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Abstract: In this paper, I derive the modified acceleration formula of a toy model of the universe by
using a mean field approach. The dynamics are given by the equation of the Kuramoto-like form. The
equilibrium solution of the equation is consistent with the usual Milgrom’s law. As a result, the state
of the universe at large scales enters local dynamics in small systems. I also show that the vacuum
energy density arising from zero-point fluctuations and symmetry breakings is acceleration-dependent
and vanishes as seen from the point of view of enough accelerated observers. Therefore, the usual
vacuum stress-energy is no longer a tensor. It turns out that only the self-energy of elementary particles
contributes to the vacuum energy density and the theoretical value of the cosmological constant gets
significantly reduced.
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1. Introduction
The universe in its vast complexity harbors profound mysteries that challenge our understanding

of fundamental physics. Observations of the flat rotation curves of galaxies reveal a striking discrepancy
that galaxies rotate faster than can be accounted for by the visible matter alone, suggesting the presence
of an invisible mass, known as dark matter. It is also hypothesized to explain a range of gravitational
anomalies observed in gravitational lensing and the cosmic microwave background (CMB) [1]. Despite
its success in accounting for these phenomena, the dark matter paradigm faces significant challenges.
The lack of direct detection raises questions about its fundamental validity. The most widely accepted
Cold Dark Matter (CDM) model struggles to account for observational discrepancies at smaller scales,
such as the "missing satellites problem," where the predicted number of dwarf galaxies around massive
galaxies exceeds observations [2–4], and the "cusp-core problem," where simulated dark matter halos
exhibit central density cusps inconsistent with the flatter density profiles observed in some galaxies
[5]. In addition, some observational data including rapid galaxy growth [6]and flat velocity curves
extending beyond the expected virial radii of dark matter halos [7] also suggest inconsistencies with
the CDM model. These issues imply that the CDM framework may need refinement or that our
understanding of gravitational dynamics requires revision.

One such alternative theory is the Modified Newtonian Dynamics (MOND) proposed by Milgrom
as a modification to Newtonian gravity at extremely low accelerations [8–10]. Although MOND
struggles to account for phenomena at cosmological scales, such as the cosmic microwave background
and large-scale structure formation, the simplicity and predictive power of MOND make it a valuable
theoretical tool, prompting ongoing research into its foundations and potential extensions. Unlike
the dark matter hypothesis, the MOND paradigm stipulates that the observed gravitational effects
arise not from unseen mass but from a deviation in the law of gravity when accelerations fall below a
critical threshold a0 ≈ 1.2 × 10−10m/s2. Milgrom’s law can be written as µ(a/a0)a = aN , where aN

is the Newtonian acceleration produced by the visible matter, a is the true gravitational acceleration
and the interpolating function µ(x) satisfies µ(x) ≈ 1 when x ≫ 1, and µ(x) ≈ x when x ≪ 1. In
the deep-MOND regime (a ≪ a0), MOND modifies the gravitational force law to scale inversely
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with distance rather than the square of the distance, effectively reproducing the flat rotation curves
of galaxies and Tully-Fisher relation without invoking dark matter. MOND can be interpreted as a
modification of gravity or inertia. In the modified gravity interpretation, Newton’s law of gravity
should be modified at low accelerations, leading to a stronger gravitational effect than predicted
by the usual inverse-square law. This approach has been formalized in theories such as the Tensor-
Vector-Scalar (TeVeS) gravity [11] and bimetric theories [12,13], which attempts to provide a relativistic
extension of MOND [10]. Alternatively, the modified inertia interpretation suggests that the response
of a body to a given force depends on the acceleration regime. Given the empirical validations and
elegant mathematical structure of general relativity, there is more potential in modified inertia as the
basis for MOND because it seems to be less drastic. Inertia governs how objects respond to applied
forces. However, the origin of inertia remains an open question in modern physics. Understanding the
origin of inertia could provide critical insights into the foundations of the MOND theory. In classical
mechanics, inertia is an intrinsic property of mass, yet its microscopic basis is not well understood.
Some theories propose that inertia arises from interactions with the vacuum [14]. Einstein’s theory of
general relativity offers a partial explanation, suggesting that mass influences and is influenced by the
local geometry of spacetime. Alternative perspectives, like Mach’s principle, suggest that inertia is
a relational property, emerging from an object’s interaction with the global distribution of matter in
the universe. Clearly, the inertial mass of elementary particles primarily arises from the interaction
with the Higgs field. For a charged particle, the interaction of particles with the electromagnetic field
also contributes to inertia, known as electromagnetic mass. In general, we should consider all possible
contributions. But for macroscopic objects, various intricate interactions may contribute to the inertial
mass.

