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Simple Summary: Bladder cancer (BC) development is highly related to immune cell infiltration 9 

and inflammation. This study aimed to construct a new classification of bladder cancer (BC) 10 
molecular subtypes based on immune cells-associated CpG sites. The classification was accurate 11 
and stable. BC patients could be divided into three subtypes based on the immune cells-associated 12 
CpG sites. The distribution of immune cells, level expression of checkpoints, stromal score, immune 13 
score, ESTIMATEScore, tumor purity, APC_co_inhibition, APC_co_stimulation, HLA, 14 
MHC_class_I, Type_I_IFN_Reponse, and Type_II_IFN_Reponse were significant difference among 15 
three subgroups. The distribution of genomic alterations was different among them.  High level 16 
immune infiltration was a correlation with high level methylation. The lower RNAss score was 17 
associated with higher immune infiltration and higher level expression of CD274. 18 

Abstract: Background: Bladder cancer (BC) development is highly related to immune cell 19 

infiltration and inflammation. This study aimed to construct a new classification of bladder cancer 20 
(BC) molecular subtypes based on immune cells-associated CpG sites. Methods: The genes of 28 21 
types of immune cells were obtained from previous studies. Then methylation sites corresponding 22 
to immune cells-associated genes were acquired. Differentially methylation sites (DMSs) were 23 
identified between normal samples and bladder cancer samples. Unsupervised clustering analysis 24 
of differentially methylation sites was performed to divide into several subtypes. Then the potential 25 
mechanism of different subtypes was exploded. Result: Bladder cancer patients were divided into 26 
three groups. Cluster 3 (methylation-L) subtype had the best prognosis. Cluster 1 (methylation-M) 27 
had the worst prognosis. The distribution of immune cells, level expression of checkpoints, stromal 28 
score, immune score, ESTIMATEScore, tumor purity, APC_co_inhibition, APC_co_stimulation, 29 
HLA, MHC_class_I, Type_I_IFN_Reponse, and Type_II_IFN_Reponse were significant difference 30 
among three subgroups. The distribution of genomic alterations was different among them. 31 
Conclusion: The classification was accurate and stable. BC patients could be divided into three 32 
subtypes based on the immune cells-associated CpG sites. Specific biological signaling pathways, 33 
immune mechanisms, and genomic alterations were various among three subgroups. High level 34 
immune infiltration was a correlation with high level methylation. The lower RNAss score was 35 
associated with higher immune infiltration and higher level expression of CD274. 36 

Keywords: Immune cell; DNA CpGs; Bladder cancer; Subtype; mutation; CNV; Immune score; 37 

Immune Checkpoints 38 

 39 

1. Introduction 40 

Recently, diverse immunotherapy has been proven to successfully treat numerous lethal 41 
cancers[1]. These included cytokine treatment, cellular therapy, immune checkpoint blockade, and 42 
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therapeutic vaccines[2]. Immune checkpoint inhibitors have shown remarkable anti-tumor function 43 
in several human cancers, including programmed cell death protein 1 (PD‐1), cytotoxic T lymphocyte 44 
antigen‐4 (CTLA‐4), and PD‐1 ligand (PD‐L1) antibodies[3-5]. FDA approved two cytokines as anti-45 
tumor agents against kidney malignancy and metastatic melanoma[6]. Preventive and therapeutic 46 
vaccines have a significant anti-tumor function in several cancers, such as hepatitis B virus 47 
vaccines[7], Sipuleucel‐T, human papillomavirus[8], and GVAX vaccine against prostate cancer[9, 48 
10]. However, there is heterogeneity in response rates, and not all immunotherapy is successful in 49 
treating patients[11]. 50 

BC development is highly related to immune cell infiltration and inflammation. A previous 51 
study also revealed the interaction of various types of immune cells and signaling pathways between 52 
the tumor and immune cells[12]. There are several kinds of immunotherapy to treat BC, such as 53 
intravesical administration of the Bacillus Calmette-Guerin vaccine for treating high-risk no-muscle 54 
invasive bladder cancer (NMIBC) [13]. Patient prognosis and treatment response were predicted by 55 
immune cells with current molecular stratification in patients with BC[14]. 56 

In this study, we divided BC into three distinct subtypes based on immune cell-related 57 
methylation sites profiles. The three methylation sites subtypes are related to different molecular 58 
features, cellular characteristics, and clinical results. The classification of immune-related 59 
methylation sites subtypes may promote the optimal scheme of BC patients responsive to 60 
immunotherapy. 61 

