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Abstract  

Altered lipid metabolism is an emerging hallmark of cancer. In glioblastoma, sufficient lipids are key 

to driving rapid cancer proliferation. SREBF1, a regulator of fatty acid synthesis, recently gained 

therapeutic interest. SREBF1 methylation is implicated in metabolic diseases with currently unknown 

effects in cancer, including glioblastoma. This study characterizes SREBF1 methylation in two 

independent, population-scale glioblastoma cohorts. Unsupervised clustering of SREBF1 

methylation sites reveals two predominant clusters with contrasting levels of cancer stemness (P < 

0.01). The high-stemness cluster is younger in epigenetic age (P < 0.05) and higher in the neuronal-

stromal composition (P < 0.05). Independent of age, sex, and MGMT subtype, the genome-wide 

epigenetic landscapes of the clusters were distinct at the global (P < 5e-8) and single-nucleotide 

resolution (all Bonferroni P < 0.05). Genes involved in neuronal specification and organization were 

hypo-methylated in the high-stemness cluster (all Bonferroni P < 0.05), which also showed worse 

overall survival (hazard ratios ≥ 1.25). Taken together, this study offered novel insights into SREBF1 

methylation, warranting future research into the epigenetics of the lipid metabolism machinery. 
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1. Introduction 

Lipids are macromolecules critical for the normal functioning of human tissue. In brain tissue, 

lipids account for more than half of the dry weight of the human brain. The building blocks of lipids—

fatty acids—participate in multiple processes of brain tissue1. While the role of lipid metabolism in 

normal brain function and neurological disease is well-known, emerging evidence suggests that 

altered lipid metabolism, including fatty acid synthesis (FAS), may contribute to carcinogenesis in 

the brain1,2. 

Glioblastoma (GBM), also known as the World Health Organization grade IV glioma, is the most 

common and deadly form of brain cancer [1–5]. Most GBM patients receive maximum surgical 

removal of the tumor with concurrent radiation and temozolomide-based chemotherapy, both of 

which are invasive treatments with severe side effects [2,4]. Despite rigorous therapeutics, the 

prognosis of GBM is dismal. The median survival of GBM is slightly over a year, and fewer than 1 in 

10 patients would survive 5 years post-diagnosis [2,6]. 

GBM hosts a substantial amount of cancer stem cells with self-renewing and proliferative 

ability4. Stemness, a phenomenon involving loss of the differentiated cellular features, makes a cell 

resemble its stem-cell progenitor [7]. In cancer, such de-differentiated cells tend to be more 

aggressive, exhibiting a greater potential for proliferation and invasion of other tissues [7]. Stem cells 

are defined by their ability to give rise to other cell types through the process of differentiation. 

Consequently, higher stemness in tumors introduces a more diverse reservoir of cell types, 
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contributing to elevated heterogeneity, which makes the disease harder to treat [4,6,7]. The progenitor 

capability of GBM stem cells also enables the persistence of the treatment-resistant cells [4]. Clinically, 

stemness facilitates cancer progression and manifests in worse prognosis as well as therapeutic 

resistance, evidenced by most metastatic tumors displaying a de-differentiated state [7]. 

Emerging evidence links FAS to brain tumor onset and progression [1]. In GBM, a substantial 

amount of lipid is required to fuel the growth and proliferation of tumor cells [2,6]. Recent evidence 

has pointed to altered FAS machinery as a candidate driver of GBM stemness. Experiments with a 

high-fat diet promoted proliferative and anti-apoptotic properties in brain tumor stem cells, while 

RNA interference targeting of FAS machinery repressed stem-cell features in GBM1. Metabolomic 

profiling revealed that lipid metabolism levels could distinguish GBM stem and non-stem cell 

populations6. Targeting FAS has since been proposed as a therapeutic strategy [1,2]. Potential 

therapeutic targets include fatty acid synthase, a FAS workhorse, as well as sterol regulatory element 

binding protein 1 (SREBF1), a major FAS regulator [1,2,6]. 

