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Abstract: Despite the emerging role of transcriptional regulators in schizophrenia as key molecular
effectors responsible for the dysregulation of multiples biological processes, limited information is
available in brain areas that control higher cognitive functions as the cerebellum. To identify
transcription factors that could control a wide panel of altered proteins in the cerebellar cortex in
schizophrenia, we analyzed a dataset obtained using one-shot liquid chromatography-tandem mass
spectrometry on postmortem human cerebellar cortex in chronic schizophrenia (PXD024937
identifier in ProteomeXchange repository). Our analysis revealed a panel of 11 enriched transcription
factors (SP1, KLF7, SP4, EGR1, HNF4A, CTCF, GABPA, NRF1, NFYA, YY1) and MEF2A, that could
be controlling 250 altered proteins. The top 3 significantly enriched transcription factors were SP1,
YY1, and EGR1 and the transcription factors with the largest number of targets were SP1, KLF7 and
SP4 which belong to the Kriippel superfamily. An enrichment in vesicle-mediated transport was
found for SP1, KLF7, EGR1, HNF4A, CTCF and MEF2A targets while pathways related to signaling,
inflammation/immune response, apoptosis, and energy were found for SP1 and KLF7 targets. EGR1
targets were enriched in RNA processing and, GABPA and YY1 targets were mainly involved in
organelle organization and assembly. This study provides a reduced panel of transcriptional
regulators that could be impacting on multiple pathways through the control of a number of targets
in the cerebellum in chronic schizophrenia. These findings suggest that this panel of transcription
factors could be key targets for pharmacological interventions in schizophrenia.

Keywords: schizophrenia; cerebellum; transcription factors

1. Introduction

Schizophrenia (5Z) is a polygenetic psychiatric disorder with heritability up to 80% [1]. The
mechanisms underlying this disorder are complex and are not completely understood. However,
hypotheses such as neurodevelopmental and cognitive dysmetria have been proposed as a
framework for the understanding of this psychiatric disorder. The neurodevelopment hypothesis
argues that the genetic predisposition and possible alterations during intrauterine life could lead to
altered development of the central nervous system (CNS) which could manifest during the
adolescence [2—4]. In the last decades, the cerebellum has been suggested to be implicated in this
pathophysiology through the cognitive dysmetria hypothesis [5]. This hypothesis states that

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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dysfunction of the cortico-thalamo-cerebellar circuit (CCTC) contributes to symptom emergence in
SZ [6-8]. In the context of CCTC circuit, the cerebellum innervates through of the thalamus to
prefrontal and parietal cortex, areas involved in cognitive functions and altered in SZ [9]. Although
the cerebellum is highly organised tissue, this consists of a homogeneous neuronal population with
granular cells making up approximately 90% of the population [10]. This feature makes the
cerebellum a useful model for proteomic study and finds molecular alterations that could alter
internal circuits.

Transcription factors (TFs) control gene networks that are required for the processes of
regionalisation and neuronal precursors migrations during cerebellar development[11]. In the
context of SZ, is known that several signaling pathways are dysregulated, therefore, is necessary to
identify the transcriptional programs that regulate the differentially expressed genes involved in the
altered pathways. In this context, studies have associated altered expression of several TFs such as
TCF4 with a high risk of SZ [12]. This relationship could be likely explained by the fact that TCF4
during the development is essential for neuronal migration during cortex cerebellar development
[13]. Also, it is known that dendritic organisation could be affected in SZ. Altered protein expression
in postmortem cerebellum of some members SP/KLF superfamily as Specificity Proteins (SPs) have
been related to the altered dendritic organization and neuronal growth in SZ [14,15] and Kriippel like
factor (KLF) at neuronal morphogenesis [16,17]. In addition, transcriptional dysregulation of NKX2-
1 and EGR1 has been related with altered GABAergic neurotransmission in SZ [18] which could lead
to altered synaptic proccess and the poor cognitive function described in SZ. Thus, the accumulative
effect of altered expression of these TFs could cause the dysregulation of the transcriptional networks
which could compromise the neuronal structure, synaptic efficiency and lead to the dysfunction of
signaling pathways in SZ. However, the identification of trancriptional factors that could be
modulating large networks of altered genes in the cerebellum in SZ and how these transcription
factors impact on specific pathways and biological functions has not been deeply study so far.

