Pre prints.org

Review Not peer-reviewed version

Cryptography in Secure Cloud
Computing

Janaka Ishan Senarathna *

Posted Date: 16 April 2025
doi: 10.20944/preprints202504.1371v1

Keywords: Cryptography; Cloud Security; Homomorphic Encryption; Post-Quantum Management

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/4380125

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 d0i:10.20944/preprints202504.1371.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Review

Cryptography in Secure Cloud Computing

Janaka Ishan Senarathna

Department of Computer and Data Science, NSBM Green University Mahenwatta, Pitipana, Homagama, Sri
Lanka

* Correspondence: djisenarathna@students.nsbm.ac.lk or janakaishansenarathna0169@gmail.com

Abstract: Cloud computing offers cost efficiency and scalability [l but introduces significant security
concerns related to data control [2]. Cryptography addresses these concerns by ensuring data
confidentiality, integrity, authenticity, and availability [3]. This research document provides an in-
depth analysis of cryptographic techniques in cloud computing, including symmetric and
asymmetric encryption [4], homomorphic encryption [1], and post-quantum cryptography [5]. It
critically evaluates the strengths and limitations of current approaches, particularly in key
management [6] and data-in-use protection [7], and explores future directions and a proof of concept
to enhance cloud security.

Keywords: Cryptography; Cloud Security; Homomorphic Encryption; Post-Quantum
Cryptography; Key Management

1. Introduction

The digital age has seen an unprecedented surge in the adoption of cloud computing across
various sectors, driven by its promises of cost efficiency, scalability, and enhanced accessibility to
computing resources [1].

Organizations and individuals are increasingly entrusting their data and applications to third-
party infrastructure, leading to a change in thinking in computing services [1]. However, this reliance
on external entities for data storage and processing introduces inherent security concerns, primarily
due to the relinquishing of direct control over sensitive information [2]. Within cloud computing,
cryptography represents a fundamental approach to protecting data and maintaining user trust [2].

Cryptography, the art and science of securing information, offers a suite of techniques that go
beyond mere encryption [2]. It encompasses mechanisms for ensuring not only the confidentiality of
data through encryption but also its integrity, authenticity, and availability [2]. Digital signatures, for
instance, provide a means to verify the origin and integrity of data, ensuring that it has not been
tampered with during transmission or storage [11]. Similarly, cryptographic hash functions play a
crucial role in confirming data integrity by generating unique fingerprints of data, allowing for the
detection of any unauthorized modifications [11]. Furthermore, secure communication protocols,
such as Transport Layer Security (TLS) and its predecessor Secure Sockets Layer (SSL), utilize
cryptographic techniques to establish encrypted connections between clients and servers,
safeguarding data during transit over potentially insecure networks [11].

In summary, this research document provides a contemporary analysis of cryptography within
secure cloud computing. The study explores encryption methodologies, the role of key management
systems, inherent security challenges, and cryptographic applications in this domain. Furthermore,
it investigates emerging trends in cryptographic research and development pertinent to cloud
security. The document is structured to first review existing literature, followed by a critical
evaluation of the strengths and limitations of current cryptographic approaches. Real- world
applications and use cases illustrate the practical implementation of cryptography in secure cloud
computing. The document concludes with a synthesis of key findings and recommendations for

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1371.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 d0i:10.20944/preprints202504.1371.v1

2 of 16

future research, including an outline for a mini-implementation or proof of concept to demonstrate a
relevant cryptographic principle.

2. Literature Review

The landscape of cryptography in cloud computing is rich and multifaceted, encompassing a
wide array of techniques and considerations. Understanding the current state of research requires a
thorough examination of encryption methods, key management practices, and the security challenges
that necessitate their application.

2.1. Encryption Techniques in Cloud Computing

A cornerstone of cloud security, encryption transforms data into an unreadable format to protect
its confidentiality.
Various encryption techniques are employed, each with its own strengths and weaknesses.

2.1.1. Symmetric Key Cryptography

This approach utilizes a single secret key for both the encryption and decryption processes,
offering efficiency for encrypting large volumes of data [2]. Prominent algorithms in this category
include the Advanced Encryption Standard (AES), which is widely adopted for its robustness and
security [2]. Other historical algorithms like the Data Encryption Standard (DES) and its successor
Triple DES (3DES) are less commonly used today due to their smaller key sizes, which render them
vulnerable to modern computational attacks [2]. While symmetric encryption offers speed and
efficiency, a significant challenge lies in the secure distribution and management of the secret key
among authorized parties, especially in the distributed nature of cloud environments [9]. Research
has also explored enhancing symmetric encryption algorithms for cloud environments, such as
developing a parallel RC4 algorithm to reduce latency during data transmission [4].

2.1.2. Asymmetric Key Cryptography

In contrast to symmetric encryption, asymmetric cryptography employs a pair of
mathematically related keys: a public key for encryption and a private key for decryption [2]. Well-
known algorithms in this category include RSA, ECC, and Diffie-Hellman [2]. RSA is widely used for
secure communication and digital signatures, leveraging the difficulty of factoring large numbers [2].

