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Abstract: A new deep learning approach for bi-temporal flash flood detection in synthetic aperture 

radar (SAR) is proposed in this research. It combines a U-Net convolutional network with a 

Transformer model using a compact Convolutional Tokenizer (CCT) to improve the efficiency of 

long-range dependency learning. The hybrid model, namely CCT-U-ViT, that naturally combines the 

spatial feature extraction of U-Net and the global context capability of Transformer. The model 

significantly reduces the number of basic blocks as it uses the CCT tokenizer instead of conventional 

Vision Transformer tokenization, which makes it the right fit for small flood detection datasets. This 

model improves flood boundary delineation by involving local spatial patterns and global 

contextual relations. However, the method is based on Sentinel-1 SAR images and focuses on Erbil, 

Iraq, that experienced an extreme flash flood in December 2021. The experimental comparison 

results show that the proposed CCT-U-ViT outperforms multiple baseline models, such as 

conventional CNNs, U-Net, and Vision Transformer, obtaining an impressive overall accuracy of 

91.24%. In addition, Furthermore, the model gets better precision and recall with F1-score of 91.21% 

and mIoU of 83.83%. Qualitative results demonstrate that CCT-U-ViT can effectively preserve the 

flood boundaries with higher precision and less salt-and-pepper noise compared with the state-of-

the-art approaches. This study underscores the significance of hybrid deep learning models in 

enhancing the precision of flood detection with SAR data, providing valuable insights for the 

advancement of real-time flood monitoring and crisis management systems. 

Keywords: deep learning; flood detection; SAR imaging; U-Net; transformer models 

 

1. Introduction 

Flood, and especially flash flood, is still one of the most harmful natural disasters resulting in 

death, population displacement and economic damage (Tanoue et al., 2020; Merz et al., 2021). But the 

impact is growing, due to climate change, urbanization and poor risk management. It is important 

to identify the location and spatial reach of floods in a timely and precise manner for effective disaster 

management, emergency response and flood mitigation purposes (Puttinaovarat & Horkaew, 2020). 

However, remote sensing is a crucial technique in the area of geoscience and particularly flood 

monitoring for it offers spatial information which is both large-scale and up-to-date (Ziboon et al. 

2013, Ziboon et al. 2019, Shihab et al. 2020). In addition, SAR sensor systems (such as the ones on 

board of the Sentinel-1A) have unique capabilities for flood detection (Noori et al. 2024a). 

However, SAR data provides advantages such as side-looking capabilities and the ability to 

collect surface information irrespective of weather and lighting conditions (Chini et al., 2021; Tsokas 

et al., 2022). Nonetheless, flood detection in urban settings presents difficulties due to significant 

double scattering between structures and neighboring ground surfaces (Li et al., 2019; Liu et al., 2024). 

In metropolitan regions, structures generate radar shadows and layover, obscuring substantial parts 

of the ground surface from Synthetic Aperture Radar (Mason et al., 2010; Tanguy et al., 2017). As a 
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result, numerous researches have focused on analyzing the discrepancies in backscatter between SAR 

pictures acquired prior to and after to floods (Schlaffer et al., 2015; Huang & Jin, 2022; Saleh et al., 

2024a, 2024b, Noori et al. 2024c). To conclude, this research is based on the premise that double 

scattering caused by structures and adjacent floodwater in post-flood photos generally exceeds that 

from buildings and surrounding non-flooded terrain in pre-flood images (Wang et al., 2022). 

In recent years, deep learning models have gained significant attention in remote sensing due to 

their capability to extract features and learn both local and global hierarchies autonomously. For 

flood detection with bi-temporal SAR images, deep learning techniques offer advantages like the 

ability to learn interactions between pre- and post-flood images. In contrast to traditional machine 

learning classifiers, deep learning methods provide enhanced feature representation that effectively 

addresses issues of speckle noise and complex land cover, particularly in SAR images. Furthermore, 

deep learning models can be tailored with modular computational components that specifically 

address the intricacies of the problem. Importantly, these models are often trained end-to-end, 

eliminating the need to address sub-problems (such as building shadows, layover, backscatter 

similarity in wetland, permanent water, and flooded regions) separately. 

This research focuses on developing and rigorously evaluating a novel hybrid deep learning 

model that merges the strengths of the U-Net convolutional encoder-decoder structure with a 

Compact Convolutional Transformer (CCT) tokenizer. This combination allows for accurate and 

reliable flood detection using Sentinel-1 SAR imagery. The model is designed to effectively capture 

intricate spatial details and long-range global context, thus addressing the limitations of standalone 

CNN and Transformer frameworks. To achieve this, the model is trained and tested using benchmark 

datasets, including Sen1Floods11 and an additional dataset from the 2021 Erbil flood, facilitating a 

comprehensive performance assessment across various flood scenarios. The study aims to create a 

dual-path architecture that employs convolutional tokenization for efficient local-global feature 

integration, thereby boosting the model’s classification accuracy and resilience to noise and 

variability often found in SAR data. It also benchmarks its performance against existing CNN, 

Transformer, and hybrid models, conducts ablation studies to evaluate the contribution of each 

component, and illustrates its potential for real-time flood monitoring and early warning systems. 

This study’s main contributions are summarized below: 

1. The model combines a U-Net convolutional path for precise spatial and contextual feature 

extraction with a Transformer branch employing a CCT tokenizer to grasp sequential long-range 

dependencies and global context. 

2. The model minimizes parameter needs and enhances generalization on small datasets 

commonly associated with flood detection by employing the CCT tokenizer instead of 

traditional Vision Transformer tokenization. 

3. This innovative method merges global features derived from the convolutional decoder and the 

Transformer feature space, resulting in a thorough representation that enhances classification. 

This work represents a significant advancement in remote sensing-based flood detection and 

monitoring. It tackles the limitations of current models through a novel architecture and tokenization 

strategy. 

2. Related Works 

Remote sensing-based flood mapping has been enriched by deep learning techniques including 

Convolutional Neural Networks (CNNs), U-Net architectures, Vision Transformers (ViTs), and 

hybrids which integrate these models. The development from old-style CNN networks to modern 

architectures is a kind of procedure consistently working for making local feature extraction and 

global context understanding into agreement. 
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2.1. CNN-Based Approaches 

Convolutional Neural Networks CNNs have been long used as a building block in flood 

detection models because of their ability to extract local spatial features effectively using 

convolutional kernels that detect pixel neighborhoods and patterns (Wang et al., 2021, Eftekhari et 

al., 2023). Initial attempts, like patch-based CNN proposed by Aparna and Sudha (2022) also 

demonstrated showing flood detection on SAR imagery quite efficiently. Expanding on this concept, 

Sudiana et al. (2024) leveraged 3D CNNs to fuse the temporal information in the multitemporal SAR 

images and recovered the evolution of floods over time. Notwithstanding above achievements, a 

typical CNN architecture usually involves multi-stage pipelines, as demonstrated in Wang et al. (Jin 

et al., 2022), who firstly extracted water bodies and then conducted the change detection in temporal 

images. While this modular approach facilitates explainability, it is prone to segmentation artifacts 

(Sen et al., 2016; Sherrah et al., 2016), leading to suboptimal accuracy. Therefore, joint, one-stage 

approaches, where both segmentation and change detection are learned together, are increasingly 

favoured. An example of this is the work by Zagoruyko and Komodakis (2015), in which a model 

with a Siamese architecture is used to process the images of di erent time-steps and to extract a 

common feature representation to perform direct CD and prevent error propagation. 