Our aim was to identify possible transcriptional regulators in the cerebellum which could be
responsible of altered levels of diferent proteins. In addition, we further investigate the biological
processes and signaling pathways controlled by transcription factor-dependent altered programs.

2. Results

We analyzed a previous dataset of 250 altered proteins in the human cerebellum cortex in
Chronic SZ obtained from the proteomic study using one-shot liquid chromatography-tandem mass
[19]. The dataset of the proteomic profile of cerebellum has been deposited in ProteomeXchange
repository with PXD024937 identifier.

To carry out the study we performed an experimental design showed in Figure 1, where the 250
altered proteins were used to search for transcription factors that could be controlling them. To find
the biological processes and pathways that could be regulating these transcription factors, we
performed gene ontology analyses with the protein groups regulated by each transcription factor.
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Figure 1. Experimental design to identify enriched transcription factors and its dependent-altered biological

processes and pathways in the cerebellum in schizophrenia.

2.1. Putative Transcriptional Programs Responsible of Changes in the Proteomic Profile in the Cerebellum

To investigate the transcriptional program that could be controlling the 250 altered proteins in
SZ, we performed an enrichment analysis of TFs. Our enrichment analysis for the transcription factor
targets showed 40 significant TFs (p-value<0.05) (Supplementary dataset 1). We generated a list of 11
potential TFs that could be controlling the 250 altered proteins according to the following criteria: the
TFs would regulate more than 15% of the target proteins (Figure 2). These TFs were: SP1, KLF7, SP4,
EGR1, HNF4A, CTCF, GABPA, NRF1, NFYA, YY1, and MEF2A. This analysis revealed that the top
3 most significant TFs were SP1, EGR1 and YY1, with 125, 60 and 37 targets, respectively
(Supplementary dataset 2). Furthermore, the analysis showed that the TFs with the largest percentage
of target proteins were SP1 (125 targets), KLF7 (76 targets) and SP4 (66 targets), all of which belong
to the Kriippel superfamily.
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Figure 2. Potential transcription factors involved in the regulation of the altered proteins in the cerebellum of
chronic schizophrenia patients. The X-axes show the percentaje of target genes for each transcription factor. The

Y-axes show the —logi enrichment p-value. The size of the bubble indicates the number of protein targets.

2.2. Altered Biological Processes Controlled by Transcriptional Programs in the Cerebellum in Chronic
Schizophrenia

Our gene ontology analysis in target genes revealed 10 out of 11 TFs have enriched biological
processes (FDR<0.05). The most significant biological processes were regulated by SP1, KLF7, EGR1
and GABPA (Figure 3). In this analysis, SP1 and KLF7 target proteins were enriched in functions
related to cytoskeleton organization development, cellular and organelle organization and
inflammation/immune response. KLF7 target proteins showed significantly enriched processes
related to neutrophil-mediated immunity and granulocyte activation. EGR1 targets were enriched in
cytoskeleton organization development and RNA processing such as mRNA metabolism and RNA
catabolic processes. GABPA and YY1 targets were mainly involved in cellular and organelle
organization and assembly. The biological processes involved in synaptic functions were enriched
for target proteins of MEF2A, SP1 and KLF7. MEF2A and SP1 target proteins were enriched in
regulation of vesicle-mediated transport, while KLF7 together to those of SP1 were also enriched in
the regulation of intracellular transport. SP4 target proteins were enriched in some biological
processes associated to cellular and organelle organization and assembly functions mainly. In
contrast, NRA2A was only implicated in assembly functions.
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Figure 3. Non-redundant enriched biological process categories for altered targets of transcription factors.
The enrichment analysis was performed using Webgestalt and the heat map visualization of enriched biological

process were performed using Perseus software.