On the other hand, a very noteworthy coincidence of MOND is that the value of a0 ≈
1.2 × 10−10m/s2 determined from galaxy dynamics is of the order of some acceleration constants
of cosmological significance. It is of the same order as H0 (H0 is the Hubble constant) and (Λ/3)1/2

(Λ is the cosmological constant). This mysterious "cosmic coincidence" raises questions about its
fundamental significance and potential cosmic connections. In this paper, I argue that the "cosmic
coincidence" can be understood as a ”synchronization” phenomenon at cosmological scales similar
to the Kuramoto model [15,16]. The Kuramoto model is a mathematical framework that describes
synchronization in systems of coupled oscillators. It predicts a phase transition where oscillators
spontaneously synchronize, transitioning from disorder to a collective rhythm when the coupling
strength exceeds a critical value. However, on cosmological scales, the typical gravitational force that
decays with distance is insufficient to induce collective emergence, as it would only result in local
dynamics. But considering the gravity including the cosmological constant, the fact that the interaction
strength increasing with distance inevitably leads to the state of the universe at large scales entering
local dynamics in small systems, such as galaxies. This nonlocal behavior is common in nonlinear
dynamical systems. Upon using a mean field theory approach, it is possible to study a system with
a large or infinite number of degrees of freedom. Thus I define a mean field characterized by the
Unruh temperature to represent the average effect of all the contents of the universe. It may suggest a
connection between gravity and thermodynamics. In some studies, gravity is regarded as an entropic
force [17–20]. In my personal view, this only means that gravity can be described in another framework
at the macroscopic level, whereas at microscopic scales gravity may still be quantum. Furthermore,
emergent phenomena at the cluster and cosmological scales arise from the interactions, primarily
gravity, of the universe’s components. Thus, it is gravity that leads to emergent phenomena at larger
scales rather than gravity itself originating from emergence.

Another concern of this study is the cosmological constant problem, which remain a theoretical
puzzle that bridges cosmology and quantum field theory [21]. The problem originates from the
interpretation of the cosmological constant Λ as the vacuum energy density. There are at least two
sources for the vacuum energy. In the cosmological context, spontaneous symmetry breakings in the
early universe may have induced phase transitions, potentially contributing to the vacuum energy
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density associated with the cosmological constant. Although one can always adjust the vacuum energy
today to zero by tuning the parameter of the potential, it is not a very satisfactory method because
the vacuum energy cannot be zero before and after the phase transition. In addition, in quantum field
theory the vacuum is filled with quantum fluctuations contributing to a zero-point energy (ZPE). Since
all energy gravitates, it is expected that the ZPE contribute to the cosmological constant. However,
the theoretical prediction of the cosmological constant from quantum field theory contrasts with its
observed value, giving rise to a discrepancy that spans over 120 orders of magnitude. One promising
avenue for addressing the cosmological constant problem is supersymmetry (SUSY), a theoretical
framework that posits a symmetry between fermions and bosons [22]. But experimental searches at the
Large Hadron Collider have yet to detect supersymmetric particles. In addition, the precise mechanism
by which SUSY could resolve the cosmological constant problem remains elusive, as the required
cancellations demand an extraordinary degree of fine-tuning in the SUSY-breaking sector. In this paper,
I will calculate the vacuum energy for an accelerating observer. An interesting thing happens when
we consider the Unruh effect which predicts that an accelerating observer in a vacuum will detect a
thermal bath at a temperature proportional to its proper acceleration a [23]. In Ref. [24], it has been
shown that the electroweak phase transition (EWPT) occurs and the electroweak gauge symmetry
can be restored when the acceleration exceeds the critical value as seen from the point of view of
an accelerating observer. I will show that the vacuum energy arising from zero-point fluctuations
and symmetry breakings is acceleration-dependent. Therefore, it does not contribute to the vacuum
stress-energy tensor. The analysis is based on the conservative assumption of maximal validity of
quantum field theory and general relativity.

