconsistent, the unlabeled sample is filtered out. This process is called filtering 2.
Finally, a dynamic threshold is set for the predicted probability to filter out unlabeled samples with
maximum predicted probability below the threshold. This process is called filtering 3.

After three rounds of filtering, the remaining unlabeled samples are considered to be
high-confidence reliable samples and are combined with their pseudo-labels to form a pseudo-labeled
dataset. These pseudo-labeled samples are merged with labeled samples to form a new labeled dataset,
which is used to train a new model. This process is iterated continuously to gradually increase the size
of the labeled dataset and improve the performance of semi-supervised learning.

3.1. Problem Description

To describe the design process of the ReliaMatch model more accurately, we assumes that in the
t" round of iteration, the training dataset X}, is used, which contains N* samples including image
data from different categories Xy = {xi}fit 1- The training dataset is divided into a labeled dataset

Xt = {xfll}ﬁl and an unlabeled dataset Xj; = {x} , f\i&l Assuming that f§ is the convolutional neural
network used for feature extraction in the # round of iteration. Z4, = f}(x!) represents the feature
vector set obtained from X}, after being processed by the convolutional neural network f). Z; consists
of two parts, Z} and Z{;, where Z] = fi(x},y},) = (Zzt’,l'yzt‘,l)f\ii1 is the labeled feature vector set in
the " round of iteration, and Z{; = fi(x! ) = {z, ﬁll is the unlabeled feature vector set in the "
round of iteration. Let g/, be the fully connected neural network (classifier) used by the model for
classification prediction in the " round of iteration, with its output being the predicted probability
of the sample in each category. Let pf,]- denote the probability that the model predicts sample x! as

category j, and K is the number of categories. Then P(x!) = ¢f, (fi(x!)) = {pf,]- ]K:l'

3.2. Feature Anchoring

Our first contribution is feature anchoring, which uses the features of the labeled data to calculate
the average of the features of each category as an anchor. We think that nearby points are likely to have
the same labels, and we also agree points on the same structure (usually called clusters or manifolds)
may have the same label. Therefore, our method pay attention to the representation study of images,
and we use the similarity of feature level to fliter unreliable samples and assigns pseudo labels to each
reliable sample. A schematic of fliterring out poor feature of samples can be seen in Figure 3.
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Figure 3. Schematic diagram of anchor generation and feature filtering. In the " iteration, five labeled
samples and five unlabeled samples are selected, which come from four categories, and the samples
with the same color indicate that they belong to the same category.

We first calculate the average feature vectors of each class j in the labeled feature dataset Z} at
the ! iteration to generate K feature anchor points A = {a; ]I-<=1. To do this, we use the following

equation:
1
a; = — Y zf’l, )

‘Z},L (0t ez,

where Z]t | represents a subset of feature samples in the feature vector set Z| where the label i, = j in

the # round of iteration. |Z]t . | denotes the number of samples in the subset Z; .-
Next, we use cosine similarity to calculate the similarity between the extracted enhanced unlabeled
samples’ features and feature anchor points:

zt gt

¢ . ¢ B i 7

fsimpea = $(Zi0,8)) = W
: j

3)

D _t .t
Y12y 48 id

- \/24?:1 (2} ,0) - \/25:1 (”§,d)2’

where zf, . represents the feature vector of the unlabeled data, a; represents the anchor point, - represents
the dot product of the vector, | - | represents the norm of the vector, D is the dimension of the vector.
A cosine similarity close to 1 indicates that the two vectors are very close in space, while a cosine
similarity close to —1 indicates that the two vectors are almost opposite in space. A cosine similarity
close to 0 indicates that there is no obvious correlation between the two vectors in space.
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Next, the minimum similarity between labeled sample features and anchor points is used as the
threshold for feature similarity, and a hyperparameter is used to dynamically adjust the threshold size
of feature similarity:

o gt
Zip-4;

) )

TItfea = D‘%ea min(s(zzt,l/a;)) = D‘%ea min EAR |a |
il

where ak,, € [0,1] is a coefficient used to dynamically adjust the threshold of feature similarity, Zf,l
represents the feature vector of the labeled sample, a§ represents the feature anchor point, - denotes
the dot product of vectors, and | - | denotes the norm of vectors. The feature similarity threshold
Tiéea € [711 1]‘

If the similarity f¢,, ., between the feature of an unlabeled sample and the feature anchor point
is greater than the feature similarity threshold t},,, thatis, f, ... > t},,, then the pseudo-label of the
current sample xf’u is considered to be the label j of the feature anchor point that is most similar to its
feature vector.

