Pre prints.org

Brief Report Not peer-reviewed version

Comparative Clinical Evaluation of 3
Artificial Intelligence Algorithms for
Breast Cancer Screening with
Mammography

Alexandra Brion *, Lan-Anh Dang , Edouard Poncelet, Laurie Ferret , Mathilde Vermersch , Laurent Nicolas
Posted Date: 24 January 2024
doi: 10.20944/preprints202401.1706.v1

Keywords: Breast neoplasia; Artificial intelligence; Algorithm; Mammography

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/3347630
https://sciprofiles.com/profile/3348018

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 January 2024 doi:10.20944/preprints202401.1706.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Brief Report

Comparative Clinical Evaluation of 3 Artificial
Intelligence Algorithms for Breast Cancer Screening
with Mammography

Alexandra Brion, Lan-Anh Dang, Edouard Poncelet, Laurie Ferret, Mathilde Vermersch and
Nicolas Laurent

Centre Hospitalier de Valenciennes - 114 Av. Desandrouin, 59300 Valenciennes
* Correspondence: alex.brion@free.fr - +33646017902 — 184 rue de Vesle, 51100 REIMS, France

Abstract: Objectives: Few studies have evaluated and compared artificial intelligence (AI) models for breast
cancer detection on the same database. The purpose is to compare the performances of 3 artificial intelligence
algorithms on the same dataset at a free operative threshold and to evaluate how the performance is impacted
by the chosen threshold. Materials: In this retrospective single-center study, a dataset of 314 2D screening
mammograms performed between 2012 and 2020 was established with a prevalence of 19.6% of histologically
proven cancer. Three Al constructors using CE (European conformity) marking algorithms have agreed to take
part in the study by submitting the cancer-enriched cohort to their algorithm. They chose a free operative
threshold to distinguish benign and malignant mammograms. The most suspicious lesion was marked and
correctly located by the AI algorithm. Statistical parameters were analyzed and compared between the
algorithms. Results: Regarding both sensitivity and specificity, at the chosen threshold, Al 1 had the best
compromise between sensitivity (74%) and specificity (79%). Al 2 had a statistically lower sensitivity (52%;
p<0.05) with a higher specificity (98.4%) than the other AI algorithms. Al 3 had a nonsignificant sensitivity
difference (69.9%) but a significantly lower specificity (45.3%; p<0.001) than the other two. The performances
varied depending on the chosen threshold; when the AI 2 threshold was lowered, the sensitivity increased
(69.9%), while a higher specificity (86.1%) was maintained. Conclusion: Two Al algorithms stood out in terms
of performance when the threshold was optimized, resulting in an acceptable sensitivity and specificity.
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Introduction

Breast cancer is the most common cancer diagnosed in women worldwide (1). Prevention and
screening have decreased breast cancer mortality by 3 to 35%, depending on the country and the
study (2,3). However, mammography screening has limitations such as missed cancers and interval
cancers (4), overdiagnosis resulting in overtreatement (5), subjective and variable human
interpretation (6,7), and workload challenges (8,9).

Over the last few years, with the advent of deep learning and convolutional neural networks,
artificial intelligence (Al) for medical research has advanced. Several studies have evaluated the
performance of Al in mammography screening. According to Rodriguez Luiz et al. (10), the
performances of Al algorithms were shown to be better than the performance of average radiologists
but worse than that of expert radiologists. Additionally, 94% of Al systems were found to be less
accurate than radiologists according to a British Medical Journal study (11). On the other hand, Al
assessment combined with radiologist expertise seems to be more efficient than Al alone or
radiologist alone (12,13), as shown by Watanabe et al. (14).

The expected benefits of Al are an overall improvement in radiologist performance, in particular
the performance of average readers (10), an aid in the diagnosis of subtle cancers and an improvement
in reading time (15). The limits of the use of Al are the absence of consideration of clinical data and
previous mammograms (16) and a persistence of false positives leading to overalerting and
overdiagnosis (11).
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To our knowledge, only one independent Swedish study has evaluated the performance of 3
commercialized artificial intelligence algorithms as independent mammography readers compared
to radiologists. That study showed that one of the Al algorithms was more efficient than radiologists
alone (17).

