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Abstract: Objectives: Few studies have evaluated and compared artificial intelligence (AI) models for breast 
cancer detection on the same database. The purpose is to compare the performances of 3 artificial intelligence 
algorithms on the same dataset at a free operative threshold and to evaluate how the performance is impacted 
by the chosen threshold. Materials: In this retrospective single-center study, a dataset of 314 2D screening 
mammograms performed between 2012 and 2020 was established with a prevalence of 19.6% of histologically 
proven cancer. Three AI constructors using CE (European conformity) marking algorithms have agreed to take 
part in the study by submitting the cancer-enriched cohort to their algorithm. They chose a free operative 
threshold to distinguish benign and malignant mammograms. The most suspicious lesion was marked and 
correctly located by the AI algorithm. Statistical parameters were analyzed and compared between the 
algorithms. Results: Regarding both sensitivity and specificity, at the chosen threshold, AI 1 had the best 
compromise between sensitivity (74%) and specificity (79%). AI 2 had a statistically lower sensitivity (52%; 
p<0.05) with a higher specificity (98.4%) than the other AI algorithms. AI 3 had a nonsignificant sensitivity 
difference (69.9%) but a significantly lower specificity (45.3%; p<0.001) than the other two. The performances 
varied depending on the chosen threshold; when the AI 2 threshold was lowered, the sensitivity increased 
(69.9%), while a higher specificity (86.1%) was maintained. Conclusion: Two AI algorithms stood out in terms 
of performance when the threshold was optimized, resulting in an acceptable sensitivity and specificity. 

Keywords: breast neoplasia; artificial intelligence; algorithm; mammography 

 

Introduction 

Breast cancer is the most common cancer diagnosed in women worldwide (1). Prevention and 
screening have decreased breast cancer mortality by 3 to 35%, depending on the country and the 
study (2,3). However, mammography screening has limitations such as missed cancers and interval 
cancers (4), overdiagnosis resulting in overtreatement (5), subjective and variable human 
interpretation (6,7), and workload challenges (8,9). 

Over the last few years, with the advent of deep learning and convolutional neural networks, 
artificial intelligence (AI) for medical research has advanced. Several studies have evaluated the 
performance of AI in mammography screening. According to Rodriguez Luiz et al. (10), the 
performances of AI algorithms were shown to be better than the performance of average radiologists 
but worse than that of expert radiologists. Additionally, 94% of AI systems were found to be less 
accurate than radiologists according to a British Medical Journal study (11). On the other hand, AI 
assessment combined with radiologist expertise seems to be more efficient than AI alone or 
radiologist alone (12,13), as shown by Watanabe et al. (14). 

The expected benefits of AI are an overall improvement in radiologist performance, in particular 
the performance of average readers (10), an aid in the diagnosis of subtle cancers and an improvement 
in reading time (15). The limits of the use of AI are the absence of consideration of clinical data and 
previous mammograms (16) and a persistence of false positives leading to overalerting and 
overdiagnosis (11). 
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To our knowledge, only one independent Swedish study has evaluated the performance of 3 
commercialized artificial intelligence algorithms as independent mammography readers compared 
to radiologists. That study showed that one of the AI algorithms was more efficient than radiologists 
alone (17). 

Currently, in Europe, several companies offer breast cancer detection software that has obtained 
a CE (European conformity) marking. In clinical use, AI systems target lesions and suggest cancer 
risk categories, generally based on three levels of risk. The intermediate category often concentrates 
a large proportion of false-positive lesions that may affect radiologist interpretation. It would seem 
necessary to improve this categorization by determining a threshold that would allow effective 
detection while limiting false positives. Furthermore, locating the lesions is rarely required. 

The main aim of the current study was to compare the performance of 3 AI algorithms based on 
the same dataset at a free operative threshold. The second outcome was to evaluate performance 
variations when modifying the operating threshold. 