In the feature filtering module, the labeled dataset remains unchanged. In the t-th iteration,
pseudo-labels of unlabeled samples can be obtained after feature filtering. The feature-filtering
module dataset consisting of the filtered unlabeled samples and their pseudo-labels is denoted as

Xy = {(x] 0¥ ul)}lN {, where y! . is the pseudo-label of x} ;, and Ny}, is the number of samples in

the dataset.

iul’

3.3. Dynamic Allocation Pseudo Lables

In the pseudo-labeling strategy, threshold selection is an important issue. Traditional
semi-supervised classification methods usually use a fixed threshold to predict the class of unlabeled
samples and assign pseudo-labels to high-confidence samples above this threshold for training.
However, this method may not adapt well to changes in the data distribution, and may either filter
out useful samples excessively or add unreliable pseudo-labels, leading to classification errors due to
samples of different classification difficulties.

To address these issues, the pseudo-label filtering module in ReliaMatch adopts a global dynamic
threshold to filter reliable samples. Specifically, in each iteration, the module sets the confidence
threshold for predicting probability based on the average confidence of unlabeled samples for the
entire dataset. If the average confidence of unlabeled samples is high, it indicates that the algorithm
has good classification performance for unlabeled samples, and the threshold can be increased. If
the change in labels between two iterations is significant, it indicates that the algorithm has not yet
converged and the threshold should be appropriately lowered to ensure the accuracy of the model.

For each unlabeled sample xl .1 its predicted probabilities P(x; ) =A{pt 4 j}]K:l can be converted

into a hard label by creating a vector of length K, denoted as Oi’ = {o! j K

j=1, s follows:

/ {1, ifj =arg max(p;ullj) )

0, otherwise,

where 0!  indicates the label assigned to sample x! ; for the j class. Specifically, the class with the
highest predlcted probability is a551gned a label of 1 and the others are assigned a label of 0.

Next, the average confidence score p!, can be obtained by computing the average of the maximum
predicted probability values for all unlabeled samples, i.e.,

t 1

Pu = |X | Z maX(P(xf,ul))/ (6)

Xiul eX{ll

where X;j; denotes the unlabeled dataset after feature filtering, and P(x; x! 1) represents the predicted
probabilities of sample x; ,; in the #training round.
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ReliaMatch uses the value of p!, as the confidence level of unlabeled data to adjust the credibility
threshold of pseudo labels to ensure the quality of pseudo labels. Therefore, the global dynamic
threshold th,, in round f can be represented as:

1 0 _
t max (1+e*l’{z ,TPm) =1
Tpre = Phel|¥h Vit | A>1, @
max 1 iul . iulllp
1+e™ Pu ||Pu( lul) pi; ( Iul)HF

where 79, is the initial threshold. € is a very small constant to avoid division by zero. ||-|| F denotes

t t-1
Yiur = Yiun
the size of the difference between the pseudo labels of the unlabeled sample i in round ¢ and those in

matrix norm, and p!, represents the average confidence level in round . ‘

‘F represents

round t — 1. ‘

ph(x i L) — pi i (xt X ‘ ‘ represents the difference between the confidence level p!, of
the unlabeled sample i in round ¢ and that inround ¢t — 1.

To select the most reliable pseudo labels, ReliaMatch further filters the unlabeled data in X!},. The
filtering criteria are as follows:

® Only select samples whose maximum predicted probability is greater than the predicted
probability threshold tpy,:
maX(P(xf,u1)> > Tpre- (8)

® Only select samples whose predicted category is consistent with the pseudo label in the pseudo
label filtering module:

Of = yf,ul‘ (9)

After screening, only samples that meet the above requirements can be added to the labeled
dataset and used for supervised network training. Therefore, the resulting pseudo-labeled dataset is

denoted as X}, = (x! Xi o1 Yi uz)IN 1, where yl 1o represents the pseudo-label of xl o and N{}, represents
the number of samples in this dataset. The formula is as follows:

Nt
Xlt,lz = {(xi,uZI yi,u2)}i:ulz|maX(P( zul)) > Tpre N O - yl ul: (10)

3.4. Loss

In ReliaMatch, the unlabeled dataset X ,, after undergoing feature filtering and pseudo-label
filtering, is transferred to the labeled dataset for supervised training, forming a new labeled dataset
Xi“ and an updated unlabeled dataset X{JH, given by the following formulas:

X = {atf M = X 4 X, (1)

Nt —Nt
Xt+1 _ {xf-l;l,yl ul} uNuz . _ X X{JZ' (12)

Based on this, the model parameters are updated using the supervised loss L. Specifically, for a
sample x{, in the labeled dataset with its label y; , we have:

L= Lee(8o(fo(xi)) v, (13)

where x;; is a sample from the labeled dataset in the #" iteration, and y;  is the label of this sample.
Lk represents the cross-entropy loss function.
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4. Experiments

4.1. Datasets

CIFAR-10: A dataset containing 60K images, with the shape of 32 x 32, is evenly distributed in
ten categories. There are 50K images in the training set and 10K images in the test set. Our validation
set size is 5000 for CIFAR-10.

