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9 Simple Summary: Bladder cancer (BC) development is highly related to immune cell infiltration
10 and inflammation. This study aimed to construct a new classification of bladder cancer (BC)
11 molecular subtypes based on immune cells-associated CpG sites. The classification was accurate
12 and stable. BC patients could be divided into three subtypes based on the immune cells-associated
13 CpG sites. The distribution of immune cells, level expression of checkpoints, stromal score, immune

14 score, ESTIMATEScore, tumor purity, APC_co_inhibition, APC_co_stimulation, HLA,
15 MHC _class_I, Type_I_IFN_Reponse, and Type_lI_IFN_Reponse were significant difference among

16 three subgroups. The distribution of genomic alterations was different among them. High level
17 immune infiltration was a correlation with high level methylation. The lower RNAss score was
18 associated with higher immune infiltration and higher level expression of CD274.

19 Abstract: Background: Bladder cancer (BC) development is highly related to immune cell

20 infiltration and inflammation. This study aimed to construct a new classification of bladder cancer
21 (BC) molecular subtypes based on immune cells-associated CpG sites. Methods: The genes of 28
22 types of immune cells were obtained from previous studies. Then methylation sites corresponding
23 to immune cells-associated genes were acquired. Differentially methylation sites (DMSs) were
24 identified between normal samples and bladder cancer samples. Unsupervised clustering analysis
25 of differentially methylation sites was performed to divide into several subtypes. Then the potential
26 mechanism of different subtypes was exploded. Result: Bladder cancer patients were divided into
27 three groups. Cluster 3 (methylation-L) subtype had the best prognosis. Cluster 1 (methylation-M)
28 had the worst prognosis. The distribution of immune cells, level expression of checkpoints, stromal

29 score, immune score, ESTIMATEScore, tumor purity, APC_co_inhibition, APC_co_stimulation,
30 HLA, MHC_class_I, Type_I_IFN_Reponse, and Type_II_IFN_Reponse were significant difference

31 among three subgroups. The distribution of genomic alterations was different among them.
32 Conclusion: The classification was accurate and stable. BC patients could be divided into three
33 subtypes based on the immune cells-associated CpG sites. Specific biological signaling pathways,
34 immune mechanisms, and genomic alterations were various among three subgroups. High level
35 immune infiltration was a correlation with high level methylation. The lower RNAss score was
36 associated with higher immune infiltration and higher level expression of CD274.

37 Keywords: Immune cell; DNA CpGs; Bladder cancer; Subtype; mutation; CNV; Immune score;
38 Immune Checkpoints

39

40 1. Introduction

41 Recently, diverse immunotherapy has been proven to successfully treat numerous lethal
42 cancers[1]. These included cytokine treatment, cellular therapy, immune checkpoint blockade, and
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therapeutic vaccines[2]. Immune checkpoint inhibitors have shown remarkable anti-tumor function
in several human cancers, including programmed cell death protein 1 (PD-1), cytotoxic T lymphocyte
antigen-4 (CTLA-4), and PD-1 ligand (PD-L1) antibodies[3-5]. FDA approved two cytokines as anti-
tumor agents against kidney malignancy and metastatic melanoma[6]. Preventive and therapeutic
vaccines have a significant anti-tumor function in several cancers, such as hepatitis B virus
vaccines[7], Sipuleucel-T, human papillomavirus[8], and GVAX vaccine against prostate cancer[9,
10]. However, there is heterogeneity in response rates, and not all immunotherapy is successful in
treating patients[11].

BC development is highly related to immune cell infiltration and inflammation. A previous
study also revealed the interaction of various types of immune cells and signaling pathways between
the tumor and immune cells[12]. There are several kinds of immunotherapy to treat BC, such as
intravesical administration of the Bacillus Calmette-Guerin vaccine for treating high-risk no-muscle
invasive bladder cancer (NMIBC) [13]. Patient prognosis and treatment response were predicted by
immune cells with current molecular stratification in patients with BC[14].

In this study, we divided BC into three distinct subtypes based on immune cell-related
methylation sites profiles. The three methylation sites subtypes are related to different molecular
features, cellular characteristics, and clinical results. The classification of immune-related
methylation sites subtypes may promote the optimal scheme of BC patients responsive to
immunotherapy.

2. Results

2.1 Three subgroups based on Differentially methylation sites (DMSs)

Seven hundred and eighty-two immune cell biomarker-associated genes were selected from
previous studies, and corresponding 8703 immune cell biomarker-associated methylation sites were
acquired. By Parameter of infiltration was adjusted P-value < 0.05 and l|deltabetal > 0.2, 715
Differentially methylation sites (DMSs) between normal samples and tumor samples were identified
(Fig. 1A).
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Figure 1. A. 715 Differentially methylation sites (DMSs) between normal samples and bladder cancer
samples. 1B.The consensus clustering of 715 Differentially methylation sites (DMSs) was divided into
three CpGs subgroups. B.The heatmap of methylation based on 715 Differentially methylation sites
(DMSs). C.Principal component analysis (PCA) validated the stability of classification.