Elliptic Curve Cryptography (ECC) offers strong security with shorter key lengths compared to
RSA, making it particularly suitable for cloud-based environments and resource-constrained devices
like IoT sensors [3]. The Diffie-Hellman algorithm is primarily used for secure key exchange, allowing
two parties to establish a shared secret key over an insecure channel [2]. While asymmetric encryption
provides enhanced security by separating keys, it typically involves higher computational overhead
than symmetric methods.

2.1.3. Homomorphic Encryption

Representing a significant advancement in cryptographic capabilities, homomorphic encryption
allows computations to be performed directly on encrypted data without need for decryption [1]. This
transformative approach has profound implications for secure cloud processing, enabling tasks such
as encrypted search on cloud storage, secure medical data analysis, and privacy- preserving machine
learning [1]. Fully Homomorphic Encryption (FHE) supports both addition and multiplication
operations on encrypted data, allowing for the evaluation of any arbitrary computational function [1].
Despite its immense potential, homomorphic encryption currently faces challenges related to
computational overhead and practical implementation, although ongoing research is actively
addressing these limitations [1].

https://doi.org/10.20944/preprints202504.1371.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 d0i:10.20944/preprints202504.1371.v1

3 of 16

2.1.4. Post-Quantum Cryptography

With the anticipated advent of powerful quantum computers, current public-key cryptographic
algorithms like RSA and ECC are expected to become vulnerable to efficient quantum algorithms
such as Shor's algorithm [17]. To address this looming threat, post-quantum cryptography (PQC)
focuses on developing cryptographic algorithms that are secure against attacks from both classical
and quantum computers [9]. The National Institute of Standards and Technology (NIST) has been
actively involved in standardizing PQC algorithms, with the first set of standards announced in 2022
[20]. Various types of PQC are being explored, including lattice-based cryptography, hash-based
cryptography, code-based cryptography, and isogeny-based cryptography [18]. The transition to
PQC is crucial for ensuring the long-term security of cloud computing environments.

2.1.5. Hybrid Cryptography

This technique combines the strengths of both symmetric and asymmetric encryption methods
to achieve both security and efficiency in cloud data protection [3].

Typically, asymmetric encryption is used to securely exchange a symmetric key, which is then
used for the bulk encryption of data due to its speed and efficiency.

2.1.6. Lightweight Cryptography

Designed for resource-constrained devices such as IoT sensors and mobile devices, lightweight
cryptography algorithms offer security with minimal computational overhead and energy
consumption, making them suitable for securing the growing number of such devices connected
through cloud services [3].

2.1.7. DNA Cryptography

Anemerging field, DNA cryptography explores the use of DNA codes for data hiding and secure
data storage and transfer, offering a novel approach to enhancing cloud security [3].

2.2. Key Management Systems in Cloud Computing

The security of any cryptographic system hinges on the effective management of cryptographic
keys. In cloud computing, key management is particularly critical due to the distributed nature of the
infrastructure and the shared responsibility model [8]. Key management encompasses the entire
lifecycle of cryptographic keys, including their generation, distribution, storage, rotation, revocation,
and destruction [23]. Challenges in cloud key management arise from factors such as shared
infrastructure, distributed ownership of data, and the need to ensure both the security and availability
of keys [23].

The concept of Cloud Key Management Infrastructure (CKMI) has been introduced, which
includes Cloud Key Management Clients (CKMC) and Cloud Key Management Servers (CKMS) to
address the specific needs of cloud environments [23]. The Cloud Key Management Interoperability
Protocol (CK-MIP) has been proposed as a potential solution for unified key management across
different cloud services [23].

Various key management solutions and techniques have been explored, including protocols for
secure key management during online and offline periods, federated key management, hierarchical
identity-based cryptography, multicast key management, and key agreement protocols using Elliptic
Curve Diffie-Hellman (ECDH) [12].

Different key management models have emerged in the cloud, including cloud-native key
management where the cloud provider manages the keys, Bring Your Own Key (BYOK) where users
generate and import their own keys, Hold Your Own Key (HYOK) where the cloud provider uses the
user's key management system, and Bring Your Own Encryption (BYOE) where users manage and
use their own encryption keys [14].

https://doi.org/10.20944/preprints202504.1371.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 d0i:10.20944/preprints202504.1371.v1

4 of 16

Major cloud providers like AWS and Google Cloud offer comprehensive Key Management
Services (KMS) with various features such as centralized key management, hardware security
module (HSM) integration, key rotation, and access control mechanisms [25]. The standardization of
key management practices and protocols is crucial for ensuring interoperability and consistent
security across diverse cloud environments [24].

