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Abstract: Deep learning has been widely used in various tasks such as computer vision, natural

language processing, and predictive analysis, recommendation systems in the past decade. However,

practical scenarios often lack labeled data, posing challenges for traditional supervised methods.

Semi-supervised classification methods address this by leveraging both labeled and unlabeled data

to enhance model performance, but they face challenges in effectively utilizing unlabeled data and

distinguishing reliable information from unreliable sources. This paper introduces ReliaMatch, a

semi-supervised classification method that addresses these challenges by using a confidence threshold.

It incorporates a curriculum learning stage, feature filtering, and pseudo-label filtering to improve

classification accuracy and reliability. The feature filtering module eliminates ambiguous semantic

features by comparing labeled and unlabeled data in the feature space. The pseudo-label filtering

module removes unreliable pseudo-labels with low confidence, enhancing algorithm reliability.

ReliaMatch employs a curriculum learning training mode, gradually increasing training dataset

difficulty by combining selected samples and pseudo-labels with labeled data. This supervised

approach enhances classification performance. Experimental results show that ReliaMatch effectively

overcomes challenges associated with the underutilization of unlabeled data and the introduction of

error information, outperforming the pseudo-label strategy in semi-supervised classification.

Keywords: deep learning; semi-supervised learning; pseudo labels; classification; reliable match

1. Introduction

In the past decade, deep learning has dominated the machine learning landscape in data

classification [1,2], predictive analysis [3], recommendation system [4], anomaly detection [5,6] and

so on. Within deep learning, supervised classification methods have significantly improved the

performance of deep learning in various classification tasks. However, it is still very difficult to obtain

labels provided by professionals in many big data application scenario. In contrast, unsupervised

classification methods have obvious advantages in dealing with unlabeled samples. Nevertheless,

they greatly sacrificed the accuracy of the model because can not directly evaluate and optimize the

performance of deep learning models by using the label information. Therefore, semi-supervised

learning [7] caught the attention of researchers, which significantly improved the model performance

of unsupervised learning by leveraging datasets with a small amount of label data. A more practical

value lies in that semi-supervised learning methods can reduce the cost and time of manually marking

data. Recently, many semi-supervised learning methods based on deep learning have been proposed

[8–10], which can achieve quite good performance by leveraging the small fraction of labeled samples

in the dataset.

However, semi-supervised learning faces two major challenges: i) how to transfer information

obtained from limited labeled data to unlabeled data, and ii) how to learn as accurate information
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as possible directly from a large amount of unlabeled data. To address these issues, semi-supervised

learning uses three key loss terms (i.e., entropy minimization, generalization regularization, and

consistency regularization) to better motivate the model to learn the corresponding downstream

tasks. Among them, entropy minimization can encourage the model to confidently predict the output

of unlabeled data, thereby improving the accuracy and robustness of the model. Generalization

regularization constrains the model’s parameters to avoid overfitting to the training data during

the training process, thereby improving the model’s generalization performance. According to the

consistency assumption, data points that are close to each other often have consistency in the same label

and structure [11]. Therefore, consistency regularization can improve the accuracy and generalization

ability of the model by making the data consistent on the manifold.

In addition, many studies have explored methods for solving the information propagation

problem between different data [12], providing ideas for addressing the first major issue in

semi-supervised learning. Among them, pseudo-labeling and consistency regularization methods

provide ideas for solving the second major issue in semi-supervised learning. The pseudo-labeling

method [13] uses the predictions of a classification model or a clustering algorithm as artificial

labels to retrain the model. The consistency regularization method [9,10,14] forces the model to

make the same prediction for the same sample under different transformations, learning from

unlabeled data. However, these semi-supervised learning methods do not consider the possibility of

introducing different levels of erroneous information during the training process, which can lead to

low classification accuracy.

In the feature extraction stage, as plotted in Figure 1(a)(left) the model may have difficulty

accurately differentiating between semantic differences at the classification boundary due to the

ambiguity of feature representation boundaries. Without setting anchors for each class, the model may

learn incorrect semantic information. However, by providing each class with an anchor, confidence

thresholds can be set using the similarity between each sample and the anchor, allowing low-confidence

features to be filtered out as shown in Figure 1(a)(right). When assigning pseudo-labels to unlabeled

data, as plotted in Figure 1(b), assigning labels to samples with low predicted confidence may lead to

confirmation bias [15], where the model overfits to incorrect labels and reduces its performance. Using

a fixed threshold method cannot adapt to the dynamic changes of the dataset. On the contrary, a global

dynamic threshold method dynamically adjusts the threshold based on the confidence distribution of

unlabeled samples in the current iteration, thus avoiding this problem.

