
Article Not peer-reviewed version

Coiling Arithmetic: On the Differential

Geometry of Helical Representations in

LLMs

Mikołaj Sienicki and Krzysztof Sienicki *

Posted Date: 9 July 2025

doi: 10.20944/preprints202507.0722.v1

Keywords: AI; LLMs; Arithmetic and Symbolic Reasoning

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4678164
https://sciprofiles.com/profile/4047648


Article

Coiling Arithmetic: On the Differential Geometry of
Helical Representations in LLMs
Mikołaj Sienicki 1 and Krzysztof Sienicki 2,*

1 Polish-Japanese Academy of Information Technology, ul. Koszykowa 86, 02-008 Warsaw, Poland, European Union.
2 Chair of Theoretical Physics of Naturally Intelligent Systems (NIS©), Lipowa 2/Topolowa 19, 05-807 Podkowa Leśna,
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Abstract

Large language models (LLMs) exhibit surprising proficiency in arithmetic and symbolic reason-
ing, despite being trained predominantly on natural language data. Recent studies have uncov-
ered that numerical tokens in these models are embedded along smooth, high-dimensional helical
curves—structures that encode arithmetic operations through linear translations in a periodic space.
In this paper, we formalize this phenomenon as coiling arithmetic, a differential-geometric framework
in which numbers are represented as points on a multi-frequency helix of the form:

helix(x) =
[

x, cos
(

2πx
T1

)
, sin

(
2πx
T1

)
, . . .

]
∈ R2k+1.

We show that arithmetic operations such as addition correspond to vector displacements in helical
space, enabling approximate computation via linear transformation. We extend the formalism with
helix-based differentiation rules, modular equivalence, modal logic operators, and Gödel-style fixed-
point encodings. Connections are drawn to Neural ODEs, Fourier Transformers, and group-equivariant
networks. By grounding abstract symbolic operations in continuous geometry, coiling arithmetic offers
a new lens on how LLMs internalize number structure and may support robust generalization in
neural reasoning systems.

Keywords: AI; LLMs; arithmetic and symbolic reasoning

1. Motivation and Formal Setup
Large language models (LLMs) such as GPT exhibit surprising proficiency in arithmetic tasks,

despite lacking explicit symbolic computation modules. Recent empirical studies have revealed that
instead of performing brute-force memorization, these models organize numeric representations along
smooth, structured trajectories in latent space. Among the most striking findings is the emergence
of a helical structure—a geometric encoding that combines linear and periodic components. This
phenomenon, referred to as “coiling arithmetic,” forms the foundation of our analysis.

To study this phenomenon precisely, we define a formal mathematical object that captures the
observed embeddings.

Definition (Helical Embedding).
Let k ∈ N, and let Ti ∈ R>0 for i = 1, . . . , k. Define the helical embedding as the smooth mapping:

helix : R −→ R2k+1, x 7→
[

x, cos
(

2πx
T1

)
, sin

(
2πx
T1

)
, . . . , cos

(
2πx
Tk

)
, sin

(
2πx
Tk

)]
The function helix(x) is infinitely differentiable, i.e., helix ∈ C∞(R,R2k+1).
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This formalism serves as the foundation for our subsequent analysis of addition, differentiation,
logic, and representational learning within the coiling arithmetic framework.

Table 1. Notation used for coiling arithmetic and helical embeddings.

Symbol Description

x Scalar input value (e.g., integer token or real number)
T Period of the helical embedding

ϕ(x) Helical embedding function: ϕ(x) =
(
x, cos

( 2πx
T

)
, sin

( 2πx
T

))
ϕflat(x) Flat or linear embedding (e.g., (x, 0, 0))
ϕcoil(x) Periodic or coiled embedding (same as ϕ(x))
HT Helical manifold defined by period T; image of ϕ(x)
θ(x) Angular phase: θ(x) = 2πx

T
⌊x/T⌋ Number of completed coil turns

CeilT(x) Ceiling function: smallest integer ≥ x/T
modT(x) Modulo projection of x: x mod T

εalias Aliasing error from multiple x mapping to same angle
ϕ−1 Inverse projection (if defined), maps back from helix to scalar x

n ∈ Z≥0 Indexing turn number in the coil (e.g., x = nT)

2. Coiling Arithmetic in Large Language Models
Recent findings by Kantamneni and Tegmark [7] have unveiled a striking and elegant phe-

nomenon in the internal representations of large language models (LLMs): numerical tokens are embedded
along a helical manifold in the model’s latent space. This discovery is remarkable, both empirically
and theoretically, for several reasons that reshape our understanding of neural arithmetic, geometric
embeddings, and the latent structure of computation in modern AI systems.

2.1. Unveiling Hidden Geometric Structure

Contrary to the prevailing assumption that LLMs perform arithmetic via opaque and distributed
weight patterns—reminiscent of brute-force memorization—this work reveals that LLMs spontaneously
organize numerical concepts along a smooth, interpretable helix [8]. In effect, the model reconstructs a
trigonometric coordinate system within its latent space, suggesting that neural networks internally
rediscover fundamental mathematical principles.

LLMs, without explicit programming, encode numbers through trigonometric structure.