However, CNNs encounter the difficulties when applied to extensive flooding area since an 

increased receptive field results in high computational complexity. Moreover, they are only able to 

model short-range dependencies, making them unable to capture essential global semantic context 

information that is required for a practical semantic segmentation task (Doan & Le-Thi, 2025). To 

alleviate these challenges, spatial and --channel attention mechanism has been introduced to CNNs 

to allocate computational resources to more relevant flood features. Huang et al. (2024) proposed 

WaterDetectionNet that incorporated the self-attention and the multiscale feature learning into an 

encoder-decoder architecture with the Xception backbone of DeepLabv3+, to facilitate a better flood 

mapping result. Similarly, Tahermanesh et al. (2025) by integrating spatial and channel attention 

mechanisms with the Inception v1 network and showing enhanced results for Sentinel-1 flood images 

under low data regime. These attention-augmented CNNs provide a potential direction of 

development with the penalty of computation effort. Beside flood detection, CNN architectures such 

as CE-Net (Gu et al., 2019) and dilated fully convolutional networks with active contour models (Hu 

et al., 2019) pushed the segmentation and boundary refinement in medical imaging. Their 

developments on context extraction and edge profiling have inspired similar progress on flood 

segmentation, suggesting the viability of introducing auxiliary modules with the intention to deal 

with the intrinsic limitation of the CNN. 

2.2. U-Net and Its Variants 

The U-Net is a well-known flood detection model because of its high-precision on pixel-level 

segmentation. With the pixel-level segmentation accuracy, U-Net has become a dominant flood 

detection model. Its encoder-decoder structure is symmetric with skip-connections to preserve 

spatial resolution and fine detail, which may otherwise be lost in typical CNN pooling-layers 

(Ronneberger et al., 2015). Such a feature reuse mechanism enables U-Net to better identify flood 

boundaries, which are critical to flood extent mapping. The state-of-the-art advancements of the 

original U-Net have improved boundary precision and multi-scale information. For instance, Qin et 

al. (2019) proposed BASNet which employs residual refinement modules and hybrid loss functions 

to enhance regional and boundary segmentation quality at the same time. Similarly, Bai et al. (2021) 

applied this method for the fusion of Sentinel-1 SAR with Sentinel-2 multi-spectral data, showing 

competitive mIoU scores greater than 50%, indicating the strength of cross-modal feature extraction. 

Moreover, U-Net++ (Zhou et al., 2018) further enhances the U-Net model by using nested dense skip 

connections which reduce the semantic gap between encoder and decoder features, leading to 

smoother transition of features and increasing the segmentation accuracy (Ghosh et al., 2024). This 
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recursive approach is particularly beneficial in the case of flood, where water accounts and shape 

can be confound. 

In spite of these achievements, U-Net based architecture struggle in the presence of speckle 

noise and cluttered backgrounds often present in SAR images. Guo et al. (2021) proposed SA-UNet 

which contains spatial attention modules and structured dropout convolutional blocks for learning 

discriminating features as well as addressing overfitting on data-scarce cases. Similarly, Wang and 

Feng (2025) introduced multi-head attention into the U-Net architecture designed for SAR image 

characteristic that led to an incremental improvement of above 3% accuracy, precision compared to 

the baseline of U-Net in delineating the flood changes. It can be concluded from these attention-

driven changes that (i) feature weighting should be emphasized when noise should be severe, and 

(ii) reducing noise is equally important for successful flood mapping. In addition, U2-Net (Qin et al., 

2020) introduces a two-level nested U-structure with Residual U-blocks (RSUs) to gather multi-scale 

context information with affordable computation and proficiency, facilitating the training from 

scratch without the requirement of pretrained backbones. Tavus et al. (2022) further demonstrated 

the effectiveness of U-Net with ResNet50 backbones on Sentinel-1 flood data, with a uniform high 

F1-scores (approximately 0.82–0.83), which emphasized the robustness of the U-Net to different types 

of floods. Taken together, all these studies show a clear trend: although U-Net remains the backbone 

for flood segmentation, the introduction of attention and multi-scale fusion modules are necessary to 

adequately handle SAR image noise and complex flood morphologies. 

2.3. Transformer Models 

Transformers have drawn much attention towards flood detection, since they can model long 

range dependencies and the global context using self-attention (Vaswani et al., 2017). Vision 

Transformers (ViTs) Park et al. (2021); Touvron et al. (2021) and their hierarchical counterparts e.g., 

Swin Transformer Liu et al. (2021) address the fixed receptive fields left by the CNNs, therefore 

supporting a more comprehensive exploration into large flood events. A study by Chamatidis et al. 

(2024) demonstrated that ViT models combined with transfer learning on Sentinel-1 SAR and 

Sentinel-2 multispectral imagery, can outperform traditional CNN model accuracy by up to 15%. 

This demonstrates the potential role of transformers in recognizing global patterns that are 

important to understand for mitigating flooding risks, and for enabling emergency responses. 

However, ViTs typically need large-scale training data and struggle to model subtle local patterns 

due to the absent of convolutional inductive priors (Sharma & Saharia, 2024; Zhou et al., 2025). 

To overcome these limitations, Zhou et al. (2025) proposed a hybrid transformer model, which 

is a mixture of a mixer transformer encoder with noise filtering and multiscale depth-wise 

convolution blocks. This architecture properly decouples the global context modeling and local 

spatial detail preserving, which tackles problems such as flood-background similarity and edge 

discontinuity, leading to the best performance on overall benchmark datasets. Other methods 

include CSWin-UNet (Liu et al., 2025) which uses cross shaped window self-attention and 

CASCADE upsampling to improve segmentation quality and computational complexity. 

AgileFormer (Qiu et al., 2024) improves the flexibility by incorporating deformable patch 

embeddings and spatially varied self-attention so that the irregular shaped flood regions can be 

accurately segmented, which is one of common problems in different shapes of flood landscapes. 

Furthermore, Fan et al. (2022) that successfully leveraged Swin Transformer layers in a U-Net 

pipeline for image restoration, showing that transformers have the potential of advancing high-

resolution vision tasks, such as fine-grained flood mapping. 