DNA methylation, the addition of a methyl group to the DNA cytosine base position 5 (5 mC) 

in the cytosine-phosphate-guanine (CpG) dinucleotide context, plays a crucial role in regulating gene 

expression and many biological processes, including cellular differentiation and cell-identity 

maintenance [8–10]. The 5mC landscape at the SREBF1 gene has been implicated in lipid metabolism 

alterations in diseases [11]. In type-2 diabetes, SREBF1 methylation is linked to insulin-resistance risk, 

thus permitting clinically relevant patient stratification [12]. However, the understanding of SREBF1 

methylation in cancer remains limited. In GBM specifically, the role of SREBF1 methylation has not 

been reported. Given the role of FAS in brain carcinogenesis and the regulatory effect of SREBF1 in 

FAS, the epigenetics of SREBF1 deserves in-depth investigation. 

The goal of this study is to investigate the biological and prognostic relevance of SREBF1 

methylation in GBM tumors. In two independent, population-scale cohorts, SREBF1 methylation 

helps identify a GBM cluster exhibiting significantly higher cancer stemness and younger epigenetic 

age. The study subsequently reveals a link between SREBF1 methylation and genome-wide 

epigenetic landscapes at both global and single-nucleotide resolution. The more stem-cell-like cluster 

is enriched for distinct biological pathways and shows worse survival. All together, this study 

warrants further research into the biological and translational effects driven by the epigenetics of FAS 

machinery. 

2. Materials and Methods 

Study cohorts and samples. This study leveraged two independent, population-scale GBM 

cohorts with publicly available Illumina’s Infinium HumanMethylation450 BeadChip (450K) and 

relevant clinical profiles with survival data: n=153 The Cancer Genome Atlas (TCGA) [3] and n=157 

Deutsches Krebsforschungszentrum (DKFZ), excluding n=24 non-GBM [5]. The 5mC data for all cohorts 

were available as matrices of beta-values, which represent the proportion of methylated alleles in a 

bulk sample and follow a bimodal beta-distribution bound between 0 (unmethylated) and 1 

(methylated) [8,9]. 

MGMT subtype estimation. MGMT promoter methylation status is a well-established 

prognostic biomarker and a known correlate to isocitrate dehydrogenase (IDH) mutation and the 

CpG island methylator phenotype (CIMP) in brain tumors [2–5]. Here, MGMT subtypes were 

determined by the mgmtstp27 machine-learning algorithm (R package v0.8). The input was the 5mC 

M-values of CpG probes cg12434587 and cg12981137 [13] obtained by logit transformation of their 

beta-values [8]. 

Biological sex inference for DKFZ. Sex can be reliably determined from the median intensities 

of sex-chromosome probes of methylation arrays [8]. Here, the biological sex of the DKFZ samples, 

which were not available in the public data accession, was determined by applying the minfi 

(R/Bioconductor packagev1.46.0) [8] procedures to the intensity data files. 

Additional filtering of 5mC DNA methylation data. CpGs tracking to sex chromosomes and 

annotated as non-specific or cross-reactive (curated list available at 
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https://github.com/sirselim/illumina450k_filtering) [14] were excluded. The CpGs located within 

SREBF1 and MGMT were also excluded. After filtering, 361,281 CpGs shared between the TCGA and 

DKFZ cohorts were kept for downstream analyses. Missing values in 5mC were imputed by 

R/Bioconductor impute v1.74.1 function impute.knn with default k=10. 

SREBF1 methylation-based cohort stratification. Of the 42 SREBF1 CpG probes on the 450K 

array, 38 (90.5%) were present in the filtered datasets and used for GBM stratification. Each sample 

was assigned a cluster label L or R by applying Recursively Partitioned Mixture Model (R package 

RPMM v1.25 function blcTree), an iterative unsupervised clustering algorithm designed for the beta-

distributed 5mC [15], one cohort at a time. The algorithm also returned a terminal solution with labels 

LL, LR, RL, and RR (Figure S1). Cluster assignment and sample ordering were determined with 

seriation (R package v1.5.7) [16] as previously described [17–19]. Heat maps with tracking bars 

labeling cluster membership and CpG annotation were plotted with pheatmap v1.0.12 as described 

previuosly17–21. 

Cancer stemness scores. Malta et al. [7] developed mDNAsi, a methylation-based cancer 

stemness index using a 219-CpG signature panel. In the filtered cohorts, 212 (96.8%) CpGs were 

available and none were located within SREBF1 or MGMT genes. The raw mDNAsi values of all 

samples within each GBM cohort, m, were calculated as m = wT x, where vectors x and w are the beta-

values and the corresponding signature weights, respectively. The final mDNAsi value in the k-th 

sample (mk’) was calculated by intra-cohort min-max transformation [7]. 

