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Abstract

This paper presents a heuristic exploration of the Strong Goldbach Conjecture from an optimization
principle perspective. We postulate that the representation of an even number # as a sum of primes
p; is governed by an "additive effort," defined as the sum of the natural logarithms of its prime
components, E = ) In(p;). This metric is mathematically equivalent to minimizing the product of
these primes. An exhaustive computational analysis was performed for all even numbers in the range
4 < n <10,000. Within this range, it was verified that, for n > 8, the Goldbach partition (n = p; + p2)
consistently minimizes this effort function. A unique exception was identified at n = 6, where the
minimum effort is achieved with the partition 2 + 2 + 2. This work does not constitute a formal proof
but offers a conceptual framework and numerical evidence suggesting that the two-prime solution is
not only possible but optimal under this minimization principle for most even numbers.

Keywords: goldbach conjecture; number theory; heuristic optimization; prime numbers; minimum
effort principle

1. Introduction

The Strong Goldbach Conjecture, one of the oldest unsolved problems in number theory, postu-
lates that every even number greater than 2 can be expressed as the sum of two prime numbers [1].
Formally:

Vn € 2N, n > 2 = 3 p,q primes such thatn = p + 4.

Although computationally verified for extremely large numbers, a general proof remains elusive [2].
This work does not aim to provide a proof but rather to explore the conjecture from an alternative
conceptual framework inspired by the principle of least effort, a recurring idea in physics and other
sciences [3]. In particular, we propose a heuristic conjecture asserting that the two-prime solution for
an even number minimizes an "additive effort,” which is equivalent to the product of those primes. We
will computationally validate this hypothesis, paying special attention to its implications and potential
exceptions.

2. Definition of Additive Effort and Conjecture

We propose a function to quantify the "complexity” or "esfuerzo” of an additive representation of
an even number # using prime components.
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Definition (Additive Effort).

Given a representation of an even number 7 as a sum of k primes, n = p; + p2 + - - - + pi, we
define the total additive effort E as the sum of the natural logarithms of these primes:

k
E(Pl/- . .,pk) = ;h‘l(pl)

This definition is inspired by information theory, where the information content of an event with
probability 1/p is associated with In(p) [4].

Basados en esta métrica, formulamos la siguiente conjetura heuristica, revisada para incluir una
excepcioén especifica:

Conjecture (Revised Minimum Additive Effort).

For every even number n > 8, the partition of # into prime summands that minimizes the effort
function E is always a two-summand partition (a Goldbach partition, k = 2). The only exception to
this principle among small even numbers is # = 6, where the minimum effort is achieved with the
three-prime partition, 2 +2 + 2.

3. Theoretical Analysis of the Effort Function

The effort function for a partition of k primes is E(py, ..., px) = In(p1) + - - - + In(py). By proper-
ties of the logarithm, this is equivalent to:

E(pll/pk) :ln(plp2 ..... pk)

Since the natural logarithm is a strictly increasing function, minimizing the effort E is mathematically
identical to minimizing the product of the prime summands, subject to the constraint that their sum
is n.

The Arithmetic Mean-Geometric Mean (AM-GM) inequality states that for k positive numbers [5]:

p1+- -+ pk n /
Tzkpl ..... pk:>%2k1—‘[pl

For k = 2, the product p; - p» reaches its maximum value when the primes p; and p; are as close as
possible to each other (i.e., close to 11/2). Conversely, to minimize the product p; - p» (and thus the
effort E), the primes must be as far apart as possible within the constraints of their sum n. This implies
that, ideally, one of the primes would be the smallest possible (for example, 3, if n — 3 is prime) and
the other, consequently, the largest.

Now, let’s consider why a partition into k = 2 summands (for n > 8) would tend to minimize
the effort E compared to partitions with k > 3 sum-mands. For k > 3, having more summands means
these primes must, on average, be smaller to sum to n. However, the inclusion of the smallest prime,
2, in partitions with k > 3 (like 2+ 2 +2 = 6 or 2+ 3 4+ 5 = 10) can lead to products that, although
involving small primes, may exceed the product of two primes. Let’s analyze some specific examples:

e FPorn=6:

- Partition 3+ 3 (k = 2): Product3-3=9 = E =In(9) ~ 2.197.

- Partition2+2+2 (k = 3): Product2-2-2 =8 = E =In(8) ~ 2.079.