To address these issues, we propose ReliaMatch, a semi-supervised classification method that

filters unreliable information based on a confidence threshold. ReliaMatch adopts a confidence

threshold filtering strategy, which matches the similarity of labeled data and unlabeled data in

feature space by setting anchor points, thus filtering out outliers and demarcation points with

ambiguous semantics. Dynamic threshold is used to select reliable pseudo-labels, so as to eliminate

the confirmation deviation of the model to pseudo-labels and improve classification performance.

Additionally, ReliaMatch adopts the training mode of Curriculum Learning [16], which combines the

screened samples and their pseudo-labels with labeled data, gradually increasing the difficulty of

training data sets and participating in model training in a supervised way, thus further improving the

classification performance. In summary, we make the following three main contributions:

1) We propose a semi-supervised classification method (Reliable Match), which addresses the

issue of confirmation bias that arises from unlabeled data having different semantics and low

prediction confidence near the classification boundary.
2) ReliaMatch employs a confidence threshold filtering strategy that matches the similarity of

labeled and unlabeled data in feature space by setting anchor points, which filters out outliers

and demarcation points with ambiguous semantics. To eliminate confirmation deviation of the

model to pseudo labels and improve classification performance, ReliaMatch uses a dynamic

threshold to select reliable pseudo-labels.
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3) ReliaMatch employs Curriculum Learning training mode, which combines the screened samples

and their pseudo-labels with labeled data and gradually increases the difficulty of the training

dataset, thereby participating in model training in a supervised manner and further improving

classification performance.
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(a) The left figure shows hows the semantic inconsistency between adjacent samples, and the

right figure illustrates how to use anchors to set confidence thresholds to filter features.
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(b) Comparison of different strategies for pseudo-label generation. The maximum predicted

probability strategy may cause confusion in the early stages but improves in the later stages.

The fixed threshold strategy may lead to either insufficient or incorrect labeling. The dynamic

threshold strategy, however, can adjust the threshold based on the confidence of unlabeled

samples and achieve higher accuracy in pseudo-labeling.

Figure 1. Unreliable information that may be introduced in the model training process.

2. Related Work

2.1. Semi-supervised Classification

Semi-supervised learning (SSL) has been extensively studied in various fields, including image

classification [17], object detection [18], and semantic segmentation [19]. SSL methods in image

classification aim to reduce reliance on labeled data by leveraging unlabeled data. In SSL, labeled results

are typically obtained through consistent regularization [20–22], pseudo-labeling [13], and entropy

minimization [23]. Consistent regularization ensures that the model produces consistent predictions
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for different transformations of the same image. Pseudo-labeling employs model confidence to

assign labels and guide the training process, while entropy minimization encourages the model to

produce highly confident predictions. These labeling strategies have been widely adopted in many

SSL approaches.

2.2. Consistency regularization

Consistency regularization plays a crucial role in modern semi-supervised learning (SSL)

algorithms. The core idea behind consistency regularization is that the same input sample should

produce consistent outputs under different perturbations. Early works such as [9,24,25] proposed this

concept, which was further developed in [8,14,22]. The fundamental form of consistency regularization

in SSL is often achieved through a loss term. The equation below represents this basic form:

||pm(y|A(x); θ)− pm(y|A(x); θ)||22, (1)

where A refers to stochastic functions, resulting in different values for A(x), while pm represents the

model’s output probability. In [25], random data augmentation, dropout, and random maximum

pooling are employed as A to ensure similarity among the predictions of neural networks. On the

other hand, [10] adopts adversarial transformations for augmentation. Another related approach,

presented in [9], extends the perturbations to different time periods, requiring the current prediction of

a sample to be similar to the prediction set of the same sample in the past. These perturbations mainly

arise from different network states and data augmentations.