2.3. Security Challenges in Cloud Computing

While cryptography provides essential tools for securing cloud computing, several inherent
challenges need to be addressed. Data breaches remain a significant concern, often resulting from
misconfigurations, human error, and insufficient security practices [1]. Misconfigurations in cloud
resources, such as leaving storage buckets publicly accessible, are a common vulnerability [16].

Inadequate access controls and issues with Identity and Access Management (IAM) can lead to
unauthorized access to sensitive data and cryptographic keys [16]. Insider threats, originating from
within the organization, pose another critical challenge [16]. Insecure Application Programming
Interfaces (APIs) can also be exploited to bypass access controls and gain unauthorized access to
cloud services [16].

The shared responsibility model, where security responsibilities are divided between the cloud
provider and the customer, can lead to security gaps if the roles and responsibilities are not clearly
understood and managed [12]. The complexity of managing a large number of cryptographic keys
(secrets sprawl) and the overall complexity of key management in diverse cloud environments
present significant challenges [12]. Lack of visibility and control over cloud resources can further
exacerbate security challenges [16]. Compliance with various data protection regulations such as
GDPR and HIPAA necessitates the implementation of robust cryptographic measures and careful
attention to data handling practices in the cloud [12]. Finally, the performance overhead introduced
by encryption processes can impact the efficiency of cloud applications, requiring a balance between
security and performance [1].

3. Critical Analysis

Cryptography plays a pivotal role in securing cloud computing, offering numerous strengths
that address the inherent risks associated with this computing paradigm. However, it also faces
certain limitations and requires continuous evolution to counter the ever-changing threat landscape.

3.1. Strengths of Cryptography in Secure Cloud Computing

One of the primary strengths of cryptography in the cloud is its ability to provide enhanced data
confidentiality and privacy [1]. By transforming sensitive data into an unreadable format,
cryptography ensures that even if unauthorized individuals gain access to cloud storage or
transmission channels, they cannot decipher the information without the correct decryption key [10].

Beyond confidentiality, cryptography also plays a vital role in ensuring data integrity and
authenticity [2]. Techniques like digital signatures and hash functions enable the verification of data
integrity and the authentication of data sources, providing assurance that data has not been tampered
with and that it originates from a trusted source.

Cryptography is fundamental to facilitating secure communication and data transfer in the
cloud [2]. Secure protocols like TLS/SSL rely on cryptographic algorithms to establish encrypted
channels for data transmission between users and cloud services, protecting sensitive information
from eavesdropping and interception.

Furthermore, cryptography is often a key requirement for meeting various regulatory
compliance standards, such as GDPR and HIPAA, which mandate the protection of personal and
health-related data through encryption and other security measures [12]. Ultimately, cryptography
serves as a crucial line of defense, protecting against a wide range of security threats and attacks in
the cloud environment [1].

https://doi.org/10.20944/preprints202504.1371.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 d0i:10.20944/preprints202504.1371.v1

5 of 16

3.2. Limitations of Cryptography in Secure Cloud Computing

Despite its numerous benefits, cryptography in the cloud is not without limitations. One
significant limitation is the computational overhead and performance impact associated with
encryption and decryption processes [1].

These operations can consume significant processing resources, potentially increasing latency
and reducing throughput, especially for data-intensive applications and large datasets.

Another critical limitation lies in the complexity of key management [8]. Managing the lifecycle
of cryptographic keys securely in the cloud, from generation to destruction, is a challenging task.

Mismanagement of keys can lead to data breaches or even permanent data loss if keys are lost or
compromised [12].

Securing data during processing (data-in-use encryption) remains a significant challenge. While
traditional encryption methods protect data at rest and in transit, data often needs to be decrypted
for processing, creating a window of vulnerability [15]. While homomorphic encryption offers a
potential solution by allowing computation on encrypted data, it is still in its relatively early stages
and faces limitations in terms of efficiency and the types of computations it can practically support.

Cryptographic systems can also be vulnerable to side- channel attacks, which exploit information
leaked through the physical implementation of cryptographic algorithms, and advanced persistent
threats that may compromise the underlying infrastructure [16]. Furthermore, if encryption is not
implemented correctly, it can potentially impact data accessibility and usability for authorized users
[13].

Finally, the evolving threat landscape, particularly the future threat posed by quantum
computing, necessitates a continuous adaptation of cryptographic techniques to ensure long-term
security [9].

3.3. Future Directions of Cryptography in Secure Cloud Computing

The field of cryptography in secure cloud computing is constantly evolving to address the
limitations of current techniques and to counter emerging threats. Several key future directions are
shaping the research and development landscape. Advancements in homomorphic encryption are
expected to improve its efficiency and practicality, making it more viable for real-world cloud
applications such as secure data analysis and privacy-preserving machine learning [1]. The
development and adoption of post- quantum cryptographic algorithms are critical for ensuring long-
term data security in the face of future quantum computers [9]. Enhanced key management solutions
with improved automation, security, and interoperability across diverse cloud service models are also
a significant area of focus [8].