Material and methods 

Data selection and sample size 

The study sample was extracted retrospectively from a dataset of Valenciennes Hospital 
(France). The oldest exam dates back to June 2012 and the most recent from March 2020. All 
mammograms were acquired with a Hologic Selenia 3D Dimension® system. The dataset only 
included screening exams. All patients were eligible for this retrospective institutional review board 
(IRB)-approved study (IRB number, CRM-2304-335). Written informed consent was waived by IRB. 

The included women were aged from 40 to 74 years, asymptomatic, without any history of 
personal breast cancer and had a complete screening examination prior to diagnosis. Women with 
multifocal cancers were excluded. 

Mammograms and patients’ medical records were reviewed by an expert radiologist with 15 
years of experience in breast imaging and 6 years of experience as a second reader in the French 
organized screening program. He checked the inclusion criteria to mark suspicious cancer lesions 
and assigned a BI-RADS score (American College of Radiology classification) (18). 

A total of 314 bilateral mammograms that met the inclusion criteria were randomly selected to 
be included in the study. The sample was enriched in cancer cases, reaching a prevalence of 19.6% 
(Table 1). 

Table 1. Dataset Distribution. 

Variables N (%) 

Status  
Benign 505 (80.4) 

Malignant 123 (19.6) 
Location of malignant lesion  

Left 53 (43.1) 
Right 36 (29.3) 
Both 34 (27.6) 

Cancer type  
Mass 74 (60.2) 

Calcification 32 (26) 
Focal asymmetry 7 (5.7) 

Architectural distorsion 10 (8.1) 
Cancer BI-RADS score  

2 2 (1.6) 
3 11 (8.9) 
4 55 (44.7) 
5 55 (44.7) 
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Breast density  
A 57 (18.2) 
B 164 (52.2) 
C 90 (28.7) 
D 3 (0.96) 

Malignant cases were composed of 60.2% masses, 26% calcifications, 5.7% focal asymmetries and 
8.1% architectural distortions. 89.4% of cancerous lesions were initially classified as BI-RADS 4 
(suspicious) or 5 (highly suggestive of malignancy). 

The gold standard was defined by histology, i.e., a positive biopsy for cancer cases and a 2-year 
negative control mammogram for noncancer cases. 

AI system 

Among six available AI programs with 2D models, three agreed to take part in the study 
(Incepto, Therapixel, Hera-Mi) and three did not wish to participate or were unable to do so for 
technical or logistical reasons (I-CAD, Hologic, Lunit).  

The following AI programs were used in the study : 
- Transpara v.1.7.3 from the French company Incepto© and developed by the Dutch company 

Screenpoint©; this program circumscribes the lesion and gives a region score from 1 to 98 and a global 
risk category per patient: low risk if the region score is between 1 and 43, intermediate risk if the score 
is between 43 and 75 and high risk if the score is between 75 and 98. 

- Mammoscreen™ v.1.2 from the French company Therapixel©; this program targets the lesion 
and gives a malignancy score on a scale from 1 to 10 per lesion and per breast. Three categories are 
identified: low risk from 1 to 4, intermediate risk from 5 to 7 and high risk from 8 to 10. 

- Breast-SlimView® v1.8.0 from the French company Hera-Mi©; this program generates a 
synthetic image by blurring the normal breast to highlight the suspect zone. 

All of these programs have received a CE marking. 
For statistical analysis, the AIs were anonymized and randomly named AI 1 to 3. 

Study design 

The 314 anonymized mammograms from the dataset were used by AI constructors in January 
2023. Each mammogram was the result of 2-view full-field digital mammography (FFDM) of each 
breast without tomosynthesis or any other clinical information. 

The dataset was available on a shared space with secure access for AI algorithm processing. The 
results were returned within 48 hours of the download link being sent. 