2.4. Hybrid CNN-Transformer Models 

Recognizing that neither CNNs nor transformers alone sufficiently tackle flood detection issues, 

hybrid architectures merging their complementary advantages have become the state of the art. These 

models effectively combine CNNs’ local spatial feature extraction with transformers’ global context 
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modeling to capture intricate details and extensive dependencies. Recently, TransUNet (Chen et al., 

2021) takes this integration to a new level by substituting the traditional U-Net encoder with a ViT 

module, which leverages CNNs to encode low-level local details and transformers to capture long-

distance context information. Cao et al. (2022) extended this idea by creating SwinUNet, a 

transformer-only version of U-Net, introducing shifted window attention to improve computational 

efficiency while maintaining the segmentation performance. Wang et al. (2023) leverages a CNN-

transformer hybrid encoder for U-net (Ronneberger et al. 2015) architecture in combination with a 

non-linear double upsampling decoder to enhance the feature extraction and generalization for 

complex scenes, a task particularly relevant to flood segmentation. Yang et al. (2024) introduced the 

CvT-UNet which combines convolutional projections with multihead self-attention blocks, 

effectively balancing spatial localization and global context for an accurate weld pool segmentation, 

as of potential relevance also for flood boundary detection. 

In contrast to transformer hybrids, which have strong demand for computation and pretraining 

resources (Zhang & Zhang, 2024), Zhang et. (2025) tackled this problem with the development of 

FET-UNet, which includes the CNN (ResNet34) and Swin Transformer branches by high-level feature 

fusion and multi-scale upsampling and achieved more excellent results on the task of ultrasound 

segmentation—a domain with imaging difficulties similar to flood detection. Lightweight hybrid 

design for UNet models such as those in UNetFormer (Wang et al., 2022) with global-local attention 

mechanism made it feasible to provide robust accuracy in the real-time semantic segmentation which 

is required by flood monitoring. Furthermore, Sha et al. (2021) showed that a simple concatenation 

of transformer and U-Net (Transformer-UNet) outperforms the depth-wise U-Net models, with some 

trade-off in efficiency w.r.t. the depth of the backbone. Moreover, Doan and Le-Thi (2025) proposed 

a Siamese network using Swin-Transformer (SwinTrans) based on hierarchical feature extractors, the 

main power is computational efficiency that is accompanied with spatial connectivity to SAR flood 

image detection. Zhou et al. (2024) proposed the ViT-UNet for high-resolution coastal wetland 

classification, replacing convolutions with Vision Transformer blocks and introducing dual skip 

connections and the bilinear polymerization pooling to improve feature fusion, increasing the 

precision of the original U-Net by more than 4%.Together, these hybrid methodologies represent an 

evolving research trajectory that effectively combines the strengths of CNNs and transformers, 

tackling the challenges of flood detection—noise, scale variance, and complex boundaries—with 

enhanced accuracy and practical viability. 

3. Study Area and Flood Detection Datasets 

3.1. Description of the Study Area 

Erbil, located in northern Iraq, serves as the focus of this study. Its geographic coordinates are 

36°11′28′′N and 44°0′33′′E, as illustrated in Figure 1. The region features a broad plain, interspersed 

with hills to the east that reach elevations up to 426 meters above sea level (Al-Hameedawi, 2014). 

The landscape is predominantly covered by Quaternary sediments that have accumulated due to the 

weathering and erosion of the neighboring highlands. Significantly, in the northern and northeastern 

parts of the study area, the Quaternary sediments lie atop the Bai Hassan formation, composed of 

molasses-type rock formations. The central section of Erbil is generally flat, whereas the northeastern 

and eastern areas present a more rugged landscape (Ahmed et al., 2023). 

Erbil’s climate is classified as semiarid, exhibiting apparent seasonal shifts in humidity. 

Summers are marked by low humidity, with temperatures often rising above 45 °C, whereas winters 

experience moderate humidity, with temperatures frequently falling below 0 °C. The area encounters 

a cool and wet climate, receiving over 400 mm of average annual precipitation (Ali & Mawlood, 2023). 

Rainfall usually starts in mid-October and lasts until May. 

On December 17, 2021, Erbil and the Kurdistan Region of Iraq faced an unusually severe rainfall 

following one of the driest years in recent history (Noori et al. 2024b). Starting at 4 a.m., the rain led 

to extensive flooding in several districts of Erbil, such as Dara Too, Qush Tappa, Shamamk, Zhyan, 
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Roshinbiri, and Bahrka, especially in the northern and eastern areas of the city. This heavy downpour 

caused substantial destruction, damaging homes, buildings, and vehicles, and tragically resulting in 

loss of life (Sissakian et al., 2022). 

 

Figure 1. Map of the study area. 

3.2. Flood Detection Datasets 

3.2.1. Erbil Flood Dataset 

The satellite images from Sentinel-1 mission were employed in the current research for flood 

delineation. Based on the Copernicus program of the European Space Agency, the Sentinel-1 offers 

high resolution SAR images and has been including the possibility of using it for flood monitoring. 

Differing from the optical images, SAR is insensitive to cloud or illumination, and is suitable for the 

long period monitoring of the flood (Zhao et al., 2024). The study location is Erbil City due to flash 

flood that hit the city in December 2021 which resulted in remarkable losses in lives and properties. 

In the present study the flood impinged land surface alteration maps were obtained from the pre-

and post-flood SAR scenes (Figure 2). These images were sourced through Google Earth Engine 

(GEE), a cloud computing platform that specializes in processing geospatial data sets (Vijayakumar, 

Privacy enabled remote sensing imagery processing and analysis at scale using Google Earth Engine, 

2024). 

Table 1 presents a summary on the pre- and post-flood preparation process for Sentinel-1 images 

for assessing the impact of the flash flood. The acquisitions of the data were collected in the 

Interferometric Wide Swath (IW) beam mode, which provides wide swath at medium resolution and 

is considered appropriate for the large-scale disaster monitoring. The high resolution (HR) data (10m 

× 10m spatial resolution) can ensure the precision monitoring of waters, land sink and infrastructure 

damages. This method, with a swath-width of 250 km per swath, can scale large regions with 

flooding disaster. 
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Table 1. Satellite data from Sentinel-1 used for flood analysis. 

Satellite Acquisition date Processing level Polarization Spatial resolution (meters) 

Sentinel-1 
Pre-flood 

25-09-2021 
Level 1 Single - VH 10 

Sentinel-1 
Post-flood 

20-12-2021 
Level 1 Single - VH 10 

 

Figure 2. Maps of the pre-flood, post-flood, and flood ground truth datasets. 

The raw radar data from Sentinel-1 goes through a pre-processing phase, which involves 

standard procedures to prepare for further analysis. The first step is processing this raw data, 

including radiometric calibration to adjust for sensor and atmospheric influences, ensuring that the 

signal strength accurately reflects surface characteristics. Afterward, geometric correction aligns the 

data with the Earth’s surface, compensating for distortions caused by the satellite’s movement and 

the curvature of the Earth. Speckle filtering is applied to reduce noise from the radar signal interacting 

with the surface, enhancing the visibility of features such as bodies of water or buildings. Speckle 

noise commonly affects SAR images, complicating visual analysis. Lee (5x5) speckle filtering is 

implemented to mitigate this noise while preserving image details. Additionally, orthorectification 

corrects distortions caused by terrain variations, ensuring that the resulting images accurately 
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represent the Earth’s surface. The data may also be subsetted based on specific use cases, such as 

masking flooded areas for targeted data analysis by researchers. This pre-processing is crucial for 

improving the quality and applicability of satellite data in monitoring events like flash floods. All 

preprocessing steps of the Sentinel-1 dataset were implemented using JavaScript in GEE. 