Currently, in Europe, several companies offer breast cancer detection software that has obtained
a CE (European conformity) marking. In clinical use, Al systems target lesions and suggest cancer
risk categories, generally based on three levels of risk. The intermediate category often concentrates
a large proportion of false-positive lesions that may affect radiologist interpretation. It would seem
necessary to improve this categorization by determining a threshold that would allow effective
detection while limiting false positives. Furthermore, locating the lesions is rarely required.

The main aim of the current study was to compare the performance of 3 Al algorithms based on
the same dataset at a free operative threshold. The second outcome was to evaluate performance
variations when modifying the operating threshold.

Material and methods

Data selection and sample size

The study sample was extracted retrospectively from a dataset of Valenciennes Hospital
(France). The oldest exam dates back to June 2012 and the most recent from March 2020. All
mammograms were acquired with a Hologic Selenia 3D Dimension® system. The dataset only
included screening exams. All patients were eligible for this retrospective institutional review board
(IRB)-approved study (IRB number, CRM-2304-335). Written informed consent was waived by IRB.

The included women were aged from 40 to 74 years, asymptomatic, without any history of
personal breast cancer and had a complete screening examination prior to diagnosis. Women with
multifocal cancers were excluded.

Mammograms and patients’ medical records were reviewed by an expert radiologist with 15
years of experience in breast imaging and 6 years of experience as a second reader in the French
organized screening program. He checked the inclusion criteria to mark suspicious cancer lesions
and assigned a BI-RADS score (American College of Radiology classification) (18).

A total of 314 bilateral mammograms that met the inclusion criteria were randomly selected to

be included in the study. The sample was enriched in cancer cases, reaching a prevalence of 19.6%
(Table 1).

Table 1. Dataset Distribution.

Variables N (%)
Status
Benign 505 (80.4)
Malignant 123 (19.6)
Location of malignant lesion
Left 53 (43.1)
Right 36 (29.3)
Both 34 (27.6)
Cancer type
Mass 74 (60.2)
Calcification 32 (26)
Focal asymmetry 7(5.7)
Architectural distorsion 10 (8.1)
Cancer BI-RADS score
2 2 (1.6)
3 11 (8.9)
4 55 (44.7)
5 55 (44.7)
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Breast density
A 57 (18.2)
B 164 (52.2)
C 90 (28.7)
D 3 (0.96)

Malignant cases were composed of 60.2% masses, 26% calcifications, 5.7% focal asymmetries and
8.1% architectural distortions. 89.4% of cancerous lesions were initially classified as BI-RADS 4
(suspicious) or 5 (highly suggestive of malignancy).

The gold standard was defined by histology, i.e., a positive biopsy for cancer cases and a 2-year
negative control mammogram for noncancer cases.

Al system

Among six available Al programs with 2D models, three agreed to take part in the study
(Incepto, Therapixel, Hera-Mi) and three did not wish to participate or were unable to do so for
technical or logistical reasons (I-CAD, Hologic, Lunit).

The following Al programs were used in the study :

-Transpara v.1.7.3 from the French company Incepto© and developed by the Dutch company
Screenpoint®; this program circumscribes the lesion and gives a region score from 1 to 98 and a global
risk category per patient: low risk if the region score is between 1 and 43, intermediate risk if the score
is between 43 and 75 and high risk if the score is between 75 and 98.

-Mammoscreen™ v.1.2 from the French company Therapixel©; this program targets the lesion
and gives a malignancy score on a scale from 1 to 10 per lesion and per breast. Three categories are
identified: low risk from 1 to 4, intermediate risk from 5 to 7 and high risk from 8 to 10.

-Breast-SlimView® v1.8.0 from the French company Hera-Mi®©; this program generates a
synthetic image by blurring the normal breast to highlight the suspect zone.