The integration of cryptography with other security technologies, such as confidential
computing (which aims to protect data in use within secure enclaves) and secure multi-party
computation (which enables collaborative computation on sensitive data without revealing individual
inputs), holds promise for enhancing cloud security [6].

Further exploration of novel cryptographic techniques like DNA cryptography for data hiding
and lightweight cryptography for resource-constrained devices will continue to be important [3]. An
increasing focus on cryptographic agility, the ability to easily switch between different cryptographic
algorithms and protocols, will be crucial for adapting to evolving threats and standards [14]. Finally,
research into the use of machine learning and artificial intelligence in enhancing cryptographic
security, for instance, in areas like anomaly detection in key usage and adaptive key management,
represents a promising direction [8]. The intersection of cryptography with AI and blockchain
technologies may also yield innovative solutions for creating more resilient and intelligent cloud
security systems [3].

https://doi.org/10.20944/preprints202504.1371.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 d0i:10.20944/preprints202504.1371.v1

6 of 16

4. Applications and Use Cases

The principles and techniques of cryptography are applied in various real-world scenarios to
secure cloud computing environments. Several notable examples illustrate the practical significance
of cryptography in this domain.

4.1. End-to-End Encrypted Cloud Storage

A growing number of cloud storage providers are implementing end-to-end encryption to offer
users enhanced data privacy and control. Dropbox, for instance, provides zero-knowledge end-to-end
encryption for sensitive files and folders, ensuring that only the user and their intended recipients
can access the content [26].

Proton Drive, developed by the team behind ProtonMail, offers end-to-end encrypted cloud
storage with the added benefit of Swiss privacy laws, providing a secure vault for user files [27].

Apple's Advanced Data Protection for iCloud extends end- to-end encryption to a wider range
of data categories, including iCloud Backup, Photos, Notes, and more, ensuring that this data can
only be decrypted on the user's trusted devices [28]. Snowflake, a cloud-based data warehousing
company, offers client-side encryption for data in external stages, allowing users to encrypt their data
before it is uploaded to the cloud [29]. The increasing availability of such end-to-end encrypted cloud
storage solutions reflects a growing user demand for stronger privacy guarantees and control over
their data stored in the cloud [26]. This approach ensures that data is encrypted on the user's device
before being uploaded and is only decrypted on trusted devices, preventing even the cloud storage
provider from accessing the content [26].

4.2. Homomorphic Encryption for Secure Medical Data Analysis

Homomorphic encryption is finding significant applications in scenarios involving highly
sensitive data, such as healthcare. Healthcare organizations can leverage the power of cloud
computing to analyze sensitive patient data while preserving privacy by using homomorphic
encryption [1]. This allows for valuable medical research and analysis to be conducted on encrypted
patient records without exposing the underlying personal health information, thereby facilitating
compliance with stringent regulations like HIPAA [1]. The ability to perform computations on
encrypted medical data in the cloud opens up possibilities for collaborative research and improved
healthcare outcomes while maintaining patient confidentiality.

4.3. Post-Quantum Cryptography Implementation

Recognizing the future threat posed by quantum computers to current cryptographic standards,
major technology companies are proactively implementing post-quantum cryptography. Google has
been an early adopter, using PQC for its internal communications since 2022 and experimenting with
PQC for connections between Chrome Desktop and Google products [22]. Cloudflare, a leading web
infrastructure and security company, has also deployed post-quantum cryptography at scale to
protect its users' data from future quantum attacks [21]. Apple has integrated Kyber-based post-
quantum cryptography into its iMessage service, taking steps to secure future communications
against potential quantum decryption [19]. These early implementations by industry leaders
underscore a growing awareness of the quantum threat and a commitment to future-proofing data
security in the cloud and beyond [17]. Secure processing of sensitive data without decryption.
Continued investigation and standardization of post- quantum cryptographic algorithms are
essential to prepare for the eventual threat of quantum computers and to ensure the long-term security
of cloud data. The development of more robust, automated, and user-friendly key management
solutions that can seamlessly operate across diverse cloud service models is also paramount.

Furthermore, research should explore the synergistic integration of advanced cryptographic
techniques with emerging technologies such as artificial intelligence and blockchain to create more
resilient and intelligent cloud security systems [3]. Addressing the security challenges posed by the

https://doi.org/10.20944/preprints202504.1371.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 d0i:10.20944/preprints202504.1371.v1

7 of 16

shared responsibility model in cloud computing through better frameworks and user education is
also an important area for future work. Finally, further investigation into the performance
implications of different cryptographic techniques in various cloud deployment scenarios will help
organizations make informed decisions about balancing security and efficiency.

5. Conclusion and Recommendations

Cryptography stands as a cornerstone in the security architecture of cloud computing, playing
an indispensable role in ensuring data confidentiality, integrity, authenticity, and availability in an
environment where users often relinquish direct control over their data. This research document has
explored the diverse landscape of cryptographic techniques applicable to the cloud, including
symmetric and asymmetric encryption, homomorphic encryption, post-quantum cryptography, and
various specialized methods. It has also highlighted the critical importance and inherent challenges
of key management in cloud environments, as well as the broader security challenges that
cryptography aims to address.