2. Results 62 

2.1 Three subgroups based on Differentially methylation sites (DMSs)  63 

Seven hundred and eighty-two immune cell biomarker-associated genes were selected from 64 
previous studies, and corresponding 8703 immune cell biomarker-associated methylation sites were 65 
acquired. By Parameter of infiltration was adjusted P-value < 0.05 and |deltabeta| > 0.2, 715 66 
Differentially methylation sites (DMSs) between normal samples and tumor samples were identified 67 
(Fig. 1A).  68 
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 69 

Figure 1. A. 715 Differentially methylation sites (DMSs) between normal samples and bladder cancer 70 
samples. 1 B.The consensus clustering of 715 Differentially methylation sites (DMSs) was divided into 71 
three CpGs subgroups. B.The heatmap of methylation based on 715 Differentially methylation sites 72 
(DMSs). C.Principal component analysis (PCA) validated the stability of classification. 73 

2.2. Classification of methylation subtypes of BC  74 

The consensus clustering of 715 DMSs was classified into three subtypes(Fig. 1B). Cluster 1 75 
showed middle-methylation. Cluster 2 showed hyper-methylation. And cluster 3 showed hypo-76 
methylation (Fig. 1C). Principal component analysis (PCA) was utilized to check the stability of the 77 
consensus classification(Fig. 1D) . 78 

The overall survival (OS) curve of BC subsets was gotten with Kaplan–Meier method (Fig. 2A). 79 
Cluster 1 had the worst prognosis. Cluster 3 had the best prognosis. A barplot showed the 80 
relationship between clinical traits and the biological characteristics of subtypes.(Fig. 2.B-H). Based 81 
on our results, Cluster 3 had more stage I, more low grade, and less T3.   82 
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 83 

Figure 2. A.Overall survival (OS) curve. B-H. Clinicopathologic features among the three 84 
subgroups. 85 

2.3. Identifying different methylation level and distinct gene expression level of different subgroups 86 

Differentially immune cell biomarker-associated methylation levels was shown in Fig. 3B. 87 
Cluster 1 revealed middle-methylation. Cluster 2 revealed hyper-methylation. And cluster 3 revealed 88 
hypo-methylation. It was consistent with Fig 1C.  89 

 90 

Figure 3. A. Gene level among the three subgroups. 3B. Methylation level among the three subgroups. 91 

A previous study reported that the correlation between DNA methylation and gene expression 92 
in lung cancer was identified for about 750 genes. They found one-third of these correlations were 93 
positive, indicating the challenges in finding widespread and strong negative correlations between 94 
gene expression and genome-wide CpG methylation[30]. In fig 3A, immune cell genes expression is 95 
a high expression in cluster 2, low expression in cluster 3, and middle expression in cluster1. In the 96 
present study, high methylation level had high gene expression level.  97 

2.4. Immune in different subgroups 98 

In Fig. 4A, cluster 1 had middle immune infiltration. Cluster 2 was a correlation with high 99 
immune infiltration, and cluster 3 had low immune infiltration. Immune infiltration was compared 100 
among the three subtypes, and there were remarkable differences among these subtypes (Fig. 4B). 101 
Immune checkpoints were also significant differences among these subtypes (Figure 4E). Three 102 
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asterisks are P-value < 0.001. Two asterisks are P-value < 0.01. One asterisk is P-value < 0.05. Ns means 103 
that there is no significance.  104 

 105 

Figure 4. A. Immune cells infiltration among the three subtype. B.Immune cells the among three 106 
subgroups. C-D. Innate immune cells and adaptive immune cells among the three subgroups. 107 
E.Immune checkpoints among the three subsets. F-I.Immune microenvironment among the three 108 
groups. 109 

Three asterisks are P-value less than 0.001. Two asterisks are P-value less than 0.01. One 110 

asterisk is P-value less than 0.05. Ns means that there is no significance 111 

2.5. Tumor microenvironment (TME)      112 

The tumor microenvironment contains stromal cells, tumor cells, and immune cells. The higher 113 
stromal score and immune score, the lower purity of tumor. In Fig4.F-I, cluster 2 had the highest 114 
stromal score, immune score, ESTIMATEScore, and the lowest purity of tumor. Cluster 3 had the 115 
lowest stromal score, immune score, ESTIMATEScore, and the highest tumor purity.  116 