All of these programs have received a CE marking.

For statistical analysis, the Als were anonymized and randomly named AI 1 to 3.

Study design

The 314 anonymized mammograms from the dataset were used by Al constructors in January
2023. Each mammogram was the result of 2-view full-field digital mammography (FFDM) of each
breast without tomosynthesis or any other clinical information.

The dataset was available on a shared space with secure access for Al algorithm processing. The
results were returned within 48 hours of the download link being sent.

Each algorithm defined an optimal cancer detection threshold for screening to distinguish the
positive and negative lesions. A lesion was considered positive if its score was above the threshold.
If several lesions were positive on the same breast, only the most suspect lesion was considered. A
summary spreadsheet, reported the results of each mammographic incidence, including the label (1
if there was a positive lesion, 0 if not), a probability score between 0 and 1 and coordinates of the
positive lesion. A screenshot of each case was also provided with the positive lesion marked.

Data analysis

A reviewer processed the data verification and analysis.

Constructor spreadsheets were compared to the ground truth file with the aid of an informatic
script in Python code. The coordinates of the positive lesions were also validated with the script with
a 15 mm deviation tolerance from the center of the marked lesion.

The results were verified with the screenshots provided.

The results were reported in tables by transcribing the number of true positives (TPs), true
negatives (TNs), false positives (FPs) and false negatives (FNs).
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Analysis was evaluated per breast, i.e., cancer lesions were considered to be correctly classified
if they were correctly marked on at least one occurrence for each breast.

Statistical analysis

Categorical data are represented as numbers (percentage). Continuous variables are represented
as the median (range). All statistical analyses were blinded. The diagnostic performance of each
dataset was evaluated on a per breast basis using sensitivity (Se), specificity (Sp), positive predictive
value (PPV), negative predictive value (NPV), and accuracy (Acc). These features were compared
using a two-sided chi-square test. All statistical analyses were performed using SPSS version 23 and
MedCalc. A p value < 0.05 was considered significant. Balanced accuracy was calculated as the
average of sensitivity and specificity in the case of unbalanced classes.

Results

Primary endpoint: Comparison of the performances of the 3 Al algorithms

Table 2 reports the diagnostic metrics of cancer detection for each Al algorithm, including
sensitivity, specificity, PPV, NPV, accuracy, and balanced accuracy.

Table 2. Statistical Metrics for each Al

Breast analysis Al1 (%) AI 2 (%) Al 3 (%)
SE 91/123 (74) 64/123 (52) 86/123 (69.9)
SpP 399/505 (79) 497/505 (98.4) 229/505 (45.4)
PPV 64/72 (46.2) 64/72 (88.9) 86/362 (23.8)
NPV 399/431 (92.6) 497/556 (89.4) 229/266 (86.1)
Accuracy 490/628 (78) 561/628 (89.3) 315/628 (50.2)
Balanced accuracy 76.5 75.2 57.6

The performances of the algorithms were heterogeneous; Al 1 had an acceptable sensitivity
(74%), specificity (79%) and accuracy (78%), whereas Al 2 had a high specificity (98.4%) and accuracy
(89.3%) but lower sensitivity (52%). Overall, Al 3 had lower results except for sensitivity (69.9%)
(Table 2).

On a per breast analysis (Table 3), the performances of the 3 Als were compared two by two.

Table 3. AI Algorithms Compared Two by Two with p Values.

Breast analysis (%) AIl AI2 AI3 p value
Allvs AI2 Allvs AI3 Al2vs AI3
SE 74 52 699 <0.001 0.478 0.004
SP 79 984 454 <0.001 <0.001 <0.001
PPV 462 889 238 <0.001 <0.001 <0.001
NPV 926 894 86.1 0.086 0.005 0.168
Accuracy 78 89.3 50.2 0.001 0.004 <0.001

At the chosen threshold, differences in sensitivity between Al 2 (52%) and the other two
algorithms (Al 1 (74%) and Al 3 (69.9%)) were statistically significant (p<0.001 and p=0.004,
respectively), whereas no significant difference between Al 1 and Al 3 was demonstrated (p =0.478).