The analysis reveals that while cryptography offers robust protection against numerous threats,
it also faces limitations such as computational overhead, key management complexity, and the
evolving threat landscape, including the future impact of quantum computing. The exploration of
future directions indicates a vibrant and active research area focused on overcoming these limitations
and developing new cryptographic solutions tailored to the unique demands of cloud computing.
Advancements in homomorphic and post- quantum cryptography, along with enhanced key
management practices and integration with other security technologies, promise to further
strengthen the security posture of cloud environments.

Recommendations for Future Research

To continue advancing the field of cryptography in secure cloud computing, future research
efforts should focus on several key areas. Optimizing the performance of homomorphic encryption
schemes is crucial for their practical deployment in cloud applications, enabling

6. Mini-Implementation or Proof of Concept

To provide a practical understanding of cryptography in cloud computing, a mini-
implementation or proof of concept can be outlined. This example will focus on demonstrating basic
encryption and decryption using command-line tools.

6.1. Exploring Potential Software Tools and Methods

6.1.1. OpenSSL for Basic Encryption/Decryption

OpenSSLis a versatile and widely used command-line tool for performing various cryptographic
operations [3]. It can be used to demonstrate both symmetric encryption (e.g., using AES) and
decryption using passwords [30], as well as asymmetric encryption (e.g., using RSA) and decryption
using key pairs [3]. OpenSSL's availability across different platforms and its comprehensive set of
cryptographic functionalities make it an ideal tool for a basic proof of concept, illustrating
fundamental cryptographic operations [30]

6.1.2. Simple Key Exchange Simulation

While a full implementation of a key exchange protocol might be complex for a mini-
implementation, the fundamental principles of secure key agreement, such as in the Diffie-Hellman
key exchange [2], can be demonstrated using online tools or command-line utilities. These tools allow
users to generate public and private keys and exchange public keys to derive a shared secret,
showcasing the core concepts of secure key exchange that underpin many cryptographic systems in
the cloud [2].

https://doi.org/10.20944/preprints202504.1371.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 d0i:10.20944/preprints202504.1371.v1

8 of 16

6.2. Outline of Steps for a Mini-Implementation (Example: Basic Encrypted File Storage)

1. Environment Setup: Install Python (a widely used scripting language) and OpenSSL (a

command-line tool for cryptography) on a local machine.

2. Key Generation: Use OpenSSL to generate a symmetric AES key. This key will be used to encrypt
and decrypt the file.

3. Encryption Functionality: Develop a Python script that takes a file as input. The script will read
the AES key and use the cryptography library in Python (which provides cryptographic
primitives) to encrypt the content of the input file using the AES algorithm in a secure mode like
GCM (Galois/Counter Mode). The encrypted content will be stored in a new file.

4. Decryption Functionality: Develop another Python script that takes the encrypted file and the
correct AES key as input. This script will use the cryptography library to decrypt the content of
the encrypted file back to its original form and store it in a new file.

5. Demonstration:

e Create a sample text file with some content.

e Run the encryption script, providing the sample file and the AES key. Observe the creation
of the encrypted file.

e Attempt to view the encrypted file's content, which should appear as gibberish.

e Run the decryption script, providing the encrypted file and the same AES key. Observe the
creation of the decrypted file.

e Verify that the content of the decrypted file is identical to the original sample file.

6.3. Detailed Explanation of Steps and Potential Outputs

1. Step 1: Environment Setup:
e Python: Download and install the latest version of Python from the official Python website
(python.org). Ensure that pip (Python package installer) is also installed.
¢ OpenSSL: On Linux and macOS, OpenSSL is usually pre-installed. On Windows, it can be
downloaded from a reputable source (e.g., the official OpenSSL website or through a package
manager like Chocolatey).

2. Step 2: Key Generation:

e Open a terminal or command prompt and execute the following OpenSSL command to

generate a 256-bit AES key and store it in a file named secret.key:

openssl rand -out secret.key 32

Figure 1. OpenSSL Command to generate a 256-bit AES Key.

¢ This command uses OpenSSL's random number generator (rand) to create 32 random bytes (256

bits) and saves them to the secret.key file. It is crucial to store this key securely.

Uar-81EHOFtFQvh@zcqWBwXGz1C78ssFWzchccjI0ls=

Figure 2. Random-generated secret key.

https://doi.org/10.20944/preprints202504.1371.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 d0i:10.20944/preprints202504.1371.v1

9 of 16

3. Step 3: Encryption Functionality:
e Create a Python script named encrypt_file.py with the following content:

o0ee

ryptography .fernet import Fernet

le, output_file):

input_filenal
key_filename = ecret.key"
output_filename = "sample.enc”
(input_filena ey filename, output filename)
print(f"File "{input_filename}' encrypted to '{output_filename}'"

Figure 3. Encryption Script.

e Create a sample file named sample.txt with some text content.