Each algorithm defined an optimal cancer detection threshold for screening to distinguish the 
positive and negative lesions. A lesion was considered positive if its score was above the threshold. 
If several lesions were positive on the same breast, only the most suspect lesion was considered. A 
summary spreadsheet, reported the results of each mammographic incidence, including the label (1 
if there was a positive lesion, 0 if not), a probability score between 0 and 1 and coordinates of the 
positive lesion. A screenshot of each case was also provided with the positive lesion marked. 

Data analysis 

A reviewer processed the data verification and analysis. 
Constructor spreadsheets were compared to the ground truth file with the aid of an informatic 

script in Python code. The coordinates of the positive lesions were also validated with the script with 
a 15 mm deviation tolerance from the center of the marked lesion. 

The results were verified with the screenshots provided. 
The results were reported in tables by transcribing the number of true positives (TPs), true 

negatives (TNs), false positives (FPs) and false negatives (FNs). 
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Analysis was evaluated per breast, i.e., cancer lesions were considered to be correctly classified 
if they were correctly marked on at least one occurrence for each breast. 

Statistical analysis 

Categorical data are represented as numbers (percentage). Continuous variables are represented 
as the median (range). All statistical analyses were blinded. The diagnostic performance of each 
dataset was evaluated on a per breast basis using sensitivity (Se), specificity (Sp), positive predictive 
value (PPV), negative predictive value (NPV), and accuracy (Acc). These features were compared 
using a two-sided chi-square test. All statistical analyses were performed using SPSS version 23 and 
MedCalc. A p value < 0.05 was considered significant. Balanced accuracy was calculated as the 
average of sensitivity and specificity in the case of unbalanced classes. 

Results 

Primary endpoint: Comparison of the performances of the 3 AI algorithms 

Table 2 reports the diagnostic metrics of cancer detection for each AI algorithm, including 
sensitivity, specificity, PPV, NPV, accuracy, and balanced accuracy. 

Table 2. Statistical Metrics for each AI. 

Breast analysis AI 1 (%) AI 2 (%) AI 3 (%) 

SE 91/123 (74) 64/123 (52) 86/123 (69.9) 
SP 399/505 (79) 497/505 (98.4) 229/505 (45.4) 

PPV 64/72 (46.2) 64/72 (88.9) 86/362 (23.8) 
NPV 399/431 (92.6) 497/556 (89.4) 229/266 (86.1) 

Accuracy 490/628 (78) 561/628 (89.3) 315/628 (50.2) 
Balanced accuracy 76.5 75.2 57.6 

The performances of the algorithms were heterogeneous; AI 1 had an acceptable sensitivity 
(74%), specificity (79%) and accuracy (78%), whereas AI 2 had a high specificity (98.4%) and accuracy 
(89.3%) but lower sensitivity (52%). Overall, AI 3 had lower results except for sensitivity (69.9%) 
(Table 2). 

On a per breast analysis (Table 3), the performances of the 3 AIs were compared two by two. 

Table 3. AI Algorithms Compared Two by Two with p Values. 

Breast analysis (%) AI 1 AI 2 AI 3 p value 
    AI 1 vs AI 2 AI 1 vs AI 3 AI 2 vs AI 3 

SE 74 52 69.9 < 0.001 0.478 0.004 
SP 79 98.4 45.4 < 0.001 < 0.001 < 0.001 

PPV 46.2 88.9 23.8 < 0.001 < 0.001 < 0.001 
NPV 92.6 89.4 86.1 0.086 0.005 0.168 

Accuracy 78 89.3 50.2 0.001 0.004 < 0.001 

At the chosen threshold, differences in sensitivity between AI 2 (52%) and the other two 
algorithms (AI 1 (74%) and AI 3 (69.9%)) were statistically significant (p<0.001 and p=0.004, 
respectively), whereas no significant difference between AI 1 and AI 3 was demonstrated (p = 0.478). 

The specificity of AI 2 (98.4%) was significantly superior to that of AI 1 (79%) and AI 3 (45.4%), 
as was the difference between AI 1 and AI 3. 