2.3. Altered Pathway Analysis Controlled by Transcriptional Programs in the Cerebellum in Chronic
Schizophrenia

Our results revealed pathways significantly enriched (FDR<0.05) in altered targets of 5 TFs: SP1,
KLF7, EGR1, HNF4A and CTCF (Figure 4). The enriched pathways were mainly detected in targets
regulated by Kriippel superfamily TFs such as SP1 and KLF7, with 28 and 13 pathways respectively.
SP1 targets showed enrichment in all pathways. The vesicle-mediated transport pathway was under
the control of targets of 5 TFs. EGR1 altered targets were enriched in pathways involved in transport
and signaling. HNF4A altered targets were only enriched in pathways related to vesicle-mediated
transport and membrane trafficking pathways. CTCF targets were enriched in pathways involved in
transport and processes associated with the Golgi complex. Moreover, SP1 and KLF7 altered targets
showed an enrichment in pathways related to signaling, inflammation/immune response, apoptosis
and energy (mitochondrial processes and glucose transport mediated by translocation of SLC2A4
(GLUT4) to the plasma membrane).
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Figure 4. Non-redundant enriched pathways for altered targets of transcription factors. We used the Reactome
database for enrichment pathway analysis and the results are displayed as a heat map created using Perseus

software.

3. Discussion
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Our study identified 11 potential TFs enriched in the cerebellum in chronic SZ that could control
the expression of the 250 significantly altered proteins, contributing to dysregulation of several
biological processes and pathways in SZ. Several studies have implicated 10 out of these 11 TFs in
SZ:SP1 [20-22], KLF7 and SP4 [23-28], EGR1 [29-31], HNF4A [32], CTCF [33-35], GABPA [33], NRF1
[36,37], NFYA [38], YY1 [34], and MEF2A [39].

3.1. Transcription Factor Dependent-Enriched Biological Processes

3.1.1. Cytoskeleton and Organelle Organization

The enrichment analysis showed that SP1, KLF7, and SP4 which belong to the SP/KLF
superfamily, had the greatest number of target genes. The SP/KLF superfamily is characterized by its
binding to GC boxes in promoter regions with almost identical affinity due to the high homology in
their DNA-binding domains [40] Our results identified biological processes such as cytoskeleton
organization/development, cellular/organelle organization and pathways related to signaling as the
most enriched categories for SP1, SP4 and KLF7. The cytoskeleton mediates a large variety of cellular
functions, including supporting cellular morphology and cellular activities such as vesicle trafficking,
neuronal migration, and neurite outgrowth [41]. SP1 in astrocytes has been implicated in neurite
outgrowth and synaptogenesis [42], while SP4 has been associated with dendritic arborization in
cerebellum [14,43]. KLF7 has been implicated in enhancing axon growth [44,45], formation of
dendritic branching in the hippocampus and altered axon projection in several brain regions [46].
Moreover, KLF7 has been reported to be involved in the maturation of granular neurons in the
cerebellum during early postnatal development [46]. In addition, studies performed in the
postmortem cerebellum have shown altered protein levels of SP1 and SP4 linked to negative
symptoms in chronic SZ. Altered levels of both transcription factors were also found in the
hippocampus in these subjects [15] and in the prefrontal cortex, only SP1 protein levels were reduced
in these subjects [24] suggesting a region-specific dysregulation of these TFs in SZ. These reports
together with our results point to a possible dysregulation of KLF7 in SZ that leads to the alteration
of the maturation of granular cells and axon growth, while altered expression of SP1 and SP4 could
be related to altered formation of neurites and the dendritic arborization patterns. All these processes
could eventually lead to altered cell-cell communication in the inner cerebellar circuits and the
connection of the cerebellum with other brain regions.

3.1.2. mRNA Processing and Splicing

Our analysis reports that a protein set involved in biological processes related to mRNA
processing could be under the transcriptional control of SP1, EGR1, and KLF7 with SP1 target genes
being the only ones enriched in splicing. It has recently been shown that alternative splicing could
play a role in SZ [47,48]. Many of the archetypal genes associated with SZ, for example, DISC1 [49]
and ERBB4 [50], are aberrantly spliced transcripts. However, the molecular mechanism underpinning
this aberrant splicing is unknown. A study in mice showed that Sp1 enhances the transcription of the
splicing factor Slu7, while depletion of Sp1 repressed Slu7 expression, thereby affecting alternative
splicing processes [51]. Thus, further studies will be needed to test the possibility that SP1-dependent
altered splicing could be mediating the generation of aberrant alternative splicing forms in key genes
in SZ physiopathology, such as DISC1 and ERBB4.