"This is a secret message for encryption demo."

Figure 4. Sample.txt Script.

e Run the script from the terminal: python encrypt_file.py. This will create an encrypted file
named sample.enc. If you open sample.enc in a text editor, you will see a sequence
of seemingly random characters (ciphertext).

gAAAAABN3-sjxYQNBgHc50d5H1INHgew2UOoT

040gLCRaBOyF9R_nz500rZkVB73P5v9sZ1xV
PLi-uw@_@ mqg8oYxij7MS3AqCtrsUgqV-SZ3
gWRvc2EE6CcY -rqfmozCgEd45s0auCdpOwly
Kpvkre-DpN7z9VBsUQ==

Figure 5. Sample.enc file (encrypt.py script output).

4. Step 4: Decryption Functionality:
e Create a Python script named decrypt_file.py with the following content:

https://doi.org/10.20944/preprints202504.1371.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 d0i:10.20944/preprints202504.1371.v1

10 of 16

'YX

from cryptography.fernet i Fernet

rypt_file(input_file, ile, output_file):
- 'rb') :
d()
ciphe te = Fernet(key)
with open(input_file, ‘rb") as f:
ciphertext = f.read()
plaintext = cipher_suite.decrypt(ciphertext)
with open(t_file, 'wb*®) as f:

f.write(plaintext)

if _name == "
input_filename
key_ filename =
output_filename =
decrypt_file(input filename, filename, output filename)
print(f"File ‘{input_filename}" decrypted to ‘{output_filename}'")

Figure 6. Decryption Script.

e Run the script from the terminal: python decrypt_file.py. This will create a decrypted file

named sample.dec.

200

"This is a secret message for encryption demo."

Figure 7. Sample. dec file (decrypt.py script output).

5. Step 5: Demonstration:
e Original File (sample.txt): Contains the original plaintext (e.g., "This is a sample file for
demonstrating encryption.").
¢ Encryption Command Output: File 'sample.txt' encrypted to 'sample.enc'.

¢ Encrypted File (sample.enc): Contains ciphertext that is unreadable.

Decryption Command Output: File 'sample.enc’ decrypted to 'sample.dec'.
e Decrypted File (sample.dec): Contains the same content as the original sample.txt,

demonstrating successful encryption and decryption.

EXPLORER

CRYPTOGRAPHY IN SECURE CLO...

"This is a secret

Figure 8. Mini Implementation of all files.

This mini-implementation provides a basic yet illustrative example of how symmetric encryption
can be used to protect data, a fundamental concept in securing cloud computing environments. It
highlights the importance of key management, as the same key is required for both encryption and
decryption. This proof of concept can be further extended to explore more advanced cryptographic
techniques and key management strategies relevant to cloud security.

https://doi.org/10.20944/preprints202504.1371.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 d0i:10.20944/preprints202504.1371.v1

11 of 16

7. Troubleshooting the Mini-Implementation

During the development and testing of the mini- implementation, a specific error was
encountered related to the format of the encryption key. This section details the error, its cause, the
solutions implemented, and the expected outputs after resolution.

7.1. Key Format Error Error:

ValueError: Fernet key must be 32 url- safe base64-encoded bytes
Error Message:

Figure 9. Error encountered while executing the encrypt.py script due to missing or incorrect input parameters.

Cause:
e Theopenssl rand command generates a raw binary key.

e Fernetrequires a 32-byte URL-safe base64- encoded string with padding (=).

7.2. Solution

To address this error, two methods were employed to generate a Fernet-compatible key:
Method 1: Generate Fernet-Compatible Key
1. Created generate_key.py:

om cryptography.fernet

key = Fernet.generate_key()

"secret.key", "wb")
f.write(key)
print(“"Key generated and saved to secret.key")

Figure 10. : Generate fernet-compatible key script.

2. Run the script:
python generate_key.py
Method 2: OpenSSL with Base64 Encoding
openssl rand -base64 32 > secret.key

https://doi.org/10.20944/preprints202504.1371.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 d0i:10.20944/preprints202504.1371.v1

12 of 16

" Command Prompt

esktop\New folder>openssl rand -out secret.key

ew folder>echo "This is a secret message fo

Figure 11. OpenSSL secret key generated and installed cryptography.

Key Format Example:
j64Cz0XJXHIY]ZvV8u6QlwT7Zq3K7yV3t8v4k6 A 5B0=

Uar-81EHOFtFQvhezcgWBwXGz1C78ssFWzchccjI0ls=

Figure 12. Key Format.

7.3. Resolution Steps

The following steps were taken to resolve the error:
1. Deleted the existing key:

rm secret.key
2. Regenerated the key using Method 1 or Method 2.
3. Re-ran the workflow:

pythonencrypt_file.py python decrypt_file.py

7.4. Expected Outputs

The expected outputs after implementing the solution are shown in Table 1.

