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Abstract

Altered lipid metabolism is an emerging hallmark of cancer. In glioblastoma, sufficient lipids are key
to driving rapid cancer proliferation. SREBF1, a regulator of fatty acid synthesis, recently gained
therapeutic interest. SREBF1 methylation is implicated in metabolic diseases with currently unknown
effects in cancer, including glioblastoma. This study characterizes SREBF1 methylation in two
independent, population-scale glioblastoma cohorts. Unsupervised clustering of SREBFI
methylation sites reveals two predominant clusters with contrasting levels of cancer stemness (P <
0.01). The high-stemness cluster is younger in epigenetic age (P < 0.05) and higher in the neuronal-
stromal composition (P < 0.05). Independent of age, sex, and MGMT subtype, the genome-wide
epigenetic landscapes of the clusters were distinct at the global (P < 5e-8) and single-nucleotide
resolution (all Bonferroni P < 0.05). Genes involved in neuronal specification and organization were
hypo-methylated in the high-stemness cluster (all Bonferroni P < 0.05), which also showed worse
overall survival (hazard ratios > 1.25). Taken together, this study offered novel insights into SREBF1
methylation, warranting future research into the epigenetics of the lipid metabolism machinery.

Keywords: DNA methylation; epigenetics; fatty acid synthesis; glioblastoma; stemness

1. Introduction

Lipids are macromolecules critical for the normal functioning of human tissue. In brain tissue,
lipids account for more than half of the dry weight of the human brain. The building blocks of lipids —
fatty acids—participate in multiple processes of brain tissue'. While the role of lipid metabolism in
normal brain function and neurological disease is well-known, emerging evidence suggests that
altered lipid metabolism, including fatty acid synthesis (FAS), may contribute to carcinogenesis in
the brain'2

Glioblastoma (GBM), also known as the World Health Organization grade IV glioma, is the most
common and deadly form of brain cancer [1-5]. Most GBM patients receive maximum surgical
removal of the tumor with concurrent radiation and temozolomide-based chemotherapy, both of
which are invasive treatments with severe side effects [2,4]. Despite rigorous therapeutics, the
prognosis of GBM is dismal. The median survival of GBM is slightly over a year, and fewer than 1 in
10 patients would survive 5 years post-diagnosis [2,6].

GBM hosts a substantial amount of cancer stem cells with self-renewing and proliferative
ability*. Stemness, a phenomenon involving loss of the differentiated cellular features, makes a cell
resemble its stem-cell progenitor [7]. In cancer, such de-differentiated cells tend to be more
aggressive, exhibiting a greater potential for proliferation and invasion of other tissues [7]. Stem cells
are defined by their ability to give rise to other cell types through the process of differentiation.
Consequently, higher stemness in tumors introduces a more diverse reservoir of cell types,
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contributing to elevated heterogeneity, which makes the disease harder to treat [4,6,7]. The progenitor
capability of GBM stem cells also enables the persistence of the treatment-resistant cells [4]. Clinically,
stemness facilitates cancer progression and manifests in worse prognosis as well as therapeutic
resistance, evidenced by most metastatic tumors displaying a de-differentiated state [7].

Emerging evidence links FAS to brain tumor onset and progression [1]. In GBM, a substantial
amount of lipid is required to fuel the growth and proliferation of tumor cells [2,6]. Recent evidence
has pointed to altered FAS machinery as a candidate driver of GBM stemness. Experiments with a
high-fat diet promoted proliferative and anti-apoptotic properties in brain tumor stem cells, while
RNA interference targeting of FAS machinery repressed stem-cell features in GBM1. Metabolomic
profiling revealed that lipid metabolism levels could distinguish GBM stem and non-stem cell
populations6. Targeting FAS has since been proposed as a therapeutic strategy [1,2]. Potential
therapeutic targets include fatty acid synthase, a FAS workhorse, as well as sterol regulatory element
binding protein 1 (SREBF1), a major FAS regulator [1,2,6].