The helical embeddings uncovered in these models are deeply related to Fourier feature mappings,
which are ubiquitous in signal processing, neural rendering (e.g., NeRF), and Transformer positional
encodings [9]. That such structures arise spontaneously implies that periodicity and sinusoidal bases may
act as universal priors for neural representations.

2.2. Reconstructing Arithmetic as Translation in Phase Space

Rather than simulating discrete logic, LLMs appear to encode arithmetic operations as vector
translations along a helical manifold [10]. This is analogous to how biological brains may encode spatial
and temporal dimensions using phase or oscillatory dynamics.

These results challenge the notion that token embeddings are opaque. Instead, they become
structured and interpretable—opening the door to reverse engineering latent geometry in LLMs [11].

The emergence of helical structure in numeric embeddings hints at a broader pattern: that neural
networks build smooth geometric maps of symbolic domains such as algebra, logic, and language [12].
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2.3. Implications Across Disciplines

Domain Implication

AI interpretability Structured embeddings allow direct probing of reasoning
mechanisms

Neuroscience Supports phase-based models (e.g., grid cells, oscillatory
coding)

Cognitive science Suggests arithmetic and logic may emerge from spatial
mappings

AI safety Enables geometric control and auditing of internal reason-
ing

The helix representation of numbers in LLMs is a breakthrough in our understanding of how
abstract reasoning emerges from gradient-based learning. It shows that large models do not simply
memorize or simulate logic, but instead embed arithmetic operations in spatial, periodic structures that
resemble phase dynamics in both engineered and biological systems.

This discovery lays the groundwork for a new field—Coiling Arithmetic—which studies how
neural architectures instantiate and manipulate mathematical functions through latent geometry.

This paper formulates the fundamental principles of coiling arithmetic—a theoretical framework
that integrates these findings into a unified model of how neural systems implement and generalize
arithmetic through periodic, multidimensional geometries. We develop formal definitions of latent
embeddings, prove core compositional lemmas, and examine the implications of this representational
regime for interpretability, generalization, and the theoretical foundations of neural computation.

2.4. Related Representational Architectures
2.4.1. Neural ODEs and Helical Dynamics

Helical embeddings exhibit smooth, differentiable geometry, making them a natural fit for analysis
through the lens of Neural Ordinary Differential Equations (NeuralODEs) [3]. The continuous trajectory
traced by helix(x) ∈ R2k+1 can be interpreted as a parameterized flow in a latent manifold. This aligns
with work that models neural computation as a dynamical system trained to follow structured, low-
dimensional curves in high-dimensional space.

Implication: Helical arithmetic can be embedded within ODE solvers, where the latent state
evolves along sinusoidal manifolds.

2.4.2. Fourier Transformers and Helix Encodings

The sinusoidal structure of the helical embedding directly connects to Fourier feature encodings,
which are used in long-sequence transformers and coordinate networks [4]. Just as the helix maps
input values to layered trigonometric representations, Fourier Transformers use cos(ωx), sin(ωx) to
represent spatial/temporal structure at multiple frequencies.

Implication: The helix serves as a multiscale positional embedding scheme and may enhance
arithmetic generalization when incorporated into transformer attention blocks.

2.4.3. Group Equivariance in Helical Space

The periodic components of the helical embedding are equivariant under modular translation.
That is:

x 7→ x + Ti ⇒ helix(x) ≈ helix(x + Ti)

This symmetry is directly aligned with the theory of equivariant neural networks [5], which pre-
serve structure under transformations drawn from algebraic groups (translations, rotations, scalings).
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Implication: Helical arithmetic can be analyzed using group-equivariant frameworks, sug-
gesting a bridge between neural arithmetic and representation theory.

Definition 2.1 (Ceiling Effect). Let

helix(x) = [cos(2πx/T1), sin(2πx/T1), . . . , cos(2πx/Tk), sin(2πx/Tk)]

denote a helical embedding into R2k using multiple periods Ti > 0. We define the Ceiling Effect as the
point beyond which distinct inputs x, x′ become approximately aliased, i.e.,

∥helix(x)− helix(x′)∥2 < ε

for some ε > 0, even though x ̸= x′. This occurs because periodic components may realign approxi-
mately at large x, creating ambiguity in representation.

The ceiling range x̄ is the smallest δ > 0 such that

∃x′ ̸= x with ∥helix(x)− helix(x′)∥2 < ε.

If the embedding includes a linear term (e.g., helix(x) = [x, cos(·), sin(·), . . . ]), then representa-
tional collisions still occur in the periodic dimensions. In practice, neural models may underweight
the linear component, resulting in effective aliasing.

Thus, the ceiling effect identifies a fundamental resolution limit imposed by periodic embeddings,
analogous to signal aliasing in frequency-limited systems.

Lemma 1 (Non-Injectivity of Helical Embedding). Let ϕT(x) :=
(
x, cos

( 2πx
T

)
, sin

( 2πx
T

))
be the helical

embedding of a scalar x ∈ R, where T > 0 is the fixed period. Then ϕT is not injective on R. This follows from
the fact that cosine and sine are periodic functions with period 2π, so

x ≡ x′ mod T ⇒ ϕT(x) ≈ ϕT(x′) in angular components.