The specificity of Al 2 (98.4%) was significantly superior to that of AI'1 (79%) and Al 3 (45.4%),
as was the difference between AI'1 and Al 3.

The positive predictive value of AI2 (88.9%) was also significantly better than that of AI'1 (46.2%)
and AI 3 (23.8%).

There was no significant difference in the negative predictive value between Al 1 and AI 2.
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Accuracy was significantly higher with AI 2 (89.3%) compared to Al 1 (78%), which itself was
higher than AI 3 (50.2%). When classes were balanced, the accuracy of Al 2 decreased from 89.3% to
75.2%, approximately equivalent to Al 1 (76.5%).

Secondary endpoints: Analysis of performances by varying the operating threshold

Based on the scores for Al 2 for each lesion, we secondarily analyzed performances on a per
breast analysis by varying the threshold (Table 4). The lower the threshold was, the greater the
sensitivity increased (69.9% with a 0.5 threshold and 74.8% with a 0.4 threshold), reaching sensitivity
values statistically comparable to AI 1 and Al 3 (p>0.05). On the other hand, specificity decreased but
remained significantly superior to that of Al 1 at the threshold of 0.5 (86.1%; p<0.05). Balanced
accuracy remained at a high level, reaching 79.2% at the 0.6 threshold and 78% at the 0.5 threshold.

Table 4. Al 2 Performance based on Various Thresholds.

Threshold 0.8 0.7 0.6 0.5 04
SE (%) 52 59.4 66.7 69.9 74.8
SP (%) 98.42 96.2 91.7 86.1 70.5
PPV (%) 89 79.4 66.1 55.1 38.2

NPV (%) 89 90.7 91.9 92.2 92
Accuracy (%) 89.3 89 86.8 83 71.3
Balanced accuracy (%) 75.2 77.8 79.2 78 72.7

Discussion

The main outcome of this study revealed significant differences between Al systems depending
on the intrinsic performance of algorithms and on the threshold chosen.

If we consider all the performance parameters of breast cancer screening algorithms at the
initially chosen threshold, Al 1 achieved a compromise between an acceptable detection rate (Se=74%)
and a correct specificity (Sp=79%), generating a moderate PPV (46.2%) that would partly limit
overalerting.

In contrast, Al 2 had excellent accuracy, based on its high specificity (98.4%) and PPV (88.9%),
but a low sensitivity in the context of cancer screening (52%).

Finally, AI 3 had a moderate sensitivity (69.9%), but its low specificity (45.4%) and PPV (23.8%)
had a definite impact on the number of false positives and thus led to overalerting. Indeed, these
false-positive lesions restricted radiologist interpretation and could lead to overmedicalization, loss
of time and decreased radiologist confidence in the system in clinical practice.

Overall, the sensitivity rates of the Al algorithms appeared to be lower compared to the literature
data, ranging from 67% to 81.9% at a fixed specificity rate of 96.6% in the Swedish study (18) and
96.2% compared to a radiologist specificity of 66.9% in Lotter’s study (19), However, a retrospective
study published in Nature found lower sensitivities for Al systems (56%) for a specificity of 84% (20),
which is comparable to our study.

These rates could be explained by the fact that the dataset came from an expert center with
several cancers that were difficult to detect, such as two cancers visible only on tomosynthesis,
initially classified as BI-RADS 2, and 11 cancers classified as BI-RADS 3. Moreover, the correct
location of lesions compared to those marked by the expert radiologist was required whereas in
recent studies, the analysis was only performed per positive mammogram.