DNA methylation, the addition of a methyl group to the DNA cytosine base position 5 (5 mC)
in the cytosine-phosphate-guanine (CpG) dinucleotide context, plays a crucial role in regulating gene
expression and many biological processes, including cellular differentiation and cell-identity
maintenance [8-10]. The 5mC landscape at the SREBF1 gene has been implicated in lipid metabolism
alterations in diseases [11]. In type-2 diabetes, SREBF1 methylation is linked to insulin-resistance risk,
thus permitting clinically relevant patient stratification [12]. However, the understanding of SREBF1
methylation in cancer remains limited. In GBM specifically, the role of SREBFI methylation has not
been reported. Given the role of FAS in brain carcinogenesis and the regulatory effect of SREBF1 in
FAS, the epigenetics of SREBF1 deserves in-depth investigation.

The goal of this study is to investigate the biological and prognostic relevance of SREBF1
methylation in GBM tumors. In two independent, population-scale cohorts, SREBF1 methylation
helps identify a GBM cluster exhibiting significantly higher cancer stemness and younger epigenetic
age. The study subsequently reveals a link between SREBFI methylation and genome-wide
epigenetic landscapes at both global and single-nucleotide resolution. The more stem-cell-like cluster
is enriched for distinct biological pathways and shows worse survival. All together, this study
warrants further research into the biological and translational effects driven by the epigenetics of FAS
machinery.

2. Materials and Methods

Study cohorts and samples. This study leveraged two independent, population-scale GBM
cohorts with publicly available Illumina’s Infinium HumanMethylation450 BeadChip (450K) and
relevant clinical profiles with survival data: n=153 The Cancer Genome Atlas (TCGA) [3] and n=157
Deutsches Krebsforschungszentrum (DKFZ), excluding n=24 non-GBM [5]. The 5mC data for all cohorts
were available as matrices of beta-values, which represent the proportion of methylated alleles in a
bulk sample and follow a bimodal beta-distribution bound between 0 (unmethylated) and 1
(methylated) [8,9].

MGMT subtype estimation. MGMT promoter methylation status is a well-established
prognostic biomarker and a known correlate to isocitrate dehydrogenase (IDH) mutation and the
CpG island methylator phenotype (CIMP) in brain tumors [2-5]. Here, MGMT subtypes were
determined by the mgmtstp27 machine-learning algorithm (R package v0.8). The input was the 5mC
M-values of CpG probes cg12434587 and cg12981137 [13] obtained by logit transformation of their
beta-values [8].

Biological sex inference for DKFZ. Sex can be reliably determined from the median intensities
of sex-chromosome probes of methylation arrays [8]. Here, the biological sex of the DKFZ samples,
which were not available in the public data accession, was determined by applying the minfi
(R/Bioconductor packagev1.46.0) [8] procedures to the intensity data files.

Additional filtering of 5mC DNA methylation data. CpGs tracking to sex chromosomes and
annotated as non-specific or cross-reactive (curated list available at
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https://github.com/sirselim/illumina450k_filtering) [14] were excluded. The CpGs located within
SREBF1 and MGMT were also excluded. After filtering, 361,281 CpGs shared between the TCGA and
DKFZ cohorts were kept for downstream analyses. Missing values in 5mC were imputed by
R/Bioconductor impute v1.74.1 function impute.knn with default k=10.

SREBF1 methylation-based cohort stratification. Of the 42 SREBF1 CpG probes on the 450K
array, 38 (90.5%) were present in the filtered datasets and used for GBM stratification. Each sample
was assigned a cluster label L or R by applying Recursively Partitioned Mixture Model (R package
RPMM v1.25 function blcTree), an iterative unsupervised clustering algorithm designed for the beta-
distributed 5mC [15], one cohort at a time. The algorithm also returned a terminal solution with labels
LL, LR, RL, and RR (Figure S1). Cluster assignment and sample ordering were determined with
seriation (R package v1.5.7) [16] as previously described [17-19]. Heat maps with tracking bars
labeling cluster membership and CpG annotation were plotted with pheatmap v1.0.12 as described
previuosly'7-2.,

Cancer stemness scores. Malta et al. [7] developed mDNAsi, a methylation-based cancer
stemness index using a 219-CpG signature panel. In the filtered cohorts, 212 (96.8%) CpGs were
available and none were located within SREBF1 or MGMT genes. The raw mDNAsi values of all
samples within each GBM cohort, m, were calculated as m = w” x, where vectors x and w are the beta-
values and the corresponding signature weights, respectively. The final mDNAsi value in the k-th
sample (m+’) was calculated by intra-cohort min-max transformation [7].