Table 1. Expected Outputs.

File Content Example

sample.txt This is a secret message...

sample.enc gAAAAABmMX9c... (encrypted gibberish)

sample.dec | Thisisa secret message...

Figure 13. All Outputs when running the scripts.

https://doi.org/10.20944/preprints202504.1371.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 d0i:10.20944/preprints202504.1371.v1

13 of 16

7.5. Why This Works

The error was resolved because Fernet requires keys to adhere to specific formatting
requirements:
e 32byteslong
e URL-safe base64-encoded
e Proper padding with = characters

The solutions, Fernet.generate_key() and openssl rand - base64, ensure that the generated keys
meet these requirements.

8. Project Implementation and GitHub Repository

To help you run the implementation on your local machine, I have created a sample project that
includes all the necessary scripts and output files. The project includes:
e encrypt.py: Python script for encryption.

e decrypt.py: Python script for decryption.
e sample.txt: A text file used to demonstrate encryption and decryption.
e Other necessary output files.

You can access the full project and download all the files from the following GitHub repository:
https://github.com/Janakaishansenarathna/Cryptography- in-Secure-Cloud-Computing.git

9. Steps to Run the Project

1. Clone the Repository:
Clone the repository to your local machine using the following command:
git clone https://github.com/Janakaishansen arathna/Cryptography-in-Secure- Cloud-
Computing.git
2. Install Dependencies:
Navigate to the project directory and install the required dependencies:
pip install -r requirements.txt
3. Generate the Encryption Key:
If you haven't already generated the Fernet key, you can use the provided script to generate it:
python generate_key.py
4. Run the Encryption Script:
To encrypt the sample.txt file, run the following:
python encrypt.py
6. Runthe Decryption Script:
After encryption, you can decrypt the file using the following command:

python decrypt.py

9.1. Additional Data and Support

If you need additional data or run into any issues while running the project, feel free to open an
issue on the GitHub repository, or you can contact me directly through the contact details provided in
the repository.

References

1. "Homomorphic Encryption for Secure Cloud Computing," ResearchGate. [Online]. Available:
https://www.researchgate.net/publication/382306535_Hom
omorphic_Encryption_for_Secure_Cloud_Computing. [Accessed: Mar. 21, 2025].

2. "A Review on Cryptography in Cloud Computing," ResearchGate. [Online]. Available:

https://doi.org/10.20944/preprints202504.1371.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

14 of 16

https://www.researchgate.net/publication/348460397_A_Review_on_Cryptography_in_Cloud_Co
mputing. [Accessed: Mar. 21, 2025].

"Comprehensive Review and Analysis of Cryptography Techniques in Cloud Computing,"
ResearchGate. [Online]. Available: https://www.researchgate.net/publication/379630406_Com
prehensive_Review_and_Analysis_of_Cryptography_Tech niques_in_Cloud_Computing.
[Accessed: Mar. 21, 2025].

"A Survey on Data Encryption Techniques in Cloud Computing," ResearchGate. [Online].
Available: https://www.researchgate.net/publication/287914941_A_s
urvey_on_data_encryption_tecniques_in_cloud_computin

g. [Accessed: Mar. 21, 2025].

"Homomorphic Encryption: A Guide to Advances in the Processing of Encrypted Data," Thales.
[Online]. Available: https://www.thalesgroup.com/en/worldwide/security/news/ homomorphic-
encryption-guide-advances-processing- encrypted-data. [Accessed: Mar. 21, 2025].

"IEEE HPEC Conference,” I[EEE HPEC. [Online]. Available: https://www.ieee-
hpec.org/2014/CD/index_htm_files/FinalPapers/28.pdf. [Accessed: Mar. 21, 2025].
"Cryptography in Cloud: An In-Depth Investigation into Encryption Mechanisms Safeguarding
Cloud-Based Data," International Journal of Security Research and Applications. [Online]. Available:
https://ijsra.net/content/cryptography-cloud-depth- investigation-encryption-mechanisms-
safeguarding-cloud- based-data. [Accessed: Mar. 21, 2025].

"A Dynamic Four-Step Data Security Model for Data in Cloud Computing," PMC. [Online].
Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC8839104/. [Accessed: Mar. 21, 2025].

"New Efficient Cryptographic Techniques for Cloud Computing Security,” ResearchGate.
[Online]. Available: https://www.researchgate.net/publication/381127672_New
_Efficient_Cryptographic_Techniques_For_Cloud_Compu ting_Security. [Accessed: Mar. 21,
2025].

"Cryptography in the Cloud: Securing Cloud Data with Encryption," Digital Guardian. [Online].
Available: https://www.digitalguardian.com/resources/knowledge- base/cryptography-cloud.
[Accessed: Mar. 21, 2025].

"The Importance of Cryptography in Cloud Computing," Al-Esraa University College Journal for
Engineering Sciences. [Online]. Available:
https://jes.esraa.edu.ig/cgi/viewcontent.cgi?article=1054& context=journal. [Accessed: Mar. 21,
2025].