Here, the three-prime partition yields the minimum effort, explaining the exception for n = 6.
e FPorn=28:

- Partition 3+ 5 (k = 2): Product3-5 =15 = E =1In(15) ~ 2.708.
- Partitions like 2+ 3 + 3 (k = 3): Product2-3-3 =18 = E =In(18) ~ 2.890.

In this case, the Goldbach partition (k = 2) indeed minimizes the effort.
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e FPorn=10:
- Partition3+7 (k = 2): Product 3-7 =21 = E =1In(21) ~ 3.045.
- Partitions like 2+ 3 + 5 (k = 3): Producto2-3-5 =30 = E = In(30) ~ 3.401.

Similarmente, la particién de Goldbach (k = 2) es la éptima.

These examples illustrate that, while increasing k tends to involve smaller individual primes, the
multiplicative effect of having more factors usually makes the total product (and thus the effort) greater
for k > 3 when n > 8. This is because for n > 8, the necessity of using smaller primes to form sums
with k > 3 (including 2) does not always compensate for the increased number of terms in the product.

4. Experimental Analysis

To validate our heuristic conjecture, an exhaustive computational analysis was performed for
all even numbers from n = 6 up to n = 10,000. For each n, a list of prime numbers up to n was
generated (e.g., using the Sieve of Eratosthenes [6,7]). Subsequently, all possible additive partitions
of 11 into prime summands, without restriction on the number of summands (k), were identified. To
generate these partitions, a dynamic programming or backtracking algorithm was utilized to explore all
combinations of primes summing to n. The algorithm employed generated all prime compositions
using memoization to optimize the process. For each found partition, its additive effort E was
calculated, and the one with the minimum value was selected.

The results confirmed the revised conjecture. For n = 6, the partition of 2 4+ 2 4 2 was, as predicted,
the one that minimized the effort. However, for all even numbers in the range 8 < n < 10,000, the
minimum effort partition was consistently a Goldbach partition (two primes). Below, a table presents
a selection of representative results illustrating this pattern.

Table 1. Minimum effort partitions for a selection of even numbers. For n = 6, the minimum effort requires three
primes; for n > 8, the minimum is achieved with two primes.

Number (n) | Minimum Effort Partition | Effort E = In(J]p;)
6 24242 In(8) ~ 2.079
8 3+5 In(15) ~ 2.708
10 3+7 In(21) ~ 3.045
20 3417 In(51) ~ 3.932
30 7+23 In(161) ~ 5.081
50 3+ 47 In(141) ~ 4.949
100 3497 In(291) ~ 5.673
500 13 + 487 In(6331) ~ 8.753
1000 3+997 In(2991) ~ 8.003
5000 7 + 4993 In(34951) ~ 10.462
10000 59 + 9941 In(586519) ~ 13.282

These results validate the prediction theoretical: the minimum effort partition tends to be formed
with one of the smallest available primes (especially 3 or 5), with Goldbach partitions being optimal
for n > 8. This pattern confirms the hypothesis that the minimum product is achieved with extreme
primes within the partition.

5. Conclusions

This work presented a conceptual framework to interpret the Strong Goldbach Conjecture through
a principle of minimum effort. We formalized this idea using an effort function based on logarithms,
equivalent to minimizing the product of prime summands. The numerical evidence up to n = 10,000
strongly supports the hypothesis that, for every even number n > 8, the two-prime partition is not
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only always possible (as Goldbach postulates) but also optimal under this metric. The only exception
to this rule was found at n = 6, where the partition 2 4 2 + 2 has a lower effort than 3 + 3.

This observation suggests that the nature of even numbers’ composition into primes might follow a
principle of efficiency or simplicity, where two-summand solutions are ‘preferred’ by the mathematical
system by requiring the ‘least product’ or 'least effort’ for n > 8. This natural optimization reflects
patterns of mathematical efficiency analogous to physical principles like the principle of least action
[8].

While this approach does not constitute a formal proof, it offers a natural and consistent justifica-
tion for the additive structure of even numbers and a new perspective on the Goldbach Conjecture. Fu-
ture research directions could explore the analytical properties of the function f(n) = miny;=n(p - q)
and its asymptotic growth, which might reveal new connections between prime number distribution
and this optimization principle [9]. It would also be valuable to investigate whether this minimum
effort principle manifests in other additive properties of numbers (such as the twin prime conjec-
ture, although it’s multiplicative, or the weak Goldbach conjecture), or if there exists a multiplicative
analogue for the sum of logarithms of factors.
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