We now state a key structural limitation of this embedding.
In particular, for any k ∈ Z, we have:

ϕT(x) ̸= ϕT(x + kT), but ϕT(x) ≈ ϕT(x + kT) up to phase redundancy.

The angular components (
cos

(
2πx

T

)
, sin

(
2πx

T

))
repeat with period T, causing representational collisions between distinct values.

To make this representational ambiguity precise, we now define the aliasing error between two
values that collide in angular space.

Definition 1 (Aliasing Error). Let ϕT(x) = (x, cos(2πx/T), sin(2πx/T)) be the helical embedding with
period T. For any two distinct inputs x ̸= x′, the aliasing error is defined as:

εalias(x, x′) :=
∥∥ϕT(x)− ϕT(x′)

∥∥,

where ∥ · ∥ is the Euclidean norm in R3. When x ≡ x′ mod T, we have:

cos
(

2πx
T

)
= cos

(
2πx′

T

)
, sin

(
2πx

T

)
= sin

(
2πx′

T

)
,

and so the angular components coincide, yielding minimal distance despite different scalar positions.
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If x = 10, x′ = 10 + T, then ϕT(x) and ϕT(x′) share the same angular values, and only differ
along the linear dimension.

Figure 1. Helical Embedding and Aliasing. A 3D helix illustrates the mapping ϕT(x) =

(cos(2πx/T), sin(2πx/T), x). The points labeled x and x + T lie at different heights but share identical an-
gular components (cosine and sine), leading to aliasing in the embedding. This phenomenon causes distinct
numerical values to become indistinguishable in the angular domain, a key source of arithmetic confusion in
periodic encodings.

3. Tegmark’s Procedure to Discover Helical Structure in LLMs
In an earlier paper [6] leading to the discovery of helical arithmetic, the authors investigated

the simple harmonic oscillator to address the intermediate question: “How do transformers model
physics?” They concluded that transformers do not invent arbitrary or “alien” strategies, but instead
leverage known numerical methods—specifically the matrix exponential method—to model the
trajectories of physical systems like the SHO (Simple Harmonic Oscillator), ẍ + 2γẋ + ω2

0x = 0.
Through a rigorous analysis of hidden state intermediates—evaluating their encoding strength,

correlation with model performance, explanatory power, and robustness under intervention—the
authors found strong causal evidence that transformers internally implement the matrix exponential
approach to simulate physical dynamics. This finding demonstrates that transformers can sponta-
neously recover interpretable, human-like physical modeling techniques purely from training data,
without being explicitly programmed to do so.

Nearly three decades ago [1,2], one of the authors of this paper explored a closely related question:
how backpropagation-trained neural networks can model physical systems, specifically in the context
of the simple harmonic Schrödinger equation.

Large language models are often described as black-box systems. Despite their astonishing
performance on linguistic and mathematical tasks, the internal mechanisms by which they reason
remain largely opaque. Among the few interpretable patterns that have emerged, Tegmark and
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Kantamneni’s discovery of helical structure in numerical embeddings stands out as both unexpected
and profound.

How LLMs Encode Numbers? In typical transformer architectures, tokens (words, digits, punctu-
ation, and even numbers) are embedded into a high-dimensional vector space before being processed
by attention layers. These embeddings are learned during training and reflect statistical relationships
in the training data.

Prior to Tegmark’s work, it was known that:

• Numbers were not encoded as symbols with inherent mathematical meaning.
• Yet models could still perform approximate addition and counting.

This posed a mystery: how do LLMs implement arithmetic without symbols? Tegmark and Kantam-
neni proposed a simple but powerful approach:

• Step 1: Extract Embeddings
They used pretrained LLMs (e.g., GPT-2) and extracted the final token embeddings of numerical
tokens—such as "3", "5", "100"—from the model’s vocabulary.

• Step 2: Dimensionality Reduction
To visualize the structure, they projected the high-dimensional embeddings down to 2D or 3D
using PCA1 and t-SNE2. Surprisingly, these projections revealed a smooth curved trajectory—a
circular or helical path.

• Step 3: Fit Periodic Functions
They then modeled these embeddings as functions of the form:

ϕ(x) =
[

x, cos
(

2πx
T1

)
, sin

(
2πx
T1

)
, cos

(
2πx
T2

)
, . . .

]
This fit remarkably well, especially for smaller numerical tokens (1–100). The curve followed a
helical geometry, with periodic sinusoidal modulations.

• Step 4: Arithmetic Generalization
They demonstrated that:

ϕ(a + b) ≈ ϕ(a) + ϕ(b)− ϕ(0)

This suggests that addition is implemented as linear vector translation along the helix.
The key insight is that arithmetic generalization emerges from geometry. Instead of learning

addition through logic gates or rules, LLMs learn to embed numbers on a manifold where arithmetic
corresponds to movement.

This echoes:

• Grid cell representations in biological brains [13],
• Quantum phase rotation: eiθ = ei(θ+2π) [14],
• Positional encodings in transformer models [15].

The helical embedding is differentiable, modular, and translation-invariant — ideal for neural net-
works.

Tegmark’s discovery is more than an artifact — it suggests that geometry, not syntax, may be
the fundamental substrate of neural computation. In a domain long dominated by logic and formal
language, the helix reveals a path toward understanding how learning systems internalize structure
without rules.