3.2.2. S1GFloods Dataset 

The benchmarking data of our model consists of the data in Saleh et al. (2024), which used the 

Sentinel-1 SAR databased satellite images. This radar imaging system, designed by the European 

Space Agency (ESA), is capable of creating high-resolution images regardless of weather, time of day 

or atmosphere opacity. The dataset covers common and high-impact cause of flooding such as heavy 

rainfall, riverine flooding, dams and levee failure, tropical storms and hurricanes. Its geographic 

variation ensures the adaptability of the flood monitoring method to a wide range of environmental 

scenarios, such as rural, mountainous, urban communities, vegetated zones, rivers, ponds, lakes and 

reservoirs. 

The dataset contains 4,830 image sets consisting with pre-flood, post-flood and change labeled 

images. Each image is of size 256×256 pixels and has 3 channels that represent the Red (R), Green (G), 

and Blue (B) in RGB images. The labels are provided as a single channel; each pixel is assigned as 

flood (0) or non-flood (1). In order to better train the flood detection model, the dataset is divided 

into training set, which has 4,300 image sets (90% in total), and test set, which consists of 530 image 

sets (10% in total). Training sets are further divided into two smaller training subset and validation 

subset to train the model with the right parameters. A model which has this division allows a good 

generalization that reduce the chance of overfitting and enhances the learning. 

4. Methodology 

4.1. Network Architecture Overview 

This research introduced the Compact Convolutional Tokenizer-based Hybrid U-Net and Vision 

Transformer Model (CCT-U-ViT) (Figure 3). This innovative model features a hybrid architecture 

designed for Synthetic Aperture Radar (SAR)-based flood detection, integrating U-Net’s spatial 

feature extraction with the Transformer’s global context modeling. The system processes pre- and 

post-flood SAR images utilizing a U-Net encoder-decoder framework with skip connections; the 

encoder methodically extracts hierarchical features using 8, 16, 32, and 64 filters across four levels. 

Each encoder level corresponds to a decoder layer, facilitating the reconstruction of spatial details. 

At the bottleneck layer, equipped with 128 filters, the model employs three vital enhancement 

modules: a Compact Convolutional Transformer (CCT) tokenizer that transforms 2D pooled features 

into 1D tokens for sequential processing, position embedding for adding spatial awareness (a dense 

128-dimensional structure), and transformer blocks that implement multi-head attention 

mechanisms along with MLP and skip connections to capture long-range dependencies. The U-Net’s 

spatial features are merged with the global features derived from the transformer via a feature fusion 

module, which concatenates, densifies (to 64 channels), and applies a dropout rate 0.2 for 

regularization. Ultimately, a binary classification head with dense layers differentiates between flood 

and non-flood pixels, enabling the model to utilize local spatial patterns through the U-Net path and 

global contextual relationships via the transformer path to delineate flood boundaries precisely. 
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Figure 3. Architecture of the proposed CCT-U-ViT model. 

4.2. U-Net Architecture 

The U-Net module utilizes an encoder-decoder architecture frequently used in segmentation 

tasks. The encoder path extracts hierarchical features from the input image, while the decoder 

reconstructs the image or generates high-level representations. Comprising multiple blocks, the 

encoder contains convolutional layers, which are followed by batch normalization and ReLU 

activation. As the blocks progress, they reduce the spatial resolution of the feature maps, capturing 

more abstract representations. At the end of each encoder block, max pooling layers downsample the 

feature maps. Conversely, the decoder path employs transposed convolutions to enhance the 

resolution of feature maps, along with concatenation with corresponding encoder features via skip 

connections. This methodology enables the model to utilize fine-grained spatial information from 

earlier layers, improving prediction accuracy. In both the encoder and decoder paths, each 

convolutional block features two convolutional layers with 3x3 kernels, followed by batch 

normalization and ReLU activation. Ultimately, the U-Net decoder path produces a high-level feature 

representation of the input image. 

4.2.1. U-Net Encoder with Hierarchical Convolutional Blocks 

The encoder path comprises a series of convolutional blocks, each containing convolutional 

layers that utilize batch normalization and ReLU activation (Figure 4). As these blocks proceed, they 

incrementally increase the filter count while decreasing spatial dimensions using max-pooling, which 

helps extract increasingly abstract hierarchical features. Skip connections from each encoder stage 

preserve high-resolution spatial details for subsequent reconstruction. 
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Figure 4. Architecture of the U-Net Encoder model. 

4.2.2. U-Net Decoder with Transposed Convolutions and Skip Connections 

The decoder reflects the encoder’s architecture but uses transposed convolutional layers for 

upsampling (Figure 5). In every decoder phase, features from the related encoder block are 

concatenated via skip connections, restoring fine-grained spatial details diminished during 

downsampling. Additional convolutional blocks enhance the upsampled feature maps, leading to 

better spatial reconstruction. 

 

Figure 5. Architecture of the U-Net Decoder model. 

4.3. CNN-Based Tokenizer for Transformer Input (CCTTokenizer) 

Rather than employing standard patch extraction, the transformer branch uses a CNN-based 

tokenizer. This approach yields richer and more informative tokens by learning spatial features 

before sending sequences into the transformer, thus improving the quality of tokens for subsequent 

attention mechanisms. The CCTTokenizer layer acts as the CNN tokenizer, converting the image into 
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a sequence of patches through a succession of convolutional and pooling layers. Initially, the 

convolutional layers, which use 3x3 kernels, capture low-level features, followed by max-pooling 

layers that decrease spatial dimensions. Finally, the output from this segment is reshaped into a 

sequence of tokens for processing by the Transformer. The architecture of this module is presented 

in Figure 6. 

Spatial information is integrated into the tokenized patches by applying positional embeddings 

to the CNN tokenizer’s output. These embeddings are trained and then merged with the tokenized 

patches. This allows the Transformer to understand the relative positions of patches in the image. 

 

Figure 6. Architecture of the CCT Tokenizer Module. 

4.4. Transformer Blocks 

The transformer branch includes several encoder layers, each incorporating layer normalization, 

multi-head self-attention with adjustable head counts and projection sizes, and position-wise feed-

forward MLPs that utilize GELU activations and dropout for regularization (Figure 7). Residual skip 

connections between the layers improve gradient flow and support stable training. Learned 

positional embeddings are combined with token embeddings to offer spatial context. 

Each Transformer layer incorporates a Multi-Head Attention mechanism that operates on the 

tokenized patches to capture long-range dependencies between image regions. Num_heads specifies 

the number of attention heads, while the attention space’s dimensionality is indicated by 

projection_dim. After each attention operation, a residual connection is included in the output to aid 

training. This is followed by a feedforward neural network that consists of two dense layers utilizing 

GELU activations and dropout for regularization. Layer normalization is applied after both the 

attention and feedforward layers to enhance training stability. The Transformer block’s output is 

improved through multiple layers, enabling the model to capture local and global contextual 

information. 
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Figure 7. Architecture of the Transformer branch in CCT-U-ViT. 