Epigenetic aging. Epigenetic age is an indicator of the biological aging process and cellular 

differentiation potential and can be calculated by the Horvath method using a 353-CpG panel [22]. 

Here, epigenetic age was calculated by applying R/Bioconductor package wateRmelon v2.6.0 function 

agep [9] to the 323 (91.5%) CpGs available, which were not located within SREBF1 or MGMT. 

Deconvolution of tumor microenvironment. MDBrainT (R package v0.1.0) is a novel method 

that dissects the tumor microenvironment using a reference library of 25,913 CpGs from the 450K 

array. The approach is brain tumor-specific and outperforms several existing approaches [23]. In the 

filtered cohorts, 20,347 CpGs (78.5%) were present, excluding cg03641529 located within SREBF1. The 

proportions of tumor cells (i.e. tumor purity), pre-defined immune cells, and pre-defined neuronal-

stromal cells were determined by applying the function TMEdeconvolute with reference annotations 

available as built-in R objects [23]. 

Global epigenetic summaries. A background set of 47,224 CpGs was obtained by keeping only 

the sites with the greatest inter-sample variability in each cohort and excluding sites lacking a known-

gene annotation. Global methylation was then summarized by the topmost dimensions from a 

principal component analysis (PCA), PC1 and PC2 (base R function prcomp). The raw components 

were then standard-normalized within each GBM cohort. The PCA groups, A and B, were assigned 

based on whether a sample was above or below an unbiased decision line, PC1 = PC2, as described in 

published genomics studies [21,24,25]. 

Differential methylation analysis at nucleotide resolution and pathway analysis. The 

aforementioned background set of 47,224 CpGs was subsequently analyzed for differential 

methylation adjusting for age, sex, and MGMT subtypes with limma (R/Bioconductor package 

v3.56.2) as described previously [17–19]: 

�� ~ ��������� + ���� + ���������� + ���ℎ������� 

where Mk is the M-value of j-th CpG in k-th sample. All significant CpGs had a Bonferroni-corrected 

P < 0.05, corresponding to a raw P < 1.06e-6. Volcano plots summarizing differential methylation were 

implemented in ggrepel (R package v0.9.6) as described previously [17–19]. 

The gene set-based Gene Ontology (GO) [26] and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) analyses [27] were implemented in WebGestalt2024 (https://www.webgestalt.org), which 

accepted a target and a background gene set as separate text files [28]. Here, the former was the list 

of 904 genes associated with the 1,182 hypo-methylated CpGs detected in both cohorts, and the latter 
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was the 12,761-gene list associated with the 47,224-CpG background set. The raw P-values of the GO 

and KEGG terms were subject to Bonferroni correction. 

Survival analysis. The overall survival models were implemented in survival (R package v3.5-

5) as described previously [17,20,29]. The time-to-event profiles for overall survival were censored at 

the 5-year mark. Kaplan-Meier curves were drawn with wrapper function ggsurvplot (R package 

survminer v0.4.9). Multivariate Cox proportional hazard regression adjusting for age, sex, and MGMT 

subtypes was also implemented in survival. Hazard ratio (HR) estimates were determined by 

exponentiating the regression coefficients. 

Statistical analyses. All analyses were implemented in R v4.3.1. A continuous variable between 

the SREBF1 clusters was tested in a univariate manner with a two-sided Welch’s t-test (base R 

function t.test). A follow-up test adjusting for potential confounders was performed with a Gaussian-

linked generalized linear model (base R glm) as described previously [30]. The association between 

any two binary variables was tested with a two-sided Fisher’s exact test (base R fisher.test) reporting 

odds ratio (OR) estimates. Similarly, generalized linear models were used for follow-up analyses 

adjusting for potential confounders, except that the binomial link was used and the adjusted OR 

estimates were obtained by exponentiating the model coefficients, as described previously [17,24,30]. 

Visualizations for statistical graphics were implemented in ggplot2 v3.5.2 [31]. 

