Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

The Synthesis of Glycerol Carbonate from Glycerol and Carbon Dioxide over Supported CuO-Based Nanoparticle Catalyst

Jassim Mohamed Hamed Al-Kurdhani 1 and Huajun Wang 1,2,*

- Hubei Key Laboratory of Material Chemistry & Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China;
- ² Key Laboratory for Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
- * Correspondence: wanghuajun@mail.hust.edu.cn; Tel: +86-027-87543732; Fax: +86-027-87523632

Abstract: A series of supported CuO-based nanoparticle catalysts were prepared by impregnation method and used for the synthesis of glycerol carbonate from glycerol and CO2 in the presence of 2-cyanopyridine as a dehydrant and DMF as a solvent. The effects of supports (activated alumina, silicon dioxide, graphene oxide, graphene, and activated carbon), CuO loading amount, calcination temperature, and reaction parameters on the catalytic activity of catalyst were investigated in detail. XRD, FTIR, SEM, BET, and CO2-TPD were used for the characterization of the prepared catalysts. It is found that CuO/Al2O3 shows a higher catalytic activity, which depends on the CuO loading amount and calcination temperature. The surface area and amount of basic sites of the catalyst exhibit crucial effect on the catalytic activity of CuO/Al2O3. Furthermore, there is a synergistic effect between the catalyst and 2-cyanopyridine that the former has higher activation ability for glycerol and the latter acts not only as a dehydrant, but also as a promoter for CO2 activation. Recycling experiments reveal that this catalyst can be reused at least five cycles without any inactivation. Based on the experiment results and FTIR characterization, a possible reaction mechanism for the carbonylation of glycerol and CO2 is proposed.

Keywords: glycerol; glycerol carbonate; carbon dioxide; 2-cyanopyridine; CuO/Al₂O₃

1. Introduction

Glycerol carbonate (GC) is a significant cyclic carbonate with excellent properties and broad use. GC is a nontoxic, readily biodegradable, water-soluble, not flammable (fp 165.9 °C), and viscous liquid, which can be used as a polar high boiling solvent, a surfactant component, an intermediate for many kinds of polymers. In addition, GC also can be utilized as components for gas separation membranes [1-4]. GC can be synthesized from the reaction of the biological glycerol (GL), a byproduct of biodiesel, and various substances with carbonyl, such as dimethyl carbonate (DMC), or urea, or carbon dioxide. As the by-product of biodiesel manufacture, the biological GL is produced in huge amounts for the production of biodiesel is increased rapidly year by year [5-7]. Therefore, the synthesis of high value-added GC from the surplus and cheap GL has attracted more and more attentions, which is one of the main topics of biomass valorization [8-10]. Among the synthesis methods of GC, the reactions of GL with DMC or urea suffer some drawbacks, such as expensive reactant for DMC route [11-13], or generating an environmentally harmful by-product (NH3) for urea route [14-17]. Compared with the above methods, the synthesis of GC by the carbonylation of GL with CO2 is more interesting and its atom utilization is as high as 87%. Moreover, this reaction is regarded as a green process in which two wastes, GL, a by-product of biodiesel, and CO₂, a primary greenhouse gas, are converted into a value-added chemical, GC [18-25].

Up to now, a series of homogeneous and heterogeneous catalysts have been developed and used for the reaction of GL with CO₂. Unfortunately, however, the GL conversion and GC yield are still far from satisfactory because this reaction is severely limited by thermodynamics [20, 26-29]. Dibenedetto et al. used CeO_2/Al_2O_3 or CeO_2/Nb_2O_5 as a catalyst for the reaction of GL with CO_2 in the presence of tetraglycol dimethyl ether and found that the GL conversion only reached to 2.5% under

pressure of 5.0 MPa and reaction time of 15 h [28]. In order to break the thermodynamic limit to increase the GL conversion, the dehydrants were used in the reaction to pull out of water produced as a by-product during the reaction to shift the chemical equilibrium to product side. George et al. used the 13X zeolite as a dehydrant for the reaction of GL and CO2 with "Bu2SnO as a catalyst and obtained GC yield of 35% (13.8 MPa, 393 K, 4 h) [21]. The acetonitrile also was used as a dehydrant for the reaction of GL and CO₂ by using Cu/La₂O₃ [19, 30], or Zn/Al/La/M(M=Li, Mg, Zr) [31], or La₂O₂CO₃-ZnO as a catalyst [32, 33], and the GC yield reached to 15.2%, or 18.7%, or 14.3%, respectively. Recently, He et al. used 2-cyanopyridine as a dehydrant and CeO2 as a catalyst for the reaction of GL and CO2. Although a higher GC yield of 78.9% was obtained in this process, the catalyst amount was too higher (187 wt% based on GL weight) to the industrial production of GC [18]. These results indicate that the GL conversion and GC yield increase assuredly due to introduction of the dehydrant for the reaction of GL and CO₂. Compared with acetonitrile and 13X zeolite, 2cyanopyridine is more suitable for the reaction of GL with CO2 because a higher GC selectivity and a fewer side reaction would be obtained; moreover, Zhao et al. found that 2-cyanopridine not only acts as the dehydrant, but also actives the carbonyl bond of CO₂ [35]. However, in spite of these progresses, the GC yield is still not enough high for the industrial production and it is also urgently requisite to develop new more effective catalyst for the synthesis of GC from GL and CO₂.

The supported CuO-based nanocatalysts were used in various applications such as the low-temperature water-gas shift reaction, oxidation of various amounts of SO₂, oxidation of volatile organic compounds (VOCs), oxidation of methane, epoxidation of alkenes through oxygen activation, catalyst-sorbent suitable for simultaneous SO₂ and NOx removal from flue gases, etc [36-40]. However, to the best of our knowledge, there are few reports on the synthesis of GC from GL and CO₂ by means of using supported CuO-based nanoparticle as a catalyst. In the present work, a series of CuO-based catalysts were prepared and used for the synthesis of GC by the carbonylation of GL and CO₂ in the presence of 2-cyanopyridine as a dehydrant and DMF as a solvent (scheme 1). XRD, FTIR, SEM, BET method, and CO₂-TPD were used to scrutinize physicochemical properties of the prepared catalysts. The effects of supports (activated alumina, silicon dioxide, graphene oxide, graphene, and activated carbone), CuO loading amount, calcination temperature, and reaction parameters (CO₂ pressure, reaction temperature, time, and catalyst amount) on the catalytic activity of catalyst were investigated in detail. Finally, based on the experiment results and FTIR characterization, a possible reaction mechanism for the carbonylation of GL and CO₂ was proposed.

Scheme 1 The synthesis of GC from the reaction of GL with CO₂

2. Result and discussion

2.1. Effect of supports

The catalytic activities of supported CuO-based catalysts with different supports, such as graphene oxide (GO), activated carbone (AC), SiO₂, graphene (GE), and Al₂O₃ for the synthesis of GC from GL and CO₂ are given in Table 1. It is found that among these catalysts, CuO/AC(30%, 500) shows the lowest catalytic activity with GL conversion of 21.4% and GC yield of 8.9%. In contrast, the CuO/Al₂O₃(30%, 500) gives the highest catalytic activity and GL conversion and GC yield reach to 37.8% and 15.0%, respectively, over CuO/Al₂O₃(30%, 500). Although CuO/GO(30%, 500), CuO/GE(30%, 500), and CuO/SiO₂(30%, 500) show higher GL conversion than CuO/Al₂O₃(30%, 500), CuO/Al₂O₃ catalyst possesses higher GC yield and GC selectivity. So, CuO/Al₂O₃ catalyst with activated Al₂O₃ as the support is suitable for the synthesis of GC from the reaction of GL with CO₂. In the next section, the catalytic activities of CuO/Al₂O₃ with different CuO loading amounts and calcination temperatures were investigated.