2.6. Single sample gene set enrichment analysis (ssGSEA) 117 

The bio-marker of APC_co_inhibition, APC_co_stimulation, Endothelial cells, Fibroblasts, HLA, 118 
Inflammation-promoting, MHC_class_I, Type_I_IFN_Reponse, and Type_II_IFN_Reponse were 119 
significantly different among these subtypes (Figure 5).  120 
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 121 

Figure 5. APC_co_inhibition, APC_co_stimulation, Endothelial cells, Fibroblasts, HLA, 122 
Inflammation-promoting, MHC_class_I, Type_I_IFN_Reponse and Type_II_IFN_Reponse among the 123 
three subgroups. 124 

2.7. DNA-methylation (DNAss) and mRNA (RNAss) among subgroups 125 

The DNA hypermethylation of those promoter genes suppressed gene expression, which in turn 126 
benefited cancer cells. Therefore, down-regulation of those genes may lead to cancer stem and 127 
progenitor cells’ occurrence by DNA hypermethylation[24, 25]. RNA stemness score and DNA 128 
stemness score were the lowest in cluster 2 in Fig.6.  129 

 130 
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Figure 6. RNAss and DNAss among the three subgroups. 131 

2.8. Analysis of mutations and CNVs among three subgroups 132 

Thirty immune-cell-associated- genes with the highest mutation proportion in each subtype 133 
were shown in Fig. 7.A-C. And 58 immune-cell-associated- genes were identified from the above 30 134 
genes in each subgroup. It meant that there was less overlap among the three subtypes (Fig. 7 A-C). 135 
The mutations of ITGA9, ENG, EVI5，ATIC，and FZD2 in cluster 1 were significantly higher than 136 
those in other subtypes. The mutations of CTSZ, HOXA1, and KLRF1 in cluster 2 were significantly 137 
higher than those in other subtypes. The mutations of DLC1, OSBPL1A, RRP12, C3AR1, MPZL1, and 138 
ITK in cluster 3 were significantly higher than those in other subtypes. TMB was a significant 139 
difference only between cluster 1 and cluster 2. TMB was a remarkable difference only between 140 
cluster 1 and cluster 2. (Fig. 7 D).  141 

 142 

Figure 7. A. Immune cell genes-associated mutation in cluster1. B. Immune cell genes-associated 143 
mutation in cluster2. C.Immune cell genes-associated mutation mutation in cluster3. D. TMB among 144 
the three subtypes. E-G. Immune cell genes-associated CNVs in three subgroups, respectively. 145 

Next, the CNV data was analyzed, 391 normal tissue and 410 tumor tissue were extracted. In 146 
figure 7E, CNV data in one subgroup was compared with the rest two subgroups. One gene with 147 
significant copy number gains was in cluster 1, and three genes with significant copy number losses 148 
were in cluster 1. Figure 7F showed four genes with significant copy number gains and one gene with 149 
significant copy number losses in cluster 2. In figure 7G, there were two genes with significant copy 150 
number gains and four genes with significant copy number losses in cluster 3. 151 

3. Discussion 152 

Altered DNA methylation patterns are hallmarks of tumors. Usually unmethylated promoters 153 
may alter into densely methylated, which will lead to the silencing of critical genes such as tumor 154 
suppressor genes[31]. Other sequences may alter into hypomethylated in tumors, which result in the 155 
abnormal activation of genes that are usually suppressed by DNA methylation[32]. 156 
Hypermethylation events have also been reported to be biomarkers of human tumors, for an early 157 
examination of blood, urine and other body fluids, for prognosis or prediction of response to 158 
treatment, and for monitoring cancer recurrence[33]. 159 

BC development is highly related to immune cell infiltration and inflammation. A previous 160 
study also revealed the interaction of various types of immune cells and signaling pathways between 161 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 September 2020                   