3.1.3. Synaptic Function

In our study, the most significant enriched process from synaptic function was vesicle transport
linked to MEF2A target genes. MEF2A is a transcription factor expressed in adults and implicated in
neuronal development, the formation of postsynaptic granule neuron dendritic claws [52,53].
Moreover, the study of Crisafulli et al., found that at least seven single-nucleotide polymorphism in
MEF2A could be related to SZ [54,55]. Also, MEF2A has been related as a negative regulator in the
AMPA receptors expression, which participates in the memory processes [56] suggesting that this
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transcription factor could be involved in the cognitive decline in SZ. Therefore, a dysregulation of
MEF2A not only could be responsible of altered synaptic morphology in cerebellar granule neurons,
but also in the neurotransmitter vesicle transport to the active presynaptic zone in this neurons in SZ.

3.2. Transcription Factor Dependent-Enriched Pathways

3.2.1. Transport and Golgi Complex

Pathways related to transport and the Golgi complex, such as vesicle-mediated and membrane
trafficking, were the pathways found to be most enriched for the target proteins of SP1, EGR1,
HNF4A, and CTCF. All these pathways are involved in the functioning of the Golgi apparatus.
Protein transport from the endoplasmic reticulum to the Golgi complex requires transport vesicles
[57]. Recently, it has been proposed that the Golgi phosphoprotein 3 (GOLPH3), which participates
in protein trafficking, receptor recycling, and glycosylation in the Golgi, can regulate the transcription
of the proinflammatory cytokines such as TNF-q, this regulation could be mediated by the EGR1/ERK
pathway [58]. This evidence raises the question of whether EGR1 could be implicated in the
inflammatory processes in SZ. Moreover, all the TFs involved in the transport and the Golgi complex
such as SP1, EGR1 [59], HNF4A [60] and CTCF [33] have been previously reported to be altered in
SZ. However, the role of these TFs in anterograde transport or functions associated with the Golgi
apparatus in the context of SZ is unknown.

3.2.2. Immune Response and Inflammatory Processes

Although the neurodevelopmental hypothesis is well accepted, the inflammation, dysregulation
of the immune mechanisms and degenerative views have also been suggested as hypotheses which
have generated a large debate in the field [61-69]. The imbalance in the levels of proinflammatory
and anti-inflammatory cytokines has been related to symptoms and cognitive decline in SZ [70,71].
In our study, biological processes and pathways related to the immune response were found to be
enriched linked to specific transcriptional programs. The transcriptional control of the targets
involved in inflammatory events could be regulated by some members of the Kriippel-like factor
family such as SP1 and KLF7. KLF7 has been related to increases in the levels of IL-6, which play a
role in both inflammatory and anti-inflammatory responses [72]. KLF7 could promote the increase of
IL-6 through PKCC{/NF-«xB [73] and TLR4/NF-kB/IL-6 signaling [74]. In addition, studies have
reported high levels of IL-6 in SZ subjects [75,76]. A study reported that KLF7 can induce macrophage
activation [79,80]. Moreover, several members of the Kriippel-like factor family, such as KLF2, KLF4
and KLF6, have been reported to be involved in the immune system and inflammation [77-79] which
is in line with our results. Thus, taken together, these findings suggest that KLF7 could have a
relevant role in inflammatory processes in SZ.

Another member of Kriippel-like factor family is SP1. SP1 has been associated with the activation
of interleukin 21 receptors in T cells [80,81], which mediate the activation of several cell types
involved in the immune response [82]. Furthermore, SP1 has been implicated in interleukin 12 (IL-
12) expression [83]. IL-12 induces the differentiation of T-helper 1 cells [84] during the adaptive
immune response. In this sense altered IL-12 levels have been reported in the plasma of SZ subjects
[85,86]. Also, SP1 induces the activation of macrophage inflammatory protein-2 (MIP-2), which is
involved in recruiting neutrophils to inflammatory regions [87]. In addition, SP1 has also been
implicated in the crosstalk between the interferon regulatory factors and NF«B pathways, thereby
contributing to the TLR-dependent antiviral response [88]. In SZ, it has been reported that SP1 could
interact with the TLR4-MyD88-IkBa-NF«kB pathway, which mediates its interaction with NF«B [89].
Thus, SP1 could be an activator of the immune response. The dysregulation of IL-12 expression due
to the altered function of SP1 could lead to dysfunctional differentiation of T-helper cells and an
altered adaptive immune response in SZ. Thus, our study suggests the possible participation of SP1
in inflammatory processes in SZ subjects.
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3.2.3. Apoptotic Events