Table 1. The catalytic activities of supported CuO-based catalysts with different supports for the synthesis of GC from GL and CO₂. ^a

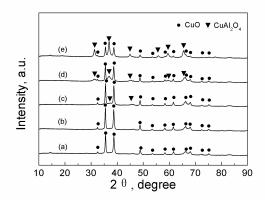
Catalyst	$T_{cal}(^{\circ}C)$	Wcuo(wt%)	$X_{\mathrm{GL}}(\%)$	Ygc(%)	$S_{\mathrm{GC}}(\%)$
CuO/GO(30%, 500)	500	30	49.0	14.6	29.7
CuO/AC(30%, 500)	500	30	21.4	8.9	41.4
CuO/SiO ₂ (30%, 500)	500	30	38.2	10.1	26.5
CuO/GE(30%, 500)	500	30	49.0	13.4	27.3
CuO/Al ₂ O ₃ (30%, 500)	500	30	37.8	15.0	39.8

 $^{^{\}rm a}$ reaction condition: GL: 2.30 g; Cat: 1.0 g, CO₂ initial pressure: 4.0 MPa; reaction temperature: 150 $^{\rm o}$ C; reaction time: 5 h; 2-cyanopyridine: 6.32 g; DMF: 19.0 g.

2.2. Effect of CuO loading amount and calcination temperature

The CuO/Al₂O₃ catalysts with different CuO loading amounts were also prepared by impregnation method and then used for the synthesis of GC from GL and CO₂. It is found that the CuO loading amount has remarkable effect on the catalytic activity of the CuO/Al₂O₃ catalyst (Table 2). As the CuO loading amount are increased from 5 wt% to 30 wt%, the GL conversion and GC yield increase from 14.6% and 2.8% to 37.8% and 15.0%, respectively. When the CuO loading amount is further increased from 30% to 40%, though the GL conversion increases from 37.8% to 51.6%, the GC yield increases slightly from 15.0% to 15.3% and the GC selectivity decreases from 39.8% to 29.7%. It indicates that CuO loading amount of 30% should be suitable for GC synthesis from the reaction of GL and CO₂.

Table 2 also demonstrates the effect of calcination temperature on the catalytic activity of CuO/Al_2O_3 catalyst. It is found that with the increase of the calcination temperature from 400 °C to 800 °C, the GL conversion decreases from 58.0% to 33.5% while the GC yield firstly increases from 15.1% to 17.5% and then decreases to 14.2%. Among these catalysts, $CuO/Al_2O_3(30\%, 700)$ possesses the highest GC yield of 17.5% and GC selectivity of 42.4%.


Table 2. The catalytic activity of CuO/Al_2O_3 catalysts with different CuO loading amounts and calcination temperatures for the synthesis of GC from GL and CO_2 .^a

Catalyst	$T_{cal}({}^{\circ}C)$	WcuO(wt%)	$X_{\mathrm{GL}}(\%)$	Ygc(%)	$S_{\mathrm{GC}}(\%)$
CuO/Al ₂ O ₃ (5%, 500)	500	5	14.6	2.8	19.2
CuO/Al ₂ O ₃ (10%, 500)	500	10	17.9	6.0	33.5
CuO/Al ₂ O ₃ (20%, 500)	500	20	29.4	10.0	34.1
CuO/Al ₂ O ₃ (30%, 500)	500	30	37.8	15.0	39.8
CuO/Al ₂ O ₃ (40%, 500)	500	40	51.6	15.3	29.7
CuO/Al ₂ O ₃ (30%, 400)	400	30	58.0	15.1	26.0
CuO/Al ₂ O ₃ (30%, 600)	600	30	44.0	13.6	30.9
CuO/Al ₂ O ₃ (30%, 700)	700	30	41.3	17.5	42.4
CuO/Al ₂ O ₃ (30%, 800)	800	30	33.5	14.2	42.4

 $^{^{\}rm a}$ Reaction condition: GL: 2.30 g; Cat: 1.0 g; CO₂ initial pressure: 4.0 MPa; reaction temperature: 150 $^{\rm o}$ C; reaction time: 5 h; 2-cyanopyridine: 6.32 g; DMF: 19.0 g.

2.3. Characterization

2.3.1. XRD

Figure 1. X-ray diffraction patterns of CuO/Al₂O₃ nanoparticle catalysts calcined at different temperatures: (a) CuO/Al₂O₃(30%, 400), (b) CuO/Al₂O₃(30%, 500), (c) CuO/Al₂O₃(30%, 600), (d) CuO/Al₂O₃(30%, 700), (e) CuO/Al₂O₃(30%, 800).

Figure 1 shows the XRD patterns of CuO/Al₂O₃ nanoparticle catalysts calcined at different temperatures. It is found that when calcination temperature is less than 700 °C, the main phase of the samples CuO/Al₂O₃(30%, 400~600) is monoclinic CuO (at 2θ = 32.5°, 35.5°, 38.7°, 46.2°, 48.7°, 53.3°, 58.3°, 61.5°, 66.2°, 72.3°, 75.2°). Meanwhile, the diffraction intensity of CuO phase slightly increases with the calcination temperature by comparing the peak at 35.5°. It means that the degree of crystallinity of the sample increases slightly with the calcination temperature. In addition, at the calcination temperature of 600 °C, a new phase, cubic CuAl₂O₄ (at 2θ = 31.4°, 36.9°, 44.85°, 55.7°, 59.4°, 65.4°) is observed, which must be formed by the interaction of Cu(NO₃)₂ with supporter Al₂O₃, indicating that Cu²⁺ is successfully loaded onto Al₂O₃ skeleton [41,42]. As the calcination temperature further increases from 600 °C to 800 °C, the diffraction intensity of CuO phase becomes weaker. On the contrary, the diffraction intensity of CuAl₂O₄ phase becomes stronger, implying the fact that the content of CuO phase decreases while content of CuAl₂O₄ phase increases with the rise of calcination temperature (Figure 1 (c-e)). It indicates that a higher calcination temperature is benefit for the interaction of Cu(NO₃)₂ with supporter Al₂O₃ to produce more CuAl₂O₄ species. For all samples, no peak related to Al₂O₃ phase is found. It is expected that the calcined Al₂O₃ may be presented in the form of η -alumina with low crystallinity.

The mean grain size of CuO in the CuO/Al₂O₃(30%, 400~800) catalysts is calculated by the Scherrer equation based on the reflection peak of CuO at 35.5° and the results are 25.3 nm, 26.6 nm, 26.9 nm, 29.6 nm, and 26.0 nm for CuO/Al₂O₃(30%, 400~800), respectively [42]. It can be seen that the mean grain size of CuO increases with the calcination temperature (except sample at 800 °C), indicating that the higher temperature is favorable for the growth of the CuO particles. However, the CuO/Al₂O₃(30%, 800) has a smaller CuO grain size of 26.0 nm and the reason may be that the generation of the CuAl₂O₄ phase restrains the growth of the CuO particle.

