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Abstract: The rapid evolution of the transport industry requires a deep understanding of user 

preferences for emerging mobility solutions, particularly carsharing (CS) and autonomous vehicles 

(AVs). This study employs machine learning techniques to model transport mode choice, with a focus 

on traffic safety perceptions of people towards CS and privately shared autonomous vehicles 

(PSAVs). A stated preference (SP) survey is conducted to collect data on travel behavior, 

incorporating key attributes such as trip time, trip cost, waiting and walking time, privacy, 

cybersecurity, and surveillance concerns. Sociodemographic factors, such as income, gender, 

education, employment status, and trip purpose, are also examined. Three gradient boosting 

models—CatBoost, XGBoost, and LightGBM are applied to classify user choices. The performance of 

models is evaluated using accuracy, precision, and F1-score. The XGBoost demonstrates the highest 

accuracy (77.174%) and effectively captures the complexity of mode choice behavior. The results 

indicate that CS users are easily classified, while PSAV users present greater classification challenges 

due to variations in safety perceptions and technological acceptance. From a traffic safety perspective, 

the results emphasize that companionship, comfort, privacy, cybersecurity, safety in using CS and 

PSAV, and surveillance significantly influence CS and PSAV adoption, which leads to the importance 

of trust in adopting AVs. The findings suggest ensuring public trust through robust safety regulations 

and transparent data security policies. Furthermore, the envisaged benefits of shared autonomous 

mobility are alleviating congestion and promoting sustainability.  

Keywords: autonomous vehicle; carsharing; transport mode choice; machine learning  

 

1. Introduction 

The transport sector has undergone a significant transformation in recent decades, driven by 

rapid technological advancements that have introduced novel mobility solutions [1,2]. Among these 

innovations, carsharing (CS) services and autonomous vehicles (AVs) have gained substantial 

attention due to their potential to reshape urban mobility [3,4]. These emerging transport mode 

services offer alternatives to traditional car ownership by enhancing efficiency, safety, sustainability, 

and flexibility [5]. The CS and the AVs are anticipated to be essential in creating sustainable and 

intelligent transportation systems as urbanization increases, traffic congestion grows, and 

environmental concerns rise [6-8]. Furthermore, one of the most important factors impacting AV user 

adoption is safety concerns, which continue to be a major factor in travel behavior and decision-

making [9,10]. 

CS services provide users with on-demand vehicle access, thereby reducing the number of 

private vehicles on the road, alleviating congestion, and mitigating environmental impacts, especially 
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at city centers [11,12]. Meanwhile, AVs have the potential to significantly increase road safety, fuel 

economy, and traffic efficiency [13-15]. By minimizing human error, one of the leading causes of road 

accidents, autonomous driving technology has the potential to significantly reduce traffic fatalities 

and injuries [16]. However, the perceived safety of AVs remains a major barrier to widespread 

adoption, as users express concerns regarding system reliability, cybersecurity threats, and the ability 

of automated systems to handle complex driving scenarios [17-20].  

Numerous studies have examined the factors influencing the adoption of CS and AVs, 

emphasizing elements such as convenience, cost, environmental awareness, and trust in technology 

[21-26]. The interaction between safety perceptions, behavioral tendencies, and demographic 

characteristics in shaping mode choice remains underexplored. Conventional discrete choice models 

have provided valuable insights into user preferences [27-29]. Conventional discrete choice models 

often fail to capture the complexity of decision-making in the evolving transport landscape. In order 

to overcome these constraints, machine learning (ML) has become a powerful analytical technique 

that makes it possible to analyze large, diverse datasets and find hidden patterns and 

interdependencies among the variables driving transport decisions [30-32]. 

Previous research has demonstrated the effectiveness of machine learning models, ranging from 

traditional classifiers such as logistic regression and decision trees to advanced algorithms like 

Random Forest, Gradient Boosting, and Neural Networks, in improving prediction accuracy for 

mode choice behavior [31,33,34]. However, studies applying machine learning to analyze the safety-

related concerns influencing the adoption of CS and PSAVs services remain limited [13,35]. It is noted 

that PSAVs represent full automation, allowing users to experience autonomous mobility, whereas 

traditional CS services rely entirely on human drivers. The distinction between these two services 

requires a comparative analysis to understand how safety perceptions influence user preferences. 

Furthermore, studying the preferences of people towards these two services.  