2.2. Classification of methylation subtypes of BC

The consensus clustering of 715 DMSs was classified into three subtypes(Fig. 1B). Cluster 1
showed middle-methylation. Cluster 2 showed hyper-methylation. And cluster 3 showed hypo-
methylation (Fig. 1C). Principal component analysis (PCA) was utilized to check the stability of the
consensus classification(Fig. 1D) .

The overall survival (OS) curve of BC subsets was gotten with Kaplan—-Meier method (Fig. 2A).
Cluster 1 had the worst prognosis. Cluster 3 had the best prognosis. A barplot showed the
relationship between clinical traits and the biological characteristics of subtypes.(Fig. 2.B-H). Based
on our results, Cluster 3 had more stage I, more low grade, and less T3.
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84 Figure 2. A.Overall survival (OS) curve. B-H. Clinicopathologic features among the three
85 subgroups.
86  2.3. Identifying different methylation level and distinct gene expression level of different subgroups
87 Differentially immune cell biomarker-associated methylation levels was shown in Fig. 3B.

88  Cluster 1 revealed middle-methylation. Cluster 2 revealed hyper-methylation. And cluster 3 revealed
89  hypo-methylation. It was consistent with Fig 1C.

A B
- — B . =] B — — -
5 a é o i s s
. s : z I s
5 : E 2 o=
= g ° !
£ :
N T o~ |
s : :
° T T T S 7 T T T
c1 c2 c3 c1 c2 c3
90 cluster cluster
91 Figure 3. A. Gene level among the three subgroups. 3B. Methylation level among the three subgroups.
92 A previous study reported that the correlation between DNA methylation and gene expression

93  in lung cancer was identified for about 750 genes. They found one-third of these correlations were
94 positive, indicating the challenges in finding widespread and strong negative correlations between
95  gene expression and genome-wide CpG methylation[30]. In fig 3A, immune cell genes expression is
96  ahigh expression in cluster 2, low expression in cluster 3, and middle expression in clusterl. In the
97  present study, high methylation level had high gene expression level.

98  2.4. Immune in different subgroups

99 In Fig. 4A, cluster 1 had middle immune infiltration. Cluster 2 was a correlation with high
100  immune infiltration, and cluster 3 had low immune infiltration. Immune infiltration was compared
101  among the three subtypes, and there were remarkable differences among these subtypes (Fig. 4B).
102  Immune checkpoints were also significant differences among these subtypes (Figure 4E). Three



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 September 2020

103
104

105

106
107
108
109

110
111

112

113
114
115
116

117

118
119
120

50f15

asterisks are P-value < 0.001. Two asterisks are P-value < 0.01. One asterisk is P-value < 0.05. Ns means
that there is no significance.
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Figure 4. A. Immune cells infiltration among the three subtype. B.Immune cells the among three
subgroups. C-D. Innate immune cells and adaptive immune cells among the three subgroups.

E.Immune checkpoints among the three subsets. F-I.Immune microenvironment among the three

groups.

Three asterisks are P-value less than 0.001. Two asterisks are P-value less than 0.01. One
asterisk is P-value less than 0.05. Ns means that there is no significance

2.5. Tumor microenvironment (TME)

The tumor microenvironment contains stromal cells, tumor cells, and immune cells. The higher
stromal score and immune score, the lower purity of tumor. In Fig4.F-1, cluster 2 had the highest
stromal score, immune score, ESTIMATEScore, and the lowest purity of tumor. Cluster 3 had the
lowest stromal score, immune score, ESTIMATEScore, and the highest tumor purity.

2.6. Single sample gene set enrichment analysis (ssGSEA)

The bio-marker of APC_co_inhibition, APC_co_stimulation, Endothelial cells, Fibroblasts, HLA,
Inflammation-promoting, MHC_class_I, Type_I_IFN_Reponse, and Type_II_IFN_Reponse were
significantly different among these subtypes (Figure 5).
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122 Figure 5. APC_co_inhibition, APC_co_stimulation, Endothelial cells, Fibroblasts, HLA,
123 Inflammation-promoting, MHC_class_I, Type_I_IFN_Reponse and Type_II_IFN_Reponse among the
124 three subgroups.
125  2.7. DNA-methylation (DNAss) and mRNA (RNAss) among subgroups
126 The DNA hypermethylation of those promoter genes suppressed gene expression, which in turn

127  benefited cancer cells. Therefore, down-regulation of those genes may lead to cancer stem and
128  progenitor cells’ occurrence by DNA hypermethylation[24, 25]. RNA stemness score and DNA
129  stemness score were the lowest in cluster 2 in Fig.6.
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Figure 6. RNAss and DNAss among the three subgroups.