2.3.2. FTIR

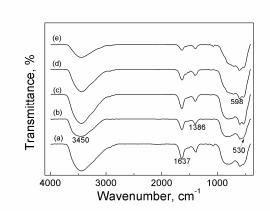
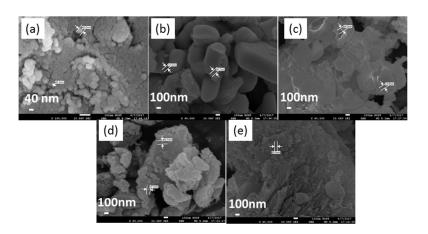


Figure 2. FTIR spectra of CuO/Al_2O_3 nanoparticle catalysts calcined at different temperatures: (a) $CuO/Al_2O_3(30\%, 400)$, (b) $CuO/Al_2O_3(30\%, 500)$, (c) $CuO/Al_2O_3(30\%, 600)$, (d) $CuO/Al_2O_3(30\%, 700)$, (e) $CuO/Al_2O_3(30\%, 800)$

Figure 2 shows the FT-IR spectra of the CuO/Al₂O₃ nanoparticles. For all the fresh CuO/Al₂O₃ catalysts, the weak peaks at 1637 cm⁻¹ and 1386 cm⁻¹ and the wide band at 3000~3700 cm⁻¹ are assigned to the bending and stretching vibration of –OH of the adsorbed water molecule [43]. The intensities of these peaks decrease gradually with the increase of the calcination temperature, indicating that the water content in the nanoparticle decreases with the rise of the calcination temperature. The peaks at 530 cm⁻¹ and 598 cm⁻¹ are attributable to the stretching vibration of Cu-O [44]. The FT-IR result suggests that the formation of the CuO compound is obtained after calcination process, which is consistent with XRD result.

2.3.3. SEM



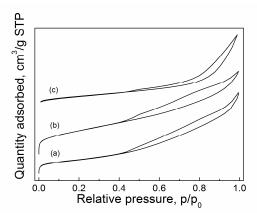

Figure 3. SEM images of CuO/Al_2O_3 nanoparticle catalysts calcined at different temperatures: (a) CuO/Al_2O_3 (30%, 400), (b) CuO/Al_2O_3 (30%, 500), (c) CuO/Al_2O_3 (30%, 600), (d) CuO/Al_2O_3 (30%, 700), (e) CuO/Al_2O_3 (30%, 800)

Figure 3 shows the SEM images of the CuO/Al₂O₃ nanoparticle catalysts with different temperatures. It is found that the calcination temperature has remarkable effect on the morphology and size of the nanoparticle. The CuO/Al₂O₃ (30%, 400) nanoparticle is spherical and its diameter is about 50 nm. In this sample, the edge of nanoparticle is unsmooth, meaning that some particles may be secondary particle. For CuO/Al₂O₃ (30%, 500) sample, the particle displays polyhedron or sheet structure with large diameter, which should be formed by the agglomeration of minicrystals. For the CuO/Al₂O₃ (30%, 600), the particles are seriously agglomerated to form blocky structure while for

CuO/Al₂O₃ (30%, 700) sample, the nanoparticles are agglomerated to form large nutty structure. In addition, for the CuO/Al₂O₃ (30%, 800) sample, the nanoparticles are agglomerated to form spongy structure. These results indicate that at higher calcination temperature, the thermal diffusion behavior of the catalyst components takes place to form particles with various shapes, which may have an obvious effect on the catalytic activity of the nanoparticle by affecting the adsorption, desorption, and surface reaction process of the reaction components. For these samples, compared with the nanoparticles with blocky and spongy structure, the samples with granular structure may be more favorable to the synthesis of GC for the CuO/Al₂O₃ (30%, 400, 500, 700) show higher GC yields than CuO/Al₂O₃ (30%, 600) and CuO/Al₂O₃ (30%, 800) (see Table 2).

2.3.4. BET

The N₂ adsorption-desorption isotherms of CuO/Al₂O₃(30%, 600~800) are showed in Figure 4. The related BET specific surface areas, total pore volumes, and average pore diameters are listed in Table 3. All the catalysts exhibited the type IV isotherms with the type III hysteresis loops in terms of IUPAC classification [29]. The result indicates that the prepared CuO/Al₂O₃ belongs to the mesoporous nanoparticle. With the increase of calcination temperature from 600 °C to 700 °C, although the mean grain size of CuO increases from 26.9 nm to 29.6 nm (see XRD results), the specific surface area remarkably increases from 111.29 m²/g to 170.52 m²/g while the total pore volume slightly increases from 0.269 cm³/g to 0.277 cm³/g (in Table 3). The increasing in the specific surface area may be related to the morphology of sample nanoparticle. The loosened nutty structure constituted by the granules for CuO/Al₂O₃(30%, 700) may be more favorable to generate large surface area than the pyknotic blocky structure for CuO(30%, 600) (Figure 3). When the calcination temperature increases further to 800 °C, the surface area and the total pore volume of CuO/Al₂O₃(30%, 800) decrease to 92.7 m²/g and 0.240 cm³/g, respectively. Among these catalysts, the CuO/Al₂O₃(30%, 700) shows the largest surface area and total pore volume, which may cause the exposure of more active sites and leads to a higher catalytic activity. Table 2 shows that among these catalysts, CuO/Al₂O₃(30%, 700) has the highest GC yield, meaning that the catalytic activity may correlate to the surface area and total pore volume. However, although the surface area and the total pore volume of the CuO/Al₂O₃(30%, 800) are lower than that of CuO/Al₂O₃(30%, 600), the GC yield over CuO/Al₂O₃(30%, 800) is slightly higher than that over CuO/Al₂O₃(30%, 600) (see Table 2), which indicates that the catalytic activity does not only correlated to the surface area of the catalyst.

Figure 4. N₂ adsorption-desorption isotherms of CuO/Al₂O₃ nanoparticle catalysts calcined at different temperatures: (a) CuO/Al₂O₃(30%, 600), (b) CuO/Al₂O₃(30%, 700), and (c) CuO/Al₂O₃(30%, 800)

170.52

92.70

0.277

0.240

703.66(0.65)

233.86(0.71)

1082.42

328.93

catalysts									
		Total	Average	Basic site amount (umol/g)					
Catlysts	S_{BET} (m^2/g)	pore	pore			>400 °C	total		
		volume	diameter	< 200 °C	200~400 °C				
		(cm^3/g)	(nm)						
CuO/Al ₂ O ₃ (30%,600)	111.29	0.269	7.98	171.18(0.19) a	367.13(0.42)	337.15(0.39)	875.45		

193.86(0.18)

4.91(0.02)

184.90(0.17)

90.16(0.27)

Table 3. The BET surface area, total pore volume, and average pore diameter of CuO/Al₂O₃(30%, 600-800) catalysts

6.65

11.42

2.3.5. CO₂-TPD

CuO/Al₂O₃(30%,700)

CuO/Al₂O₃(30%,800)

Figure 5 shows the CO₂-TPD profiles of the CuO/Al₂O₃(30%, 600~800) catalysts. The CO₂ desorption peaks can be roughly divided into three regions: the weak (100 ~ 200 °C), moderate (200~400 °C), and strong (> 400 °C) basic sites. The basic sites amounts can be estimated by integrating the peak area and the results are listed in Table 3. It can be found that with increase of calcination temperature from 600 °C to 700 °C, the total basic sites amount and strong basic sites amount increase from 875.45 umol/g and 337.15 umol/g to 1082.42 umol/g and 703.66 umol/g, respectively, while the moderate basic sites amount decreases from 367.13 umol/g to 184.90 umol/g. When the calcination temperature further increases to 800 °C, the total basic sites amount, the strong basic sites amount, and the moderate sites amount decrease to 328.93 umol/g, 233.86 umol/g, and 90.16 umol/g, respectively. For these samples, the more surface area a catalyst possesses, the more basic sites it has and vice versa. Among these catalysts, CuO/Al₂O₃(30%, 700) possesses the highest surface area, so it has the most amount of total basic sites. On the contrary, CuO/Al₂O₃(30%, 800) has the least surface area, thereby it possesses the least amount of total basic sites. In addition, the CuO/Al₂O₃(30%, 700) has more amount of strong basic sites and lesser amount of moderate basic sites than CuO/Al₂O₃(30%, 600) may be ascribed to that the former possesses the more CuAl₂O₄ species and lesser CuO phase (see Figure 1 (d, e)). It meaning that CuAl₂O₄ phase may have a higher strong basic site and CuO phase may contain a higher amount of moderate basic sites. By the same token, though the CuO/Al₂O₃(30%, 800) possesses the least amount of total basic sites, its ratio of amount of strong basic sites is 0.71 which is the highest among these samples for the content of CuAl₂O₄ phase is highest (see Figure 1 ($c\sim e$)).