The added value of this research to the literature is summarized in applying three high-

performance machine learning models—CatBoost, XGBoost, and LightGBM—to classify user choices 

between CS and PSAVs. The study aims to identify the key determinants influencing transport mode 

selection, assess the role of safety-related concerns in shaping user preferences, and evaluate the 

comparative performance of machine learning algorithms in predicting travel behavior. By 

integrating demographic, behavioral, and trip-related variables, this research seeks to provide 

actionable insights for policymakers, urban planners, vehicle manufacturers, and mobility service 

providers. This research answers the following questions: 

• What are the factors that impact the adoption of CS and PSAVs?  

• Do machine learning models predict whether a traveler is likely to adopt CS or PSAVs based on 

safety perceptions? 

• How do travelers inside cities perceive the safety of CS and PSAVs?  

• Do people's selection of PSAVs and CS vary by demographic variables?  

This research article is organized as follows: Section 1 presents the introduction, which includes 

previous research gaps, current research contributions, and research aims. The literature review is 

presented in Section 2, which presents previous related research. The methodology explains the tools 

and techniques used, is presented in Section 3. Section 4 presents the results and discussions. Section 

5 presents the study's summary and conclusions. 

2. Literature Review  

In recent years, CS and AV services have attracted a lot of attention as a practical way to address 

issues with transport in cities, such as traffic, parking restrictions, and environmental concerns 

[36,37]. Safety considerations play a crucial role in shaping travel behavior, particularly in emerging 

mobility services such as CS and PSAVs [38]. Extensive research has explored the impact of safety 

perceptions on transport mode choices, addressing concerns related to technological reliability, 

accident risks, cybersecurity, and personal security [39-41]. This section provides an overview of 

previous relevant studies on traveler preferences towards CS and AVs, and safety-related factors 
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influencing CS and AV adoption, while also examining the role of machine learning in predicting 

travel behavior.  

A study by Kyriakidis, et al. [42] was conducted to analyze public perceptions of AVs based on 

survey responses from eight European countries. The authors found that safety remains a primary 

determinant of AV adoption, with demographic factors such as age, gender, education, and 

household size influencing willingness to use AVs. Vulnerable road users, including the elderly and 

individuals with disabilities, expressed a preference for human supervision in AVs, highlighting 

broader concerns related to reliability, cost, and driving experience. These insights suggest that 

regulatory frameworks should consider both safety and user comfort in AV implementation. A study 

by Stoiber, et al. [43] explores user preferences for pooled AVs through an online choice experiment 

with 709 participants in Switzerland. The study assesses both short- and long-term mobility decisions 

based on a scenario of full AV market penetration. The study results indicate that 61% of respondents 

preferred shared AVs over private autonomous cars, reinforcing the potential of pooled AV services 

to reduce private vehicle dependence. Additionally, integrated measures addressing cost, travel time, 

and comfort are identified as critical factors in promoting shared mobility solutions [43]. Zhou, et al. 

[44] conducted a study to examine consumer preferences toward CS and the potential adoption of 

shared automated vehicles (SAVs) through a stated preference survey in Australia. A mixed logit 

model is applied, and the study reveals substantial preference heterogeneity, with prior experience 

in car-sharing increasing multimodal travel choices while reducing private vehicle reliance. The 

authors show that elderly people, women, and non-drivers—who are generally viewed as major SAV 

beneficiaries—show lower levels of acceptability, underlining potential challenges to broad adoption 

and the importance of focused policy measures. 

In a study by Kolarova, et al. [45], the travelers are more likely to use AVs than conventional 

cars. The AVs offer wider choices for riders on board, such as engaging in active and passive activities 

where driving negative sides are released, as shown in studies of Hamadneh and Esztergár-Kiss [5] 

and Hamadneh and Esztergár-Kiss [46]. Hao and Yamamoto [37] find that car ownerships are less 

likely to use CS than people who do not own cars in urban areas. Moreover, they find that the pricing 

strategies in urban areas are a factor that impacts the use of CS where people park their cars outside 

of the city and use CS or other transport modes. The AVs are still not on the market, researchers use 

mathematical models based on questionnaires and surveys to understand the behavior of people 

towards AVs as part of a transport system. It is found that personal experiences impact the adoption 

of CS and AVs, as stated by Müller [47]. Schoettle and Sivak [48] examine how travelers in the USA, 

UK, and Australia deal with the availability of AVs in the market. The authors find that preference 

towards AVs changes across gender, such as women are more willing to use AVs than men. 

Moreover, a study by Howard and Dai [49] states that males who are highly educated, own luxury 

cars, and are high-income earners are more willing to use AVs compared to other groups. 