In SSL, consistency regularization techniques aim to ensure that the same input sample produces

consistent output predictions under different perturbations. Different approaches have been proposed

to achieve this goal. For example, in [25], random data augmentation, dropout, and random maximum

pooling are used to promote similarity among the predictions of neural networks. Adversarial

transformations are employed for augmentation in [10]. Additionally, [9] extends the perturbations to

different time periods, enforcing similarity between current and past predictions for the same sample.

In [14], two networks with the same structure are utilized, and the consistency constraint is enforced by

comparing the predicted distributions using KL divergence or cross-entropy functions. This approach

is further developed in [26], where uncertainty weighting is applied to unlabeled samples, focusing

on samples with lower uncertainty. Virtual adversarial training, proposed by Miyato et al. [10],

introduces adversarial noise as interference into data samples, followed by unified regularization of

the resulting predictions. Another recent idea by Luo et al. [27] suggests using a comparison loss as

the regularization term, ensuring that predictions from the same (or different) categories are similar (or

different). This extends the scope of consistency regularization to cover consistency between different

samples and can be combined with other methods like [14] or [10] for improved performance. To

address model memorization and sensitivity to adversarial data, Mixup, proposed by Zhang et al. [28],

pairs examples and labels by training a convex combination of neural networks. Verma et al. [29] build

on Mixup with interpolation consistency training, which encourages consistency between unlabeled

samples and the interpolation prediction of a single sample. Moreover, in [22], consistent regularization

is achieved through estimating low-entropy labels, generating data-augmented unlabeled samples,

and utilizing Mixup to combine labeled and unlabeled samples.

2.3. Pseudo-labeling

Pseudo labels are artificial labels generated by the model itelf, which are used to further train the

model. Through the pseudo-labeling method, we can use both labeled samples and pseudo labeled

samples as new training data to update the model, thus greatly improving the utilization rate of

unlabeled samples.

Lee et al. [13] chose the class with the highest prediction probability of the model as the pseudo

label, however, pseudo labels are only used in the fine-tuning stage, and the network needs to be
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pre-trained. Mandal et al. [30] propose a new deep semi-supervised framework, which can seamlessly

process marked and unlabeled data. The framework is trained by two parts in turn: firstly, the label

prediction component is used to predict the label of the unlabeled part of the training data, and then the

common representation of two patterns is learned for cross-modal retrieval. Caron et al. [31] proposed a

deep clustering algorithm combining K-means clustering algorithm and convolutional neural network,

which used the clustering results of K-menas with unlabeled data as false labels to assist CNN

in classification. Based on the extreme value theory, Cascante-Bonilla et al. [32] put forward the

Curriculum Labeling (CL), which uses careful curriculum selection as pacing standard to strengthen the

pseudo labeling. Hu et al. [33] design a new end-to-end Iterative Feature Clustering Graph Convolution

Network (IFC-GCN) to enhance the standard GCN through the iterative feature clustering module,

and design an EM-like framework to improve the network performance by alternately correcting false

labels and the node characteristics.

3. Method

The core idea of ReliaMatch is to match the correlation between labeled and unlabeled data, by

filtering reliable unlabeled data and generating pseudo-labels, which are then used as new training

data in the supervised learning process of the model. The detailed process of ReliaMatch is shown in

Figure 2.

②Predict

Filter 1

Prediction Result

· ·· · ··

③Re-training by supervised learning Supervised Loss

Feature Filter
Selected data with 

high confidence

· ··· ··

Pseudo Label

Classifier

Classifier

Labeled data flow Next iteration data flow

①Train

Labeled data

Unlabeled data

Labeled data

Feature

Feature

Filter 3Filter 2

True Label

Prediction Result

Unlabeled data flow

Figure 2. Illustration of the ReliaMatch framework.

This method uses confidence threshold to filter unreliable information, that is, feature vectors on

the boundary of unlabeled data classification or outlier feature vectors and artificially marked false

labels that may be incorrect. ReliaMatch adopts a self-training framework, that is, by iteratively learning

the information in unlabeled datasets and labeled datasets, the performance of deep learning model is

improved. In the training process, ReliaMatch uses the trained model to predict the unlabeled data,

and adds the reliable data points in the prediction results and their pseudo-labels to the pseudo-label

dataset. Then the pseudo-labeled dataset and the labeled dataset are merged to train the next round

model. This process is repeated until a preset number of iterations or performance convergence is

achieved.