 8 of 15 

 

the tumor and immune cells[12]. There are several kinds of immunotherapy to treat BC, such as 162 
intravesical administration of the Bacillus Calmette-Guerin vaccine for treating high-risk NMIBC 163 
[13]. Patient prognosis and treatment response were predicted by immune cells with current 164 
molecular stratification in patients with BC[14]. To understand the mechanism of cancer, guide 165 
therapy, and improve prognosis, it is vital for us to identify accurate subtypes. Several studies were 166 
reported to identify subtype based on DNA methylation, including colon adenocarcinoma[34], 167 
cervical cancer[35], glioblastoma[36], and bladder cancer[37]. This study divided BC into three 168 
distinct subtypes based on immune cells‐related methylation profiles (Fig. 1B-C). To check for 169 
stability of the classification, PCA was utilized to validate the stability of the classification(Fig. 1D), 170 
and PCA proved the classification was stable and accurate. The three immune subtypes are related 171 
to significantly different clinical results(Fig. 2). The methylation levels among the three subtypes were 172 
different. Differentially immune cell biomarker-associated methylation level was shown in Fig. 1C. 173 
Cluster 1 revealed middle-methylation. Cluster 2 revealed hyper-methylation. And cluster 3 revealed 174 
hypo-methylation. This was consistent with Fig3B. The distribution of immune cells, level expression 175 
of checkpoints, stromal score, immune score, ESTIMATEScore, APC_co_inhibition, 176 
APC_co_stimulation, HLA, MHC_class_I, Type_I_IFN_Reponse, and Type_II_IFN_Reponse were 177 
significant difference among the three subgroups. All of those verified the stability and accuracy of 178 
the classification(Fig 4 and Fig 5).  179 

In the present study, different subtypes had different survival. This may be caused by several 180 
reasons as followings. 1. Abnormal DNA methylation may lead to poor prognosis in cancer 181 
patients[38]. The progression and prognosis of cancer may be affected by Hyper-methylation of 182 
DNA[39]. 2. Tumor cells in the microenvironment can express high levels of immunosuppressive 183 
cytokines to forbid T cell proliferation and activity while facilitating tumor development and 184 
progression[40, 41]. Tumor-expressing specific molecular can be enough to induce 185 
immunosuppressive and facilitate immune evasion[42]. Subtle changes in the compositions of 186 
immune cells can have different influences on tumor progression[43]. Previous studies reported that 187 
a high density of macrophage in the microenvironment was correlated with poor prognosis of 188 
bladder cancer patients[44]. In our study, cluster 3 had good survival. In Fig 1C and Fig 4A, cluster 3 189 
showed the hypo-methylation and low immune cell infiltration. Hypo-methylation and low immune 190 
cell infiltration might be the reason that cluster 3 had good survival.  191 

However, middle-methylation and middle immune infiltration were in cluster 1 that had the 192 
worst survival. Hyper-methylation and high immune infiltration were in cluster 2 that had 193 
intermediate survival. We may find the reason from checkpoints. VTCN1 expression up-regulation 194 
in bladder cancer led to worse survival[45, 46]. B7x (VTCN1 ) was remarkably overexpressed in many 195 
human cancers, and it repressed the antitumor immune effect and regulated to escape 196 
immunosurveillance[47] High-level expression of CD80 and CD86 may result in a good survival in 197 
patients with nasopharyngeal carcinoma[48]. The absence or low-level expression of CD80 and CD86 198 
in cancers may be one mechanism by which cancers escape immunosurveillance[48]. In fig.4E, these 199 
checkpoints were significant differences among the three subgroups. Among them, VTCN1 (B7-H4) 200 
was the higher expression in cluster 1. CD80 and CD86 were the lower expressions in cluster 1. So 201 
these may cause cluster 1 with worse survival than cluster 2. 202 

The tumor microenvironment contains stromal cells, tumor cells, and immune cells. The higher 203 
stromal score and immune score, the lower purity of tumor. In Fig, cluster 2 had the highest stromal 204 
score, immune score, and the lowest tumor purity. Cluster 3 had the lowest stromal score, immune 205 
score, and the highest purity of the tumor. The distribution of immune score among three subgroups 206 
was consistent with the distribution of immune cells(Fig 4F-I).  207 

Endothelial cells can remodel the local immune microenvironment and help tumor cells escape 208 
immunosurveillance in many ways[49]. Endothelial cells release chemokines to promote leukocyte 209 
migration into tumor tissues and express adhesion protein to facilitate peripheral leukocyte 210 
capture[50]. Endothelial cells can also forbid the activation and chemotaxis of immune cells and 211 
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mediate inhibitory molecules to facilitate immune tolerance[51, 52]. Endothelial cells also show 212 
increased expression of PD-L1 to repress T cell activation[53-55]. Besides, FasL expression in 213 
endothelial cells promotes their ability to suppress activation CD8+ T cells, causing endothelial cells-214 
associated immune cell death and promote tumor escape[56, 57]. In the present study, the density of 215 
endothelial cells in cluster 2 was the highest, and immune infiltration was the highest in cluster2(Fig 216 
5). It inferred that the endothelial cells might help tumor cells escape immunity.  217 