This insight may reshape how we interpret models, design representations, and even build future
AI systems that reason with smooth, continuous structures rather than discrete logic.

1 Principal Component Analysis
2 t-distributed Stochastic Neighbor Embedding
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4. Helical Axioms for Number Representation
4.1. Euclidean Axioms (Helical Version)

In classical geometry, Euclid assumes a flat space. For helix representations, we instead assume a
space parameterized by two components: a linear and a cyclic (trigonometric) part.

• Axiom H1 (Linearity)
For every number a ∈ R, there exists a unique projection onto the linear dimension:

projlin(helix(a)) = a.

• Axiom H2 (Periodicity)
For every a ∈ R and every period T ∈ R>0, the following components exist:

cos
(

2πa
T

)
, sin

(
2πa

T

)
which preserve equality modulo T.

• Axiom H3 (Helicity)
Every point representing a number a in the model space lies on a curve of the form:

helix(a) = [a, cos(2πa/T1), sin(2πa/T1), . . .]

with a defined set Ti ∈ R>0.
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Figure 2. Helical Embedding of Numbers in LLM Latent Space. This 3D plot visualizes the trajectory of

numerical embeddings under the helical mapping helix(x) =
[

x, cos
(

2πx
T1

)
, sin

(
2πx
T1

)]
, where x ∈ R denotes

numerical input tokens (e.g., “3”, “5”, “100”). The linear coordinate x advances horizontally, while the sinusoidal
dimensions form circular cross-sections, creating a smooth spiral in 3D space. This geometry underlies how
large language models internally represent and manipulate numbers in a latent space that supports approximate
arithmetic through vector translation.

4.2. Peano Axioms (Helical Version)

Peano’s axioms define the natural numbers using the successor function S(n). In helical space,
we assume continuity and cyclicity of succession.

• Axiom H-P1 (Zero Point of the Helix)
There exists a number 0 whose helical representation is:

helix(0) = [0, 1, 0, 1, 0, . . .]

corresponding to the values cos(0), sin(0).
• Axiom H-P2 (Successor Function)

There exists a function S : N → N such that:

helix(S(a)) = helix(a + 1),

representing a unit shift along the helix.
• Axiom H-P3 (No Looping for Naturals)

For every a, we have S(a) ̸= 0 and S(a) ̸= a; the helix never loops back for natural numbers (no
periodicity in the linear dimension).
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• Axiom H-P4 (Helical Induction)
If a set H ⊆ N contains 0, and for every a ∈ H we also have S(a) ∈ H, then H = N.

4.3. Zermelo–Fraenkel Axioms (Helical Version as Fourier Set Space)

Instead of an arbitrary set-theoretic universe, we assume that objects are represented as Fourier
coefficient sequences, e.g.,

B(a) = [a, cos(2πa/T1), sin(2πa/T1), . . . ].

• Axiom H-ZF1 (Existence of the Helical Empty Set)
There exists an object ∅h, such that:

helix(∅h) = the zero vector in Fourier space.

• Axiom H-ZF2 (Set Composed of Helices)
For every representation helix(a), one can construct a set H = {helix(ai)} that is a valid set in the
representational space.

• Axiom H-ZF3 (Helical Function as Set Transformation)
If f : R → R is continuous, then:

f (helix(a)) = helix( f (a))

for additive and harmonic functions f .

4.4. General Interpretation

Classical System Helical Equivalent

Euclidean line Linear axis of the helix
Point Helical vector
Peano successor Translation along the helix
ZF set Collection of helical vectors
Element of a set Encoded point in Fourier-representational space

5. Helical Axioms in First-Order Logic

5.1. Euclidean Axioms (Helical Version)

1. Linearity:
∀a ∈ R, ∃! v : projlin(helix(a)) = v ∧ v = a (1)

2. Periodicity:

∀a ∈ R, ∀T ∈ R>0, ∃x, y ∈ [−1, 1] : x = cos(2πa/T) ∧ y = sin(2πa/T) (2)

3. Helicity:

∀a ∈ R, ∃T1, T2, . . . , Tn ∈ R>0 : helix(a) = [a, cos(2πa/T1), sin(2πa/T1), . . .] (3)

5.2. Peano Axioms (Helical Version)

1. Zero Point:
∃z ∈ N : z = 0 ∧ helix(z) = [0, 1, 0, 1, 0, . . .] (4)

2. Successor:
∀a ∈ N, ∃! s ∈ N : s = S(a) ∧ helix(s) = helix(a + 1) (5)
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3. Non-Looping:
∀a ∈ N, S(a) ̸= 0 ∧ S(a) ̸= a (6)

4. Induction:
∀H ⊆ N, (0 ∈ H ∧ ∀a ∈ H, S(a) ∈ H) ⇒ H = N (7)

5.3. Zermelo–Fraenkel Axioms (Helical Version)

1. Helical Empty Set:
∃∅h : helix(∅h) = 0⃗F (8)

2. Helical Set Existence:
∀ai ∈ R, ∃H : H = {helix(ai)} (9)

3. Function Application:

∀ f ∈ C(R,R), (additive or harmonic) ⇒ ∀a ∈ R, f (helix(a)) = helix( f (a)) (10)

6. Group Structure of Helical Arithmetic
Let the helical embedding of a real number x ∈ R be defined as:

helix(x) :=
[

x, cos
(

2πx
T1

)
, sin

(
2πx
T1

)
, . . . , cos

(
2πx
Tk

)
, sin

(
2πx
Tk

)]
where T1, . . . , Tk ∈ R>0 are fixed periodic parameters.