For labeled samples, ReliaMatch trains them using the feature extraction model and the

classification model. After training, feature extraction and classification prediction are performed

on the labeled samples. At the same time, the average feature vector of each category of the labeled
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samples is calculated and used as a feature anchor for filtering reliable features of the unlabeled

samples.

For unlabeled samples, ReliaMatch first performs data processing by using data augmentation

techniques to expand the unlabeled samples. Next, the enhanced unlabeled samples are input into

the model for feature extraction. Then, the feature filter module calculates the similarity between

the extracted features of the unlabeled samples and the feature anchor, and sets a feature similarity

threshold to filter out the unlabeled samples with low similarity. This process is called filtering 1. The

unlabeled samples selected by filtering 1 are labeled with the class label of the nearest feature anchor,

and are used as pseudo-labels (hard labels). Next, ReliaMatch inputs these feature-filtered samples into

classifier for classification prediction. For each unlabeled sample, it compares whether the class label

of its maximum predicted probability (soft label) is consistent with the class label of the pseudo-label.

If the classes are inconsistent, the unlabeled sample is filtered out. This process is called filtering 2.

Finally, a dynamic threshold is set for the predicted probability to filter out unlabeled samples with

maximum predicted probability below the threshold. This process is called filtering 3.

After three rounds of filtering, the remaining unlabeled samples are considered to be

high-confidence reliable samples and are combined with their pseudo-labels to form a pseudo-labeled

dataset. These pseudo-labeled samples are merged with labeled samples to form a new labeled dataset,

which is used to train a new model. This process is iterated continuously to gradually increase the size

of the labeled dataset and improve the performance of semi-supervised learning.

3.1. Problem Description

To describe the design process of the ReliaMatch model more accurately, we assumes that in the

tth round of iteration, the training dataset Xt
N is used, which contains Nt samples including image

data from different categories XN = {xi}
Nt

i=1. The training dataset is divided into a labeled dataset

Xt
L = {xt

i,l}
Nt

L
i=1 and an unlabeled dataset Xt

U = {xt
i,u}

Nt
U

i=1. Assuming that f t
θ

is the convolutional neural

network used for feature extraction in the tth round of iteration. Zt
N = f t

θ
(xt

i ) represents the feature

vector set obtained from Xt
N after being processed by the convolutional neural network f t

θ
. Zt

N consists

of two parts, Zt
L and Zt

U , where Zt
L = f t

θ
(xt

i,l , yt
i,l) = (zt

i,l , yt
i,l)

Nt
L

i=1
is the labeled feature vector set in

the tth round of iteration, and Zt
U = f t

θ
(xt

i,u) = {zt
i,u}

Nt
U

i=1 is the unlabeled feature vector set in the tth

round of iteration. Let gt
̟ be the fully connected neural network (classifier) used by the model for

classification prediction in the tth round of iteration, with its output being the predicted probability

of the sample in each category. Let pt
i,j denote the probability that the model predicts sample xt

i as

category j, and K is the number of categories. Then P(xt
i ) = gt

̟( f t
θ
(xt

i )) = {pt
i,j}

K
j=1.

3.2. Feature Anchoring

Our first contribution is feature anchoring, which uses the features of the labeled data to calculate

the average of the features of each category as an anchor. We think that nearby points are likely to have

the same labels, and we also agree points on the same structure (usually called clusters or manifolds)

may have the same label. Therefore, our method pay attention to the representation study of images,

and we use the similarity of feature level to fliter unreliable samples and assigns pseudo labels to each

reliable sample. A schematic of fliterring out poor feature of samples can be seen in Figure 3.
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Figure 3. Schematic diagram of anchor generation and feature filtering. In the tth iteration, five labeled

samples and five unlabeled samples are selected, which come from four categories, and the samples

with the same color indicate that they belong to the same category.

We first calculate the average feature vectors of each class j in the labeled feature dataset Zt
L at

the tth iteration to generate K feature anchor points At = {at
j}

K
j=1. To do this, we use the following

equation:

at
j =

1
∣

∣

∣
Zt

j,L

∣

∣

∣

∑
(

zt
i,l ,y

t
i,l

)

∈Zt
j,L

zt
i,l , (2)

where Zt
j,L represents a subset of feature samples in the feature vector set Zt

L where the label yt
i,l = j in

the tth round of iteration. |Zt
j,L| denotes the number of samples in the subset Zt

j,L.