The positive predictive value of AI 2 (88.9%) was also significantly better than that of AI 1 (46.2%) 
and AI 3 (23.8%). 

There was no significant difference in the negative predictive value between AI 1 and AI 2. 
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Accuracy was significantly higher with AI 2 (89.3%) compared to AI 1 (78%), which itself was 
higher than AI 3 (50.2%). When classes were balanced, the accuracy of AI 2 decreased from 89.3% to 
75.2%, approximately equivalent to AI 1 (76.5%). 

Secondary endpoints: Analysis of performances by varying the operating threshold 

Based on the scores for AI 2 for each lesion, we secondarily analyzed performances on a per 
breast analysis by varying the threshold (Table 4). The lower the threshold was, the greater the 
sensitivity increased (69.9% with a 0.5 threshold and 74.8% with a 0.4 threshold), reaching sensitivity 
values statistically comparable to AI 1 and AI 3 (p>0.05). On the other hand, specificity decreased but 
remained significantly superior to that of AI 1 at the threshold of 0.5 (86.1%; p<0.05). Balanced 
accuracy remained at a high level, reaching 79.2% at the 0.6 threshold and 78% at the 0.5 threshold. 

Table 4. AI 2 Performance based on Various Thresholds. 

Threshold 0.8 0.7 0.6 0.5 0.4 

SE (%) 52 59.4 66.7 69.9 74.8 
SP (%) 98.42 96.2 91.7 86.1 70.5 

PPV (%) 89 79.4 66.1 55.1 38.2 
NPV (%) 89 90.7 91.9 92.2 92 

Accuracy (%) 89.3 89 86.8 83 71.3 
Balanced accuracy (%) 75.2 77.8 79.2 78 72.7 

Discussion 

The main outcome of this study revealed significant differences between AI systems depending 
on the intrinsic performance of algorithms and on the threshold chosen. 

If we consider all the performance parameters of breast cancer screening algorithms at the 
initially chosen threshold, AI 1 achieved a compromise between an acceptable detection rate (Se=74%) 
and a correct specificity (Sp=79%), generating a moderate PPV (46.2%) that would partly limit 
overalerting. 

In contrast, AI 2 had excellent accuracy, based on its high specificity (98.4%) and PPV (88.9%), 
but a low sensitivity in the context of cancer screening (52%). 

Finally, AI 3 had a moderate sensitivity (69.9%), but its low specificity (45.4%) and PPV (23.8%) 
had a definite impact on the number of false positives and thus led to overalerting. Indeed, these 
false-positive lesions restricted radiologist interpretation and could lead to overmedicalization, loss 
of time and decreased radiologist confidence in the system in clinical practice. 

Overall, the sensitivity rates of the AI algorithms appeared to be lower compared to the literature 
data, ranging from 67% to 81.9% at a fixed specificity rate of 96.6% in the Swedish study (18) and 
96.2% compared to a radiologist specificity of 66.9% in Lotter’s study (19),  However, a retrospective 
study published in Nature found lower sensitivities for AI systems (56%) for a specificity of 84% (20), 
which is comparable to our study. 

These rates could be explained by the fact that the dataset came from an expert center with 
several cancers that were difficult to detect, such as two cancers visible only on tomosynthesis, 
initially classified as BI-RADS 2, and 11 cancers classified as BI-RADS 3. Moreover, the correct 
location of lesions compared to those marked by the expert radiologist was required whereas in 
recent studies, the analysis was only performed per positive mammogram. 

Sensitivity depends on false negatives. In our study, they can be distinguished into two 
categories. The first category consists of lesions that were detected by the AI algorithms and classified 
as negative because their score was below the chosen threshold, as shown in Figure 1, where 2 AI 
algorithms marked the right lesion but were considered misclassified. The second category includes 
lesions that were not detected by the algorithm, as shown in Figure 2, where none of the algorithms 
found the right lesion. 
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Figure 1. Distortion marked as BI-RADS 4 by the expert radiologist. (a) False negative for 2 AI 
algorithms that marked the proven lesion, but the score was under the threshold (b, c), and no mark 
for the third AI algorithm. 
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Figure 2. Subtle cancer only visible on one incidence marked as BI-RADS 4 by the expert radiologist. 
(a) False negative for the 3 AI algorithms, which did not mark the proven lesion (b, c, d). 