SVHN: A dataset containing 99289 images, with the shape of 32 x 32, is evenly distributed in ten
categories. SVHN consists of ten categories. The training contents contains 73257 images, and the test
set contains 26032 images. Our validation set size is 5000 for SVHN.

4.2. Model Details

ReliaMatch uses CNN-13 [34] and WideResNet-28 [35] for classification on CIFAR-10 and SVHN
datasets. In order to make fair comparisons with other methods, the same parameters as in [32] are
used in this paper. The network optimization is performed using stochastic gradient descent and
Nesterov momentum algorithm, combined with weight decay regularization to reduce overfitting. The
momentum factor is set to 0.9 and the initial learning rate is 0.1. To further improve optimization, cosine
annealing [36] is employed to update the model parameters. By default, the initial hyperparameters
ak,, is setto 1and 79, is set to 0.95.

4.3. Experimental Results and Analysis

In this section, we compare ReliaMatch with other common semi-supervised learning
methods, including Pseudo-Label [13], LP-MT [12], PL-CB [15], Curriculum Labeling [32] based
on pseudo-labeling, 7t Model [9], Temporal Ensembling [9], Mean Teacher [14], VAT [10], Ladder Net
[8], ICT [37] based on consistency regularization, and MixMatch [22] based on strong mixup.

We compared ReliaMatch with other commonly used semi-supervised learning methods,
including Pseudo-Label [13], LP-MT [12], PL-CB [15], Curriculum Labeling [32], r Model [9] and
Temporal Ensembling [9], Mean Teacher [14], VAT [10], Ladder Net [8] and ICT [37], and MixMatch
[22], based on the WideResNet-28 and CNN-13 architectures for semi-supervised classification on the
CIFAR10 and SVHN datasets.

From the results shown in Table 1 and Table 2, it can be seen that, compared to other
semi-supervised learning methods, ReliaMatch considers issues such as feature and label noise,
filters out semantically ambiguous features and unreliable pseudo-labels, and thus performs
better. Specifically, the ReliaMatch method uses the same WideResNet-28 network as advanced
semi-supervised classification methods proposed by previous researchers. On the CIFAR-10 dataset,
this method used 4000 labeled data for testing, and achieved a test error rate of only 5.86%. In
comparison, the test error rate of the Pseudo-Label method was 17.78%, Curriculum Labeling method
was 8.92%, and PL-CB method was 6.28%. On the SVHN dataset, the ReliaMatch method used only
1000 labeled data for testing, achieving a test error rate of 4.04%, significantly better than the test error
rates of Pseudo-Label method (7.62%) and Curriculum Labeling method (5.65%).

doi:10.20944/preprints202306.2209.v1
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Table 1. Comparison of Test Error Rate(%) of WideResNet-28 with Different Semi-supervised Methods.

Method CIFAR-10(N;, = 4000) | SVHN(N; = 1000)
PLT 17.78 &+ 0.57 7.62 +£0.29
Curriculum Labeling i 8.92 +0.03 5.65 +0.11

PL-CBT 6.28 +0.30 -

77 Model® 16.37 £+ 0.63 7.19 + 0.27
Mean Teacher 10.36 + 0.28 5.65 + 0.47
VATT 13.86 + 0.27 5.63 £0.20
VAT+EntMin' 13.13 £ 0.39 5.35 + 0.19
ICTT 7.66 £ 0.17 3.53 £ 0.07
MixMatch T 6.24 + 0.06 3.27 £0.31
ReliaMatch” 5.86 + 0.12 4.04 £0.08

N, represents the number of labeled samples in the training set, * indicates
that the result has been reported in the literature [32], and ~ represents the
average of 5 runs of the proposed method in this paper.

Table 2. Comparison of Test Error Rate (%) of Different Semi-supervised Methods Using CNN-13.

Method CIFAR-10(N;, = 4000) | SVHN(N; = 1000)
LP-MT ¥ 10.16=+ 0.28 -
Curriculum LabelingJr 9.81 + 0.22 4.75 + 0.28
Ladder Net? 12.1640.31 -
Temporal Ensemblimg1L 12.16+0.24 4.42+0.16
ReliaMatch” 7.42 £0.05 7.13+ 0.28

N, represents the number of labeled samples in the training set, * indicates
that the result has been reported in the literature [32], and ~ represents the
average of 5 runs of the proposed method in this paper.