3. Results 

3.1. SREBF1 methylation stratifies GBM tumors 

To identify the GBM subsets driven by SREBF1 methylation, the Recursively Partitioned Mixture 

Model15 was applied to the DNA 5mC methylation landscape of SREBF1 in TCGA (n=153) [3,32] and 

DKFZ (n=157) [5], one cohort at a time. Figure 1 shows the cohort-specific heat maps displaying 5mC 

levels (beta-values, representing the proportion of methylated alleles in a bulk sample). This 

clustering analysis placed each tumor in Cluster L or R (indicated by the innermost vertical tracking 

bars in Figure 1 heat maps) based on the SREBF1 methylation patterning. The terminal solution of 

clustering with sub-clusters is shown in Figure S1. 

Table 1 summarizes the clinical characteristics of the identified SREBF1 clusters. Patient age and 

sex were similar across the clusters. Tumor subtypes according to MGMT promoter methylation, a 

known correlate to IDH mutation and CIMP relevant in brain tumors, as well as an established 

biomarker for GBM prognosis [2–5], did not show a clear association with cluster membership (Table 

1). Tumor purity, inferred from genome-wide methylation using a brain tumor-specific algorithm, 

was also similar by cluster (Figure S2A). 

 

Figure 1. GBM tumor stratification based on SREBF1 methylation for TCGA and DKFZ cohorts. Heat maps show 

tumor strata identified by the unsupervised Recursively Partitioned Mixture Model. Rows represent GBM 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 September 2025 doi:10.20944/preprints202509.0713.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.0713.v1
http://creativecommons.org/licenses/by/4.0/


 5 of 13 

 

samples ordered by clustering solutions. Columns represent CpG probes ordered by genomic position in the 

direction of SREBF1 gene transcription. Heat color represents 5mC methylation beta-value, the proportion of 

methylated alleles in a bulk sample, where 0=unmethylated and 1=methylated. 

Table 1. Clinical characteristics across the SREBF1 methylation clusters in TCGA and DKFZ cohorts. P-values 

were calculated by a two-sided Welch’s t-test and Fisher’s exact test for any continuous and discrete variables, 

respectively. 

  SREBF1 Cluster  

  L R P-value 

TCGA       

n (%) 61 (39.87) 92 (60.13) - 

Age (mean (s.d.)) 57.07 (12.48) 61.01 (12.76) 0.062 

Sex (%)    

Male   41 (67.2)    47 (52.2)  0.096 

Female   20 (32.8)    43 (47.8)   

MGMT subtype (%)    

Unmethylated   34 (55.7)    54 (58.7)  0.85 

Methylated   27 (44.3)    38 (41.3)   

DKFZ       

n (%) 109 (69.43) 48 (30.57) - 

Age (mean (s.d.)) 63.06 (10.91) 59.64 (13.35) 0.094 

Sex (%)    

Male   64 (58.7)    20 (41.7)  0.072 

Female   45 (41.3)    28 (58.3)   

MGMT subtype (%)    

Unmethylated   50 (45.9)    29 (60.4)  0.13 

Methylated   59 (54.1)    19 (39.6)    

3.2. Cancer stemness delineates SREBF1 methylation clusters 

Since FAS is implicated in increased stem cell-like properties of GBM tumor cells [1,2], the 

relationship between tumor stemness and SREBF1 methylation was investigated next. The level of 

cancer stemness was measured as mDNAsi, a stemness metric inferred from a panel of DNA 

methylation biomarkers [7]. Cluster R scored significantly higher in mDNAsi by 5.7-17.2% (both 

cohorts’ Welch’s t-test P < 0.01; Figure 2A). Adjusting for the potential confounders, the observed 

difference remained consistent (both cohorts’ P < 0.01; Table S1A). 

Epigenetic landscapes reflect biological aging processes, including cellular differentiation 

potential [20,22]. Younger epigenetic age is linked to more aggressive cancers with poorly 

differentiated features [20]. Here, Cluster R cases showed significantly younger epigenetic age by 10-

14 years (both cohorts’ P < 0.05; Figure 2B). The covariate-adjusted difference in epigenetic age 

remained significant (both cohorts’ P < 0.05; Table S1B). 

Elevated stemness is seen in cancers with rich and complex tumor microenvironments [4,7]. To 

investigate whether this would be the case in the SREBF1 clusters, cell-type proportions were inferred 

using a novel methylation-based, brain tumor-specific deconvolution method [23]. The inferred 

infiltrating immune cell types were generally low and similar across the clusters (Figure S2B). 