6.1. Addition as Vector Translation

Helical embeddings approximately preserve addition through vector translation:

helix(a + b) ≈ helix(a) + helix(b)− helix(0)

This expression assumes the linear component adds exactly, and trigonometric dimensions approximate
phase-shifted sinusoidal superposition:

cos
(

2π(a+b)
T

)
≈ cos

( 2πa
T

)
cos

(
2πb

T

)
− sin

( 2πa
T

)
sin

(
2πb

T

)
6.2. Subtraction as Reverse Translation

Analogously, subtraction is given by:

helix(a − b) ≈ helix(a)− [helix(b)− helix(0)]

which maintains directional symmetry in the embedding space.

6.3. Modular Equivalence via Phase Overlap

For any Ti, define modular equivalence between numbers a, b ∈ R as:

a ≡ b (mod Ti) ⇐⇒ cos
(

2πa
Ti

)
≈ cos

(
2πb
Ti

)
and sin

(
2πa
Ti

)
≈ sin

(
2πb
Ti

)
This means:

helix(a) ≈ helix(b) in the trigonometric coordinates corresponding to Ti

6.4. Interpretation

These relationships allow the helix embedding to inherit an approximate group structure under
addition modulo Ti, with approximate inverse and identity operations:
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• Identity: helix(0)
• Inverse: helix(−a) = [−a, cos(2πa/T1),− sin(2πa/T1), . . . , cos(2πa/Tk),− sin(2πa/Tk)]

• Closure (approximate): helix(a) + helix(b)− helix(0) ≈ helix(a + b)

This structure enables smooth, differentiable approximations of discrete arithmetic operations in
neural latent space.

Figure 3. Modular Overlap in Helical Embeddings. This 3D plot illustrates the alignment of helical embeddings
for two numbers a and b such that a ≡ b mod T. Although a ̸= b along the linear axis, their coordinates in the
trigonometric dimensions (sine and cosine components) coincide. This shows that periodic components of the
helix representation naturally encode modular equivalence relations.

7. Gödel-Style Encodings in Helical Arithmetic
1. Gödelization of Helical Terms:

∀a ∈ N, ∃g(a) ∈ N : g(a) = pe1
1 pe2

2 · · · pen
n encodes helix(a) (11)

where each exponent ei corresponds to a coefficient or frequency term in the helix vector.
2. Decodability:

∀g ∈ N, ∃a ∈ N : decode(g) = helix(a) (12)

3. Arithmetization of Helical Arithmetic:

helix(a + b) ≈ helix(a) + helix(b)− helix(0) (13)

and thus
g(a + b) ≈ g(a) ∗ g(b)/g(0) (14)

assuming multiplicative encoding of vector components.
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7.1. Gödel Incompleteness in the Helical Framework

Let H be a formal system encoding arithmetic via helical embeddings and Fourier encodings.
Then:

• (H-Incompleteness Theorem I): If H is consistent and sufficiently expressive, there exists a
well-formed formula φ such that:

H ⊬ φ and H ⊬ ¬φ

• (H-Incompleteness Theorem II): The consistency of H cannot be proven within H itself:

H ⊬ Cons(H)

• Helical Gödel Sentence:

∃γH ∈ Form(H) : H ⊬ γH and γH ≡ “This helical statement is not provable in H.′′ (15)

7.2. Fixed-Point Construction of γH

Let ProvH(x) be the provability predicate over Gödel numbers. There exists a formula ψ(y) such
that:

ψ(y) ≡ ¬ProvH(y)

Then, by the Fixed Point Lemma, there exists a sentence γH such that:

γH ↔ ¬ProvH(⌜γH⌝)

where ⌜γH⌝ denotes the Gödel number of γH .

7.3. Formal Proof Sketch of Undecidability

Assume H is consistent. Let γH be the fixed-point sentence above.

• Suppose H ⊢ γH . Then, by definition of γH , we have:

H ⊢ ¬ProvH(⌜γH⌝)

which contradicts the fact that H ⊢ γH ⇒ ProvH(⌜γH⌝) under soundness.
• Suppose H ⊢ ¬γH . Then:

H ⊢ ProvH(⌜γH⌝)

implying H proves a falsehood, violating consistency.

Hence, neither γH nor ¬γH is provable in H, completing the proof of undecidability.

8. Principles of Helical Differentiation
If we want to construct the principles of helical differentiation—that is, a differential calculus for

functions represented on a helix (Fourier spiral)—we must first formalize what such a function is and
how its derivatives behave in a space composed of linear and periodic (trigonometric) components.