In addition, the ReliaMatch method uses the same CNN-13 network as advanced semi-supervised
classification methods proposed by previous researchers. On the CIFAR-10 dataset, using 4000 labeled
data for testing, the test error rate of ReliaMatch method was 7.42%, which is lower than the test error
rates of Pseudo-Label methods (LP-MT, Curriculum Labeling) and consistency regularization methods
(Ladder Net, Temporal Ensembling).

One common way to evaluate semi-supervised classification algorithms is by varying the size
of the labeled dataset. By reducing the number of available labeled samples, it is possible to better
simulate real-world scenarios. On the CIFAR-10 and SVHN datasets, we tested the error rates of the
ReliaMatch method using the WideResNet-28 network under different numbers of labeled samples.
We used datasets with 500, 1000, 2000, and 4000 labeled samples, respectively, and only changed the
number of labeled samples during each training while keeping other hyperparameters the same as
when using 4000 labeled samples.

The experimental results show that the classification performance of the ReliaMatch method
does not significantly degrade under different numbers of labeled samples. This indicates that the
ReliaMatch method has good robustness and can provide stable performance even with very limited
labeled data, which is crucial for practical applications since in many cases, only very limited labeled
data can be obtained. Therefore, these results suggest that the ReliaMatch method is an effective
semi-supervised classification algorithm that can be useful in practical applications.

In addition, we also investigated the effectiveness of the feature filtering module and pseudo-label
filtering module in the ReliaMatch method. As shown in Table 3, we separately or collectively
removed these two modules and evaluated their impact on the method performance by applying data
augmentation during training. The experiments were conducted on the CIFAR-10 dataset with 4000
labeled samples, and the WideResNet-28 was used as the backbone network.
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Figure 4. Comparison of test error rates of different methods using different amounts of labeled data.

Table 3. Explore the influence of important modules of ReliaMatch on classification results.

Method Test Error Rate(%)
w /o Feature Filtering 6.74
w /o Pseudo-label Filtering 9.12
w /o Feature Filtering and Pseudo-label Filtering 16.9
ReliaMatch(benchmark) 5.86

After analyzing the Table 3, we have reached the following conclusions: the pseudo label filtering
module has a significant impact on the performance of the ReliaMatch method, as the removal of this
module leads to an increase in model error rate from 5.86 to 9.12. This indicates that the pseudo label
filtering module can remove low-confidence pseudo labels, thereby reducing noise and improving
model performance. In contrast, the effect of the feature filtering module is not as significant as that of
the pseudo label filtering module, but it still contributes to improving model performance. Its removal
results in a model error rate increase from 5.86 to 6.74, indicating that the feature filtering module can
select high-quality features and thus improve model performance. Additionally, removing both feature
and pseudo label filtering modules causes a sharp increase in model error rate, from 5.86 to 16.9. This
demonstrates that both feature and pseudo label filtering modules make important contributions to
the performance of the ReliaMatch method, and both are necessary.

Therefore, both feature and pseudo label filtering modules play important roles in the ReliaMatch
method. The feature filtering module can select high-quality features, while the pseudo label
filtering module can remove low-confidence pseudo labels. Their combined effect can improve
model performance.

We demonstrated the training process of ReliaMatch using the CNN-13 network on the CIFAR-10
and SVHN datasets. ReliaMatch adopts a curriculum learning training approach. The method
combines the selected samples and their reliable pseudo-labels with the labeled data, gradually
increasing the difficulty of the training data to participate in model training in a supervised manner.
As shown in Figures 5 and 6, during the training process, ReliaMatch reinitializes the model training
after each label transfer to mitigate the problem of confirmation bias caused by pseudo-labels.
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Figure 6. Training process of ReliaMatch on SVHN dataset.

5. Conclusions

In this paper, we proposed a reliable semi-supervised deep learning classification algorithm,
i.e., ReliaMatch. The algorithm integrates course label, feature filter module and pseudo-label filter
module, aiming at improving classification accuracy and algorithm reliability, focusing on key features,
making better use of unlabeled data and avoiding the confirmation deviation of pseudo-labels. The
course label improves the classification accuracy and the reliability of the algorithm. The feature
filtering module eliminates unnecessary features, which makes the algorithm pay more attention to
key features. The false label filtering module eliminates the confirmation deviation of false labels and
filters out unreliable features and labels with low confidence, thus making the algorithm more stable
and reliable. The experimental results show that ReliaMatch achieves the most advanced classification
results on multiple data sets under the control of the confidence threshold.
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