Next, we use cosine similarity to calculate the similarity between the extracted enhanced unlabeled

samples’ features and feature anchor points:

f t
SimFea = s(zt

i,u, at
j) =

zt
i,u · at

j

|zt
i,u| · |a

t
j |

=
∑

D
d=1 zt

i,u,dat
j,d

√

∑
D
d=1(z

t
i,u,d)

2 ·
√

∑
D
d=1(at

j,d)
2

,

(3)

where zt
i,u represents the feature vector of the unlabeled data, at

j represents the anchor point, · represents

the dot product of the vector, | · | represents the norm of the vector, D is the dimension of the vector.

A cosine similarity close to 1 indicates that the two vectors are very close in space, while a cosine

similarity close to −1 indicates that the two vectors are almost opposite in space. A cosine similarity

close to 0 indicates that there is no obvious correlation between the two vectors in space.
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Next, the minimum similarity between labeled sample features and anchor points is used as the

threshold for feature similarity, and a hyperparameter is used to dynamically adjust the threshold size

of feature similarity:

τ
t
Fea = α

t
Fea min(s(zt

i,l , at
j)) = α

t
Fea min(

zt
i,l · at

j

|zt
i,l | · |a

t
j |
), (4)

where α
t
Fea ∈ [0, 1] is a coefficient used to dynamically adjust the threshold of feature similarity, zt

i,l

represents the feature vector of the labeled sample, at
j represents the feature anchor point, · denotes

the dot product of vectors, and | · | denotes the norm of vectors. The feature similarity threshold

τ
t
Fea ∈ [−1, 1].

If the similarity f t
SimFea between the feature of an unlabeled sample and the feature anchor point

is greater than the feature similarity threshold τ
t
Fea, that is, f t

SimFea > τ
t
Fea, then the pseudo-label of the

current sample xt
i,u is considered to be the label j of the feature anchor point that is most similar to its

feature vector.

In the feature filtering module, the labeled dataset remains unchanged. In the t-th iteration,

pseudo-labels of unlabeled samples can be obtained after feature filtering. The feature-filtering

module dataset consisting of the filtered unlabeled samples and their pseudo-labels is denoted as

Xt
U1 = {(xt

i,u1, yt
i,u1)}

Nt
U1

i=1 , where yt
i,u1 is the pseudo-label of xt

i,u1, and Nt
U1 is the number of samples in

the dataset.

3.3. Dynamic Allocation Pseudo Lables

In the pseudo-labeling strategy, threshold selection is an important issue. Traditional

semi-supervised classification methods usually use a fixed threshold to predict the class of unlabeled

samples and assign pseudo-labels to high-confidence samples above this threshold for training.

However, this method may not adapt well to changes in the data distribution, and may either filter

out useful samples excessively or add unreliable pseudo-labels, leading to classification errors due to

samples of different classification difficulties.

To address these issues, the pseudo-label filtering module in ReliaMatch adopts a global dynamic

threshold to filter reliable samples. Specifically, in each iteration, the module sets the confidence

threshold for predicting probability based on the average confidence of unlabeled samples for the

entire dataset. If the average confidence of unlabeled samples is high, it indicates that the algorithm

has good classification performance for unlabeled samples, and the threshold can be increased. If

the change in labels between two iterations is significant, it indicates that the algorithm has not yet

converged and the threshold should be appropriately lowered to ensure the accuracy of the model.

For each unlabeled sample xt
i,u1, its predicted probabilities P(xt

i,u1) = {pt
i,u1,j}

K
j=1 can be converted

into a hard label by creating a vector of length K, denoted as Oit = {ot
i,j}

K
j=1, as follows:

ot
i,j =

{

1, if j = arg max(pt
i,u1,j)

0, otherwise,
(5)

where ot
i,j indicates the label assigned to sample xt

i,u1 for the jth class. Specifically, the class with the

highest predicted probability is assigned a label of 1 and the others are assigned a label of 0.