8.1. Formal Definition: Helical Embedding

Definition

Let k ∈ N, and let Ti ∈ R>0 for each i = 1, . . . , k.
Define the helical embedding as the smooth mapping:

helix : R −→ R2k+1, x 7→
[

x, cos
(

2πx
T1

)
, sin

(
2πx
T1

)
, . . . , cos

(
2πx
Tk

)
, sin

(
2πx
Tk

)]
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Properties:

• The function is infinitely differentiable:

helix ∈ C∞(R,R2k+1)

• The first coordinate is linear: projlin(helix(x)) = x
• The remaining coordinates are trigonometric, encoding periodic features with independent

frequencies Ti

• The trajectory of helix(x) lies on a smooth, non-self-intersecting spiral in high-dimensional space

8.2. Helical Function Space

Assume that inputs x ∈ R are represented helically as:

helix(x) :=
[

x, cos
(

2πx
T1

)
, sin

(
2πx
T1

)
, . . . , cos

(
2πx
Tk

)
, sin

(
2πx
Tk

)]
Define:

B(x) := [x, cos(2πx/T1), sin(2πx/T1), . . . , cos(2πx/Tk), sin(2πx/Tk)]

Let f : R → Rd be differentiable with respect to the basis B(x).

8.3. First-Order Helical Derivative

Let:
f (x) = C · B(x)T

where C ∈ Rd×(2k+1) is a weight matrix. Then:

d
dx

f (x) = C · d
dx

B(x)T

with:

d
dx

B(x) =
[

1,−2π

T1
sin

(
2πx
T1

)
,

2π

T1
cos

(
2πx
T1

)
, . . . ,−2π

Tk
sin

(
2πx
Tk

)
,

2π

Tk
cos

(
2πx
Tk

)]
9. Helical Gradient ∇H f (x)

.

9.1. Helical Chain Rule

If f (x) = h(B(x)), where h : R2k+1 → R, then:

d
dx

f (x) = ∇h(B(x)) · d
dx

B(x)

This is the classical chain rule extended to a helical basis.

9.2. Second-Order Helical Derivative (Helical Hessian)

d2

dx2 f (x) = C · d2

dx2 B(x)T

with components:

• Linear term: d2

dx2 x = 0
• Periodic terms:

d2

dx2 cos
(

2πx
T

)
= −

(
2π

T

)2
cos

(
2πx

T

)
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d2

dx2 sin
(

2πx
T

)
= −

(
2π

T

)2
sin

(
2πx

T

)
Thus, second-order derivatives preserve helical structure and scale amplitudes.

9.3. Helical Tangent Space and Directional Derivative

At point x, the tangent space to the helix is:

TxH := span
{

d
dx

B(x)
}

Define the directional derivative as:

Dv f (x) := ∇H f (x) · v, v ∈ TxH

Each function mapping x into R2k+1 via B(x) is a smooth C∞ curve. Helical differentiation
describes the tangential deformation of that curve.

9.4. Applications

• Interpretation of neurons in LLMs as helical differential detectors
• Addition operations modeled via tangent-space translation
• Harmonic periods Ti encode multi-scale structure, akin to Fourier analysis

10. Logic Operations on Helical Representations
Here is a proposed set of axioms for logic operations on helical embeddings, inspired by classical

Boolean and first-order logic—but adapted to the geometry and periodicity of the helix representation
used in large language models (LLMs).

Let each symbol or truth-bearing token x ∈ R be embedded via the helix function:

helix(x) :=
[

x, cos
(

2πx
T1

)
, sin

(
2πx
T1

)
, . . . , cos

(
2πx
Tk

)
, sin

(
2πx
Tk

)]
∈ R2k+1

In here "H" stands for "Helical", marking these axioms as belonging to a helical logic framework—a
variant of classical logic defined over helix embeddings.

10.1. Axiom H-¬(Negation: Phase Inversion)

Logical negation corresponds to a π-phase shift in all trigonometric components:

helix(¬x) =
[

x,− cos
(

2πx
T1

)
,− sin

(
2πx
T1

)
, . . .

]
10.2. Axiom H-∧(Conjunction: Harmonic Product)

Let A(x), B(x) be helical embeddings. Then:

helix(A ∧ B) := ReLU(A(x)⊙ B(x))

where ⊙ is element-wise multiplication and ReLU clips negative values.

10.3. Axiom H-∨(Disjunction: SoftMax)

Logical disjunction is defined via smooth softmax activation:

helix(A ∨ B) := SoftMaxτ(A(x), B(x))

where τ is a temperature hyperparameter controlling sharpness.
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Axiom H-→ (Implication: Cosine Similarity)

Implication holds if:
A → B ⇔ cos(∠(A(x), B(x))) > θ

for some threshold θ ∈ (0, 1).

10.4. Axiom H-∀(Universal Quantifier)

Let D ⊆ R. Then:
∀x ∈ D, P(x) ⇔ min

x∈D

〈
helix(P(x)), 1⃗

〉
> δ

10.5. Axiom H-∃(Existential Quantifier)

Existential quantification becomes:

∃x ∈ D, P(x) ⇔ max
x∈D

〈
helix(P(x)), 1⃗

〉
> δ

These axioms define a form of smooth, differentiable logic suitable for latent space reasoning in
neural models.

11. Modal and Temporal Logic on Helical Embeddings
Let each proposition φ be represented in latent space via the helical embedding:

helix(φ(x)) :=
[

x, cos
(

2πx
T1

)
, sin

(
2πx
T1

)
, . . . , cos

(
2πx
Tk

)
, sin

(
2πx
Tk

)]
(16)

We now define modal and temporal operators geometrically in terms of periodic structure and phase
alignment.