Epigenetic aging. Epigenetic age is an indicator of the biological aging process and cellular
differentiation potential and can be calculated by the Horvath method using a 353-CpG panel [22].
Here, epigenetic age was calculated by applying R/Bioconductor package wateRmelon v2.6.0 function
agep [9] to the 323 (91.5%) CpGs available, which were not located within SREBF1 or MGMT.

Deconvolution of tumor microenvironment. MDBrainT (R package v0.1.0) is a novel method
that dissects the tumor microenvironment using a reference library of 25,913 CpGs from the 450K
array. The approach is brain tumor-specific and outperforms several existing approaches [23]. In the
filtered cohorts, 20,347 CpGs (78.5%) were present, excluding cg03641529 located within SREBF1. The
proportions of tumor cells (i.e. tumor purity), pre-defined immune cells, and pre-defined neuronal-
stromal cells were determined by applying the function TMEdeconvolute with reference annotations
available as built-in R objects [23].

Global epigenetic summaries. A background set of 47,224 CpGs was obtained by keeping only
the sites with the greatest inter-sample variability in each cohort and excluding sites lacking a known-
gene annotation. Global methylation was then summarized by the topmost dimensions from a
principal component analysis (PCA), PC: and PC: (base R function prcomp). The raw components
were then standard-normalized within each GBM cohort. The PCA groups, A and B, were assigned
based on whether a sample was above or below an unbiased decision line, PC: = PC;, as described in
published genomics studies [21,24,25].

Differential methylation analysis at nucleotide resolution and pathway analysis. The
aforementioned background set of 47,224 CpGs was subsequently analyzed for differential
methylation adjusting for age, sex, and MGMT subtypes with limma (R/Bioconductor package
v3.56.2) as described previously [17-19]:

M, ~ ClusterR, + Age; + SexFemaley, + methylMGMT,

where Mk is the M-value of j-th CpG in k-th sample. All significant CpGs had a Bonferroni-corrected
P <0.05, corresponding to a raw P <1.06e-6. Volcano plots summarizing differential methylation were
implemented in ggrepel (R package v0.9.6) as described previously [17-19].

The gene set-based Gene Ontology (GO) [26] and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses [27] were implemented in WebGestalt2024 (https://www.webgestalt.org), which
accepted a target and a background gene set as separate text files [28]. Here, the former was the list
of 904 genes associated with the 1,182 hypo-methylated CpGs detected in both cohorts, and the latter
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was the 12,761-gene list associated with the 47,224-CpG background set. The raw P-values of the GO
and KEGG terms were subject to Bonferroni correction.

Survival analysis. The overall survival models were implemented in survival (R package v3.5-
5) as described previously [17,20,29]. The time-to-event profiles for overall survival were censored at
the 5-year mark. Kaplan-Meier curves were drawn with wrapper function ggsurvplot (R package
survminer v0.4.9). Multivariate Cox proportional hazard regression adjusting for age, sex, and MGMT
subtypes was also implemented in survival. Hazard ratio (HR) estimates were determined by
exponentiating the regression coefficients.

Statistical analyses. All analyses were implemented in R v4.3.1. A continuous variable between
the SREBF1 clusters was tested in a univariate manner with a two-sided Welch’s t-test (base R
function t.test). A follow-up test adjusting for potential confounders was performed with a Gaussian-
linked generalized linear model (base R glm) as described previously [30]. The association between
any two binary variables was tested with a two-sided Fisher’s exact test (base R fisher.test) reporting
odds ratio (OR) estimates. Similarly, generalized linear models were used for follow-up analyses
adjusting for potential confounders, except that the binomial link was used and the adjusted OR
estimates were obtained by exponentiating the model coefficients, as described previously [17.2430}
Visualizations for statistical graphics were implemented in ggplot2 v3.5.2 [31].