4.5. Feature Fusion and Classification Head 

After processing independently, the global average pooled features from the U-Net decoder are 

concatenated with the transformer outputs to form a detailed feature vector that captures local spatial 

and global contextual information. This combined vector is passed through fully connected layers 

with dropout regularization and ReLU activation, leading to a final dense layer that yields logits for 

binary classification. A fully connected layer featuring 64 units and ReLU activation is applied to this 

integrated feature vector. To avoid overfitting, dropout regularization is incorporated with a dropout 

rate of 0.2. Ultimately, the final output is produced by a dense layer with two units (representing 

binary classification) and no activation function, intended for use with a binary cross-entropy loss 

function. Figure 8 presents this feature fusion and classification head module. 
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Figure 8. Architecture of the feature fusion and classification head of the proposed model. 

4.6. Benchmark Models 

4.6.1. CNN 2D – 1 Layer 

This model employs a sequential convolutional neural network architecture, starting with a 2D 

convolutional layer with 32 filters and a 2×2-pixel kernel size. It uses Rectified Linear Unit (ReLU) 

activation to introduce non-linearity, processing input tensors of shape (3, 3, 2). The feature maps are 

then flattened into a one-dimensional vector, connecting to a fully connected layer with 16 hidden 

units that also use ReLU activation. The network ends with a dense layer of 2 units, applying Softmax 

activation to generate probability distributions for target classes. This design allows the network to 

capture hierarchical features through convolution while keeping a lightweight parameter count due 

to its limited filters and hidden units. 

4.6.2. CNN 2D – 2 Layers 

This model is a sequential convolutional neural network with two layers. The first layer has 64 

filters and a 2×2 kernel size, using ReLU activation on input tensors of shape (3, 3, 2). The second 

layer comprises 32 filters and a 1×1 kernel with ReLU activation. This architecture allows for 

hierarchical feature extraction, as the first layer captures local patterns while the second refines 

features. After the convolutional layers, feature maps are flattened into a one-dimensional vector and 

processed through a fully connected layer with 16 hidden units and ReLU activation. The network 

concludes with a dense output layer featuring two units and Softmax activation for probability 

distributions across target classes. 
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4.6.3. CNN 3D – 1 Layer 

3DCNNs model The model is based on 3D convolutional neural networks taking (3,3,2) as input 

tensor size and expanded to (3, 3, 2, 1) with the 3D convolutional neural network that can handle 

batch, spatial input data. It begins with a 3D version of convolutional layer, containing 32 2×2×1 pixel 

filters to perform 2D convolutions through the input channels while preserving channel dimension. 

However, non-linearity is introduced with ReLU activation functions. The output is feature map set 

reshaped to 1D-vector that flows through a fully connected layer with 16 ReLU hidden units. The 

network also has a final dense output layer with 2 units and Softmax activation that provides 

probability distributions of the target classes. 

4.6.4. CNN 3D – 2 Layers 

The model is built on the Keras framework and utilises a two-layer 3D convolutional neural 

network. It takes a tensor input with size [p×p×channels] and produces a reshaped output of size 

[p×p×channels×1]. The first layer has 64 2×2×1 pixel kernel filters and the second layer has 32 2×2×1 

pixel kernel filters, both layers have used ReLU activation. In this structure, the hierarchical feature 

extraction process is enabled,at the same time, the channel dimension is preserved. The feature maps 

from the second layer are flattened to form a 1D vector, which is fed into a fully connected layer of 

16 hidden units with ReLU activation. The network is topped off with a dense output layer having 

[output_shape] nodes with Softmax activation, used to generate probabilities across all of the target 

classes. 

4.6.5. Hybrid CNN 

Model architecture: Our merge uses a hybrid CNN (both 3D and 2D convolutions) following the 

Keras functional API. Input tensors of dimensions [p × p × channels] are reshaped to [p × p × 

channels × 1]. It is composed of two 3D convolutional layers, the first with 64 filters (kernel size 

3×3×2) and the second with 32 filters (kernel size 3×3×1), all using ReLU activation. After these layers, 

feature maps are reshaped into a single dimension by combining the dimensions of filter and feature-

map channels along which we will perform 2D convolutions. A 2D convolutional layer using 16 filters 

(3×3 kernel size) and the rectified linear activation is then applied. This architecture is designed such 

that the network is able to learn spatiotemporal patterns through 3D convolutions and treat fused 

features using 2D convolutions. Finally, the feature maps are flattened to a one-dimensional vector 

and go through a fully connected layer with 16 hidden units and ReLU activation. A dropout layer 

with 0.5 rate for dropout is used for avoiding the overfitting before the output layer which is having 

[output_shape] units with Softmax activation, and returns the probability values of classes. 

4.6.6. U-Net 

The model architecture uses a modified U-Net CNN with an encoder-decoder structure and skip 

connections via the Keras functional API. It has three components: the encoder path, a bottleneck, 

and a decoder path, each using specialized convolutional blocks. However, these blocks perform a 

3×3 convolution followed by batch normalization, ReLU activation, and a 1×1 convolution with the 

same normalization and activation. This dual-convolution technique supports spatial feature 

extraction and channel refinement. The encoder path comprises four blocks, combining a 

convolutional block with 1×1 max pooling, with filter counts increasing (8, 16, 32, 64) for hierarchical 

feature extraction. Each encoder block retains features before pooling through skip connections for 

the decoder. The bottleneck contains a convolutional block with 128 filters, linking the encoder and 

decoder while managing abstract features. The decoder mirrors the encoder with four blocks, starting 

with a 1×1 transposed convolution (upsampling) and concatenating corresponding skip features, 

merging low-level spatial data with high-level semantics. Filter counts decrease (64, 32, 16, 8), 

reconstructing spatial resolution and reducing feature complexity. After the decoder, global average 

pooling condenses dimensions to 1×1, summarizing information across the feature map. The network 
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ends with a dense output layer with [output_shape] units and sigmoid activation for binary 

classification. 

4.6.7. Vision Transformer (ViT) 

The ViT model is a patch-based technique that processes input tensors, utilizing a transformer 

architecture for feature extraction and classification. The Patches layer segments the input image (3×3) 

into non-overlapping 1×1 patches, which are projected into a higher-dimensional space 

(projection_dim=64) via the PatchEncoder layer with learnable position embeddings. The transformer 

backbone includes four layers with: a multi-head self-attention mechanism (4 heads), layer 

normalization (epsilon=1e-6) with residual connections, and a multilayer perceptron (MLP) with 

GELU activation, consisting of two dense layers sized [128, 64] and a dropout rate of 0.1. Following 

the transformer layers, the architecture normalizes the final encoded representation, flattens spatial 

dimensions, applies dropout regularization at 0.5, and includes a final MLP head with two dense 

layers sized [64, 32] and a dropout rate of 0.5, finishing with an output layer using Softmax activation 

for classification. The model uses the Adam optimizer with a learning rate 0.001 and weight decay of 

0.0001. Binary cross-entropy is the loss function, and performance is evaluated using binary accuracy 

metrics. Data is processed in batches of 32 samples. 