However, Cluster R had a 4-5% higher proportion of neuronal and stromal cell types within the GBM 
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tumor microenvironment (both cohorts’ Welch’s t-test P < 0.01; Figure 2C). Controlling for the 

potential confounders did not alter the observed relationship (both cohorts’ P < 0.05; Table S1C). 

 

Figure 2. Elevated cancer stemness measures in SREBF1 Cluster R. (A) Methylation-based cancer stemness index, 

mDNAsi. (B) Epigenetic age by the Horvath method. Chronological age is included as a comparison. (C) 

Proportion of neuronal-stromal cell types. Related to Table S1A-C. n.s. not significant, *P < 0.05, **P < 0.01, ***P 

< 0.001, two-sided Welch’s t-test. 

3.3. SREBF1 methylation clusters display distinct genome-wide epigenetic landscapes at the 

global-summary and single-nucleotide resolution 

Epigenetic landscapes contribute to the establishment and maintenance of cell identity by 

regulating the genes involved in determining cell fate [10]. Given the mounting evidence of 

differential stemness between SREBF1 methylation clusters, the genome-wide epigenetic landscapes 

were investigated next. First, the most variable 47,224 CpGs were summarized into a single data point 

on a two-dimensional feature space with PCA. Each tumor was then assigned to group “A” (above) 

or “B” (below) an unbiased linear boundary, PC1 = PC2 [21,24,25] (Figure 3A). The PCA-based group 

assignment and SREBF1 cluster membership were strongly and significantly related (both cohorts’ 

OR > 7 and Fisher’s exact P < 5e-8; Figure 3A). This association remained strong and significant after 

adjusting for the potential confounders (both cohorts’ adjusted OR > 9 and P < 5e-7; Table S1D). 

The finding in global epigenetics led to the hypothesis that each SREBF1 cluster would be 

undergoing distinct biological processes. To test this, individual differentially methylated CpGs were 

first identified from the 47,224-CpG background adjusting for age, sex, and MGMT subtypes [29,30]. 

Nearly all significant CpGs (all Bonferroni P < 0.05) were hypo-methylated in Cluster R (Figure 3B 

and Table S2A-B). GO and KEGG enrichment analyses were then applied to the genes associated with 

the hypomethylated CpGs consistently detected in both cohorts. Table 2 lists the significant terms (all 

Bonferroni P < 0.05), which were predominantly neuron-specific biological processes, cellular 

components, molecular functions, and pathways, linked to the hypo-methylated gene sets in Cluster 

R. 
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Figure 3. Genome-wide epigenetic landscapes of SREBF1 methylation clusters. (A) Topmost principal 

components based on 47,224 most variable gene-associated CpGs shared across the cohorts. Groups A and B 

were defined based on linear decision boundary PC2 = PC1. Related to Table S1D. (B) Volcano plot showing 

differentially methylated CpGs relative to the background set in gray. All non-gray points are CpGs with 

Bonferroni P < 0.05 or raw P < 1.06e-6. Related to Table S2. 

Table 2. Significant Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms 

associated with hypo-methylated genes detected in both TCGA and DKFZ cohorts. 

Term 

Identifier 
Term Description Total Observed Expected 

Enrichment 

Ratio 
Raw P 

Bonferroni 

P 

GO Biological Processes       

GO:0010975 
Regulation of neuron 

projection development 
313 56 24.4 2.30 2.10E-09 1.76E-06 

GO:0007409 Axonogenesis 330 52 25.7 2.02 5.81E-07 4.88E-04 

GO:0031346 
Positive regulation of cell 

projection organization 
238 40 18.5 2.16 2.38E-06 2.00E-03 

GO:0031345 

Negative regulation of 

cell projection 

organization 

127 26 9.9 2.63 3.85E-06 3.23E-03 

GO:0050808 Synapse organization 332 49 25.8 1.90 8.28E-06 6.95E-03 

GO:0051960 
Regulation of nervous 

system development 
324 48 25.2 1.90 9.25E-06 7.76E-03 

GO:0016358 Dendrite development 162 29 12.6 2.30 1.73E-05 1.45E-02 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 September 2025 doi:10.20944/preprints202509.0713.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.0713.v1
http://creativecommons.org/licenses/by/4.0/