Additionally, studies by Bansal, Kockelman [50], and Megens, et al. [50] state that males and high-

income people are more likely to use SAVs. Women hesitate to buy AVs due to safety factors, 

therefore, they are less likely to pay more money for automation, as stated by Payre, et al. [51].  

Scholars use mixed logit models to understand the expected behavior of people when AVs are 

in the market. Yan, et al. [52] finds that AVs are accepted by users if trip time, trip cost, and waiting 

time are competent. In Japan, a study by Das, et al. [53] shows that around 20-30% of trips are willing 

to be changed when AVs are in the market, based on the results of a nested logit model. Moreover, 

the author states that AVs are impacted by job types, such as part-time workers are more willing to 

use AVs. On the other hand, CS is considered an option that attracts travelers in urban areas. The CS 

is considered a cost-effective option in cities more than privately owned cars, where the cost of 

parking and using infrastructure is eliminated [54,55]. Fornahl and Hülsmann [56] show that CS is a 

solution to traffic congestion in city centers where people can rent a car for a short period,  parking 

is utilized, and traffic congestion is alleviated. Efthymiou, et al. [57] shows that CS users are among 

the youngest and educated ones. While Shaheen, et al. [58] states that CS are used by students who 
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own a driving license and have low income. Males are the main users of CS based on studies of Ciari, 

et al. [59] and Perboli, et al. [60] in Italy and Switzerland.  

Lee [61] analyzes the changing dynamics of transportation mode choice in the AV era through a 

combination of discrete choice modeling (DCM) and machine learning (ML) techniques. A stated 

choice experiment in the U.S. reveals that AV market shares are influenced by a range of socio-

demographic and behavioral factors. The study utilizes stochastic gradient boosting to enhance 

feature interpretability, uncovering non-linear relationships between user characteristics and mode 

choice. Additionally, methodological limitations in ML-based mode choice modeling are critically 

assessed, highlighting areas for future refinement. Pineda-Jaramillo, et al. [62] compares traditional 

multinomial logit models with ML approaches in travel mode choice prediction. In their study, based 

on household survey data from the Aburrá Valley, Colombia, they found that an optimized gradient 

boosting model outperformed both logit and random forest models. Key determinants of mode 

choice included travel time, parking availability, vehicle ownership, age, and gender, demonstrating 

the potential of machine learning as a policy tool for promoting sustainable transport options.  

In sustainability, AVs and CS participate in the reduction of greenhouse gas emissions as well 

as promote eco-friendly transport modes, as stated by Hao and Yamamoto [37]. Particularly, the 

transport sector is the cause of almost one-third of the greenhouse gas emissions in the world, as 

stated by the WHO, because of the use of internal combustion engines, traffic congestion, and the rise 

in car ownership worldwide. Furthermore, using CS and AVs, which are on-demand transport 

systems, can help alleviate the negative impact of conventional transport modes as well as promote 

sustainable travel behavior in cities [36]. CS and AVs' influences are realized in the reduction of the 

pollution resulting from alleviating traffic congestion, increasing the efficiency of fuel, electric 

vehicles, less parking, development of engines, and optimizing the fleet size of AVs and CS [63-65]. 

In summary, this research applies a novel approach where CS and PSAVs are studied based on 

the safety perceptions of travelers in urban areas, considering the main trip of travelers in Budapest, 

Hungary. Moreover, the travelers’ behaviors towards CS and PSAV are examined. This study fills 

the gap in the literature where scarcity of research that finds the impact of certain factors on the choice 

of CS and PSAV services using machine learning. This study employs machine learning techniques—

CatBoost, XGBoost, and LightGBM—to analyze the factors influencing mode choice between CS and 

PSAVs. By integrating demographic, behavioral, and safety-related variables, this approach aims to 

provide a comprehensive understanding of the complex decision-making processes involved in 

adopting these emerging mobility solutions. 

3. Methodology 

This section presents the methods used in conducting the research. The methodology is divided 

into two subsections as shown in Figure 1, as follows: data collection and data analysis.  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 April 2025 doi:10.20944/preprints202504.2341.v1

https://doi.org/10.20944/preprints202504.2341.v1


 5 of 19 

 

 

Figure 1. Research approach. 

3.1. Data Collection  

The dataset used in this study is taken from a stated preferences (SP) survey conducted online 

in 2021 in Budapest, Hungary. A total of 1840 responses are used in this research. The dataset 

encompasses both numerical and categorical variables, with columns that describe user preferences, 

transport mode choices, and socio-demographic features. The SP survey contains three parts: 

sociodemographic variables, main trip characteristics, preferred factors during travel, and transport 

mode alternatives.  