3. Results

3.1. SREBF1 methylation stratifies GBM tumors

To identify the GBM subsets driven by SREBF1 methylation, the Recursively Partitioned Mixture
Model'" was applied to the DNA 5mC methylation landscape of SREBF1 in TCGA (n=153) [3,32] and
DKFZ (n=157) [5], one cohort at a time. Figure 1 shows the cohort-specific heat maps displaying 5mC
levels (beta-values, representing the proportion of methylated alleles in a bulk sample). This
clustering analysis placed each tumor in Cluster L or R (indicated by the innermost vertical tracking
bars in Figure 1 heat maps) based on the SREBF1 methylation patterning. The terminal solution of
clustering with sub-clusters is shown in Figure S1.

Table 1 summarizes the clinical characteristics of the identified SREBF1 clusters. Patient age and
sex were similar across the clusters. Tumor subtypes according to MGMT promoter methylation, a
known correlate to IDH mutation and CIMP relevant in brain tumors, as well as an established
biomarker for GBM prognosis [2-5], did not show a clear association with cluster membership (Table
1). Tumor purity, inferred from genome-wide methylation using a brain tumor-specific algorithm,
was also similar by cluster (Figure S2A).
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DKFZ (n=157)
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Figure 1. GBM tumor stratification based on SREBF1 methylation for TCGA and DKFZ cohorts. Heat maps show

tumor strata identified by the unsupervised Recursively Partitioned Mixture Model. Rows represent GBM
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samples ordered by clustering solutions. Columns represent CpG probes ordered by genomic position in the
direction of SREBF1 gene transcription. Heat color represents 5mC methylation beta-value, the proportion of
methylated alleles in a bulk sample, where 0=unmethylated and 1=methylated.

Table 1. Clinical characteristics across the SREBF1 methylation clusters in TCGA and DKFZ cohorts. P-values

were calculated by a two-sided Welch’s t-test and Fisher’s exact test for any continuous and discrete variables,

respectively.
SREBF1 Cluster
L R P-value
TCGA
n (%) 61 (39.87) 92 (60.13) -
Age (mean (s.d.) 57.07 (12.48) 61.01 (12.76) 0.062
Sex (%)
Male 41 (67.2) 47 (52.2) 0.096
Female 20 (32.8) 43 (47.8)
MGMT subtype (%)
Unmethylated 34 (55.7) 54 (58.7) 0.85
Methylated 27 (44.3) 38 (41.3)
DKFZ
n (%) 109 (69.43) 48 (30.57) -
Age (mean (s.d.)) 63.06 (10.91) 59.64 (13.35) 0.094
Sex (%)
Male 64 (58.7) 20 (41.7) 0.072
Female 45 (41.3) 28 (58.3)
MGMT subtype (%)
Unmethylated 50 (45.9) 29 (60.4) 0.13
Methylated 59 (54.1) 19 (39.6)

3.2. Cancer stemness delineates SREBF1 methylation clusters

Since FAS is implicated in increased stem cell-like properties of GBM tumor cells [1,2], the
relationship between tumor stemness and SREBF1 methylation was investigated next. The level of
cancer stemness was measured as mDNAsi, a stemness metric inferred from a panel of DNA
methylation biomarkers [7]. Cluster R scored significantly higher in mDNAsi by 5.7-17.2% (both
cohorts” Welch's f-test P < 0.01; Figure 2A). Adjusting for the potential confounders, the observed
difference remained consistent (both cohorts’ P < 0.01; Table S1A).

Epigenetic landscapes reflect biological aging processes, including cellular differentiation
potential [20,22]. Younger epigenetic age is linked to more aggressive cancers with poorly
differentiated features [20]. Here, Cluster R cases showed significantly younger epigenetic age by 10-
14 years (both cohorts” P < 0.05; Figure 2B). The covariate-adjusted difference in epigenetic age
remained significant (both cohorts” P < 0.05; Table S1B).