 8 of 13 

 

GO:0060560 

Developmental growth 

involved in 

morphogenesis 

180 31 14.0 2.21 1.99E-05 1.67E-02 

GO:0106027 
Neuron projection 

organization 
59 15 4.6 3.27 3.13E-05 2.63E-02 

GO Molecular Functions       

GO:0060589 

Nucleoside-

triphosphatase regulator 

activity 

282 46 22.7 2.03 2.39E-06 6.63E-04 

GO:0015631 Tubulin binding 215 36 17.3 2.08 1.70E-05 4.70E-03 

GO:0048156 tau protein binding 26 10 2.1 4.78 1.73E-05 4.78E-03 

GO Cellular Components       

GO:0098984 
Neuron to neuron 

synapse 
238 40 20.2 1.98 1.69E-05 3.20E-03 

GO:0099572 
Postsynaptic 

specialization 
223 38 18.9 2.01 2.00E-05 3.79E-03 

GO:0098978 Glutamatergic synapse 280 44 23.8 1.85 3.60E-05 6.81E-03 

KEGG Pathways       

hsa04919 
Thyroid hormone 

signaling pathway 
81 19 6.3 3.02 9.11E-06 3.14E-03 

hsa04360 Axon guidance 139 26 10.8 2.40 1.82E-05 6.28E-03 

hsa04725 Cholinergic synapse 87 18 6.8 2.66 9.40E-05 0.032 

3.4. SREBF1 methylation may be a biomarker for patient survival 

Figure 4 shows the univariate Kaplan-Meier analysis of 5-year overall survival with respect to 

the SREBF1 clusters. Cluster R exhibited reduced median overall survival, although the reduction 

was statistically significant only in TCGA (log-rank P < 0.01). The Kaplan-Meier curves also suggested 

that the DKFZ survival data might be noisy. Table 3 lists the findings of the multivariate Cox 

proportional hazards regression. Adjusting for age, sex, and MGMT subtype, Cluster R cases were at 

a greater risk of death in both TCGA (HR = 1.7, 95% CI = 1.1-2.6) and DKFZ (HR = 1.3, 95% CI = 0.8-

1.9). 
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Figure 4. Kaplan-Meier plots comparing overall survival over 60 months between the SREBF1 clusters. 

Table 3. Cox proportional hazard regression for multivariate adjusted 5-year overall survival. *P < 0.05, ** P < 

0.01, *** P < 0.001. 

 HR 95% CI, lower 95% CI, upper P-value 

TCGA         

Age in years 1.05 1.03 1.07 ***4.76e-7 

Sex     

Male 1.00 (reference)    

Female 0.53 0.33 0.83 **5.98e-3 

MGMT subtype     

Unmethylated 1.00 (reference)    

Methylated 0.86 0.56 1.30 0.46 

Cluster     

L 1.00 (reference)    

R 1.69 1.11 2.57 *0.015 

DKFZ         

Age in years 1.03 1.01 1.05 **1.86e-3 

Sex     

Male 1.00 (reference)    

Female 1.13 0.76 1.67 0.54 

MGMT subtype     

Unmethylated 1.00 (reference)    

Methylated 0.48 0.32 0.72 ***4.57e-4 

Cluster     

L 1.00 (reference)    

R 1.25 0.81 1.92 0.31 
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4. Discussion 

FAS is an emerging therapeutic area of research in the aggressive GBM tumor context. While the 

principal regulator of FAS, SREBF1, has been targeted experimentally, the understanding of the 

epigenetic mechanisms of SREBF1 remains limited. This study investigates the biological and clinical 

value of SREBF1 5mC DNA methylation, the most well-studied epigenetic modification, offering 

evidence to support further investment into researching epigenetic modification of the FAS 

machinery. Importantly, the analyses of this study address the known confounders age and sex, as 

well as the MGMT subtype relevant in brain tumors. 

The Recursively Partitioned Mixture Model applied to the 5mC methylation landscape of 

SREBF1 revealed two predominant clusters in the GBM cohorts. One cluster showed significantly 

higher stemness, a characteristic involving increased proliferative capacity, cellular heterogeneity, 

and aggressive cancers [7]. Supporting this observation, a younger epigenetic age, indicative of 

greater cellular differentiation potential [22], coincided with elevated stemness. These findings are in 

line with an earlier study reporting the link between lipid metabolism alteration, which delineated 

stem cells from non-stem cells in GBM [6]. 