The collected data includes the following variables that are grouped in sections, as shown in 

Table 1. Sociodemographic variables, trip characteristics, preferences towards travel, and transport 

alternatives based on specific attributes are collected.  

Table 1. The SP survey contents. 

Section Features 

Sociodemographic variables Gender, age, income, car ownership, job, education 

Main trip characteristics 
Most frequent transport mode, trip length, trip purpose 

assuming using CS and PSAV 

Preferred factors during 

travel 

Waiting time, transport cost, comfort, reliability, safety, 

privacy, traffic congestion, companion onboard, 

cybersecurity 

Transport mode choices (i.e., 

CS and PSAV) 

Trip time, trip cost, time to start the trip, availability of 

onboard camera (i.e., surveillance control) 
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3.1.1. Descriptive Statistics 

The number of received responses is 1840 after filtering the data. The sociodemographic data 

include income, job, educational level, age, gender, car ownership, and educational levels. 9.30% of 

age groups are 15-24 years old, 84.7% are 25-54 years old, 4.5% are 55-64 years old, and 1.6% are 65 

years old and above. People with low income represent 27.20% of the respondents, while middle-

income respondents are 29.40%. The proportion of high-income respondents is 30.70%. Respondents 

who have work are 70.70% of the respondents are working either full time, part time, or self-

employed. Students represent 13.10% of the survey participants, retired people are 3.80% of the 

participants, unemployed resp are 8.00%, and other categories are 4.20% of the participants. Female 

participants are 44.70%, and males are 55.30%. In car ownership, 58.8% of participants own cars. 

38.00% of participants hold high graduate studies, while 42.20% hold undergraduate studies. 11.20% 

are high school holders, and only 8.6% hold different education levels.  

Table 2 shows how travelers' preferences change across age groups. Age group of 25-34 years is 

more likely to use CS and PSAV than other groups.   

Table 2. Travelers' choices across age groups. 

 15-24 25-34 35-44 45-54 55-64 65+  

CS 9.5% 55.9% 21.9% 6.0% 4.6% 2.1% 

PSAV 8.9% 53.8% 22.4% 9.6% 4.2% 1.0% 

Table 3 shows the number of responses towards CS and PSAV per trip purpose. For example, 

8.64% of responses demonstrate that educational trips are more preferred to be made by CS than 

PSAV, while 8.42% of responses demonstrate that educational trips are more preferred to be made 

by PSAV than CS. It is noted from Table 3 that travelers have small differences in using CS and PSAV 

in their travel to educational trips. On the contrary, there are differences in using CS and PSAV to 

and from home, shopping, leisure, and work trips. Shopping and work trips are preferred to be made 

by PSAV, while home and leisure trips are preferred to be made by CS.  

Table 3. Trip purpose by CS and PSAV. 

Transport Mode 
Trip Purpose 

Education Home Shopping Leisure or others Work 

CS 8.64% 7.12% 13.59% 16.20% 54.45% 

PSAV 8.42% 5.82% 26.25% 13.48% 46.03% 

Figures 2 and 3 show the distribution of responses across gender types. It is shown that females 

are more likely than males to use PSAV and CS for educational and entertainment trips than males.  

 

Figure 2. Trip purpose by CS across gender. 
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Figure 3. Trip purpose by PSAV across gender. 

Figure 4 shows the traveler's transport modes and income classes. It is shown that various 

transport modes are used across different classes of income. For example, a car as a passenger is used 

by high-income people, a car as a driver is mainly used by high- and middle-income classes, a bike 

is used by high-income people, public transport is mainly used by low-income people, and walking 

is used by high- and middle-income people.  

 

Figure 4. Income classes of respondents across travelers’ current transport mode. 

Figure 5 presents transport mode margins where travelers select to conduct their main trips in 

urban areas. This share demonstrates that people are more willing to choose CS over PSAV.  

 

Figure 5. Transport mode shares by travelers. 
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Figure 6 presents the preferences of travelers towards CS and PSAV regarding whether the 

camera is installed on board or not. The selection of travelers demonstrates that travelers choose CS 

over PSAV when a surveillance camera is installed on board. On the other hand, there are still 

considerable shares of using PSAVs in their travel to their main trips when camera is not installed on 

board. The factors that impact the preferences of people are explained by the result of machine 

learning. 

 

Figure 6. Transport mode’s shares by travelers by the availability of cameras on board. 