Elevated stemness is seen in cancers with rich and complex tumor microenvironments [4,7]. To
investigate whether this would be the case in the SREBF1 clusters, cell-type proportions were inferred
using a novel methylation-based, brain tumor-specific deconvolution method [23]. The inferred
infiltrating immune cell types were generally low and similar across the clusters (Figure S2B).
However, Cluster R had a 4-5% higher proportion of neuronal and stromal cell types within the GBM

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.0713.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2025 d0i:10.20944/preprints202509.0713.v1

6 of 13

tumor microenvironment (both cohorts’” Welch's t-test P < 0.01; Figure 2C). Controlling for the
potential confounders did not alter the observed relationship (both cohorts’ P < 0.05; Table S1C).

(A) (B)
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Figure 2. Elevated cancer stemness measures in SREBF1 Cluster R. (A) Methylation-based cancer stemness index,
mDNAsi. (B) Epigenetic age by the Horvath method. Chronological age is included as a comparison. (C)
Proportion of neuronal-stromal cell types. Related to Table S1A-C. n.s. not significant, *P <0.05, **P < 0.01, ***P
<0.001, two-sided Welch's t-test.

3.3. SREBF1 methylation clusters display distinct genome-wide epigenetic landscapes at the
global-summary and single-nucleotide resolution

Epigenetic landscapes contribute to the establishment and maintenance of cell identity by
regulating the genes involved in determining cell fate [10]. Given the mounting evidence of
differential stemness between SREBF1 methylation clusters, the genome-wide epigenetic landscapes
were investigated next. First, the most variable 47,224 CpGs were summarized into a single data point
on a two-dimensional feature space with PCA. Each tumor was then assigned to group “A” (above)
or “B” (below) an unbiased linear boundary, PC: = PC2[21,24,25] (Figure 3A). The PCA-based group
assignment and SREBF1 cluster membership were strongly and significantly related (both cohorts’
OR > 7 and Fisher’s exact P < 5e-8; Figure 3A). This association remained strong and significant after
adjusting for the potential confounders (both cohorts” adjusted OR > 9 and P < 5e-7; Table S1D).

The finding in global epigenetics led to the hypothesis that each SREBFI cluster would be
undergoing distinct biological processes. To test this, individual differentially methylated CpGs were
first identified from the 47,224-CpG background adjusting for age, sex, and MGMT subtypes [*30L.
Nearly all significant CpGs (all Bonferroni P < 0.05) were hypo-methylated in Cluster R (Figure 3B
and Table S2A-B). GO and KEGG enrichment analyses were then applied to the genes associated with
the hypomethylated CpGs consistently detected in both cohorts. Table 2 lists the significant terms (all
Bonferroni P < 0.05), which were predominantly neuron-specific biological processes, cellular
components, molecular functions, and pathways, linked to the hypo-methylated gene sets in Cluster
R.
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Figure 3. Genome-wide epigenetic landscapes of SREBF1 methylation clusters. (A) Topmost principal
components based on 47,224 most variable gene-associated CpGs shared across the cohorts. Groups A and B
were defined based on linear decision boundary PC: = PCi. Related to Table S1D. (B) Volcano plot showing
differentially methylated CpGs relative to the background set in gray. All non-gray points are CpGs with
Bonferroni P < 0.05 or raw P < 1.06e-6. Related to Table S2.

Table 2. Significant Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms
associated with hypo-methylated genes detected in both TCGA and DKFZ cohorts.

Term Enrichment Bonferroni
Term Description Total  Observed Expected Raw P
Identifier Ratio P
GO Biological Processes

Regulation of neuron
G0:0010975 313 56 24.4 2.30  2.10E-09 1.76E-06
projection development

GO:0007409 Axonogenesis 330 52 25.7 2.02  5.81E-07 4.88E-04

Positive regulation of cell
GO:0031346 238 40 18.5 216  2.38E-06 2.00E-03
projection organization

Negative regulation of

GO:0031345 cell projection 127 26 9.9 2.63  3.85E-06 3.23E-03
organization
GO:0050808 Synapse organization 332 49 25.8 1.90 8.28E-06 6.95E-03