This paper is organized as follows. Sec.2 is dedicated to the modified nonlocal Newtonian
dynamics. In Sec.3, I investigate the vacuum energy for accelerated observers. Finally, in Sec.4 I
summarize the main results obtained. For convenience, I use natural units with c = h̄ = k = 1.

2. Modified Nonlocal Newtonian Dynamics
Let us consider a toy model of the universe consisting of N masses, each with mass m, coupled

by gravity including a cosmological constant Λ. In the limit of small velocity and in the weak field
approximation, Einstein’s field equations should reproduce Newtonian gravity. In the Newtonian
limit, Einstein’s field equations with the cosmological constant reduce to a modified Poisson equation:

∇2ϕ = 4πGρ − Λ, (1)

where ϕ is the gravitational potential, G is Newton’s gravitational constant and ρ is the mass density.
The equivalent force due to the cosmological constant is directly proportional to the distance with a
proportionality constant of Λm/3. The cosmological constant Λ is very small, so this force is negligible
on small scales (e.g., laboratory or planetary) and only significant on cosmological scales (e.g., galaxy
clusters or larger). The fact that the couple strength increasing with distance due to the cosmological
constant inevitably leads to the state of the entire system at large scales entering local dynamics in
small systems. Similar to the Kuramoto model [15,16], we can sum over the acceleration of all contents
in the universe to obtain an average acceleration in a specific direction to describe the overall behavior
of the universe. However, assuming the universe is isotropic, it is more appropriate to describe the
dynamics of the system using a scalar related to acceleration, such as the magnitude or the square of the
acceleration. In addition, 4-dimensional de Sitter spacetime can be embedded into a 5-dimensional flat
Minkowski spacetime to generate a geometrical symmetry group SO(4, 1) of the de Sitter spacetime.
Here, I choose the Unruh temperature associated with acceleration as the degree of freedom. The
dynamics are described by the equation of the following Kuramoto-like form:

Ṫi =
α

2π
Fi +

ε

N

N

∑
j=1

αΛmrij

3
Γij
(
Tj − Ti

)
, (2)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 May 2025 doi:10.20944/preprints202504.2469.v5

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.2469.v5
http://creativecommons.org/licenses/by/4.0/


4 of 8

where the dot denotes the derivative with respect to time t, Ti = 1
2π

(
a2 + H2

0
)1/2 is the Unruh

temperature of the i-th mass seen by a local comoving accelerating observer in de Sitter spacetime,
α is a dimensionless numerical factor, Fi denotes the external force applied to the i-th mass or the
local gravitational environment, ε is the positive coupling strength, rij is the distance and Γij

(
Tj − Ti

)
is a general coupling function for the interaction between the i-th and j-th masses. Here, I choose
the coupling function Γij

(
Tj − Ti

)
= Tj − Ti because it naturally captures the acceleration differences

between coupled masses in a simple and physically meaningful way. In addition, this linear term
ensures that Equation (2) holds in the deep-MOND regime (a ≪ a0). I have neglected the contribution
of the conventional Newtonian gravitational force that decays with distance to the second term on the
right-hand side (RHS) of Equation (2) as it only leads to local dynamics. Let us define a mean field
that represents the average effect of all the contents of the universe. Inertial observers in our universe
with a positive cosmological constant detect a Gibbons–Hawking radiation with the temperature
TGH = H0/2π [25]. Therefore, the mean temperature is TGH. Every accelerated object appears to be
subjected to a force that drives its acceleration toward zero. It is a "synchronization" phenomenon at
cosmological scales and the overall behavior of the universe encoded in H0 enters local dynamics in
small systems. Upon using a mean field approach, all of the originally coupled differential equations
become coupled only to the mean field quantity TGH. Let us consider the simplest possible form of
Equation (2), which is

Ṫi =
α

2π
Fi + αm(TGH − Ti), (3)

where αm is the effective coupling strength. External forces can be expressed in the form of Newton’s
second law, namely Fi = maN with aN being the Newtonian expression for the acceleration. Thus
Equation (3) can be written in terms of the acceleration as

aȧ√
a2 + H2

0

= αm
[

H0 −
(

a2 + H2
0

)1/2
]
+ αmaN . (4)