Figures 7 and 8 shows the preferences of travelers on their main trip when they choose to travel 

by CS and PSAV, respectively.  

 

Figure 7. CS and safety preferences of travelers in urban areas. 

 

Figure 8. PSAV and safety preferences of travelers in urban areas. 

Figure 9 shows the preferences of people driving or riding to their main trips in urban areas. The 

classifications are as follows: 1- Extremely not important, 2- Moderately not important, 3- Little not 
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important, 4- Mildly not important, 5- Partially not important, 6-Partially important, 7- Mildly 

important, 8- Little more important, 9- Moderately important, and 10- Extremely important. It is 

shown from Figure 9 that companion is the least important factor based on the number of responses 

(48.1% of responses based on scale 6 and more), while safety occupies the highest level of importance, 

followed by reliability (79.5% and 78.2% of responses, respectively, based on scale 6 and more). 

Privacy is the third important factor (71.2% of responses based on scale 6 and more), and comfort and 

cybersecurity are nearly equally important (69.2% and 59.0% of responses based on scale 6 and more).  

 

Figure 9. Safety preferences of travelers on their main trip in urban areas. 

Figure 10 demonstrates the differences in preferences across CS and PSAV. People show higher 

importance of CS safety factors (physical safety, reliability, comfort, privacy, companion, and 

cybersecurity). 

 

Figure 10. Safety preferences of travelers across CS and PSAV. 

3.1.2. Data Processing  

In the data collection, categorical variables are encoded using Label Encoding to transform non-

numeric features into a numeric form that is consistent with the input format of machine learning 

models. Whether a passenger chooses CS or PSAV is the desired variable. As seen in  
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Figure 11, a correlation matrix is created to examine the connections between the attributes and 

the target variable. The correlation matrix shows the strength and direction of correlations between 

variables. This analysis provides important insights into how different factors, such as trip cost, 

waiting time, and sociodemographic variables (e.g., income and education), are interrelated. 

Therefore, key features are identified that strongly influence user preferences and subsequently focus 

on the most relevant predictors in the ML models.  

 

Figure 11. Correlation matrix. 

3.1.3. Data Balancing and Model Optimization  

The Synthetic Minority Over-Sampling Technique (SMOTE) is applied. SMOTE is used to 

alleviate the impact of class imbalance observed within the dataset [66]. SMOTE improves class 

distribution by generating synthetic instances of the minority class. SMOTE prevents bias toward the 

majority class in the predictive model [66]. This method improves model stability and generalizability 

by ensuring a more equitable representation of both classes within the training set [67]. Furthermore, 

optimizing the hyperparameters of XGBoost, LightGBM, and CatBoost is a critical step in enhancing 

model performance [68]. Various hyperparameter tuning methodologies exist, including Grid Search, 

Random Search, Evolutionary Algorithms, and Bayesian Optimization [69]. Grid Search and 

Evolutionary Algorithms perform an exhaustive search across the parameter space, where their 

computational cost can be prohibitive. Random Search can produce a well-approximated 

configuration but does not ensure the identification of a globally optimal solution, while being 

computationally more efficient [70]. In this study, Grid Search, including multiple trials, is utilized to 

thoroughly optimize and refine the booster parameters of XGBoost, LightGBM, and CatBoost 
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hyperparameters through intently iterating through key elements within the training dataset. Such 

systematic tuning improves model generalization, predictive accuracy, and computational 

efficiency. Together with SMOTE for class balancing and fine-tuning of hyperparameters, this 

methodology guarantees the resulting predictive models are robust, well-calibrated, high-

performing, and significantly reduce the risk of overfitting and underfitting. 

3.2. Data Analysis: Model Selection and Training 

Data analysis includes three ML classifiers, model selection, and model training to be used in 

predicting the travelers’ preferences towards CS and PSAVs. The models are CatBoost, XGBoost, and 

LightGBM. 

3.2.1. CatBoost  

CatBoost is a gradient boosting algorithm based on decision trees, specifically designed to 

efficiently handle categorical features while mitigating prediction bias. One of its primary advantages 

is its ability to process categorical variables directly without extensive preprocessing, thus improving 

both prediction accuracy and model generalization [71].  

Categorical features are discrete variables, typically represented as strings, where each unique 

value corresponds to a specific category. These features cannot be directly utilized as numerical 

inputs and must undergo a transformation process. CatBoost addresses this by applying an encoding 

technique that involves scrambling the order of the dataset, denoted as D=[(xi,yi)]i=1,...,n. The 

scrambled sequence, σ=(σ1,…,σn), is then used to compute the categorical feature value iteratively. 