Regulation of nervous
GO:0051960 324 48 252 190  9.25E-06 7.76E-03
system development

GO:0016358 Dendrite development 162 29 12.6 230 1.73E-05 1.45E-02

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Developmental growth
GO:0060560 involved in 180 31 14.0 221  1.99E-05 1.67E-02
morphogenesis
Neuron projection
GO:0106027 59 15 4.6 3.27  3.13E-05 2.63E-02
organization
GO Molecular Functions
Nucleoside-
GO:0060589 triphosphatase regulator 282 46 22.7 2.03  2.39E-06 6.63E-04
activity
GO:0015631 Tubulin binding 215 36 17.3 2.08 1.70E-05 4.70E-03
GO:0048156 tau protein binding 26 10 2.1 478  1.73E-05 4.78E-03
GO Cellular Components
Neuron to neuron
GO:0098984 238 40 20.2 198  1.69E-05 3.20E-03
synapse
Postsynaptic
GO0:0099572 223 38 18.9 2.01  2.00E-05 3.79E-03
specialization
GO:0098978 Glutamatergic synapse 280 44 23.8 1.85  3.60E-05 6.81E-03
KEGG Pathways
Thyroid hormone
hsa04919 81 19 6.3 3.02  9.11E-06 3.14E-03
signaling pathway
hsa04360 Axon guidance 139 26 10.8 240  1.82E-05 6.28E-03
hsa04725 Cholinergic synapse 87 18 6.8 2.66  9.40E-05 0.032

3.4. SREBF1 methylation may be a biomarker for patient survival

Figure 4 shows the univariate Kaplan-Meier analysis of 5-year overall survival with respect to
the SREBF1 clusters. Cluster R exhibited reduced median overall survival, although the reduction
was statistically significant only in TCGA (log-rank P <0.01). The Kaplan-Meier curves also suggested
that the DKFZ survival data might be noisy. Table 3 lists the findings of the multivariate Cox
proportional hazards regression. Adjusting for age, sex, and MGMT subtype, Cluster R cases were at
a greater risk of death in both TCGA (HR =1.7, 95% CI = 1.1-2.6) and DKFZ (HR = 1.3, 95% CI = 0.8-
1.9).
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Figure 4. Kaplan-Meier plots comparing overall survival over 60 months between the SREBF1 clusters.

Table 3. Cox proportional hazard regression for multivariate adjusted 5-year overall survival. *P < 0.05, ** P <

0.01, *** P <0.001.
HR 95% CI, lower 95% CI, upper P-value

TCGA
Age in years 1.05 1.03 1.07 ***4 76e-7
Sex

Male 1.00 (reference)

Female 0.53 0.33 0.83 **5.98e-3
MGMT subtype

Unmethylated 1.00 (reference)

Methylated 0.86 0.56 1.30 0.46
Cluster

L 1.00 (reference)

R 1.69 1.11 2.57 *0.015
DKFZ
Age in years 1.03 1.01 1.05 **1.86e-3
Sex

Male 1.00 (reference)

Female 1.13 0.76 1.67 0.54
MGMT subtype

Unmethylated 1.00 (reference)

Methylated 0.48 0.32 0.72 ***4 57e-4
Cluster

L 1.00 (reference)

R 1.25 0.81 1.92 0.31
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4. Discussion

FAS is an emerging therapeutic area of research in the aggressive GBM tumor context. While the
principal regulator of FAS, SREBF1, has been targeted experimentally, the understanding of the
epigenetic mechanisms of SREBFI remains limited. This study investigates the biological and clinical
value of SREBF1 5mC DNA methylation, the most well-studied epigenetic modification, offering
evidence to support further investment into researching epigenetic modification of the FAS
machinery. Importantly, the analyses of this study address the known confounders age and sex, as
well as the MGMT subtype relevant in brain tumors.

The Recursively Partitioned Mixture Model applied to the 5mC methylation landscape of
SREBF1 revealed two predominant clusters in the GBM cohorts. One cluster showed significantly
higher stemness, a characteristic involving increased proliferative capacity, cellular heterogeneity,
and aggressive cancers [7]. Supporting this observation, a younger epigenetic age, indicative of
greater cellular differentiation potential [22], coincided with elevated stemness. These findings are in
line with an earlier study reporting the link between lipid metabolism alteration, which delineated
stem cells from non-stem cells in GBM [6].