The fixed point given by ȧ = 0 represents stable solutions of Equation (4) and one arrives at

aN =
(

a2 + H2
0

)1/2
− H0, (5)

which leads to µ(a/a0)a = aN with a0 = 2H0. It was interestingly noted that the local dynamics of
small systems depend on the state of the universe at large scales and the Hubble constant varies during
the evolution of the universe. Therefore, we should replace H0 with the varying Hubble parameter
H(t) and Equation (5) becomes

H(t)Ḣ(t)√
a2 + H(t)2

= αm
[

H(t)−
(

a2 + H(t)2
)1/2

]
+ αmaN . (6)

One immediately obtains

a =
aN
2

+
1
2

√
a2

N − 4H(t)Ḣ(t)
αm

, for a ≫ 2H(t), (7)

a =

√
2H(t)aN − 2H(t)Ḣ(t)

αm
, for a ≪ 2H(t). (8)

It is expected that MOND has a different impact on the evolution of the universe during the period of
decelerated expansion compared to the present universe. We have considered the simplest possible
case. However, for the complex local gravitational environments in the actual universe, the mean
field approximation does not hold, and we should employ N-body simulations. Furthermore, the
parameters used to describe the overall behavior of the universe may not be unique. In addition to
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H(t), we may introduce further parameters, and thus the dynamics are governed by a set of Kuramoto-
like equations. The key point is that the current state described by certain parameters at cosmic scales
influences the behavior of local systems.

3. Acceleration-Dependent Vacuum Energy
For an accelerating observer the electroweak SU(2) × U(1) gauge symmetry in the Standard

Model is restored for acceleration larger than a critical value. The vacuum expectation value (VEV) is
given by [24]

v(a) = v0

√
1 − a2

a2
EW

. (9)

where v0 is the VEV for the inertial observer, a is the proper acceleration and aEW is the critical
proper acceleration of the EWPT. The second-order phase transition of the restoration of electroweak
symmetry occurs at aEW and for a > aEW, we have v = 0. The elementary particles therefore acquire a
acceleration-dependent mass which is

m(a) = m0

√
1 − a2

a2
EW

, (10)

where m0 is the mass of the elementary particle for the inertial observer. By introducing the Unruh-like
temperature:

TEW =
aEW

2π
(11)

and
T(a) =

a
2π

, (12)

Equation (10) can be also written as

m(T) = m0

√
1 − T2

T2
EW

, (13)

where TEW ∼ 102 Gev is the critical temperature of the EWPT. It turns out that all massive particles of
Standard Model become massless for the local accelerating observer when the acceleration exceeds the
critical value.

The vacuum energy receives contributions from both zero-point fluctuations and symmetry
breakings. The ZPE density of a real free scalar field is given by

ρZ =
1

(2π)3
1
2

∫
d3kω(k) (14)

with
ω(k) =

√
|k|2 + m2

0, (15)

where (ω, k) is the four-dimensional momentum and m0 is the mass of the scalar field. Obviously,
the integral is divergent in the ultraviolet region. The common method is to introduce an ultraviolet
cut-off ΛUV at the Planck scale, then one obtains ρZ ∼ 1076 GeV4, which is larger than the observed
value of vacuum energy density by a factor of 10123. But a straightforward but lengthy calculation
leads to

ρZ =
Λ4

UV
16π2 +

m2
0Λ2

UV
16π2 +

m4
0

64π2 ln

(
m2

0e
1
2

4Λ2
UV

)
+ · · · , (16)

p =
Λ4

UV
48π2 −

m2
0Λ2

UV
48π2 −

m4
0

64π2 ln

(
m2

0e
7
6

4Λ2
UV

)
+ · · · , (17)
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where p is the pressure. The Lorentz symmetry of the vacuum requires that the energy density and
pressure satisfy the equation of state p = −ρZ. Notice that the first two terms of Equations (16) and
(17) break Lorentz invariance and can be removed by local counterterms. Therefore, upon using a
regularization scheme that preserves Lorentz symmetry of the vacuum, for any quantum field one
arrives at the following expression for the ZPE density [26]

ρZ = ±
sm4

0
64π2 ln

(
m2

0
µ2

)
, (18)

where µ is the renormalization scale, s represents the number of polarization states and the signs
± are associated with bosons and fermions respectively. The result can be generalized to any other
interacting fields by simply replacing m0 with the renormalized mass mR. We see that the expression is
proportional to the mass of the particle to the power four and the massless particles do not contribute
to the ZPE. This result is very different from the result obtained by imposing a Planck cut-off.