The calculation follows Equation 1: 

σ𝑧,𝑘 =
∑ [𝑥𝜎𝑗,𝑘

= 𝑥𝜎𝑖,𝑘

𝑧−1
𝑗=1 ] . 𝑌𝜎𝑗,𝑘

+ 𝛼. 𝑧

∑ [𝑥𝜎𝑗,𝑘
= 𝑥𝜎𝑖,𝑘

𝑧−1
𝑗=1 ]  + 𝛼

 (1) 

where z represents the prior term, and α >0 is the weight coefficient of the prior term. The 

inclusion of this prior term helps to reduce the noise associated with low-frequency categorical 

features. In regression problems, this prior term corresponds to the mean value of the dataset labels. 

One of the challenges in gradient boosting decision trees (GBDT) is the presence of gradient bias 

and overfitting, which arise from using the same data points for gradient estimation. To overcome 

this, CatBoost employs the Ordered Boosting method, which transforms the gradient estimation 

process from biased to unbiased. This method first generates a random permutation σ=[1,n] to sort 

the original dataset, initializing n different models M1,M2,…, Mn. Each model Mi is trained using only 

the top i samples of the permutation, ensuring that the unbiased gradient estimate of the jth sample 

is obtained by model Mj−1 at each iteration. This approach effectively reduces overfitting and enhances 

model robustness[72]. 

3.2.2. XGBoost 

It represents an ensemble of decision trees built upon the principles of gradient boosting, with a 

primary focus on scalability[70]. Much like traditional gradient boosting, XGBoost constructs an 

iterative expansion of the objective function by minimizing a specific loss function. Notably, XGBoost 

exclusively employs decision trees as base classifiers, employing a modified loss function to regulate 

the complexity of these trees. These gradient-boosted decision trees, also known as ensemble 

techniques, have proven to be highly effective in various fields. Within the context of XGBoost, the 

formulation involving K tree functions is expressed as in Equation (2). 

q̂i
(t)

= ∑ fk

t

k=1

(pi) =  𝒒̂𝒊
(𝒕−𝟏)

+ 𝒇𝒕(𝒑𝒊)    (2) 

Where: 

• q̂i
(t)

 signifies the estimated crash severity after the iterations, 
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• k represents the number of additive trees, 

• t denotes the number of iterations, 

• fk(pi) corresponds to the kth tree function for variables pi, 

• q̂i
(t−1)

 represents the predicted response value for the final iteration, 

• ft(pi) characterizes the tree function for the ith iteration. 

The objective function for minimizing the loss l (qi,q̂i) is structured as in Equations (3) and (4): 

Obj =  ∑ l(

n

k=1

qi, q̂i) + ∑ Ω

t

k=1

(fk) (3) 

Ω(ft) = γT + 
1

2
γ ∑ ωj

2
T

j=1
 (4) 

Here, Ω(𝒇𝒕) acts as the regularization term, preventing overfitting and reducing complexity. T 

signifies the number of leaves, 𝝎𝒋
𝟐 represents the L2 norm of the jth leaf scores, and n reflects the total 

number of crashes in the sample data. This comprehensive approach combines the foundational 

concepts of gradient boosting and the specialized attributes of XGBoost to create a powerful tool for 

enhancing prediction accuracy and scalability in machine learning applications. 

3.2.3. LightGBM 

This study capitalizes LightGBM, a renowned gradient boosting algorithm recognized for its 

exceptional speed and efficiency. LightGBM, introduced by Ke, et al. [73]_ENREF_29, is a 

comprehensive library that encompasses gradient boosting and introduces multiple innovative 

features. LightGBM operates as a supervised model, striving to determine an approximate function 

f*(𝑥) for a given dataset D= [(x𝑖, y𝑖)]. This function aims to minimize the loss function L (y, f(x)), as 

depicted in the Equation (5). 

𝒇 = 𝒂𝒓𝒈 𝒎𝒊𝒏
𝒇

[𝑬𝒚,𝑿𝑳(𝒚, 𝒇(𝒙))] (5) 

It leverages regression trees, denoted as f𝑡(x), combining them based on certain rules or 

probabilities to approximate f*(x), as articulated in Equation (6). 

𝒇∗(𝒙) = ∑ 𝝎𝒕 × 𝒇𝒕(𝒙)

𝑵

𝒕=𝟏

 (6) 

While LightGBM excels at modeling the statistical characteristics of samples for accurate 

classification and regression, it encounters challenges with unbalanced datasets, which are frequently 

encountered in intrusion detection scenarios. 