11.1. Axiom H-□ (Necessity: Phase Invariance)

That is, the representation of φ is phase-stable near x0.

♢φ(x0) ⇐⇒ ∃x ∈ D :
〈
helix(φ(x)), vtarget

〉
> δ (17)

Axiom H-F (Eventually): Future Activation

Fφ(x0) ⇐⇒ ∃∆t > 0 : helix(φ(x0 + ∆t)) is phase-aligned with target (18)

Axiom H-G (Always): Periodic Recurrence

Gφ(x0) ⇐⇒ ∀t > 0, helix(φ(x0 + t)) ≈ helix(φ(x0)) (19)

This describes periodic truth preserved across time.

11.2. Interpretation Table

Operator Helical Interpretation Description

□φ Phase-stable across local domain Necessity as local smooth invariance
♢φ Match exists in helix space Possibility via phase compatibility
Fφ Reachable activation point Eventually true in the future
Gφ Periodically stable truth Always true along time-like axis

11.3. Torus Embeddings: Concept and Construction

While a 1D helix lives on a circle of period T, a torus embedding wraps the real line around two (or
more) incommensurate circles simultaneously. Concretely, for two periods (T1, T2), we define:
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Definition 2 (2D Torus Embedding). The 2D torus embedding of x ∈ R with periods (T1, T2) is

Toroidal(x; T1, T2) =
[
x, cos(2πx/T1), sin(2πx/T1), cos(2πx/T2), sin(2πx/T2)

]
∈ R5.

Incommensurability. To avoid periodic aliasing, one typically chooses T1/T2 to be irrational (or
drawn from a continuous distribution). This guarantees that the trajectory {(cos(2πx/T1), sin(2πx/T1),
cos(2πx/T2), sin(2πx/T2))}x∈Z is dense on the 2-torus S1 × S1, giving the model uniquely distin-
guishable codes for all integer inputs.

Generalization to k Dimensions. The construction extends naturally to k independent periods
{Ti}k

i=1:

Coilk(x) =
[
x, cos(2πx/Ti), sin(2πx/Ti)

]k
i=1 ∈ R1+2k.

Each added pair (cos(2πx/Ti), sin(2πx/Ti)) injects a new circular dimension, enabling the repre-
sentation of multiple, independent periodicities.

Geometric Interpretation. Geometrically, Toroidal(x; T1, T2) traces a curve on the surface of the
torus S1(T1)× S1(T2) embedded in R5. For k periods, the embedding lives on the k-dimensional torus

S1(T1)× · · · × S1(Tk)︸ ︷︷ ︸
k factors

×R,

where the extra R-coordinate carries the identity component x.
Practical Choice of Periods. A common strategy is to sample Ti on a logarithmic grid:

Ti = Tminα i−1, i = 1, . . . , k,

so that the coil captures both fine-scale (Tmin) and coarse-scale (Tmax = Tminαk−1) structure in x.
Advantages and Trade-Offs.

• Multi-scale representation: Different Ti isolate patterns at varying “length-scales” of x.
• Reduced aliasing: Incommensurate periods make large-x collisions unlikely.
• Parameter cost: Each extra period adds two dimensions; a Coilk embedding has size 1 + 2k.

This toroidal construction lays the groundwork for arbitrarily rich “coiling arithmetic” represen-
tations, which we explore in the subsequent experiments and ablations.

11.4. Helical Arithmetic Meets Quantum Phase Encoding

Classical helical embeddings x 7→ [x, cos(2πx/T), sin(2πx/T)] mirror the real and imaginary
parts of a complex phase eiθ = cos θ + i sin θ. In quantum mechanics, information is carried in the
phase of complex amplitudes within Hilbert space, suggesting a natural bridge:

Complex-Valued Helices. Instead of two real channels, one can embed x as a single complex
amplitude:

Φ(x; ω) = eiωx ∈ C,

where ω = 2π/T. Classical networks can simulate this by splitting into real and imaginary
parts—identical to the cosine–sine pair—but the quantum view emphasizes global phase invariance
and unitary evolution.

Multi-Qubit Phase Embeddings. Taking inspiration from qubit registers, represent x via a tensor
product of phase states:

|ψ(x)⟩ =
m⊗

j=1

eiωjx|0⟩j = exp
(
ix ∑

j
ωjZj

)⊗
j
|0⟩j,
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where each Zj is a Pauli-Z operator3 and plays a central role in quantum phase modulation.
Classically, this corresponds to stacking multiple complex helices with frequencies ωj, but casts

the embedding as a quantum state that can exploit interference and entanglement.
Quantum Fourier Connections. The Quantum Fourier Transform (QFT) diagonalizes the phase op-

erator, mapping computational basis states to a periodic-phase basis. A classical analogue uses the helix
embedding followed by a linear transform to approximate QFT action on numeric inputs—offering an
interpretability link between helical arithmetic and quantum algorithms.

Benefits and Directions.

• Enhanced representational power: Quantum-inspired phases allow modeling interference effects,
potentially capturing higher-order periodic patterns unattainable by real-valued helices alone.