This Vision Transformer architecture preserves the original ViT principles, tailored for smaller 

images by adjusting patch sizes and hyperparameters. Dropout regularization (0.1 in transformer 

layers and 0.5 in final layers) and layer normalization mitigate overfitting, while multi-head attention 

helps the model understand complex spatial relationships. 

4.6.8. CNN-Transformer 

The model’s architecture integrates a hybrid Convolutional Neural Network (CNN) with a 

Transformer framework, optimized for effective visual data processing. Initially, input images are 

processed through a custom CCTTokenizer layer that performs convolutional operations and pooling 

to extract spatial features, reshaping the data into token sequences that the transformer can process. 

Positional embeddings can be included to represent the spatial relationships among the image 

patches. The model’s core comprises stacked transformer layers equipped with multi-head self-

attention, layer normalization, stochastic depth for regularization, and a feedforward network. 

Following the transformer layers, a SequencePooling layer utilizes soft attention on the token 

sequences to generate a pooled representation, which is forwarded to a fully connected output layer 

to facilitate either classification or regression. Various regularization techniques, such as dropout and 

stochastic depth, are implemented to reduce overfitting, while the model is optimized using binary 

cross-entropy loss and label smoothing for classification purposes. 

4.7. Performance Metrics 

A set of common evaluation metrics are adopted to evaluate the performance of deep learning 

models according to their accuracy of detecting floods in SAR images. We calculate these measures 

to investigate how well the model distinguishes between the flood and non-flood pixels. The 

performance measures used in this study are: 

Accuracy measures the proportion of correctly classified pixels, including flood and non-flood 

categories, compared to the total pixel count in the dataset. It is defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1)  

where: 

• TP = True Positives (correctly detected flood pixels) 

• TN = True Negatives (correctly detected non-flood pixels) 

• FP = False Positives (non-flood pixels classified as flood) 
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• FN = False Negatives (flood pixels classified as non-flood) 

Cohen’s Kappa coefficient evaluates the alignment between predicted and actual classifications, 

factoring in chance agreement. Its calculation is as follows: 

κ =
𝑃𝑜−𝑃𝑒

1−𝑃𝑒
 (2)  

where: 

• 𝑃𝑜 = Observed agreement (the actual accuracy of the model) 

• 𝑃𝑒  = Expected agreement by chance (the agreement expected if the model were to classify 

randomly) 

A higher Kappa value signifies improved agreement beyond what would be anticipated by 

chance. 

The F1 Score represents the harmonic mean of Precision and Recall. This metric is particularly 

valuable for handling imbalanced datasets because it balances the trade-off between false positives 

and false negatives: 

𝐹1 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 (3)  

where: 

• Precision is the proportion of detected flood pixels that are correctly classified as flood 

• Recall is the proportion of actual flood pixels that are correctly detected 

The mean Intersection over Union (mIoU) metric measures the overlap between predicted and 

actual flood areas. It represents the average Intersection over Union for both flood and non-flood 

classes: 

𝑚𝐼𝑜𝑈 =
1

2
(

𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
+

𝑇𝑁

𝑇𝑁+𝐹𝑁+𝐹𝑃
) (4)  

This metric evaluates the model’s ability to correctly distinguish between flood and non-flood 

areas by determining the ratio of the intersection of predicted and actual regions to their union. 

5. Results and Discussions 

5.1. Experimental Setup and Parameter Settings 

The trials were performed on a high-performance computing workstation equipped with an 

Intel architecture CPU including 24 physical and 32 logical cores, together with 32 GB of RAM, which 

exhibited a 69.0% usage during training. However, the NVIDIA GeForce RTX 4070 Ti GPU enhanced 

this system’s computing power, providing 28.3 GB of VRAM and facilitating mixed-precision 

training with the Ampere architecture, essential for managing large flood detection datasets and 

complex model architectures. Furthermore, The deep learning framework was developed with 

Python 3.10, utilizing TensorFlow 2.9.1 and the Keras API, chosen for its efficiency in GPU resource 

utilization and suitability for computer vision applications. The model’s architecture employed 

Sentinel-1 SAR images, utilizing 3×3 spatial patches to facilitate temporal comparisons of 

circumstances pre- and post-flood, hence enabling flood detection via a binary classification 

approach. 

For training, the Adam optimizer was employed with standard adaptive learning rates and key 

parameters set as Beta1 = 0.9, Beta2 = 0.999, and Epsilon = 1e-7, which aids in achieving stable 

convergence even amidst noisy data. We selected the binary cross-entropy loss function to ensure 

appropriate gradient signals for binary classification tasks. The dataset contained 54,733,367 labeled 

pixels, highlighting a significant class imbalance (with a 1:31 ratio of flood to non-flood pixels) and 

was split into 70% for training, 10% for validation, and 20% for testing. Data preprocessing involved 

normalizing pixel values and extracting 3×3 patches from co-registered SAR imagery, explicitly 

avoiding data augmentation to preserve the integrity of radar backscatter characteristics. The model 
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underwent training for 100 epochs with a batch size of 64, and it was evaluated using various metrics, 

including Overall Accuracy (OA), Kappa Coefficient, F1-Score, and mean Intersection over Union 

(mIoU), to ensure a comprehensive performance assessment despite the existing class imbalance. 

Additionally, memory management techniques were implemented to optimize GPU memory usage, 

with batch processing tailored for the RTX 4070 Ti, and random seed initialization was performed to 

ensure the reproducibility of results. 

𝐵𝐶𝐸𝐿𝑜𝑠𝑠(𝑥)  =  −1 × [𝑦 ⋅  ln (𝑥)  +  (1 − 𝑦)  ⋅  ln (1 − 𝑥)]  

=  {
− ln (1 − 𝑥),  𝑦 =  0

 − ln 𝑥,  𝑦 =  1.
(5) 

5.2. Results of Erbil Flood Detection 

The evaluation results in Table 2 highlight the superior performance of the proposed CCT-U-

ViT architecture across all established evaluation metrics, providing empirical support for the 

model’s effectiveness in flood detection tasks. The CCT-U-ViT model attained the highest overall 

accuracy (OA) of 91.24%, marking a 1.45% increase over the second-best model, CNN-Transformer, 

which scored 90.79%. This improvement holds significant practical relevance due to the extensive 

scope of satellite imagery analysis. The performance boost is attributed to the effective integration of 

convolutional compact transformers with the U-Net architecture, allowing the model to capture local 

spatial dependencies through convolutional operations and long-range contextual relationships 

using self-attention mechanisms. With a Kappa coefficient of 0.8248, the CCT-U-ViT demonstrates 

excellent inter-rater reliability. Its performance greatly surpasses chance agreement, showcasing a 

statistically significant improvement over baseline methods for flood detection applications. 

The comparative analysis reveals apparent performance differences among various architectural 

paradigms. Traditional 2D CNN methods (90.41-90.56% OA) perform well due to their ability to 

harness spatial correlations and the translation invariance properties inherent in satellite imagery. 