Next, the average confidence score pt
u can be obtained by computing the average of the maximum

predicted probability values for all unlabeled samples, i.e.,

pt
u =

1

|Xt
U1|

∑
xi,u1∈Xt

U1

max(P(xt
i,u1)), (6)

where XU1 denotes the unlabeled dataset after feature filtering, and P(xt
i,u1) represents the predicted

probabilities of sample xi,u1 in the tthtraining round.
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ReliaMatch uses the value of pt
u as the confidence level of unlabeled data to adjust the credibility

threshold of pseudo labels to ensure the quality of pseudo labels. Therefore, the global dynamic

threshold τ
t
Pre in round t can be represented as:

τ
t
Pre =











max
(

1

1+e−pt
u

, τ
0
Pre

)

, t = 1

max

(

1

1+e−pt
u

,
pt

u ·‖yt
i,u1−yt−1

i,u1‖F

‖pt
u(xt

i,u1)−pt−1
u (xt−1

i,u1)‖F
+ǫ

) , t > 1, (7)

where τ
0
Pre is the initial threshold. ǫ is a very small constant to avoid division by zero. ||·|| F denotes

matrix norm, and pt
u represents the average confidence level in round t.

∣

∣

∣

∣

∣

∣
yt

i,u1 − yt−1
i,u1

∣

∣

∣

∣

∣

∣

F
represents

the size of the difference between the pseudo labels of the unlabeled sample i in round t and those in

round t − 1.
∣

∣

∣

∣

∣

∣
pt

u(xt
i,u1)− pt−1

u (xt−1
i,u1)

∣

∣

∣

∣

∣

∣

F
represents the difference between the confidence level pt

u of

the unlabeled sample i in round t and that in round t − 1.

To select the most reliable pseudo labels, ReliaMatch further filters the unlabeled data in Xt
U1. The

filtering criteria are as follows:

• Only select samples whose maximum predicted probability is greater than the predicted

probability threshold τPre:

max(P(xt
i,u1)) > τPre. (8)

• Only select samples whose predicted category is consistent with the pseudo label in the pseudo

label filtering module:

Ot
i = yt

i,u1. (9)

After screening, only samples that meet the above requirements can be added to the labeled

dataset and used for supervised network training. Therefore, the resulting pseudo-labeled dataset is

denoted as Xt
U2 = (xt

i,u2, yt
i,u2)

Nt
U2

i=1
, where yt

i,u2 represents the pseudo-label of xt
i,u2, and Nt

U2 represents

the number of samples in this dataset. The formula is as follows:

Xt
U2 = {(xi,u2, yi,u2)}

Nt
U2

i=1 |max(P(xt
i,u1)) > τPre ∩ Ot

i = yt
i,u1. (10)

3.4. Loss

In ReliaMatch, the unlabeled dataset Xt
U2, after undergoing feature filtering and pseudo-label

filtering, is transferred to the labeled dataset for supervised training, forming a new labeled dataset

Xt+1
L and an updated unlabeled dataset Xt+1

U , given by the following formulas:

Xt+1
L = {xt+1

i,l , yt+1
i,l }

Nt
L+Nt

U2
i=1 := Xt

L + Xt
U2, (11)

Xt+1
U = {xt+1

i,u , yt+1
i,u }

Nt
U−Nt

U2
i=1 := Xt

U − Xt
U2. (12)

Based on this, the model parameters are updated using the supervised loss Lt
s. Specifically, for a

sample xt
i,l in the labeled dataset with its label yt

i,l , we have:

Lt
s = LCE(gt

̟( f t
θ
(xt

i,l)), yt
i,l), (13)

where xi,l is a sample from the labeled dataset in the tth iteration, and yi,l is the label of this sample.

LCE represents the cross-entropy loss function.
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4. Experiments

4.1. Datasets

CIFAR-10: A dataset containing 60K images, with the shape of 32 × 32, is evenly distributed in

ten categories. There are 50K images in the training set and 10K images in the test set. Our validation

set size is 5000 for CIFAR-10.

SVHN: A dataset containing 99289 images, with the shape of 32 × 32, is evenly distributed in ten

categories. SVHN consists of ten categories. The training contents contains 73257 images, and the test

set contains 26032 images. Our validation set size is 5000 for SVHN.