Cancer cells had interaction with cancer-associated macrophages and tumor-associated 218 
fibroblasts, which promotes tumor progression in bladder cancer[58]. In the present study, the 219 
distribution of fibroblasts among three subgroups was consistent with macrophages' distribution 220 
(Fig. 5). It suggested there was a correlation between fibroblasts and macrophages.   221 

The patients in the therapy of tumors can benefit from the many inflammatory molecules that 222 
also have an important role in cancer progression and development. The dual role of inflammatory 223 
molecular is far from being fully understood[59]. In the present study, the distribution of 224 
inflammation-promoting among three subgroups was consistent with the distribution of immune 225 
cells(Fig.5). It indicated the inflammation-promoting and immune cells might affect each other. But 226 
the detailed role of inflammation-promoting may need more studies to be explored. 227 

A previous study reported that the correlation between DNA methylation and gene expression 228 
in lung cancer was identified for about 750 genes. They found one-third of these the correlation was 229 
positive, indicating the challenges in finding widespread and strong negative correlations between 230 
genes expression and genome-wide CpG methylation[30]. In fig 3A, immune cell genes expression is 231 
a high expression in cluster 2, low expression in cluster 3, and middle expression in cluster1. It also 232 
challenged the finding widespread and strong negative correlations between genes expression and 233 
genome-wide CpG methylation.  234 

The DNA hypermethylation of those promoter genes suppressed gene expression, which in turn 235 
benefited cancer cells. Therefore, down-regulation of those genes may lead to the occurrence of cancer 236 
stem and progenitor cells by DNA hypermethylation[24, 25]. The range of scores was from 0 to 1. 237 
Zero means high differentiation, and one means undifferentiation[26]. However, in the present study, 238 
RNA stemness score and DNA stemness score were the lowest in cluster 2 in Fig 6. It challenged the 239 
above findings which down-regulation of those genes may lead to the occurrence of cancer stem and 240 
progenitor cells by DNA hypermethylation. A previous study found that for several tumor types, 241 
such as BLCA, LUSC, HNSC, and GBM, there was a negative correlation between DNAss score with 242 
leukocyte fraction and/or lower PD-L1 expression[26]. In the present study, cluster 2 had the highest 243 
immune infiltration and high-level expression of CD274 (Fig.4E), but cluster 3 had the lowest DNAss 244 
score. This result was the same as the previous work. In present work, we also found the lower RNAss 245 
score was associated with higher immune infiltration and higher-level expression of CD274(Fig 6 and 246 
Fig. 4E).  247 

TMB was a remarkable difference only between cluster 1 and cluster 2. (Fig. 7 D). It suggested 248 
the TMB might be not correlated with methylation level. But the composition of genes of mutations 249 
was different among the three subtypes. In Fig. 7. and 58 immune-cell-associated-genes were 250 
identified from the highest mutant 30 genes in each subgroup. It meant that there was less overlap 251 
among the three subtypes (Fig. 7 A-C). The mutations of ITGA9, ENG, EVI5, ATIC，and FZD2 in 252 
cluster 1 were significantly higher than those in other subtypes. These genes are the bio-marker of 253 
Mast cell, Plasmacytoid dendritic cell, Type 2 T helper cell, Immature dendritic cell, and 254 
Macrophage[15, 16]. The mutations of CTSZ, HOXA1, and KLRF1 in cluster 2 were significantly 255 
higher than those in rest subtypes. These genes are the bio-marker of Natural killer cell, CD56 bright 256 
natural killer cell, and Gamma delta T cell[15, 16]. The mutations of DLC1, OSBPL1A, RRP12, C3AR1, 257 
MPZL1, and ITK in cluster 3 were significantly higher than those in rest subtypes. These genes are 258 
the bio-marker  of Type 2 T helper cell, Eosinophil, Effector memeory CD8 T cell, Activated CD8 T 259 
cell, and Activated CD4 T cell[15, 16]. These immune cells with mutant genes among the three 260 
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subgroups were different. It is possible to become promising drug targets based on these mutant 261 
genes. 262 

