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Abstract

An ever-increasing demand for higher photon generation rates in quantum light sources often leads
to the generation of multiple photon pairs, making quantum secure imaging, sensing, and
communication vulnerable to photon number splitting (PNS) attacks. Here, we investigate the use of
weak coherent sources (WCS) and heralded single-photon sources (HSPS) in conjunction with
quantum key distribution protocols to mitigate these risks. Our initial observation shows that the
BB84 protocol using heralded single-photon sources demonstrates an advantage in secured
information transfer over the weak coherent sources. We then extend our comparative study between
WCS and HSPS to high dimensional protocols and do a rigorous analysis to estimate a benchmark in
quantum advantage in such schemes. When combined with high-dimensional states (hybrid
encoding), the two-state non-orthogonal encoding protocol offers an increased resistance to PNS
attacks. These findings suggest that integrating high-dimensional encoding can significantly
strengthen the security and performance of quantum secure imaging, sensing, and communication
systems, paving the way for more practical and resilient implementations.

Keywords: quantum secure imaging; quantum secure sensing; quantum key distribution; weak
coherent source; heralded single photon source; high dimensional states; photon number splitting
attacks

1. Introduction

Quantum imaging and sensing protocols offer enhanced measurement schemes compared to
traditional schemes, finding applications in measuring light-sensitive samples under low
illumination [1-8]. Quantum communication, particularly through quantum key distribution (QKD),
offers a fundamentally secure approach to information transfer against attacks such as intercept
resend, photon number splitting(PNS), and unambiguous state discrimination(USD) [9-12].
Quantum secure imaging and sensing are emerging disciplines that enable secure information
transfer and measurements [13-21]. However, for practical deployment, it is essential that these
protocols remain robust during continuous operation, even in the presence of potential adversarial
attacks, and are an active area of research [22-26].

Weak coherent sources (WCS) and spontaneous parametric down-conversion (SPDC) based
sources have been widely employed in QKD, quantum imaging, and sensing applications [27-34].
High-dimensional(HD) quantum states have also been explored to improve the quantum
communication, imaging, and sensing protocols [35—41]. At high operating speeds, generating all
four quantum states (as in BB84 QKD protocol) becomes technically challenging due to the increased
voltage demands of modulation devices. In contrast, two-state QKD protocols are more practical
under such conditions, requiring less modulation effort. The two-state protocol, however, requires
an additional monitoring detector to guard against advanced unambiguous state discrimination
(USD) attacks [12].
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https://doi.org/10.20944/preprints202507.1064.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 July 2025 d0i:10.20944/preprints202507.1064.v1

2 of 10

This work expands the quantum secure information transfer landscape by examining SPDC-
based heralded single-photon sources (HSPS) and WCS under decoy and non-decoy QKD protocol
configurations. Additionally, we investigate both BB84 and B92 QKD protocols, analyzing their
performance in quantum secure information applications. To further enhance the resilience of these
systems, we investigate high-dimensional QKD protocols (HD-B92) to improve resistance against
PNS and USD attacks. We adapt these countermeasures to our mathematical modelling by drawing
on solutions developed in the HD-QKD literature.

2. Mathematical Modelling and Methods

2.1. Photon Number Distribution for Quantum States of a Weak Coherent Source and a Heralded Single
Photon Source

The equation describing the photon number distribution for WCS is given by equation 1, and
for SPDC-based HSPS(thermal) is given by equation 2 [42,43].
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where x is the mean photon number, knumber of photons, 1, represents the efficiency the source
end, d, is the dark count rate for the detectors, PP*** is the post-selected probability givenby PP =
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Figure 1 illustrates the photon number distributions for thermal, WCS (Poissonian), and
HSPS(thermal) at various mean photon numbers: 0.0001, 0.001, 0.01, and 0.1. As observed, the
vacuum component (zero-photon probability) is significantly suppressed in the heralded single-
photon source. However, as the mean photon number increases, multiphoton components begin to
appear across all sources, highlighting the growing probability of more than one photon per pulse,
which is critical when assessing security and performance in quantum secure communication,
imaging, and sensing protocols.
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Figure 1. Photon number distributions for thermal (blue), WCS (orange), and HSPS (green) at mean photon
numbers (a)0.0001, (b) 0.001, (c) 0.01, and (d) 0.1.