2.8. Analysis of mutations and CNVs among three subgroups

Thirty immune-cell-associated- genes with the highest mutation proportion in each subtype
were shown in Fig. 7.A-C. And 58 immune-cell-associated- genes were identified from the above 30
genes in each subgroup. It meant that there was less overlap among the three subtypes (Fig. 7 A-C).
The mutations of ITGA9, ENG, EVI5, ATIC, and FZD2 in cluster 1 were significantly higher than
those in other subtypes. The mutations of CTSZ, HOXA1, and KLRF1 in cluster 2 were significantly
higher than those in other subtypes. The mutations of DLC1, OSBPL1A, RRP12, C3AR1, MPZL1, and
ITK in cluster 3 were significantly higher than those in other subtypes. TMB was a significant
difference only between cluster 1 and cluster 2. TMB was a remarkable difference only between
cluster 1 and cluster 2. (Fig. 7 D).

Figure 7. A. Immune cell genes-associated mutation in clusterl. B. Immune cell genes-associated
mutation in cluster2. C.Immune cell genes-associated mutation mutation in cluster3. D. TMB among
the three subtypes. E-G. Immune cell genes-associated CNVs in three subgroups, respectively.

Next, the CNV data was analyzed, 391 normal tissue and 410 tumor tissue were extracted. In
figure 7E, CNV data in one subgroup was compared with the rest two subgroups. One gene with
significant copy number gains was in cluster 1, and three genes with significant copy number losses
were in cluster 1. Figure 7F showed four genes with significant copy number gains and one gene with
significant copy number losses in cluster 2. In figure 7G, there were two genes with significant copy
number gains and four genes with significant copy number losses in cluster 3.

3. Discussion

Altered DNA methylation patterns are hallmarks of tumors. Usually unmethylated promoters
may alter into densely methylated, which will lead to the silencing of critical genes such as tumor
suppressor genes[31]. Other sequences may alter into hypomethylated in tumors, which result in the
abnormal activation of genes that are usually suppressed by DNA methylation[32].
Hypermethylation events have also been reported to be biomarkers of human tumors, for an early
examination of blood, urine and other body fluids, for prognosis or prediction of response to
treatment, and for monitoring cancer recurrence[33].

BC development is highly related to immune cell infiltration and inflammation. A previous
study also revealed the interaction of various types of immune cells and signaling pathways between
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162  the tumor and immune cells[12]. There are several kinds of immunotherapy to treat BC, such as
163  intravesical administration of the Bacillus Calmette-Guerin vaccine for treating high-risk NMIBC
164  [13]. Patient prognosis and treatment response were predicted by immune cells with current
165  molecular stratification in patients with BC[14]. To understand the mechanism of cancer, guide
166  therapy, and improve prognosis, it is vital for us to identify accurate subtypes. Several studies were
167  reported to identify subtype based on DNA methylation, including colon adenocarcinoma[34],
168 cervical cancer[35], glioblastoma[36], and bladder cancer[37]. This study divided BC into three
169  distinct subtypes based on immune cells - related methylation profiles (Fig. 1B-C). To check for
170  stability of the classification, PCA was utilized to validate the stability of the classification(Fig. 1D),
171  and PCA proved the classification was stable and accurate. The three immune subtypes are related
172  tosignificantly different clinical results(Fig. 2). The methylation levels among the three subtypes were
173  different. Differentially immune cell biomarker-associated methylation level was shown in Fig. 1C.
174 Cluster 1 revealed middle-methylation. Cluster 2 revealed hyper-methylation. And cluster 3 revealed
175  hypo-methylation. This was consistent with Fig3B. The distribution of immune cells, level expression
176  of checkpoints, stromal score, immune score, ESTIMATEScore, APC_co_inhibition,
177  APC_co_stimulation, HLA, MHC_class_I, Type_I_IFN_Reponse, and Type_II_IFN_Reponse were
178  significant difference among the three subgroups. All of those verified the stability and accuracy of
179  the classification(Fig 4 and Fig 5).