3.2.4. Performance Evaluation Metrics 

In this study, the performance of three distinct machine learning models: CatBoost, XGBoost, 

LightGBM is rigorously assessed. Each model is trained using a training set, and predictions are made 

on the test set. Model performance is evaluated by using various metrics, including accuracy, 

precision, and F1-score. The accuracy score provides the proportion of correct predictions, while 

precision and F1-score offer a more detailed view of how well each model performs across different 

classes [74]. These metrics are computed for each classifier. 

4. Results and Discussion 

This section presents the findings of the machine learning models applied to predict user mode 

choice between CS and PSAVs, focusing on traffic safety perceptions and behavioral-demographic 

influences. The performance evaluation of the models, classification metrics, and feature importance 

is discussed in detail. 

4.1. Model Performance and Comparative Analysis 
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The predictive performance of the applied machine learning models—XGBoost, CatBoost, and 

LightGBM—is evaluated using test accuracy, precision, and F1-score. Table 2 presents a comparative 

summary of the models’ performance metrics. 

Table 4. Model Performance Evaluation. 

 XGBoost CatBoost LightGBM 

Accuracy 0.77173913 0.763586957 0.730978261 

F1-Score 0.771230089 0.763255229 0.730119138 

Precision 0.771869087 0.763478721 0.731100159 

Among the tested models, XGBoost achieved the highest predictive performance, with an 

accuracy of 77.17%, followed by CatBoost (76.36%) and LightGBM (73.10%). The high accuracy and 

precision of XGBoost suggest its superior ability to capture the complex relationships within the 

dataset. Figure 12 illustrates the comparative performance of the models, demonstrating the slight 

variation in classification accuracy. While all models performed competitively, the relatively lower 

performance of LightGBM may indicate its reduced capacity to generalize under the given data 

distribution. 

 

Figure 12. Performance of models. 

4.2. Classification Metrics 

A detailed evaluation of the models' classification performance is provided in terms of precision, 

recall, and F1-score for both CS and PSAV. The results reveal that all models exhibit higher recall for 

CS users than for PSAV users, suggesting a stronger ability to correctly classify CS users. 

Table 5. Evaluation of The Models' Classification Performance. 

 
XGBoost LightGBM CatBoost 

CS PSAV CS PSAV CS PSAV 

Precision 0.77 0.77 0.73 0.73 0.77 0.76 

Recall 0.81 0.73 0.78 0.68 0.79 0.73 

F1-score 0.79 0.75 0.75 0.70 0.78 0.74 

XGBoost achieves a precision of 0.77 for both CS and PSAV, with an F1-score of 0.79 for CS and 

0.75 for PSAV, indicating balanced classification performance. CatBoost performs slightly low, with 

an F1-score of 0.78 for CS and 0.74 for PSAV, showing a small reduction in predictive power 

compared to XGBoost. LightGBM exhibits the lowest recall for PSAV (0.68), which may imply a 

greater tendency to misclassify PSAV users compared to the other models. 

The classification results indicate that while all models perform well, XGBoost consistently 

outperforms the others in detecting and correctly classifying users of both transport modes. 
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4.3. Feature Importance Analysis 

To understand the key factors influencing users' mode choice decisions (refer to Figures 5 and 

6), feature importance analysis is conducted using the XGBoost model, which demonstrates the 

highest predictive performance. Figure 13 presents the ranked importance of input features, 

highlighting the most influential variables in mode choice prediction.  

The results provide valuable insights into the behavioral and demographic factors influencing 

user preferences in CS and PSAVs. The superior performance of XGBoost suggests that decision tree-

based ensemble methods are well-suited for capturing the complexity of travel behavior. The 

classification results indicate that CS users are more accurately identified, PSAV users present greater 

classification challenges, likely due to variations in safety perceptions and technological acceptance. 

The influential factors are divided into three groups for ease of understanding: group 1 is 

traveling variables, group 2 is sociodemographic variables, and group 3 is safety variables.  

Group 1 (traveling variables) includes, trip time, waiting time for PSAV or walking time to and 

from CS, trip purpose by CS, trip purpose by PSAV, trip cost, traffic congestion, waiting time, current 

transport mode, usual transport cost, usual main trip time, and camera on board of CS and PSAV. 