On the other hand, 3D CNN models show comparatively lower performance (87.41-88.92% OA) 

because of their increased complexity and the risk of overfitting when temporal dimensions are 

added without sufficient training data. The ViT achieves competitive results (90.64% OA) by utilizing 

global attention mechanisms, but the quadratic computational complexity of self-attention and 

limited inductive biases for spatial data hinders its performance. The U-Net architecture (89.53% OA), 

effective for general segmentation tasks thanks to its encoder-decoder structure with skip 

connections, also encounters challenges in addressing the spectral complexity and spatial variability 

often seen in flood detection scenarios. These insights are further corroborated by the F1-score and 

mIoU metrics, with CCT-U-ViT achieving 0.9121 and 0.8383, respectively, reflecting a superior 

balance of precision and recall, as well as intersection-over-union performance, which are critical for 

accurately defining flood boundaries. 

Table 2. Accuracy assessment of the proposed and benchmark models for flood detection on the Erbil dataset. 

Model 
Metric 

OA Kappa F1 score mIoU 

CNN 2D - 1 Layer 0.9041 0.8082 0.9031 0.8234 

CNN 2D - 2 Layers 0.9056 0.8113 0.9044 0.8254 

CNN 3D - 1 Layer 0.8741 0.7482 0.8642 0.7609 

CNN 3D - 2 Layers 0.8892 0.7784 0.8845 0.7929 

Hybrid CNN 0.9008 0.8016 0.8985 0.8158 

U-Net 0.8953 0.7907 0.9013 0.8204 

ViT 0.9064 0.8127 0.9086 0.8326 

CNN - Transformer 0.9079 0.8158 0.9076 0.8308 

CCT-U-ViT (ours) 0.9124 0.8248 0.9121 0.8383 
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The qualitative assessment of flood detection results in Figures 9 and 10 highlights differences 

in spatial pattern recognition abilities among the architectures evaluated, affecting operational flood 

monitoring applications. The ground truth reference (Figure 9c) displays intricate flood patterns with 

irregular boundaries and fragmented water bodies throughout the study area, posing significant 

challenges for automated detection algorithms. Visual analysis reveals that CCT-U-ViT generates the 

most spatially coherent flood maps with excellent boundary preservation, thanks to the hierarchical 

feature extraction capabilities of the compact convolutional transformer and the multi-scale 

representation learning of the U-Net decoder pathway. 

Transformer-based models, such as ViT, CNN-Transformer, and CCT-U-ViT, preserve flood 

boundary integrity and minimize salt-and-pepper noise artifacts frequently observed in pixel-wise 

classification methods. This improvement is due to the self-attention mechanism, which effectively 

captures long-range spatial dependencies and contextual relationships, facilitating superior 

differentiation between spectrally similar but spatially distinct land cover types. In contrast, 

traditional CNN architectures face challenges with fine-scale boundary details; 2D CNNs tend to 

produce excessively smoothed boundaries attributable to successive pooling operations, while 3D 

CNNs demonstrate significant fragmentation, likely stemming from difficulties in learning optimal 

spatio-temporal filters with limited training data. 

The U-Net architecture demonstrates moderate performance and exhibits typical encoder-

decoder artifacts. This includes occasional missed detections in smaller flooded areas and minor over-

segmentation in transition zones. Such behavior is consistent with U-Net’s optimization for 

biomedical image segmentation, where its skip connections, while preserving spatial resolution, may 

struggle with the spectral complexity and radiometric variations found in multi-spectral satellite 

imagery. The superior capabilities of attention-based models—especially in sustaining spatial 

coherence—highlight the advantages of explicitly modeling spatial relationships through attention 

mechanisms, compared to purely convolutional methods in complex earth observation tasks. 
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Figure 9. Maps of the flood detection of the Erbil dataset using different deep learning models. 

The detailed error analysis presented in Figure 10 provides essential insights into the modes of 

model failure and their root physical and methodological causes. The patterns of error distribution 

highlight consistent biases linked to key difficulties in satellite-based flood detection, such as spectral 

confusion, mixed pixel effects, and atmospheric interference. False positive detections, illustrated in 

yellow, mainly occur in regions with high soil moisture, shadows from topography, and permanent 

water bodies that closely resemble the spectral signatures of floodwaters. These errors are 

particularly evident in 3D CNN models, suggesting that including the temporal dimension, despite 

(a) Pre Flood Image (b) Post Flood Image (c) Ground Truth 

(d) CNN 2D – 1 Layer (e) CNN 2D – 2 Layers (f) CNN 3D – 1 Layer 

(g) CNN 3D – 2 Layers (h) Hybrid CNN (i) U-Net 

(j) ViT (k) CNN - Transformer (l) CCT-U-ViT 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 June 2025 doi:10.20944/preprints202506.1153.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1153.v1
http://creativecommons.org/licenses/by/4.0/


 20 of 26 

 

 

its theoretical benefits, may introduce noise when training data lacks adequate temporal diversity or 

when atmospheric conditions differ significantly between acquisition dates. 

False negative detections (shown in magenta) primarily occur in shallow flood zones and 

vegetated wetlands, where emergent vegetation or sediment load weakens the water signal. The 

lower false negative rates in transformer-based models are attributed to their superior capacity to 

capture contextual details and subtle spectral changes via global attention mechanisms. The CCT-U-

ViT model exhibits the most balanced error distribution, featuring significantly reduced false positive 

rates (indicating enhanced precision) while maintaining high sensitivity for actual flood detection. 

This indicates that the hybrid architecture effectively integrates the spatial inductive biases of CNNs 

with the contextual modeling strengths of transformers. 

 

Figure 10. Error distributions of the flood detection for the proposed and baseline models. 

5.3. Experimental Results on the S1GFloods Dataset 

The thorough assessment of the S1GFloods benchmark dataset reveals the outstanding 

performance of the CCT-U-ViT architecture, achieving leading results in all evaluation metrics and 

setting new benchmarks for satellite-based flood detection (Table 3). This model reached a top overall 

accuracy of 97.9%, marking a noteworthy 1.1% improvement over the second-best method (CNN-

Transformer at 96.8%), a considerable leap given the already impressive baseline performance on this 

challenging dataset. The Kappa coefficient 0.969 suggests near-perfect agreement beyond mere 
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chance, underscoring the model’s exceptional reliability for operational flood monitoring 

applications. 

The performance hierarchy identified in the S1GFloods dataset provides important insights into 

architectural design principles for flood detection tasks. Traditional CNN methods display a distinct 

performance gradient, with deeper architectures (CNN 2D - 2 Layers: 95.6% OA) surpassing their 

shallower versions (CNN 2D - 1 Layer: 93.7% OA) due to better feature abstraction capabilities and 

broader receptive field coverage. 3D CNN architectures demonstrate competitive performance 

(95.9% OA for a single layer, 95.5% OA for two layers), suggesting that the temporal dimension offers 

valuable information when ample training data is available, as evident with the extensive S1GFloods 

benchmark. The Vision Transformer achieved excellent results (96.1% OA, 0.945 Kappa) by utilizing 

global attention mechanisms, although its computational complexity poses a practical challenge for 

large-scale use. 