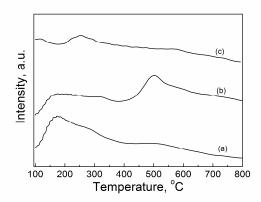
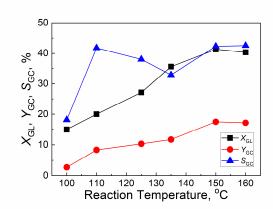


Figure 5. CO₂-TPD profiles of CuO/Al₂O₃ nanoparticle catalysts calcined at different temperatures: (a) $CuO/Al_2O_3(30\%, 600)$, (b) $CuO/Al_2O_3(30\%, 700)$, (c) $CuO/Al_2O_3(30\%, 800)$

The previous research results indicated that the basic sites amount on the catalyst surface is very important for the activation of CO₂ in the synthesis of dimethyl carbonate from methanol and CO₂ [45]. Therefore, the CuO/Al₂O₃(30%, 700) exhibits the higher GC yield may be attributed to a higher


^a the number in bracket is the ratio of the each basic sites amount to the total basic sites number.

total basic sites amount. Furthermore, although the total basic sites amount of $CuO/Al_2O_3(30\%, 800)$ is smaller, this catalyst shows higher GC yield, which may be ascribed to the higher ratio of strong basic sites amount. The $CuAl_2O_4$ phase with more strong basic sites may have a strong ability to extract a hydrogen atom from the hydroxyl (–OH) of GL to activate GL [46]. In addition, Wei et al, found that the moderate basic sites are beneficial to active CO_2 [31], thereby, the catalysts with more CuO phase with a more moderate basic sites amount, such as $CuO/Al_2O_3(30\%, 400)$ and $CuO/Al_2O_3(30\%, 500)$ (see Figure 1), also exhibit a higher GC yield. The above results indicate that a large surface area and higher amount of strong basic sites and moderate basic sites are crucial for the reaction of GL with CO_2 .

2.4. Effect of reaction condition

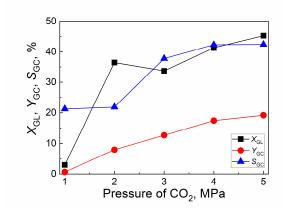

2.4.1. Effect of reaction temperature

Figure 6 shows the effect of reaction temperature on the catalytic activity of $CuO/Al_2O_3(30\%, 700)$ for the reaction of GL with CO_2 . With the increase of reaction temperature from 100 °C to 150 °C, the GL conversion and GC yield increase from 15.0% and 2.7% to 41.3% and 17.5%, respectively, while the GC selectivity increases from 18.1% to 42.3%. With the further increase of reaction temperature to 160 °C, the yield and selectivity of GC almost keep constant. So, the best reaction temperature is 150 °C.

Figure 6. The effect of reaction temperature on the catalytic activity of CuO/Al₂O₃(30%, 700) for the reaction of GL with CO₂ (Reaction condition: GL: 2.30 g; Cat: 1.0 g; CO₂ initial pressure: 4.0 MPa; reaction time: 5 h; 2-cyanopyridine: 6.32 g; DMF: 19.0 g.)

2.4.2. Effect of CO₂ initial pressure

Figure 7. The effect of CO₂ initial pressure on the catalytic activity of CuO/Al₂O₃(30%, 700) for the reaction of GL with CO₂ (Reaction condition: GL: 2.30 g; Cat: 1.0 g; reaction temperature: 150 °C; reaction time: 5 h; 2-cyanopyridine: 6.32 g; DMF: 19.0 g.)

Figure 7 illustrates the effect of CO_2 initial pressure on the catalytic activity of $CuO/Al_2O_3(30\%, 700)$ catalyst for the reaction of GL with CO_2 . As CO_2 initial pressure increases from 1.0 MPa to 4.0 MPa, the GL conversion increases from 3.0% to 41.3% while the GC yield and GC selectivity increase from 0.6% and 21.3% to 17.5% and 42.3%, respectively. With the further increase of CO_2 pressure to 5.0 MPa, the GL conversion, GC yield, and GC selectivity slightly increase. So, the suitable CO_2 initial pressure is $4.0 \sim 5.0$ MPa.

2.4.3. Effect of reaction time

Figure 8 shows the effect of reaction time on the catalytic activity of $CuO/Al_2O_3(30\%, 700)$ for the reaction of GL with CO_2 . As the reaction time increases from 1 h to 5 h, the GL conversion increases from 8.8% to 41.3%, while the GC yield and GC selectivity continually increase from 0.7% and 7.4% to 17.5% and 42.3%, respectively. With the further increase of reaction time to 6 h, the yield and selectivity of GC are slightly decreased. So, the suitable reaction time is 5 h.

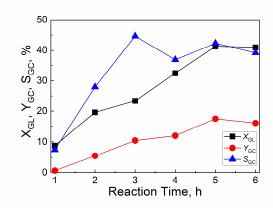
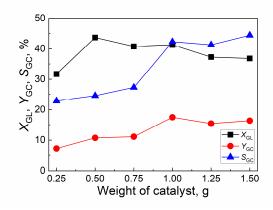



Figure 8. The effect of reaction time on the catalytic activity of CuO/Al₂O₃(30%, 700) for the reaction of GL with CO₂ (Reaction condition: GL: 2.30 g; Cat: 1.0 g; CO₂ initial pressure: 4.0 MPa; reaction temperature: 150 °C; 2-cyanopyridine: 6.32 g; DMF: 19.0 g.)

2.4.4. Effect of weight of catalyst

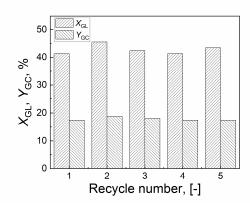
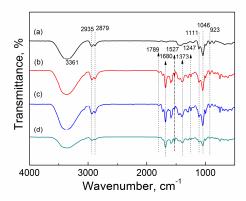

The effect of weight of catalyst on the catalytic activity of $CuO/Al_2O_3(30\%, 700)$ is illustrated in Figure 9. As the weight of catalyst increases from 0.25 g to 1.0 g, the GL conversion decreases from 31.7% to 41.3%, while GLC yield and GLC selectivity increase from 7.2% and 22.9% to 17.5% and 42.3%, respectively. With the further increase of weight of catalyst, the GL conversion, GLC yield, and GLC selectivity decrease slightly. So, the suitable weight of catalyst is 1.0 g.

Figure 9. The effect of weight of catalyst on the catalytic activity of CuO/Al₂O₃(30%, 700) for the reaction of GL with CO₂ (Reaction condition: GL: 2.30 g; CO₂ initial pressure: 4.0 MPa; reaction temperature: 150 °C; reaction time: 5 h; 2-cyanopyridine: 6.32 g; DMF: 19.0 g.)


2.5. Stability of CuO/Al₂O₃(30%, 700) catalyst

The recycling experiments were also carried out to scrutinize the stability of CuO/Al₂O₃(30%, 700) catalyst. After the reaction, the catalyst was separated by centrifugation, washed with methanol three times and then reused for the next run under the same condition. As shown in Figure 10, at the fifth recycle, the GL conversion and GC yield still can reach 43.4% and 17.4%, respectively, over the recovered CuO/Al₂O₃(30%, 700) catalyst. These results indicate that the CuO/Al₂O₃(30%, 700) has strong stability in the activity during the reaction process.

Figure 10. The stability of CuO/Al₂O₃(30%, 700) catalyst on the reaction of GL with CO₂ (Reaction condition: GL: 2.30 g; Cat: 1.0 g; CO₂ initial pressure: 4.0 MPa; reaction temperature: 150 $^{\circ}$ C; reaction time: 5 h; 2-cyanopyridine: 6.32 g; DMF: 19.0 g.)