4.2. Model Details

ReliaMatch uses CNN-13 [34] and WideResNet-28 [35] for classification on CIFAR-10 and SVHN

datasets. In order to make fair comparisons with other methods, the same parameters as in [32] are

used in this paper. The network optimization is performed using stochastic gradient descent and

Nesterov momentum algorithm, combined with weight decay regularization to reduce overfitting. The

momentum factor is set to 0.9 and the initial learning rate is 0.1. To further improve optimization, cosine

annealing [36] is employed to update the model parameters. By default, the initial hyperparameters

α
t
Fea is set to 1 and τ

0
Pre is set to 0.95.

4.3. Experimental Results and Analysis

In this section, we compare ReliaMatch with other common semi-supervised learning

methods, including Pseudo-Label [13], LP-MT [12], PL-CB [15], Curriculum Labeling [32] based

on pseudo-labeling, π Model [9], Temporal Ensembling [9], Mean Teacher [14], VAT [10], Ladder Net

[8], ICT [37] based on consistency regularization, and MixMatch [22] based on strong mixup.

We compared ReliaMatch with other commonly used semi-supervised learning methods,

including Pseudo-Label [13], LP-MT [12], PL-CB [15], Curriculum Labeling [32], π Model [9] and

Temporal Ensembling [9], Mean Teacher [14], VAT [10], Ladder Net [8] and ICT [37], and MixMatch

[22], based on the WideResNet-28 and CNN-13 architectures for semi-supervised classification on the

CIFAR10 and SVHN datasets.

From the results shown in Table 1 and Table 2, it can be seen that, compared to other

semi-supervised learning methods, ReliaMatch considers issues such as feature and label noise,

filters out semantically ambiguous features and unreliable pseudo-labels, and thus performs

better. Specifically, the ReliaMatch method uses the same WideResNet-28 network as advanced

semi-supervised classification methods proposed by previous researchers. On the CIFAR-10 dataset,

this method used 4000 labeled data for testing, and achieved a test error rate of only 5.86%. In

comparison, the test error rate of the Pseudo-Label method was 17.78%, Curriculum Labeling method

was 8.92%, and PL-CB method was 6.28%. On the SVHN dataset, the ReliaMatch method used only

1000 labeled data for testing, achieving a test error rate of 4.04%, significantly better than the test error

rates of Pseudo-Label method (7.62%) and Curriculum Labeling method (5.65%).
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Table 1. Comparison of Test Error Rate(%) of WideResNet-28 with Different Semi-supervised Methods.

Method CIFAR-10(NL = 4000) SVHN(NL = 1000)

PL † 17.78 ± 0.57 7.62 ± 0.29

Curriculum Labeling † 8.92 ± 0.03 5.65 ± 0.11

PL-CB † 6.28 ±0.30 -

π Model† 16.37 ± 0.63 7.19 ± 0.27

Mean Teacher 10.36 ± 0.28 5.65 ± 0.47

VAT† 13.86 ± 0.27 5.63 ± 0.20

VAT+EntMin† 13.13 ± 0.39 5.35 ± 0.19

ICT † 7.66 ± 0.17 3.53 ± 0.07

MixMatch † 6.24 ± 0.06 3.27 ± 0.31

ReliaMatch* 5.86 ± 0.12 4.04 ±0.08

NL represents the number of labeled samples in the training set, † indicates
that the result has been reported in the literature [32], and * represents the
average of 5 runs of the proposed method in this paper.

Table 2. Comparison of Test Error Rate (%) of Different Semi-supervised Methods Using CNN-13.

Method CIFAR-10(NL = 4000) SVHN(NL = 1000)

LP-MT † 10.16± 0.28 -

Curriculum Labeling† 9.81 ± 0.22 4.75 ± 0.28

Ladder Net† 12.16±0.31 -

Temporal Ensembling† 12.16±0.24 4.42±0.16

ReliaMatch* 7.42 ±0.05 7.13± 0.28

NL represents the number of labeled samples in the training set, † indicates
that the result has been reported in the literature [32], and * represents the
average of 5 runs of the proposed method in this paper.

In addition, the ReliaMatch method uses the same CNN-13 network as advanced semi-supervised

classification methods proposed by previous researchers. On the CIFAR-10 dataset, using 4000 labeled

data for testing, the test error rate of ReliaMatch method was 7.42%, which is lower than the test error

rates of Pseudo-Label methods (LP-MT, Curriculum Labeling) and consistency regularization methods

(Ladder Net, Temporal Ensembling).