In figure 7E, CNV data in one subgroup was compared with the rest two subgroups. AKNA 263 
with significant copy number gains was in cluster 1 and the gene is the biomarker of Activated B 264 
cell[15, 16]. PARVG, SIK1 and UPK3A with significant copy number losses were in cluster 1 and these 265 
genes are the biomarker of MDSC,   Effector memeory CD8 T cell, and Monocyte[15, 16]. Figure 7F 266 
showed CLTB, GEMIN6, SIRPA and SIRPG with significant copy number gains. These genes are the 267 
biomarker of Immature dendritic cell, Activated CD8 T cell, Plasmacytoid dendritic cell, and Central 268 
memory CD4 T cell[15, 16]. DYRK2 with significant copy number losses was in cluster 2 and the gene 269 
is the biomarker of CD56 dim natural killer cell[15, 16]. In figure 7G, CSF1R and GUSB with 270 
significant copy number gains were in cluster 3 and these genes are the biomarker of T follicular 271 
helper cell and Central memory CD8 T cell[15, 16]. CDC7, CHST12, CSF3R and OGT with significant 272 
copy number losses were in cluster 3. These genes are the biomarker of Type 2 T helper cell, T 273 
follicular helper cell, Immature dendritic cell and Plasmacytoid dendritic cell[15, 16]. These immune 274 
cells with mutant genes among the three subgroups were totally different. It also is possible to 275 
become promising drug targets based on these CNV genes. 276 

In conclusion: The classification was accurate and stable. BC patients could be divided into three 277 
subtypes based on the immune cells-associated CpG sites. Specific biological signaling pathways, 278 
immune mechanisms, and genomic alterations were various among three subgroups. High-level 279 
immune infiltration was a correlation with high-level methylation. The lower RNAss score was 280 
associated with higher immune infiltration and higher-level expression of CD274. 281 

4. Materials and Methods  282 

4.1. Data pre-processing 283 

Methylation data from Illumina Human Methylation 450 arrays was obtained from UCSC Xena 284 
and had 437 samples (https://xenabrowser.net/datapages/, 2020-07-15). DNA-methylation (DNAss), 285 
mRNA stemness (RNAss), RNA-sequencing data from 430 BC samples and clinical data also were 286 
downloaded from UCSC Xena website. The Masked Somatic Mutation data (MuTect2. Variant0. Maf) 287 
and the CNV data set (Masked Copy Number Segment, affymetrix snp 6.0) were obtained from 288 
TCGA website (https://portal.gdc.cancer.gov/repository). The CNV data was comprised of 814 289 
samples. Because the databases were the public databases, and our data was obtained directly from 290 
these databases. There was no requirement for ethical approval. 291 

4.2. Immune cells-associated genes selection 292 

Immune cells-associated bio-markers were obtained from previous studies[15, 16]. And their 293 
corresponding methylation sites were obtained. The criteria for exclusion probes from the analysis 294 
was as followings: 1. If the CpG site data missed more than 70% in the samples, the CpG sites were 295 
excluded from the analysis[17]. 2. Cross-reactive genome CpG sites were deleted. 3. Probes on the X 296 
and Y chromosomes were moved excluded from the analysis. The remaining sites were imputed with 297 
the k-nearest neighbors (KNN) imputation procedure[18].  298 

4.3. Unsupervised hierarchical cluster analysis 299 

The methylation sites corresponding to immune cells-associated genes were acquired. 300 
Differentially methylation sites (DMSs) were identified between normal samples and bladder cancer 301 
samples with adjusted P-value < 0.05 and |deltabeta| > 0.2. Unsupervised hierarchical clustering was 302 
performed based on immune cell-associated methylation data to identify subtypes of BC with 303 
“sparcl” R software package. The overall survival (OS) curve of BC subsets was gotten with Kaplan–304 
Meier method and with “survival” package in R software. Principal component analysis (PCA) was 305 
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performed to validate the classification. A barplot showed the relationship between clinical traits and 306 
the biological characteristics of subtypes. 307 