2.6. Proposed reaction mechanism

Figure 11. FT-IR spectra of reaction mixture with different reaction time: (a) 0 min; (b) 60 min; (c) 120 min; (d) 180 min.

In order to clearly understand the reaction mechanism of carbonylation of GL with CO₂ over CuO/Al₂O₃ in the presence of 2-cyanopyridine as a dehydrant with DMF as a solvent, the FT-IR spectra were used to characterize the reaction mixture with different reaction time. As shown in Figure 11 (a), the peaks at 3361 cm⁻¹, 2935 cm⁻¹, 2879 cm⁻¹, and 923 cm⁻¹ are attributed to the vibration of –OH of GL molecular [47] and the bands at 1046 cm⁻¹ and 1111 cm⁻¹ to the C-O stretching of GL [31], whose strengths decrease with the increase of reaction time (Figure 11 (b, c, d)), indicating that the amount of GL gradually decreases in the reaction mixture due to the reaction consumption. Furthermore, some new bands centered at 1789 cm⁻¹, 1680 cm⁻¹, 1527 cm⁻¹, 1373 cm⁻¹, and 1247 cm⁻¹ appear for mixture at 60 min, 120 min, and 180 min, compared with sample at 0 min. The peak at 1789 cm⁻¹ is ascribed to the stretching vibration of C=O of GC [47]. The peak at 1373 cm⁻¹ is assigned to the C-N bond in the ring and the peak at 1527 cm⁻¹ is attributed to the C=N bond (N in C≡N).

Meanwhile, the band at 1247 cm⁻¹ is ascribed to the new C-N bonds formed from the interaction between the cyano group of 2-cyanopyridine and CO₂ while the band at 1680 cm⁻¹ is assigned to the C=O bond [35]. These peaks mean that an intermediate species may be formed by the interaction of CO₂ with 2-cyanopyridine molecule (Scheme 2), resulting in activation of CO₂. These results are in accordance with the reports by Zhao et al., in which a five-membered ring intermediate was also proved to be formed from reaction of 2-cyanopyridine with CO₂ for the activation of CO₂ [35]. Meanwhile, He et al. found that when DMF was mixed with GL and 2-cyanopyridine and then treated with CO₂, the five membered ring intermediate was not produced, meaning DMF as a solvent could weaken the interaction between 2-cyanopyridine and CO₂ and therefore, CO₂ could not be activated in the mixture of GL + 2-cyanopyridine + DMF [22]. However, the results in the present work indicate that though there is DMF in the mixture, CO₂ can still be activated by 2-cyanopyride.

Scheme 2. The interaction of CO₂ with 2-cyanopyridine to form an intermediate.

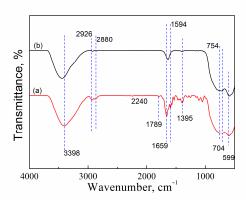


Figure 12. FT-IR spectra of (a) recovered CuO/Al₂O₃(30%, 700) and (b) fresh CuO/Al₂O₃(30%, 700).

The recovered CuO/Al₂O₃(30%, 700) catalyst was also characterized by FT-IR as well as the fresh catalyst and the results are illustrated in Figure 12. Compared with the fresh catalyst, the recovered CuO/Al₂O₃(30%, 700) exhibits several new peaks in FT-IR spectra (Figure 12 (a)). The band at 1789 cm⁻¹ is attributed to GC while the peak centered at 754 cm⁻¹ is assigned to picolinamide, the product of hydration reaction of 2-cyanopyridine and water. The band at 2926 cm⁻¹ and 2880 cm⁻¹ become large and shift to high frequency, indicating that GL molecular is adsorbed on the active sites of catalyst. The peak at 1594 cm⁻¹ may be an evidence for the formation of Cu(C₃O₃H₆) from the interaction of GL with CuO/Al₂O₃(30%, 700) catalyst [23]. Furthermore, the little peak at 2240 cm⁻¹ is ascribed to 2-cyanopyridine while the peak at 1395 cm⁻¹ is belonged to CO₂ [22]. These results indicate that GL, 2-cyanopyridine, and CO₂ can be activated on the CuO/Al₂O₃ catalyst. However, the activated CO₂ molecule may prefer to interact with 2-cyanopyridine to form a more highly active intermediate rather than to react directly with GL [35]. It means that CuO/Al₂O₃(30%, 700) catalyst can accelerate the interaction of CO₂ and 2-cyanopyridine, which may be the reason why the active intermediate can be generated in the presence of DMF.

Based on these experimental and characterization results, a possible reaction route for the synthesis of GC from GL and CO₂ is proposed and shown in Scheme 3. During the reaction, firstly, the primary O-H bond of GL is activated by adsorption on the strong basic sites of CuO/Al₂O₃ catalyst. Afterwards, the second O-H bond of GL is also activated by interaction with CuO/Al₂O₃ to

form the Cu(C₃O₃H₆) while the CO₂ molecule is activated by interacting with 2-cyanopyridine to form a five-membered ring intermediate **I**. Subsquently, activated GL molecule makes a nucleophilic attack to the carbonyl carbon atom of the intermediate **I** to form intermediate **II**, and then the oxygen atom of the second O-H bond of GL makes an intramolecular nucleophilic attack on carbonyl carbon to give GC. Meanwhile, 2-cyanopyridine is transformed to 2-picolinamide. It is indicated that during the reaction, 2-cyanopyridine acts not only as a dehydrant, but also as a promoter for CO₂ activation.

Scheme 3. The proposed reaction mechanism for the synthesis of GC from GL and CO₂ over CuO/Al₂O₃(30%, 700)

2.7. Comparison of the catalytic activity between different catalysts

Table 4. Comparison of catalytic activity of CuO/Al₂O₃(30%, 700) with the other catalysts for GC synthesis from GL and CO₂ $^{\rm a}$

Catalysts	T(°C)	Time(h)	P(MPa)	Cat.(wt%)	Dehydrant	XGL(%)	Ygc(%)	TOFb	Ref.
CeO ₂	150	5	4	186.8	2-cyanopyride	-	78.9	0.92	[18]
La ₂ O ₂ CO ₃ –ZnO	170	12	4	5	acetonitrile	30.3	14.3	2.59	[31]
CHT-Cl	170	12	4	3.0	acetonitrile	35.5	16.7	4.97	[30]
ZnY	180	3	10	2.0	no	-	5.8	10.58	[24]
Cu/MCM-41	150	3	7	1.7	acetonitrile	18.7	1.8	3.81	[29]
CeO ₂ -nanopolyhedra	170	12	10	7.4	2-cyanopyride	35.5	14.2	1.74	[35]
ZnO	180	12	15	0.6	no	-	8.1	11.35	[25]
Co(OAc) ₂	180	6	2	2.5	acetonitrile	36.7	4.6	3.33	[48]
ZnWO ₄ -ZnO	150	6	5	54.4	no	-	6.5	0.22	[23]
CuO/Al ₂ O ₃ (30%, 700)	150	5	4	43.6	2-cyanopyride	41.3	17.5	0.87	This
									work

^a T: reaction temperature; Time: reaction time; P: reaction pressure of CO₂; Cat.: catalyst amount based on GL weight.

^b TOF= mol of GC produced/(weight of catalyst · reaction time) (mmol/gcat·h).