"Encryption in Cloud Security: Challenges & Solutions," Darktrace. [Online]. Available:
https://darktrace.com/cyber-ai-glossary/the-role-of- encryption-in-cloud-security. [Accessed: Mar.
21, 2025].

"Why Cloud Cryptography is Important for Your Business," Shells Official Site. [Online].
Available: https://www.shells.com/blog/Why-Cloud-Cryptography-is- Important-for-Your-
Business. [Accessed: Mar. 21, 2025].

"Key Management Issues in Cloud and the Introduction of Post-Quantum Cryptography,” NTT
Data. [Online]. Available: https://www .nttdata.com/global/en/insights/focus/2024/key
-management-issues-in-cloud-and-the-introduction-of- post-quantum-cryptography. [Accessed:
Mar. 21, 2025].

"Fully Homomorphic Encryption," Cloud Security Alliance. [Online]. Available:

https://cloudsecurityalliance.org/research/working- groups/fully-homomorphic-encryption.

d0i:10.20944/preprints202504.1371.v1

https://doi.org/10.20944/preprints202504.1371.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 d0i:10.20944/preprints202504.1371.v1

15 of 16

[Accessed: Mar. 21, 2025].

20. "Top 12 Cloud Security = Challenges," SentinelOne. [Online]. Available:
https://www.sentinelone.com/cybersecurity-101/cloud- security/cloud-security-challenges/.
[Accessed: Mar. 21, 2025].

21. "The Quantum Computing Threat," Palo Alto Networks. [Online]. Available:
https://docs.paloaltonetworks.com/network- security/quantum-
security/administration/quantum- security-concepts/the-quantum-computing-threat. [Accessed:
Mar. 21, 2025].

22. "What is Post-Quantum Cryptography (PQC)?" Palo Alto Networks. [Online]. Available:
https://www.paloaltonetworks.com/cyberpedia/what-is- post-quantum-cryptography-pqc.
[Accessed: Mar. 21, 2025].

23. "Quantum Threats and How to Protect Your Data," SecureWorld. [Online]. Available:
https://www.secureworld.io/industry-news/quantum- threats-protect-your-data. [Accessed:
Mar. 21, 2025].

24. "NIST Announces First Four Quantum-Resistant Cryptographic Algorithms," NIST. [Online].
Available: https://www.nist.gov/news-events/news/2022/07/nist- announces-first-four-quantum-
resistant-cryptographic- algorithms. [Accessed: Mar. 21, 2025].

25. "What is Post-Quantum Cryptography (PQC)? — Cloudflare," Cloudflare. [Online]. Available:
https://www.cloudflare.com/learning/ssl/quantum/what-is- post-quantum-cryptography/.
[Accessed: Mar. 21, 2025].

26. "Cloud CISO Perspectives: Why We Need to Get Ready for PQC," Google Cloud Blog. [Online].
Available: https://cloud.google.com/blog/products/identity- security/cloud-ciso-perspectives-
why-we-need-to-get-ready-for-pqc. [Accessed: Mar. 21, 2025].

27. "Key Management Infrastructure in Cloud Computing Environment: A Survey," ResearchGate.
[Online]. Available: https://www.researchgate.net/publication/312025737_Key

28. _management_infrastructure_in_cloud_computing_enviro nment-a_survey. [Accessed: Mar. 21,
2025].

29. "Cloud Key Management," Cloud Security Alliance. [Online]. Available:
https://cloudsecurityalliance.org/research/topics/cloud-key- management. [Accessed: Mar. 21,
2025].

30. "Google Cloud Security: Key Management Services," Encryption Consulting. [Online]. Available:
https://www.encryptionconsulting.com/deep-dive-into- google-cloud-key-management-
services/. [Accessed: Mar. 21, 2025].

31. "End-to-End Encryption (E2EE) - Protect Your Data," Dropbox. [Online]. Available:
https://www.dropbox.com/features/security/end-to-end- encryption. [Accessed: Mar. 21, 2025].

32. "Proton Drive: Free Secure Cloud Storage," Proton. [Online]. Available: https://proton.me/drive.
[Accessed: Mar. 21, 2025].

33. "iCloud Data Security = Overview," Apple Support. [Online]. Available:
https://support.apple.com/en- us/102651. [Accessed: Mar. 21, 2025].

34. "Understanding End-to-End Encryption in Snowflake," Snowflake. [Online]. Available:
https://docs.snowflake.com/en/user-guide/security- encryption-end-to-end. [Accessed: Mar. 21,
2025].

35. "File Encryption and Decryption Made Easy with GPG," Red Hat. [Online]. Available:
https://www.redhat.com/en/blog/encryption-decryption- gpg. [Accessed: Mar. 21, 2025].

https://doi.org/10.20944/preprints202504.1371.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 d0i:10.20944/preprints202504.1371.v1

16 of 16

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.20944/preprints202504.1371.v1