2.2. Security Analysis for Non-Ideal Conditions to Obtain Secure Bit Rate vs Loss in dB

The secure bit rate without decoy state for BB84 and B92 protocol is given by equations 3 and 4,

respectively [12,44-46]
Rppgs = QQM{(l — M){(log, d) — [Ha(e)D} — f(EM) * Hd(EM); 3)
Where q is parameter depending on QKD protocol, q :% for BB84 and q = %for B92; Q, is the
overall gain, d is the dimension, H is the binary Shannon entropy, e; is the error rate of single
photons given by e; = %; A= %}:Pl; here E, is the overall error rate, A is term considering
multiphoton probablity against PNS attack. H,(p) = —p * log, [d%l] — (1 —p) *log,(1 —p)]; and
f(E,) =1.22;
Rsoe = Qu{(1 — A){(logz d) — [Ha(e)D} = f(Ey) * Ha(E,) — LiE"Y; @
Here I{3P is the information leakage due to USD attack given by {3 = %2?_—%;
N is the number of multiple qubit encoding which in high dimensional(hybrid encoding) terms

is N=log,d, A =07 s ysed by considering the contribution of 2 photon pulses in B92

m
protocol due to its robutness against PNS attack.
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The secure bit rate with decoy state for BB84 and B92 protocol is given by equation 5 [10,38,43]
R = q{Q * (log; d) + Q1 * [log, d — Ha(e)] — Q, * f(Eu) * Ha(EY; ©)
where Qo =Yy *po(u); €0 =5 Yo =1~ (1= dg)% Q1 =Y, % py ();

P2 (1)*Qy—D2(V)*Qu—Yo[Do (V) *p2 () —Do (1) *D2 (V)]
N ey 0= Qe B e Yo o0}/ < pa ()}

The shared parameter values used in simulations are as follows: channel attenuation(a) = 0.21
(dB/km), detection efficiencyat receiver (1) = 0.045, heralding arm efficiency(n,) = 0.8, dark count
probablity in heralding detector (d,) =10"°, misalignment error (ez)=0.033.

3. Results and Discussion

Figure 2 presents the secure bit rate as a function of channel loss (in dB) for the BB84 QKD
protocol using a WCS without decoy state analysis. Two scenarios are shown, corresponding to
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different dark count probabilities of Bob’s detector: (a) d;, = 107¢ and (b) d,, = 1077. A lower dark
count probability enhances the signal-to-noise ratio, thereby improving the maximum quantum
secure information transfer distance. This performance improvement demonstrates the importance
of low-noise detectors in practical quantum communication. When such low-noise conditions are
combined with high-dimensional encoding schemes, secure distance and bit rate gains can be
expected.

Secure Bit Rate vs Loss for WCS in HD-QKD (No Decoys) Secure Bit Rate vs Loss for WCS in HD-QKD (No Decoys)
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Figure 2. Secure bit rate versus channel loss (dB) for the BB84 protocol using a WCS without decoy state analysis.
Two detector dark count probabilities are considered: (a) WCS d;, = 107¢; (b) WCS d;, = 1077

Figure 3 shows the secure bit rate versus channel loss (in dB) for the BB84 protocol using a HSPS
without decoy state analysis. The results are plotted for two different dark count probabilities of Bob’s
detector: (a) d, = 10~%and (b) d;, = 107°. It can be observed that the HSPS remains effective even in
the presence of relatively high detector noise (d, = 107°), achieving a reasonable secure distance.
This robustness to noise highlights one of the key advantages of HSPS in practical quantum secure
information transfer scenarios, particularly when high-performance detectors are not available. It is
observed that the BB84 protocol using HSPS demonstrates an advantage in secure distance of around
10 dB over WCS without decoy states.
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Figure 3. Secure bit rate as a function of channel loss (dB) for the BB84 protocol using a HSPS without decoy
state analysis. Two dark count probabilities are considered: (a) HSPS d;, = 10~°; (b) HSPS d,, = 107°.

Figure 4 presents the secure bit rate versus channel loss for the B92 protocol using a WCS.
Subplot (a) shows the case where two-photon contributions are excluded, while (b)—(d) incorporate
the two-photon components. WCS-based B92 protocol benefits from its intrinsic resistance to PNS
attacks, allowing the secure bits to be extracted even in the presence of multiphoton pulses using high
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dimensional (hybrid encoding). This demonstrates that B92, when used with a WCS, can maintain
security without decoy state analysis and avoid the protocol to stop under PNS attack.