Disseminated apoptotic events in the CNS throughout the developmental period and later
phases impact on the emergence of SZ and the progression of the disease [90,91]. These apoptotic
processes support the neu-rodegenerative hypothesis proposed for SZ [92,93]. However, the
transcriptional program involved in this process is unknown. Our analysis revealed that SP1 and
KLF7 could participate in mitochondrial apoptosis. While some studies have demonstrated that
overexpression of SP1 could induce apoptosis, others have re-ported that the depletion of SP1
increases the sensitivity of cells to DNA damage [94-96] and eventually leads to apoptosis. Thus, SP1
could have a dual function in apoptosis. Moreover, it has been reported that depletion of KLF7
increases cell apoptosis in animal models [97]. Although KLF6 has been reported to be regulated of
mitochondprial function during apoptosis [98,99], no information is available for KLF7 in this function.
However, it has recently been proposed that KLF7 could inhibit the inflammatory and apoptotic
processes in cell lines via NRF1/KLF7 [100]. Thus, in the context of SZ, altered expression of SP1 and
KLF7 could activate apoptotic signaling pathways in the CNS and contribute to the disseminated
apoptosis described in SZ [101].

4. Materials and Methods

4.1. Bioinformatic Analysis

To identify transcription factor enrichment we used FunRich Tool v.3.1.3. To represent the
results obtained with FunRich Tool, we used Graph Prism version 7.00 (GraphPad Software, San
Diego, CA, USA). To perform non-redundant enriched categories analysis for Gene Ontology, and
Pathways we used Webgestalt (WEB-based Gene SeT Analysis Toolking) and the method of Over-
Representation Analysis (ORA), supported by Fisher's exact test [102]. For pathways analysis we
used the Reactome database. The enrichment analyses were set to FDR=0.1. To represent the
enrichment analysis, we performed a heat map with Perseus software platform (version 1.6.1.3.
http://coxdocs.org/doku.php?id=perseus:startcite)

5. Conclusions

The altered proteins in the cerebellum in schizophrenia are the target genes of just 11
transcription factors: SP1, SP4, EGR1, KLF7, HNF4A, CTCF, MEF2A, GABPA, NRF1, YY1 and NYFA.
Our results show that transport-related pathways are enriched for SP1, KLF7, EGR1, HNF4A and
CTCF altered targets. The signaling-related pathways are enriched for SP1, KLF7 and EGR1 altered
targets. SP1 and KLF7 could contribute to the signaling dysfunction induced by dendritic
arborization alterations and to the loss of the maturation of granular cells in the cerebellum
respectively. Pathways involving inflammatory/immune responses and apoptosis are enriched with
SP1 and KLF7 altered targets. SP1 could participate in the immune response and induce the
differentiation of T helper cells and KLF7 could induce the macrophage activation. This suggests that
SP1 and KLF7 could play a prominent role in the cerebellum in chronic schizophrenia. Together, all
these findings suggest that the altered function of a limited number of transcription factors could
have an impact on disseminated pathways involved in different cellular functions.

Supplementary Materials: The following supporting information can be downloaded at the website of this
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Abbreviations

SZ Schizophrenia

CB Cerebellum

CCTC Cortico-thalamo-cerebellar circuit

CNS Central nervous system

TFs Transcription factors

NKX2-1 Homeobox protein Nkx-2.1

SP1 Transcription factor SP1

SP4 Transcription factor SP4

KLF7 Kriippel-like factor 7

EGR1 Early growth response protein 1

HNF4A Hepatocyte nuclear factor 4-alpha

CTCF Transcriptional repressor CTCFL

GABPA GA-binding protein alpha chain

NRF1 Endoplasmic reticulum membrane sensor NFE2L1

NFYA Nuclear transcription factor Y subunit alpha

MEF2A Myocyte-specific enhancer factor 2A

YY1 Transcriptional repressor protein YY1
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