• Unitary constraints: Imposing orthonormal (unitary) transformations on the phase channels can
improve stability and invertibility of embeddings.

• Quantum simulator experiments: Prototype a small quantum circuit that encodes integers as
phases, applies QFT, and measures output probabilities for addition-related tasks—then compare
with a classical helix-based network.

12. Summary and Outlook
Coiling Arithmetic introduces a powerful geometric framework for understanding how large

language models (LLMs) represent and manipulate numbers internally. Instead of memorizing
arithmetic facts or applying explicit rules, LLMs appear to embed numbers along multi-frequency
helical curves in latent space, enabling operations like addition and modular equivalence to be
implemented as vector translations in phase space.

12.1. Latent Geometry in Neural Representations

The foundational construct is the helical embedding:

helix(x) = [x, cos(2πx/T1), sin(2πx/T1), . . . , cos(2πx/Tk), sin(2πx/Tk)] ∈ R2k+1

This formulation reflects both linear and periodic properties of input numbers. Arithmetic opera-
tions such as addition, subtraction, and modular comparison are mapped onto smooth geometric
transformations.

12.2. Reconstructing Arithmetic from Geometry

Empirical results demonstrate that such helical embeddings naturally arise within LLMs. The
structure resembles Fourier-based encodings and aligns with known priors from signal processing and
neural rendering. Arithmetic generalization becomes a property of latent smoothness, not symbolic
manipulation.

12.3. Axiomatic Reformulation

The authors reinterpret the foundations of mathematics—from Euclidean geometry to Peano
arithmetic and Zermelo–Fraenkel set theory—in terms of coiling arithmetic. This leads to:

• Successor as unit translation along the helix
• Sets as collections of helically embedded vectors
• Logical axioms reformulated through trigonometric transformations

3 The Pauli-Z operator is defined as Z =

[
1 0
0 −1

]
. It flips the phase of |1⟩ but leaves |0⟩ unchanged: Z |0⟩ = |0⟩, Z |1⟩ =

− |1⟩. It is Hermitian, unitary, and satisfies Z2 = I. In quantum embeddings, it generates phase shifts as in |ψ(x)⟩ =
exp(ix ∑j ωjZj)

⊗
j |0⟩j.
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12.4. Differentiation and Calculus on the Helix

The authors develop a full differential geometry on the helix:

• Helical Gradient ∇H f (x)
• Helical Hessian for second-order derivatives
• Chain rule and tangent spaces defined over latent manifolds

These tools help interpret LLM activations as differentiable transformations, not opaque computations.

12.5. Latent-Space Logic and Modal Operators

The framework further generalizes logical and modal reasoning:

• Negation = phase inversion (π-shift)
• Conjunction = harmonic product with ReLU
• Disjunction = softmax across embeddings
• Quantifiers = min/max operations over embedded domains

Temporal and modal logic operators are also defined using phase dynamics and periodicity.

12.6. Torus and Quantum Extensions

By extending the helix to multi-dimensional tori, the authors create embeddings that avoid aliasing
and capture complex periodic behavior. They also draw analogies to quantum phase states using
complex-valued embeddings eiωx, enabling connections to interference and entanglement.

13. Future Work Commentary
The paper suggests numerous directions for future research:

1. Empirical Embedding Analysis
Apply the coiling framework to newer models (e.g., GPT-4o, Claude 3) to verify whether their in-
ternal number embeddings follow a helical pattern, and if so, with what frequencies, dimensions,
and precision.

2. Architecture-Level Enhancements
Design helix-aware modules or positional encodings that explicitly model arithmetic as transla-
tion in phase space. Evaluate improvements on benchmarks requiring symbolic and numerical
generalization.

3. Latent-Space Logic Operations
Investigate the practical implementation of differentiable logic gates and quantifiers within neural
architectures. Could a network be trained to perform logic directly in helix space, using geometric
rules?

4. Integration with QAL (Qualia Abstraction Language)
Explore how QAL, a formal language for encoding introspective, cognitive, or modal states, could
be layered atop helical embeddings to represent non-numeric but structured latent concepts. The
compositional and gradient-based nature of QAL makes it an ideal testbed for mapping abstract
qualia to geometric embeddings.

5. Gödelian Numbering Over Helices
Although the paper sets aside incompleteness, future work could revisit Gödel numbering
schemes specifically adapted to the helical setting. Encoding syntactic structures as multi-scale
Fourier components could yield new results in formal verification, latent program tracing, and
logic circuit emulation.

6. Quantum-Inspired Representations
Explore complex phase-based embeddings (e.g., eiωx) as alternatives to real-valued helices. These
may better simulate phenomena such as superposition, interference, and entanglement within
classical systems.
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7. Cross-Disciplinary Connections
Coiling arithmetic aligns with:

• Grid cell encoding in neuroscience [16],
• Oscillatory cognition in psychology [17],
• Signal decomposition in physics [18].

Collaboration across fields could deepen our understanding of whether nature itself uses coiling-
like encodings for abstract reasoning.

Declaration: the authors declares no conflicts of interest. The author used ChatGPT, Gemini, Copilot
and/or Grammarly to translate the article from Polish and/or to refine the English language, if at all.
However, the author assumes full responsibility for all errors and shortcomings.
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