The comparison of the catalytic activity of CuO/Al₂O₃(30%, 700) with the other catalysts for GC synthesis from GL and CO₂ is illustrated in Table 4. Although the different reaction conditions were used for these catalysts, these reaction conditions should be the optimized one for each catalyst. So, the catalytic activity of these catalysts can be compared by using the GC yields and TOFs at these optimal conditions. It is observed that due to the presence of dehydrant, the catalysts, such as CeO₂, La₂O₂CO₃–ZnO, CHT-Cl, CeO₂-nanopolyhedra, and CuO/Al₂O₃(30%, 700) show a higher GC yield than 14.0%. In contrary, the other catalysts, ZnY, ZnO, and ZnWO₄-ZnO give a lower GC yield than 9.0% for the dehydrant was not used during the reaction. It indicates that the dehydrant is very significant for the reaction of GL with CO₂. Among these catalysts, the activity of CuO/Al₂O₃(30%, 700) is only lower than that of CeO₂. However, CuO/Al₂O₃(30%, 700) has the remarkably lower catalyst amount than CeO2. The higher catalytic activity of CuO/Al2O3(30%, 700) is ascribed to the synergistic effect of the catalyst and 2-cyanopyridine that the former has higher activation ability for GL and the latter acts as a promoter for CO₂ activation. The above results suggest that CuO/Al₂O₃(30%, 700) not only has higher catalytic activity and stability, but also has simple prepared process and cheap cost and thereby, it may be as a good alternative catalyst for the industrial production of GC from GL and CO₂.

3. Materials and Methods

3.1. Chemicals

Copper nitrate [(Cu(NO₃)₂•3H₂O] (99% purity), activated alumina (Al₂O₃), silicon dioxide (SiO₂), activated carbone (AC), graphite, GL (99% purity), and methanol (99.5% purity) were bought from Sinopharm Chemical Reagent Co. Ltd., Beijing, China. 2-cyanopyridine (98% purity), tetraethylene glycol (99% purity), and 2-picolinamide (>98% purity) were purchased from Aladdin Industrial Corporation, Shanghai, China. Carbon dioxide (99.9% purity) was supplied by Wuhan Minghui Gas Technology Co. Ltd., Wuhan, China. GC (Tokyo Chemical Industry Co., Ltd., Tokyo, Japan) was of over 90% purity. N, N-dimethyl formamide (DMF) (99.5% purity) was purchased from Chinasun Speciality Products Co. Ltd., Jiangsu, China. All these chemicals were used without further purification.

3.2. Supported CuO-based nanoparticle catalyst preparation

The Al₂O₃, SiO₂, AC, graphene oxide (GO), and graphene (GE) were used as supports to prepare the supported CuO-based nanoparticle catalysts. The CuO/Al₂O₃ catalysts were prepared by the impregnation method using aqueous solution of Cu(NO₃)₂•3H₂O and activated alumina powder. Firstly, the activated alumina powder was dried under vacuum at 60 °C for 2 h to remove physisorbed water. Then, a certain amount of activated alumina (such as 7 g) was mixed with an aqueous solution of Cu(NO₃)₂•3H₂O (for example, 100 mL and the amount of Cu(NO₃)₂•3H₂O of 9.08g) in a glass flask. After strring for 15 min, the mixture was set for 24 h at room temperature and then dried at 100 °C for 1 h to remove water through evaporation. Subsequently, the solid mixture was grinded and sieved using the standard sieve with 100 mesh. The obtained solid powder was calcined at specified temperature (for example, 700 °C) for 5 h under static air. A heating ramp of 5 °C/min was employed in this step. Finally, the obtained catalyst was used in the reaction of GL and CO₂. All the prepared catalysts are denoted as CuO/Al₂O₃(n%, m), where n% is the weight percentage of CuO loaded on Al₂O₃ and m is the calcination temperature. The CuO/SiO₂(30%, 500) catalyst and CuO/AC(30%, 500) were prepared by the same method with CuO/Al₂O₃(30%, 500) using SiO₂ and AC as supports instead of Al₂O₃, respectively.

CuO/GO(30%, 500) was prepared by the procedure shown below. Firstly, the GO was obtained by the modified Hummers method. Briefly, 100 mL of the concentrated H₂SO₄ and 10 mL of the concentrated H₃PO₄ were poured into a beaker, and then, 2 g of graphite was added. The beaker was put in an ultrasonic cleaner for 1 h at 20 °C and 200 W. Subsequently, 0.75 g of KMnO₄ was added into the beaker, which was further treated by ultrasonic for another 2 h. Afterwards, the additional 3 g of KMnO₄ was added and the solution was stirred at 60 °C for 3 h. Then, the mixture was poured

into a large beaker with 190 mL of ice water, and then, 7.5 mL of H_2O_2 was added to give the graphite oxide. The sample was washed by centrifugation to be neutral and treated by ultrasonic dispersion at 200 W for 1h, and then, dried at 60 °C to give GO. The CuO/GO(30%, 500) was prepared by the same procedure with CuO/Al₂O₃(30%, 500) using GO as the support instead of Al₂O₃.

CuO/GE(30%, 500) was obtained by the following method: firstly, the GE was fabricated via a thermal exfoliation method. During the process, the dried GO was thermally exfoliated at 300 °C for 3 min in air and subsequently the sample was further treated at 900 °C for 3 h in air to give GE. The CuO/GE(30%, 500) was prepared by the same procedure with CuO/Al₂O₃(30%, 500) using GE as the support instead of Al₂O₃.

3.3. Catalyst characterization

X-ray diffraction (XRD) patterns of the catalysts were measured on a X'Pert PRO using Cu K α radiation at 30 kV and 15 mA, over a 2 θ range of 5 $^{\circ}$ ~ 90 $^{\circ}$ with a step size of 0.0167 $^{\circ}$ at a scanning speed of 8 min⁻¹. A Bruker VERTEX 70 FT-IR spectrometer was used to obtain the FT-IR spectra of samples using KBr pellet technique, with 2 cm⁻¹ resolution over the wavenumber range 4000-400 cm⁻¹. The morphology of the particles was observed by use of a scanning electron microscope (SEM, TESCAN VEGA3) with 20.0 kV of an accelerating voltage. Nitrogen adsorption-desorption isotherms were determined by a volumetric adsorption apparatus (Micromeritics ASAP 2420) at 77 K. The surface areas of samples were calculated by using the Brunauer-Emmett-Teller (BET) method. The pore volume was given at p/p0 =0.99. The pore size distribution was calculated by the Barrett-Joyner-Halenda (BJH) method.

The basicity studies of the prepared catalysts were conducted with temperature-programmed desorption of CO₂ as probe molecule (CO₂-TPD) using Huasi DAS-7000 apparatus equipped with thermal conductivity detector (TCD). The analysis was performed by heating 100 mg of the catalyst sample under a He flow from room temperature to 800 °C for 2 h (10 °C/min, 50 mL/min). Then, the temperature was decreased to 90 °C, and a flow of pure CO₂ (50 mL/min) was subsequently introduced into the reactor during 1 h. After the catalyst was swept with He for 1 h to remove the physisorbed CO₂ from catalyst surface, the TPD of CO₂ was carried out between 90 °C and 900 °C under a He flow (10 °C/min, 30 mL/min), and the detection of the desorbed CO₂ was performed by an on-line gas chromatograph provided with a TCD.

3.4. Reaction procedure

The tests of the catalytic activities of the metal oxide nanoparticle catalysts were carried out in a stainless-steel autoclave reactor of an inner volume of 250 mL equipped with thermostat, an electric heating jacket, pressure gauge, thermocouple, and agitator. After ascertaining the validity of the autoclave reactor, the typical procedure is as follows: 2.30 g of GL, 1.0 g of catalyst, 19.0 g of DMF, and 6.32 g of 2-cyanopyridine were put into the reactor together, and then, the reactor was sealed and purged with CO₂ for 3 times, and pressurized with CO₂ to 4 MPa. Subsequently, the reactor was heated to the reaction temperature (150 °C) and maintained for certain reaction time (5 h) under vigorous stirring (600 rpm). After reaction, the reactor was cooled to room temperature and depressurized. Then, all the product mixture was taken out from the autoclave reactor and the solid catalyst was separated by centrifugation from the liquid mixture. The collected catalyst was washed with methanol three times and then used in the recycle experiment. All of the liquid products were sampled for analysis. All the components were analyzed by the gas chromatograph (Fuli 9790-II) equipped with a flame ionization detector (FID) and a capillary column KB-WAX (30 m long, 0.25 mm i.d.). The internal standard method was used. The temperatures of the injector and the detector are 250 °C and 270 °C, respectively. The temperature of the column was programmed to have a 2-min initial hold at 70 °C, a 15 °C/min ramp from 70 °C to 250 °C and then a 15 min hold at 250 °C.