From Error! Reference source not found., the highest influential factor is the trip time using CS and 

PSAV (6.68%), the duration of the trip plays a critical role in users' mode choice. The third influential 

factor in the adoption of CS and PSAV is walking and waiting time (6.12%). It is shown from the 

results that trip cost (4.66%) is the sixth influential factor that impacts the use of CS and PSAV after 

the trip purpose of using CS (5.09%). While trip purpose by PSAV is the tenth influential factor, which 

means the people are still studying using PSAV based on destinations. Traffic congestion is the ninth 

influential factor that people consider when using CS and PSAV.  In addition, availability of a 

camera on board of CS and PSAV slightly impacts the use of CS and PSAVs compared to the other 

24 factors. 

Moreover, the people consider their current characteristics when they decide to choose CS and 

PSAV, such as waiting time, the type of transport mode that a traveler uses impact using PSAV and 

CS, and this applies to the amount of money a traveler pays to use current transport mode as well as 

the current trip time using current transport mode. This leads to the conclusion, the current travel 

patterns influence the use of other transport modes in the future, such as CS and PSAVs. The 

importance of these variables occupies almost the least importance compared to other factors, as 

shown in Figure 13.  

Group 2 (sociodemographic variables) includes car ownership, monthly public transport pass 

ownership, gender, age, income, education, and job variables. The car ownership (6.12%) is the 

second influential factor; users with private vehicles may be less inclined to use CS or PSAV. Users 

of public transport mode are more likely to use shared mobility, as demonstrated in this study, where 

monthly public transport pass ownership factor occupies the fourth important factor in influencing 

the use of PSAV and CS (5.55%). Gender, age, income, education, job 

Figure 13 shows that companion (4.58%), privacy concerns (4.07%), safety perceptions (3.84%), 

and cybersecurity awareness (3.81%), all of which highlight users’ concerns regarding personal 

security and data protection in shared mobility services. While the reliability factor demonstrates 

almost the least important factor in the model.  

These findings emphasize that both trip-related factors (e.g., group 1) and personal attributes 

(e.g., group 2), and safety-related factors (e.g., group 3) strongly influence mode choice. Notably, 

safety factors as demonstrated in group 3, emerge as significant determinants, reflecting users' 

hesitations regarding data protection in PSAV services. 
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Figure 13. Feature importance of XGBoost. 

From a traffic safety perspective, concerns regarding privacy, cybersecurity, and the presence of 

surveillance cameras emerged as notable determinants in PSAV adoption. These findings align with 

previous research suggesting that trust in autonomous vehicle systems is a critical factor in adoption 

decisions [75,76]. Additionally, the strong influence of trip time, cost, and congestion highlights the 

importance of service efficiency in shaping user choices. In summary, the study underscores the need 

for policymakers and mobility providers to address safety concerns, optimize travel efficiency, and 

enhance user trust in PSAV services. Further research could explore the role of real-world safety 

incidents and regulatory measures in shaping public perception and adoption trends.  

4.4. Limitations and Recommendations  

While shared autonomous mobility offers promising benefits in terms of congestion reduction 

and environmental efficiency, ensuring public trust through robust safety regulations and 

transparency in data security remains imperative. Additionally, the study underscores the need for 

efficient and cost-effective mobility solutions to enhance the attractiveness of shared transportation 

options. The insights gained from this study offer valuable implications for policymakers, urban 

planners, and mobility service providers aiming to optimize shared transportation systems. Future 

research should explore the long-term impact of real-world PSAV deployment, integrating empirical 

safety data and user feedback to refine predictive models and enhance public acceptance of 

autonomous mobility solutions. 

5. Conclusions 
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This study applied machine learning techniques to analyze the behavioral and demographic 

factors influencing user mode choice between CS and PSAV services, with a particular focus on traffic 

safety perceptions. The findings provide critical insights into the determinants of mobility 

preferences, highlighting the interplay between trip characteristics, personal attributes, and safety 

concerns in shaping user decisions. Among the models evaluated, gradient boosting algorithms, 

particularly XGBoost, demonstrated superior predictive performance, effectively capturing the 

complexity of mode choice behavior. The analysis revealed that trip duration, car ownership, walking 

and waiting times, and trip costs are key determinants of users' mobility preferences. Furthermore, 

traffic safety concerns, privacy considerations, and cybersecurity risks emerged as significant factors 

influencing the adoption of PSAVs, underscoring the role of perceived security in shaping attitudes 

toward autonomous mobility. From a traffic safety perspective, the findings highlight the importance 

of addressing user apprehensions regarding data privacy, surveillance, and technological reliability 

in PSAV adoption.  
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