The CNN-Transformer hybrid approach (96.8% OA, 0.958 Kappa) demonstrates the 

effectiveness of combining convolutional inductive biases with transformer attention mechanisms, 

achieving superior performance compared to pure CNN or transformer architectures. However, the 

proposed CCT-U-ViT surpasses all baseline methods with an F1-score of 0.966 and mIoU of 0.933, 

indicating exceptional precision-recall balance and spatial overlap accuracy. The consistent 

performance gains across all metrics (2.1% improvement in Kappa, 1.1% in OA, 1.4% in F1-score, and 

1.8% in mIoU compared to the second-best method) provide strong empirical evidence for the 

architectural innovations incorporated in the CCT-U-ViT design, particularly the effective integration 

of multi-scale feature fusion with hierarchical attention mechanisms optimized for satellite imagery 

analysis. 

Table 3. Accuracy assessment of the proposed and benchmark models for flood detection on the S1GFloods 

dataset. 

Method Kappa OA F1 Score mIoU 

CNN 2D - 1 Layer 0.872 0.937 0.911 0.843 

CNN 2D - 2 Layers 0.908 0.956 0.933 0.877 

CNN 3D - 1 Layer 0.911 0.959 0.937 0.882 

U-Net 0.927 0.955 0.932 0.877 

CNN 3D - 2 Layers 0.930 0.955 0.932 0.878 

ViT 0.945 0.961 0.941 0.896 

Hybrid CNN 0.936 0.962 0.942 0.894 

CNN-Transformer 0.958 0.968 0.952 0.915 

CCT-U-ViT (ours) 0.969 0.979 0.966 0.933 

5.4. Comparison of Computational Efficiency 

The assessment of computational efficiency reveals trade-offs between model complexity and 

performance, affecting deployment in resource-limited settings (Table 4). Conventional CNN 

architectures show excellent efficiency, with the 2D single-layer model needing only 2,386 parameters 

(0.03 MB) and achieving an inference time of 0.0181 seconds per batch. The 3D CNN variants have a 

slight increase in parameters (4,306-9,618) while maintaining competitive inference speeds, 

demonstrating effective use of the temporal dimension. However, this efficiency correlates with 

lower accuracy compared to attention-based methods. 

Transformer-based architectures require more computation, with ViT needing 372,770 

parameters (1.57 MB) and the slowest inference time at 0.0383 seconds per batch, highlighting the 

quadratic complexity of self-attention. In contrast, the CNN-Transformer hybrid balances 

performance, having 407,683 parameters (1.64 MB) and faster inference (0.0231 seconds) than pure 

ViT, illustrating the benefits of convolutional inductive biases. U-Net shows moderate complexity 

with 237,946 parameters (1.12 MB) and competitive speed (0.0233 seconds), making it suitable for 
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accuracy and efficiency. The CCT-U-ViT is the most complex architecture, with 669,482 parameters 

(2.82 MB) and an inference time of 0.0258 seconds per batch, positioned between pure transformers 

and hybrids in computational cost. Despite its size, CCT-U-ViT offers an excellent accuracy-efficiency 

balance, with only an 11% slower time than the fastest transformer method (CNN-Transformer), 

achieving greater accuracy. The parameter-to-performance ratio indicates CCT-U-ViT gains a 0.145% 

accuracy enhancement per additional 1,000 parameters compared to CNN-Transformer, 

demonstrating effective model capacity use for flood detection. Operationally, the model’s 2.82 MB 

size is feasible for modern systems, and its sub-second inference allows real-time processing of 

satellite imagery for emergency response. 

Table 4. Comparison of computational efficiency of the proposed and baseline models for flood detection based 

on the Erbil dataset. 

Model 
# 

Layers 

# 

Parameters 

Trainable 

Parameters 

Model  

Size 

(MB) 

Inference 

Time 

(Batch 64) 

(sec) 

Batch 

Time 

(Batch 64) 

(sec) 

CNN 2D - 1 Layer 4 2386 2386 0.03 0.0232 634.62 

CNN 2D - 2 

Layers 
5 4754 4754 0.04 0.0181 495.86 

CNN 3D - 1 Layer 4 4306 4306 0.03 0.0218 595.25 

CNN 3D - 2 

Layers 
5 9618 9618 0.06 0.0183 501.54 

CNN - 

Transformer 
29 407683 407683 1.64 0.0231 632.13 

Hybrid CNN 9 4130 4130 0.04 0.02 545.8 

U-Net 69 237946 236474 1.12 0.0233 638.21 

CCT-U-ViT 95 669482 668010 2.82 0.0258 705.91 

ViT 47 372770 372770 1.57 0.0383 1047.76 

6. Conclusions 

This research investigated how deep learning techniques can detect floods using synthetic 

aperture radar (SAR) imagery, concentrating on U-Net and Transformer models for segmenting 

flood-affected areas. The primary aim was to evaluate the accuracy and appropriateness of these 

models in recognizing flood zones under varied conditions. 

he results suggest that U-Net and Transformer models can achieve an excellent performance on 

flood detection, and Transformer better than U-Net in terms of precision and recall would come to 

the aid when the flood situation gets more complicated. Moreover, the findings suggest that the 

proposed deep learning techniques generalize well to other floods and locations and thus have 

potential in a wide range of flood monitoring systems. Compared with traditional methods, such as 

segmentation by thresholding and rule-based models, deep learning model significantly improves 

the quality and efficiency of segmentation. This enhancement is particularly striking in the reduction 

of human annotation that has been a bottleneck in many remote sensing tasks. 

One important implication of our results is that recent advanced deep learning methodologies 

will also improve automated flood monitoring systems when applied to high-resolution SAR images. 

Such systems facilitate near real-time flood mapping, which support disaster response efforts, 

especially when on-ground information is scarce. The results of this study demonstrate the 

importance of SAR data for advanced machine learning-based flood response and preparedness, 

particularly with respect to such flood-prone areas where traditional infrastructure for flood 

detection is limited. 
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The result shows that the U-Net and Transformer models could successfully detect the flood in 

the SAR image. Both models perform well in identifying inundated regions, and they generalize well 

over diverse conditions, which illustrates their capacity for wide scope applications. Integration of 

these models in operational flood monitoring systems would substantially advance the detection of 

floods in terms of its speed accuracy by providing instant and timely information for disaster 

management. 

Nevertheless, several issues remain to be resolved. To further improve model performance, 

hyperparameter fine-tuning and architectural refinement for real time flood detection can be 

potential directions for future exploration. Further, integrating SAR data with other remote sensing 

techniques can produce improved flood detection power, especially for poor environmental 

conditions. The integration of such models into operational flood monitoring systems would be key 

for the evaluation of their performance in dynamic, real time applications. Finally, the development 

of transfer learning techniques that allow models trained in one region to generalize to others may 

reduce the reliance on large annotated datasets in under-sampled regions, thereby making these 

models more accessible and viable for global flood monitoring. 
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