Another contribution to the cosmological constant comes from the symmetry breakings. Let us
now calculate the vacuum energy produced by the EWPT at the classical level. We should also consider
the QCD symmetry breaking (∼ 10−1 Gev) and other symmetry breakings at higher energy scales
(e.g., the grand unification scale at 1014 Gev and the Planck scale at 1019 Gev). However, all these
expressions take a similar form and the analysis parallels the electroweak case. The Higgs field consists
of two complex scalar fields arranged into a doublet. After the EWPT, the field acquires a VEV and the
corresponding vacuum energy density is ρEW = λv4 ∼ 108 Gev4 with λ being the coupling constant
describing the self-interaction of Higgs fields. In addition to being inconsistent with observational
data, such a large vacuum energy density corresponding to a large cosmological constant would also
produce a high Gibbons–Hawking temperature, thereby triggering a phase transition. From Equation
(9), we see that the vacuum energy density of the EWPT must satisfy the equation:

ρEW = ρ0

(
1 −

T2
h

T2
EW

)2

θ(TEW − Th), (19)

where ρ0 is the vacuum energy density in the absence of Gibbons–Hawking radiation, θ(x) is the
Heaviside step function, TEW ∼ 102 GeV is the EWPT temperature and Th = 1

2π (8πGρs/3)1/2 is
the Gibbons–Hawking temperature produced by the huge vacuum energy density ρs of symmetry
breakings. When the vacuum energy density exceeds T2

EW/G ∼ 1042 GeV4, the broken electroweak
symmetry is restored and ρEW vanishes. It can drive Λ back to zero, even when the local vacuum
energy density experiences large disturbances up to the Planck scale because large disturbances will
lead to a restoration of the symmetry.

It is worth noticing that all the vacuum energy is acceleration-dependent. Therefore, observers
with different accelerations will measure different vacuum energy as quantum effects enter the stage.
The vacuum energy vanishes when the acceleration is bigger than the critical value. As a result, the
usual vacuum stress-energy is no longer a tensor. The key point is that the vacuum energy derived
from zero-point fluctuations and symmetry breakings is not real for a potential covariant theory of
quantum gravity. Although the mass arising from the interaction between the particle and the Higgs
field depends on the acceleration and vanishes for enough accelerated observers, we can extract the
covariant part of the mass arising from other interactions, such as electromagnetic interactions, to
construct a vacuum stress-energy tensor. Thus, only the self-energy of elementary particles contributes
to the vacuum energy density.

4. Conclusions
In this paper, I investigate the modified nonlocal Newtonian dynamics of a toy model of the

universe. The system is drastically simpler by using a mean field theory approach. It is worth noting
that Equation (3) can be generalized to the framework of general relativity, where the system is
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characterized by the curvature rather than temperature. It is a geometric version of the dynamics
describing "synchronization" phenomena. The LHS of Equation (3) represents the derivative of the
connection and can thus be replaced by a tensor Kµν related to the true curvature of spacetime. The
external force Fi is replaced by the usual Einstein tensor Gµν related to the visible matter content. The
second term on the RHS of Equation (3) is replaced by a tensor Cµν representing nonlocal effects. As
in bimetric theory, Cµν can be constructed by introducing an auxiliary metric. The rank-2 tensor Cµν

appears to play the role of dark matter.
I then calculate the vacuum energy density based on quantum field theory. The vacuum energy is

acceleration-dependent when quantum effects enter the stage. Here, I calculate the vacuum energy
density arising from symmetry breaking at the tree level. If quantum corrections are considered, one
only needs to replace it with the Coleman-Weinberg effective potential [27]. However, the result is the
same because quantum corrections also depend on acceleration. It turns out that only the self-energy
of elementary particles contributes to the vacuum energy density and the theoretical value of the
cosmological constant gets significantly reduced.
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