Sensitivity depends on false negatives. In our study, they can be distinguished into two
categories. The first category consists of lesions that were detected by the Al algorithms and classified
as negative because their score was below the chosen threshold, as shown in Figure 1, where 2 Al
algorithms marked the right lesion but were considered misclassified. The second category includes
lesions that were not detected by the algorithm, as shown in Figure 2, where none of the algorithms
found the right lesion.

doi:10.20944/preprints202401.1706.v1
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Figure 1. Distortion marked as BI-RADS 4 by the expert radiologist. (a) False negative for 2 Al
algorithms that marked the proven lesion, but the score was under the threshold (b, c), and no mark
for the third AT algorithm.
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Figure 2. Subtle cancer only visible on one incidence marked as BI-RADS 4 by the expert radiologist.
(a) False negative for the 3 Al algorithms, which did not mark the proven lesion (b, ¢, d).

While most studies impose a fixed value of sensitivity or specificity to compare algorithm
performances (10,19,21), the choice of the “optimal” threshold for each algorithm was left to the
constructors. To choose it, constructors aim for a recall rate that is approximately 20 to 40% for a
cancer-enriched cohort. Currently, the recall rate in the United States is more than approximately 10%
in a screening population (22).

The choice of the threshold affects Als performances. By lowering Al 2’s threshold, the
sensitivity was significantly improved, reaching values without a significant difference with AI'1 at
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the threshold of 0.5 (Table 4). After a discussion with Al 2’s constructor, retrospectively, the correct
threshold should have been lower than the chosen one, to have the best compromise between
sensitivity and specificity. This example illustrates the impact of the threshold choice. We understand
that a “perfect model” that would detect all cancers without generating any false-positive results does
not exist.

The strength of our study is that we conducted a clinical study of several Al solutions currently
marketed, according to similar exercise modalities (with respect to the 48-hours deadline for the
return of results) with verification of the correctness of the results by the screenshots provided.

However, this was a retrospective and single-center study, with a dataset enriched in cancers
and an analysis only of 2D mammograms. The limitations are the low number of cases in the database
and an artificial high prevalence due to an a cancer-enriched cohort which differs from an actual
screening setting. Furthermore, only 2D Al models have been evaluated while studies have shown
the usefulness of tomosynthesis, which increase the number of cancers detected in the radiologist’s
clinical practice (23) and the importance of medical history (17). Al algorithms are currently being
developed with the integration of 3D analysis and prior mammograms, which will require further
studies.

At present, the use of Al tools for breast cancer screening is intended more for centers
performing routine mammography as an aid to vigilance. They could improve practices and
performance depending on the expertise and experience of the radiologist, which may vary from
center to center. However, the added value for an expert center remains to be demonstrated.

Real-life conditions may lead to new biases such as the automation bias of radiologists when
using an Al system that could influence decisions made by radiologists, leading to an impairment of
performance (24). This tendency had already been noticed with the use of CADs, which decreased
the sensitivity of radiologists (25,26).

Despite promising performance, the place of Al models in patient care remains to be determined,
as highlighted in the state of the art by Sechopoulos et al. (27) based on large-scale prospective studies
at several centers under actual screening conditions (28). Recent prospective studies seem to
demonstrate the non-inferiority of Al-supported screening compared with a standard double
reading, with lower workload (29). This raises the question of the evolution of screening towards the
replacement of the second reading.

Conclusion

In conclusion, the current study revealed heterogeneous results for 3 Al algorithms depending
on their intrinsic performance and their chosen operating threshold. Two Al algorithms stand out in
terms of performance when the choice of threshold is optimized to obtain the best compromise
between the greatest number of cancers detected and the least number of false positives to be treated.

This study has thus highlighted the importance of the choice of the threshold and its statistical
implications. Radiologists should be aware of this issue before implementing an Al solution in clinical
practice so that the chosen Al system can provide assistance to users.

List of abbreviations

Al - Artificial intelligence

BI-RADS - Breast Imaging-Reporting And Data System
CAD - computer-aided detection system

CE - European conformity

FFDM - Full-field digital mammography

IRB - Institutional review board

NPV - Negative predictive value

PPV - Positive predictive value

Se — Sensitivity

Sp - Specificity
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