Epigenetic landscapes help establish and maintain cell identity by modulating cellular 

differentiation programs [10]. This concept motivated an interrogation of the genome-wide 

epigenetic landscapes in relation to the SREBF1 clusters. At the global-summary level, epigenetic 

landscapes were strongly and significantly associated with SREBF1 cluster membership. At the 

single-nucleotide resolution, a substantial number of hypo-methylated CpGs were detected in the 

stemness-high cluster, hinting at fundamentally distinct molecular programs underlying the tumor 

clusters. 

Tumor microenvironments are typically more complex in brain tumors of higher grades and 

poorer differentiation status [4]. The results here showed the high-stemness cluster exhibited 

increased proportions of neuronal and stromal cell types, consistent with existing knowledge. 

Biological processes and pathways, as well as molecular functions and cellular components, were 

linked to the consistently hypo-methylated genes. Since hypo-methylation is generally linked to 

increased expression [17], this finding implies that the neuron-specific genes might be overexpressed 

in the more stem cell-like GBM, which in turn, could harbor more complex tumor microenvironments 

consisting of heterogeneous neuronal cell types. 

This study has limitations and observations that it cannot fully explain. First, the differences 

across the SREBF1 clusters appeared rather modest in the absence of a systematic clustering 

algorithm. This study overcame this by leveraging population-scale sample sizes and applying the 

Recursively Partitioned Mixture Model most well-suited to the beta-distributed 5mC data. It is 

important to note that the clustering solution here might be challenging to replicate in less-

empowered cohorts and susceptible to unstable output due to sample-size variations. Similarly, 

while the difference in tumor microenvironment composition was statistically significant in the two 

independent cohorts, whether the magnitude was biologically or clinically relevant remained 

unclear. 

Second, prior research suggested that elevated heterogeneity in GBM tumors includes 

contributions from infiltrating immune cells [7]. Immune-related processes also play a key role in 

human tissues involved in lipid metabolism and storage [14,24], and epigenetics-based immune 

repertoire is closely linked to metabolism-related phenotypes [19]. Here, immune cell-type 

proportions showed few differences between the SREBF1 clusters despite varying neuronal-stromal 

composition detected. This discrepancy from the literature could be due to technical artifacts in the 

tumor deconvolution procedure, as evidenced by the heavily zero-inflated output of the inference 

algorithm. Currently, deconvolution methodologies in non-blood tissue, let alone in brain tumors, 

are still in their infancy. Developing robust deconvolution approaches should remain an ongoing 

research focus. 

Although the potential confounders important in GBM were addressed, the findings here might 

be weakened by unmeasured and unknown confounders. Since metabolism was being investigated, 
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body mass index and prior obesity diagnosis are examples that could affect the observed associations 

[24]. Similarly, chemotherapy and radiation treatment, which could impact epigenetic landscapes 

and survival outcomes, should also be considered in future studies, ideally through a prospective 

design with complete data collection on survival and treatment [17,21]. 

Another intriguing future direction is the landscape 5-hydroxymethylation (5hmC), the 

epigenetic modification downstream of 5mC and occasionally referred to as “de-methylation”, of the 

FAS machinery. Notably, 5hmC is preferentially enriched in the brain compared to other tissue types, 

and 5hmC exhibits pronounced alterations in brain tumors and subtype-driven heterogeneity [33]. 

Interrogating the relationship between FAS and 5hmC, a lesser-studied epigenetic mark, will help 

elucidate the bio-molecular process while identifying new opportunities for novel brain tumor 

therapeutics. 

In summary, this study demonstrated consistent stratification of GBM tumors based on 5mC 

DNA methylation of SREBF1, a principal regulator of FAS. The SREBF1 methylation-based GBM 

stratification is characterized by varying levels of cancer stemness, tumor microenvironment 

composition, and genome-wide epigenetic landscapes at global and nucleotide resolution. The 

findings from this study support the potential clinical utility of SREBF1 methylation and warrant 

ongoing research in the epigenetics of FAS machinery. 
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