4.4. Single sample gene set enrichment analysis (ssGSEA) based on immune cells bio-marker 308 

Single sample gene set enrichment analysis was performed to quantify the infiltration of 309 
immune cells. The ssGSEA ranked the genes based on their absolute expression in a sample with 310 
“GSEABase” and “GSVA” R package. The enrichment score is calculated by integrating the 311 
differences between the empirical cumulative distribution functions of the gene ranks[19, 20]. 312 
Activated B cell, activated CD8 T cell, effector memeory CD8 T cell, central memory CD8 T cell, 313 
activated CD4 T cell, effector memeory CD4 T cell, central memory CD4 T cell, regulatory T cell, 314 
gamma delta T cell, immature B cell, memory B cell, type 17 T helper cell, T follicular helper cell, type 315 
1 T helper cell, and type 2 T helper cell are adaptive immune cells. CD56 dim natural killer cell, CD56 316 
bright natural killer cell, Eosinophil, Activated dendritic cell, Immature dendritic cell, MDSC, 317 
Macrophage, Monocyte, Mast cell, Plasmacytoid dendritic cell, Natural killer cell, Natural killer T 318 
cell, and Neutrophil are innate immune cells.  319 

Immune checkpoints were a selected from previous studies[21, 22] to be compared among the 320 
subtypes. Kruskal-Wallis. Test was performed.   321 

4.5. Tumor microenvironment (TME)  322 

ESTIMATE algorithm was obtained from the public source website (https://sourceforge.net/ 323 
projects/estimateproject/) to estimate the scores of stromal and immune cells based on gene 324 
expression signature in tumor samples. Then, we calculated stromal scores, immune scores, tumor 325 
purity, and ESTIMATE scores for each sample. Stromal scores, immune scores, tumor purity, and 326 
ESTIMATE scores were compared among subtypes.  327 

4.6. Single sample gene set enrichment analysis (ssGSEA) 328 

The bio-marker of APC_co_inhibition, APC_co_stimulation, Endothelial cells, Fibroblasts, HLA, 329 
Inflammation-promoting, MHC_class_I,  Type_I_IFN_Reponse and Type_II_IFN_Reponse were 330 
selected from studies[19, 20].  Single sample gene set enrichment analysis was performed to rank the 331 
genes based on their absolute expression in a sample.  332 

4.7. DNA-methylation (DNAss) and mRNA stemness (RNAss) among subgroups 333 

During cancer progression, a differentiated phenotype was lost, and progenitor and stem-cell-334 
like characteristics were acquired[23]. The DNA hypermethylation of those genes suppressed gene 335 
expression, which in turn benefited cancer cells. Therefore, down-regulation of those genes may lead 336 
to the occurrence of cancer stem and progenitor cells by DNA hypermethylation[24, 25]. RNA 337 
stemness score based on mRNA expression (RNAss) and DNA stemness score based on DNA 338 
methylation pattern (DNAss) were utilized to measure tumor stemness[26]. The rang of scores was 339 
from 0 to 1. Zero means high differentiation, and 1 means undifferentiation[26]. DNA-methylation 340 
(DNAss) and mRNA (RNAss) among three subgroups were analyzed.   341 

4.8. Analysis of mutations and CNVs among subgroups. 342 

The ‘maftools’ software package was utilized to analyze and visualize immune cell biomarker-343 
associated mutation data[27]. Immune cell biomarker-associated mutation data was compared 344 
between one group with the rest groups with Chi-square Test. The P-value is less than 0.05. TMB is 345 
called the density of tumor genes mutation[27]. TMB (tumor mutation burden) was compared among 346 
subtypes based on immune cell biomarker-associated mutation data.  347 

Then, immune cell biomarker-associated CNV data was analyzed. Genomic identification of 348 
significant targets in cancer (GISTIC) algorithm was utilized to classify the copy number variant 349 
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genes with remarkable gains and losses[28, 29]. Parameter thresholds were set to 0.2 and -0.2 for 350 
genomic gains and losses, respectively[28, 29]. Immune cell biomarker-associated copy number 351 
variant data was compared between one group with the rest groups with a Chi-square Test and P-352 
value < 0.01.   353 

5. Conclusions 354 

The classification was accurate and stable. BC patients could be divided into three subtypes 355 
based on the immune cells-associated CpG sites. Specific biological signaling pathways, immune 356 
mechanisms, and genomic alterations were various among three subgroups. High-level immune 357 
infiltration was a correlation with high-level methylation. The lower RNAss score was associated 358 
with higher immune infiltration and higher-level expression of CD274. 359 
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