While most studies impose a fixed value of sensitivity or specificity to compare algorithm 
performances (10,19,21), the choice of the “optimal” threshold for each algorithm was left to the 
constructors. To choose it, constructors aim for a recall rate that is approximately 20 to 40% for a 
cancer-enriched cohort. Currently, the recall rate in the United States is more than approximately 10% 
in a screening population (22). 

The choice of the threshold affects AIs performances. By lowering AI 2’s threshold, the 
sensitivity was significantly improved, reaching values without a significant difference with AI 1 at 
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the threshold of 0.5 (Table 4). After a discussion with AI 2’s constructor, retrospectively, the correct 
threshold should have been lower than the chosen one, to have the best compromise between 
sensitivity and specificity. This example illustrates the impact of the threshold choice. We understand 
that a “perfect model” that would detect all cancers without generating any false-positive results does 
not exist.  

The strength of our study is that we conducted a clinical study of several AI solutions currently 
marketed, according to similar exercise modalities (with respect to the 48-hours deadline for the 
return of results) with verification of the correctness of the results by the screenshots provided. 

However, this was a retrospective and single-center study, with a dataset enriched in cancers 
and an analysis only of 2D mammograms. The limitations are the low number of cases in the database 
and an artificial high prevalence due to an a cancer-enriched cohort which differs from an actual 
screening setting. Furthermore, only 2D AI models have been evaluated while studies have shown 
the usefulness of tomosynthesis, which increase the number of cancers detected in the radiologist’s 
clinical practice (23) and the importance of medical history (17). AI algorithms are currently being 
developed with the integration of 3D analysis and prior mammograms, which will require further 
studies. 

At present, the use of AI tools for breast cancer screening is intended more for centers 
performing routine mammography as an aid to vigilance. They could improve practices and 
performance depending on the expertise and experience of the radiologist, which may vary from 
center to center. However, the added value for an expert center remains to be demonstrated. 

Real-life conditions may lead to new biases such as the automation bias of radiologists when 
using an AI system that could influence decisions made by radiologists, leading to an impairment of 
performance (24). This tendency had already been noticed with the use of CADs, which decreased 
the sensitivity of radiologists (25,26). 

Despite promising performance, the place of AI models in patient care remains to be determined, 
as highlighted in the state of the art by Sechopoulos et al. (27) based on large-scale prospective studies 
at several centers under actual screening conditions (28). Recent prospective studies seem to 
demonstrate the non-inferiority of AI-supported screening compared with a standard double 
reading, with lower workload (29). This raises the question of the evolution of screening towards the 
replacement of the second reading. 

Conclusion 

In conclusion, the current study revealed heterogeneous results for 3 AI algorithms depending 
on their intrinsic performance and their chosen operating threshold. Two AI algorithms stand out in 
terms of performance when the choice of threshold is optimized to obtain the best compromise 
between the greatest number of cancers detected and the least number of false positives to be treated. 

This study has thus highlighted the importance of the choice of the threshold and its statistical 
implications. Radiologists should be aware of this issue before implementing an AI solution in clinical 
practice so that the chosen AI system can provide assistance to users. 

List of abbreviations 

AI – Artificial intelligence 
BI-RADS - Breast Imaging-Reporting And Data System 
CAD - computer-aided detection system 
CE – European conformity 
FFDM - Full-field digital mammography  

IRB - Institutional review board 
NPV – Negative predictive value 
PPV – Positive predictive value 
Se – Sensitivity 
Sp - Specificity 
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