The conversion of GL, $X_{\rm GL}$, the yield of GC, $Y_{\rm GC}$, and the selectivity to GC, $S_{\rm GC}$ were calculated according to the following equations:

$$X_{GL} = \frac{n_{GL}^{in} - n_{GL}^{out}}{n_{GL}^{in}} \times 100\%$$
 (1)

$$Y_{GC} = \frac{n_{GLC}^{out}}{n_{GL}^{in}} \times 100\%$$
 (2)

$$S_{GC} = \frac{n_{GLC}^{out}}{n_{GL}^{in} - n_{GL}^{out}} \times 100\%$$
(3)

where n_{GL}^{in} is the initial mole number (mol) of GL while n_{GL}^{out} and n_{GLC}^{out} are the mole numbers (mol) of GL and GC in the residual reaction mixture after reaction, respectively.

5. Conclusions

To improve the conversion of GL to GC, supported CuO-based nanoparticles were prepared and used as catalyst in this transformation. CuO/Al₂O₃ shows excellent catalytic activity for the synthesis of GC from GL and CO₂. Both the calcination temperature and CuO loading amount exhibit significant effect on the catalytic activity of CuO/Al₂O₃ catalyst. A larger surface area and higher amount of basic sites are crucial for the reaction of GL with CO₂. FT-IR characterization clear shows that during the reaction, 2-cyanopyridine acts not only as a dehydrant, but also as a promoter to active the chemically inert CO₂. The GL conversion and GC yield can reach to 41.3% and 17.5%, respectively, under the CO₂ pressure of 4.0 MPa, 150 °C, 5 h over CuO/Al₂O₃(30%, 700) catalyst. This catalyst with a higher catalytic activity, stability, simple prepared process, and cheap cost may be used as an alternative component for the industrial process.

Funding: This research was funded by the Fundamental Research Funds for the Central Universities of China (2011QN117).

Acknowledgements: XRD and SEM analysis was performed in the Analytical and Testing Center, and FT-IR analysis was performed in the Experimental Teaching Center of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology.

Author Contributions: All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest

References

- 1. Guedes, P.H.P.S.; Luz, R.F.; Cavalcante, R.M.; Young, A.F. Process simulation for technical and economic evaluation of acrolein and glycerol carbonate production from glycerol. Biomass Bioenerg. **2023**, 168, 106659.
- 2. Wang, H.; Lu, P. Liquid–liquid equilibria for the system dimethyl carbonate + methanol + glycerol in the temperature range of (303.15 to 333.15) K. J. Chem. Eng. Data **2012**, 57, 582-589.
- 3. Hu, K.; Wang, H.; Liu, Y.; Yang, C. KNO₃/CaO as cost-effective heterogeneous catalyst for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate. J. Ind. Eng. Chem. **2015**, 28, 334-343.
- 4. Lu, P.; Wang, H.; Hu, K. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate over the extruded CaO-based catalyst. Chem. Eng. J. 2013, 228, 147-154.
- 5. Ye, X.; Wang, W.; Zhao, X.; Wen, T.; Li, Y.; Ma, Z.; Wen, L.; Ye, J.; Wang, Y. The role of the KCaF₃ crystalline phase on the activity of KF/CaO biodiesel synthesis catalyst. Catal. Commun. **2018**, 116, 72-75.
- 6. Das, B.; Mohanty, K. A green and facile production of catalysts from waste red mud for the one-pot synthesis of glycerol carbonate from glycerol. J. Environ. Chem. Eng. **2019**, 7, 102888.
- 7. Ambat, I.; Srivastava, V.; Sillanpä, M. Recent advancement in biodiesel production methodologies using various feedstock: a review. Renew. Sustain. Energy Rev. **2018**, 90, 356-369.
- 8. Li, W.; Sreerangappa, R.; Estager, J.; Monbaliu, J.C.M.; Debecker, D.P.; Luis, P. Application of pervaporation in the bio-production of glycerol carbonate. Chemical Engineering & Processing: Process Intensification 2018, 132, 127-136.

- 9. Singh, D.; Sharma, D.; Soni, S. L.; Sharma, S.; Sharma, P.K.; Jhalani, A. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel **2020**, 262, 116553.
- 10. Yu, J.; Wang, K.; Shao, S.; Li, W.; Du, S.; Chen, X.; Chao, Cong.; Fan. X. Effect of ionic radius and valence state of alkali and alkaline earth metals on promoting the catalytic performance of La2O3 catalysts for glycerol carbonate production. Chem. Eng. J. 2023, 458, 141486.
- 11. Esteban, J.; Vorholt, A.J. Obtaining glycerol carbonate and glycols using thermomorphic systems based on glycerol and cyclic organic carbonates: Kinetic studies. J. Ind. Eng. Chem. **2018**, 63, 124-132.
- 12. Li, Y.; Liu, J.; He, D. Catalytic synthesis of glycerol carbonate from biomass-based glycerol and dimethyl carbonate over Li-La₂O₃ catalysts. Appl. Catal. A: Gen. **2018**, 564, 234-242.
- 13. Wan, Y.; Lei, Y.; Lan, G.; Liu, D.; Li, G.; Bai, R. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate over DABCO embedded porous organic polymer as a bifunctional and robust catalyst. Appl. Catal. A: Gen. **2018**, 562, 267-275.
- 14. Costanzo, P.; Calandruccio, C.; Di Gioia, M.L.; Nardi, M.; Oliverio, M.; Procopio, A. First multicomponent reaction exploiting glycerol carbonate synthesis. J. Cleaner Prod. **2018**, 202, 504-509.
- 15. Fernandes, G.P.; Yadav, G.D. Selective glycerolysis of urea to glycerol carbonate using combustion synthesized magnesium oxide as catalyst. Catal. Today **2018**, 309, 153-160.
- Wang, H.; Liu, T.; Jiang, C.; Wang Y.; Ma, J. Synthesis of glycidol and glycerol carbonate from glycerol and dimethyl carbonate using deep-eutectic solvent as a catalyst. Chem. Eng. J. 2022, 442, 136196
- 17. Das, A.; Shi, D.; Halder, G.; Rokhum, S.L. Microwave-assisted synthesis of glycerol carbonate by transesterification of glycerol using Mangifera indica peel calcined ash as catalyst. Fuel **2022**, 330, 125511.
- 18. Liu, J.; Li, Y.; Zhang, J.; He, D. Glycerol carbonylation with CO₂ to glycerol carbonate over CeO₂ catalyst and the influence of CeO₂ preparation methods and reaction parameters. Appl. Catal. A: Gen. **2016**, 513, 9-18.
- 19. Zhang, J.; He, D. Surface properties of Cu/La₂O₃ and its catalytic performance in the synthesis of glycerol carbonate and monoacetin from glycerol and carbon dioxide. J. Colloid Interface Sci. **2014**, 419, 31-38.
- 20. Elhaj, E.; Wang, H.; Gu, Y. Functionalized quaternary ammonium salt ionic liquids (FQAILs) as an economic and efficient catalyst for synthesis of glycerol carbonate from glycerol and dimethyl carbonate. Molecular Catalysis **2019**, 468, 19-28.
- 21. George, J.; Patel, Y.; Pillai, S.M.; Munshi, P. Methanol assisted selective formation of 1,2-glycerol carbonate from glycerol and carbon dioxide using ⁿBu₂SnO as a catalyst. J. Mol. Catal. A: Chem. **2009**, 304, 1-7.
- 22. Liu, J.; Liu, Y.; Liu, H.; He, D. Transformation of CO₂ and glycerol to glycerol carbonate over CeO₂-ZrO₂ solid solution—effect of Zr doping. Biomass and Bioenergy **2018**, 118, 74-83.
- 23. J. Liu, D. He, Transformation of CO₂ with glycerol to glycerol carbonate by a novel ZnWO₄-ZnO catalyst. Journal of CO₂ Utilization **2018**, 26, 370-379.
- 24. Ozorio, L.P.; Pianzolli, R.; Machado, L.C.; Miranda, J.L.; Turci, C.C.; Guerra, A.C.O.; Souza-Aguiar, E.F.; Mota, C.J.A. Metal-impregnated zeolite Y as efficient catalyst for the direct carbonation of glycerol with CO₂. Appl. Catal. A: Gen. **2015**, 504, 187-191.
- 25. Ozorio, L.P.; Mota, C.J.A. Direct carbonation of glycerol with CO₂ catalyzed by metal oxides. ChemPhysChem **2017**, 18; 3260-3265.
- Li, J.; Wang, T. Chemical equilibrium of glycerol carbonate synthesis from glycerol. J. Chem. Thermodynamics 2011, 43, 731-736.
- 27. Vieville, C.; Yoo, J.W.; Pelet, S.; Mouloungui, Z. Synthesis of glycerol carbonate by direct carbonatation of glycerol in supercritical CO₂ in the presence of zeolites and ion exchange resins. Catalysis Letters **1998**, 56, 245-247.
- 28. Dibenedetto, A.; Angelini, A.; Aresta, M.; Ethiraj, J.; Fragale, C.; Nocito, F. Converting wastes into added value products: from glycerol to glycerol carbonate, glycidol and epichlorohydrin using environmentally friendly synthetic routes. Tetrahedron **2011**, 67, 1308-1313.
- 29. Aresta, M.; Dibenedetto, A.; Nocito, F.; Pastore, C. A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: the role of the catalyst, solvent and reaction conditions. J. Mol. Catal. A: Chem. **2006**, 257, 149-153.
- 30. Zhang, J.; He, D. Synthesis of glycerol carbonate and monoacetin from glycerol and carbon dioxide over Cu catalysts: the role of supports. J. Chem. Technol. Biotechnol. **2015**, 90, 1077-1085.
- 31. Li, H.; Xin, C.; Jiao, X.; Zhao, N.; Xiao, F.; Li, L.; Wei, W.; Sun, Y. Direct carbonylation of glycerol with CO₂ to glycerol carbonate over Zn/Al/La/X (X=F, Cl, Br) catalysts: the influence of the interlayer anion. J. Mol. Catal. A: Chem. **2015**, 402, 71-78.