Epigenetic landscapes help establish and maintain cell identity by modulating cellular
differentiation programs [10]. This concept motivated an interrogation of the genome-wide
epigenetic landscapes in relation to the SREBFI clusters. At the global-summary level, epigenetic
landscapes were strongly and significantly associated with SREBF1 cluster membership. At the
single-nucleotide resolution, a substantial number of hypo-methylated CpGs were detected in the
stemness-high cluster, hinting at fundamentally distinct molecular programs underlying the tumor
clusters.

Tumor microenvironments are typically more complex in brain tumors of higher grades and
poorer differentiation status [4]. The results here showed the high-stemness cluster exhibited
increased proportions of neuronal and stromal cell types, consistent with existing knowledge.
Biological processes and pathways, as well as molecular functions and cellular components, were
linked to the consistently hypo-methylated genes. Since hypo-methylation is generally linked to
increased expression [17], this finding implies that the neuron-specific genes might be overexpressed
in the more stem cell-like GBM, which in turn, could harbor more complex tumor microenvironments
consisting of heterogeneous neuronal cell types.

This study has limitations and observations that it cannot fully explain. First, the differences
across the SREBFI clusters appeared rather modest in the absence of a systematic clustering
algorithm. This study overcame this by leveraging population-scale sample sizes and applying the
Recursively Partitioned Mixture Model most well-suited to the beta-distributed 5mC data. It is
important to note that the clustering solution here might be challenging to replicate in less-
empowered cohorts and susceptible to unstable output due to sample-size variations. Similarly,
while the difference in tumor microenvironment composition was statistically significant in the two
independent cohorts, whether the magnitude was biologically or clinically relevant remained
unclear.

Second, prior research suggested that elevated heterogeneity in GBM tumors includes
contributions from infiltrating immune cells [7]. Immune-related processes also play a key role in
human tissues involved in lipid metabolism and storage [14,24], and epigenetics-based immune
repertoire is closely linked to metabolism-related phenotypes [19]. Here, immune cell-type
proportions showed few differences between the SREBF1 clusters despite varying neuronal-stromal
composition detected. This discrepancy from the literature could be due to technical artifacts in the
tumor deconvolution procedure, as evidenced by the heavily zero-inflated output of the inference
algorithm. Currently, deconvolution methodologies in non-blood tissue, let alone in brain tumors,
are still in their infancy. Developing robust deconvolution approaches should remain an ongoing
research focus.

Although the potential confounders important in GBM were addressed, the findings here might
be weakened by unmeasured and unknown confounders. Since metabolism was being investigated,
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body mass index and prior obesity diagnosis are examples that could affect the observed associations
[24]. Similarly, chemotherapy and radiation treatment, which could impact epigenetic landscapes
and survival outcomes, should also be considered in future studies, ideally through a prospective
design with complete data collection on survival and treatment [17,21].

Another intriguing future direction is the landscape 5-hydroxymethylation (5hmC), the
epigenetic modification downstream of 5mC and occasionally referred to as “de-methylation”, of the
FAS machinery. Notably, 5ShmC is preferentially enriched in the brain compared to other tissue types,
and 5hmC exhibits pronounced alterations in brain tumors and subtype-driven heterogeneity [33].
Interrogating the relationship between FAS and 5hmC, a lesser-studied epigenetic mark, will help
elucidate the bio-molecular process while identifying new opportunities for novel brain tumor
therapeutics.

In summary, this study demonstrated consistent stratification of GBM tumors based on 5mC
DNA methylation of SREBF1, a principal regulator of FAS. The SREBF1 methylation-based GBM
stratification is characterized by varying levels of cancer stemness, tumor microenvironment
composition, and genome-wide epigenetic landscapes at global and nucleotide resolution. The
findings from this study support the potential clinical utility of SREBF1 methylation and warrant
ongoing research in the epigenetics of FAS machinery.
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