Secure Bit Rate vs Loss for WCS in HD-QKD (No Decoys)

Secure Bit Rate vs Loss for WCS in HD-QKD (No Decoys)
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Figure 4.: Secure bit rate versus channel loss (dB) for the B92 protocol using a WCS without decoy state analysis.
(a) WCS A=%; 1 =0.01; (b) WCS A:%; 1 =0.01. (c) WCS A=%; p=01. (d)
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Figure 5 presents the secure bit rate versus channel loss for the B92 protocol without decoy state
analysis for HSPS. Plot (a) shows the case where two-photon contributions are excluded from the key
rate calculation, while plots (b)—(d) incorporate two-photon contributions. In the HD B92 with WCS,
d=8 over d=2 has an advantage of around 9dB, while the HSPS-based HD B92 protocol achieves
around 15 dB advantage for the same high dimensional (hybrid encoding) upgrade. Moreover, in
secure information transfer distance, HSPS outperforms WCS by around 6-7dB in the HDB92
configuration in terms of quantum secure information transfer distance.

Figure 6 compares the performance of (a) WCS and (b) HSPS under decoy state analysis using
the BB84 protocol. Including decoy states significantly enhances the secure distance and enables
detection of PNS attacks. While HSPS achieves a longer secure transmission distance, WCS benefits
from a much higher photon emission rate. As a result, although HSPS provides superior distance
performance, the overall bit rate is often higher for WCS when the overall figure of merit is considered
concerning the photon counts obtained from the source, making it a practical choice in many real-
world systems. Finally, implementing decoy states provides a further gain of 15-20 dB compared to
schemes without decoy states.
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Figure 5.: Secure bit rate versus channel loss (dB) for the B92 protocol without decoy state analysis. (a) HSPS
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Figure 6. Secure bit rate versus channel loss (dB) with decoy state analysis for the BB84 protocol using (a) WCS
dp, =10"% and v = 0.1.; (b) HSPS d, = 107 and v = 0.0001.

HD quantum states enhance both security and bits per pulse in quantum communication. In
quantum imaging and sensing, samples may exhibit sensitivity to high-dimensional photon degrees
of freedom, or multiple degrees of freedom, such as polarization and orbital angular momentum, can
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be exploited for probing. WCS can generate higher photon rates, which are advantageous for key
generation rates in communication. Considering the WCS advantage of higher photon counts of
about three orders based on current technology, it gives a higher secure bit rate of 1-2 orders when
considering the overall figure of merit for secure bits with repetition rate of the source. In contrast,
HSPS, which have reduced vacuum contributions, are more suitable to securely probing samples
over longer distances at low photon illumination.

4. Conclusion

Our analysis focuses on the photon number statistics of WCS and HSPS, examining their roles
in quantum secure imaging, sensing, and communication. Nonorthogonal two state protocols offer
resilience to PNS attack to a certain threshold of multi-photon components without halting the
quantum secure information transfer in non-ideal source conditions. HSPS is particularly beneficial
in high-loss settings due to its reduced vacuum component, allowing for extended secure distances.
However, their practical advantage relies on highly efficient and low-loss components in encoding,
detection, and coupling. In contrast, WCSs produce higher photon rates, making them advantageous
for high-throughput applications, including precision quantum sensing. Despite a higher vacuum
component, their compatibility with GHz clock rates and decoy-state methods makes them suitable
for secure communication, imaging and sensing scenarios. Combining HD state encoding introduces
a trade-off: while it improves security and bits per pulse in ideal conditions, performance declines
with increasing channel loss. Also, the modulation speed of devices to encode high dimensional
quantum states need to improve to outperform low dimensional high-speed counterparts. Still, such
configurations support a broader range of secure imaging and sensing applications. Resistance to
both quantum and classical jamming attacks is possible, where the framework can adapt by
subtracting mutual information of an adversary from the secure bit rate equation, to estimate secure
distances accordingly. Moreover, these findings have direct implications for the design of quantum
networks, where flexible combinations of source types dimensionality and protocol choices can be
optimized based on channel conditions and application goals—whether it be quantum secure
imaging, sensing, or communication. Thus, the proposed analysis supports resilient architectures for
quantum networks operating in real-world noisy and lossy conditions.
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The following abbreviations are used in this manuscript:

PNS Photon number splitting attacks
QKD Quantum key distribution
HSPS Heralded single photon sources
WCS Weak coherent sources

HD High dimensional states
SPDC Spontaneous parametric down conversion
usb Unambiguous state discrimination attacks
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