- 32. Li, H.; Gao, D.; Gao, P.; Wang, F.; Zhao, N.; Xiao, F.; Wei, W.; Sun, Y. The synthesis of glycerol carbonate from glycerol and CO₂ over La₂O₂CO₃–ZnO catalysts. Catal. Sci. Technol. **2013**, 3, 2801-2809.
- 33. Park, C.; Nguyen-Phu, H.; Shin, E.W. Glycerol carbonate with CO₂ and La₂O₂CO₃/ZnO catalysts prepared by two different methods: preferred reaction route depending on crystalline structure. Molecular Catalysis, **2017**, 435, 99-109.
- 34. Ma, J.; Song, J.; Liu, H.; Liu, J.; Zhang, Z.; Jiang, T.; Fan, H.; Han, B. One-pot conversion of CO₂ and glycerol to value-added products using propylene oxide as the coupling agent. Green Chem. **2012**, 14, 1743-1748.
- 35. Su, X.; Lin, W.; Cheng, H.; Zhang, C.; Wang, Y.; Yu, X.; Wu, Z.; Zhao, F. Metal-free catalytic conversion of CO₂ and glycerol to glycerol carbonate. Green Chem. **2017**, 19, 1775-1781.
- 36. Lv, Y.; Zhang, H.; Yao, X.; Dong, L.; Chen, Y. Investigation of the physicochemical properties of CuO/Sm₂O₃/γ-Al₂O₃ catalysts and their activity for NO removal by CO. J. Mol. Catal. A: Chem. **2016**, 420, 34-44.
- 37. Ajamein, H.; Haghighi, M.; Shokrani, R.; Abdollahifar, M. On the solution combustion synthesis of copper based nanocatalysts for steam methanol reforming: Effect of precursor, ultrasound irradiation and urea/nitrate ratio. J. Mol. Catal. A: Chem. **2016**, 421, 222-234.
- 38. Sodeifian, G.; Behnood, R. Application of microwave irradiation in preparation and characterization of CuO/Al₂O₃ nanocomposite for removing MB dye from aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry **2017**, 342, 25–34.
- 39. Ha, J.; Ryu, H.; Lee, W.; Bae, J. Efficient photoelectrochemical water splitting using CuO nanorod/Al₂O₃ heterostructure photoelectrodes with different Al layer thicknesses. Physica B **2017**, 519, 95–101.
- 40. Ajamein, H.; Haghighi, M.; Alaei, S. Influence of propylene glycol/nitrates ratio on microwave-assisted combustion synthesis of CuO-ZnO-Al₂O₃ nanocatalyst: structural and catalytic properties toward hydrogen production from methanol. Materials Research Bulletin **2018**, 102, 142–152.
- 41. Luo, M.; Fang, P.; He, M.; Xie, Y. In situ XRD, Raman, and TPR studies of CuO/Al₂O₃ catalysts for CO oxidation. J. Mol. Catal. A: Chem. **2005**, 239, 243-248.
- 42. Shaheen, W.M. Thermal solid-solid interaction and catalytic properties of CuO/Al₂O₃ system treated with ZnO and MoO₃. Thermochimica Acta **2002**, 385, 105-116.
- 43. Salavati-Niasari, M.; Davar, F.; Farhadi, M. Synthesis and characterization of spinel-type CuAl₂O₄ nanocrystalline by modified sol–gel method. J. Sol-Gel Sci. Technol. **2009**, 51, 48–52.
- 44. Lv, W.; Liu, B.; Qiu, Q.; Wang, F.; Luo, Z.; Zhang, P.; Wei, S. Synthesis, characterization and photocatalytic properties of spinel CuAl₂O₄ nanoparticles by a sonochemical method. Journal of Alloys and Compounds **2009**, 479, 480–483.
- 45. Tomishige, K.; Ikeda, Y.; Sakaihori, T.; Fujimoto, K. Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide. J. Catal. **2000**, 192, 355-362.
- 46. Ochoa-Gómez, J.R.; Gómez-Jiménez-Aberasturi, O.; Maestro-Madurga, B.; Pesquera-Rodríguez, A.; Ramírez-López, C.; Lorenzo-Ibarreta, L.; Torrecilla-Soria, J.; Villarán-Velasco, M.C. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: Catalyst screening and reaction optimization. Appl. Catal. A: Gen. 2009, 366, 315-324.
- 47. Ishak, Z.I.; Sairi, N.A.; Alias, Y.; Aroua, M.K.T.; R. Yusoff, Production of glycerol carbonate from glycerol with aid of ionic liquid as catalyst, Chem. Eng. J. **2016**, 297, 128-138.
- 48. Liu, Y. Synthesis of glycerol carbonate from glycerol and carbon dioxide over cobalt acetate catalyst. Speciality Petrochemicals **2014**, 31, 25-27. (in chinese)