One common way to evaluate semi-supervised classification algorithms is by varying the size

of the labeled dataset. By reducing the number of available labeled samples, it is possible to better

simulate real-world scenarios. On the CIFAR-10 and SVHN datasets, we tested the error rates of the

ReliaMatch method using the WideResNet-28 network under different numbers of labeled samples.

We used datasets with 500, 1000, 2000, and 4000 labeled samples, respectively, and only changed the

number of labeled samples during each training while keeping other hyperparameters the same as

when using 4000 labeled samples.

The experimental results show that the classification performance of the ReliaMatch method

does not significantly degrade under different numbers of labeled samples. This indicates that the

ReliaMatch method has good robustness and can provide stable performance even with very limited

labeled data, which is crucial for practical applications since in many cases, only very limited labeled

data can be obtained. Therefore, these results suggest that the ReliaMatch method is an effective

semi-supervised classification algorithm that can be useful in practical applications.

In addition, we also investigated the effectiveness of the feature filtering module and pseudo-label

filtering module in the ReliaMatch method. As shown in Table 3, we separately or collectively

removed these two modules and evaluated their impact on the method performance by applying data

augmentation during training. The experiments were conducted on the CIFAR-10 dataset with 4000

labeled samples, and the WideResNet-28 was used as the backbone network.
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(a) CIFAR-10 (b) SVHN

Figure 4. Comparison of test error rates of different methods using different amounts of labeled data.

Table 3. Explore the influence of important modules of ReliaMatch on classification results.

Method Test Error Rate(%)

w/o Feature Filtering 6.74

w/o Pseudo-label Filtering 9.12

w/o Feature Filtering and Pseudo-label Filtering 16.9

ReliaMatch(benchmark) 5.86

After analyzing the Table 3, we have reached the following conclusions: the pseudo label filtering

module has a significant impact on the performance of the ReliaMatch method, as the removal of this

module leads to an increase in model error rate from 5.86 to 9.12. This indicates that the pseudo label

filtering module can remove low-confidence pseudo labels, thereby reducing noise and improving

model performance. In contrast, the effect of the feature filtering module is not as significant as that of

the pseudo label filtering module, but it still contributes to improving model performance. Its removal

results in a model error rate increase from 5.86 to 6.74, indicating that the feature filtering module can

select high-quality features and thus improve model performance. Additionally, removing both feature

and pseudo label filtering modules causes a sharp increase in model error rate, from 5.86 to 16.9. This

demonstrates that both feature and pseudo label filtering modules make important contributions to

the performance of the ReliaMatch method, and both are necessary.

Therefore, both feature and pseudo label filtering modules play important roles in the ReliaMatch

method. The feature filtering module can select high-quality features, while the pseudo label

filtering module can remove low-confidence pseudo labels. Their combined effect can improve

model performance.

We demonstrated the training process of ReliaMatch using the CNN-13 network on the CIFAR-10

and SVHN datasets. ReliaMatch adopts a curriculum learning training approach. The method

combines the selected samples and their reliable pseudo-labels with the labeled data, gradually

increasing the difficulty of the training data to participate in model training in a supervised manner.

As shown in Figures 5 and 6, during the training process, ReliaMatch reinitializes the model training

after each label transfer to mitigate the problem of confirmation bias caused by pseudo-labels.
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Figure 5. Training process of ReliaMatch on CIFAR-10 dataset.
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Figure 6. Training process of ReliaMatch on SVHN dataset.

5. Conclusions

In this paper, we proposed a reliable semi-supervised deep learning classification algorithm,

i.e., ReliaMatch. The algorithm integrates course label, feature filter module and pseudo-label filter

module, aiming at improving classification accuracy and algorithm reliability, focusing on key features,

making better use of unlabeled data and avoiding the confirmation deviation of pseudo-labels. The

course label improves the classification accuracy and the reliability of the algorithm. The feature

filtering module eliminates unnecessary features, which makes the algorithm pay more attention to

key features. The false label filtering module eliminates the confirmation deviation of false labels and

filters out unreliable features and labels with low confidence, thus making the algorithm more stable

and reliable. The experimental results show that ReliaMatch achieves the most advanced classification

results on multiple data sets under the control of the confidence threshold.
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