180 In the present study, different subtypes had different survival. This may be caused by several
181  reasons as followings. 1. Abnormal DNA methylation may lead to poor prognosis in cancer
182  patients[38]. The progression and prognosis of cancer may be affected by Hyper-methylation of
183  DNAJ39]. 2. Tumor cells in the microenvironment can express high levels of immunosuppressive
184  cytokines to forbid T cell proliferation and activity while facilitating tumor development and
185  progression[40, 41]. Tumor-expressing specific molecular can be enough to induce
186  immunosuppressive and facilitate immune evasion[42]. Subtle changes in the compositions of
187  immune cells can have different influences on tumor progression[43]. Previous studies reported that
188  a high density of macrophage in the microenvironment was correlated with poor prognosis of
189  bladder cancer patients[44]. In our study, cluster 3 had good survival. In Fig 1C and Fig 4A, cluster 3
190  showed the hypo-methylation and low immune cell infiltration. Hypo-methylation and low immune
191  cell infiltration might be the reason that cluster 3 had good survival.

192 However, middle-methylation and middle immune infiltration were in cluster 1 that had the
193  worst survival. Hyper-methylation and high immune infiltration were in cluster 2 that had
194  intermediate survival. We may find the reason from checkpoints. VTCN1 expression up-regulation
195  inbladder cancer led to worse survival[45, 46]. B7x (VTCN1 ) was remarkably overexpressed in many
196  human cancers, and it repressed the antitumor immune effect and regulated to escape
197  immunosurveillance[47] High-level expression of CD80 and CD86 may result in a good survival in
198  patients with nasopharyngeal carcinoma[48]. The absence or low-level expression of CD80 and CD86
199  in cancers may be one mechanism by which cancers escape immunosurveillance[48]. In fig.4E, these
200  checkpoints were significant differences among the three subgroups. Among them, VTCN1 (B7-H4)
201  was the higher expression in cluster 1. CD80 and CD86 were the lower expressions in cluster 1. So
202 these may cause cluster 1 with worse survival than cluster 2.

203 The tumor microenvironment contains stromal cells, tumor cells, and immune cells. The higher
204  stromal score and immune score, the lower purity of tumor. In Fig, cluster 2 had the highest stromal
205  score, immune score, and the lowest tumor purity. Cluster 3 had the lowest stromal score, immune
206  score, and the highest purity of the tumor. The distribution of immune score among three subgroups
207  was consistent with the distribution of immune cells(Fig 4F-I).

208 Endothelial cells can remodel the local immune microenvironment and help tumor cells escape
209  immunosurveillance in many ways[49]. Endothelial cells release chemokines to promote leukocyte
210  migration into tumor tissues and express adhesion protein to facilitate peripheral leukocyte
211  capture[50]. Endothelial cells can also forbid the activation and chemotaxis of immune cells and
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212 mediate inhibitory molecules to facilitate immune tolerance[51, 52]. Endothelial cells also show
213  increased expression of PD-L1 to repress T cell activation[53-55]. Besides, FasL expression in
214 endothelial cells promotes their ability to suppress activation CD8+ T cells, causing endothelial cells-
215  associated immune cell death and promote tumor escape[56, 57]. In the present study, the density of
216  endothelial cells in cluster 2 was the highest, and immune infiltration was the highest in cluster2(Fig
217  5).1tinferred that the endothelial cells might help tumor cells escape immunity.

218 Cancer cells had interaction with cancer-associated macrophages and tumor-associated
219  fibroblasts, which promotes tumor progression in bladder cancer[58]. In the present study, the
220  distribution of fibroblasts among three subgroups was consistent with macrophages' distribution
221  (Fig. 5). It suggested there was a correlation between fibroblasts and macrophages.

222 The patients in the therapy of tumors can benefit from the many inflammatory molecules that
223  also have an important role in cancer progression and development. The dual role of inflammatory
224  molecular is far from being fully understood[59].In the present study, the distribution of
225  inflammation-promoting among three subgroups was consistent with the distribution of immune
226  cells(Fig.5). It indicated the inflammation-promoting and immune cells might affect each other. But
227  the detailed role of inflammation-promoting may need more studies to be explored.

228 A previous study reported that the correlation between DNA methylation and gene expression
229  inlung cancer was identified for about 750 genes. They found one-third of these the correlation was
230  positive, indicating the challenges in finding widespread and strong negative correlations between
231  genes expression and genome-wide CpG methylation[30]. In fig 3A, immune cell genes expression is
232  ahigh expression in cluster 2, low expression in cluster 3, and middle expression in clusterl. It also
233  challenged the finding widespread and strong negative correlations between genes expression and
234  genome-wide CpG methylation.

235 The DNA hypermethylation of those promoter genes suppressed gene expression, which in turn
236  benefited cancer cells. Therefore, down-regulation of those genes may lead to the occurrence of cancer
237  stem and progenitor cells by DNA hypermethylation[24, 25]. The range of scores was from 0 to 1.
238 Zero means high differentiation, and one means undifferentiation[26]. However, in the present study,
239  RNA stemness score and DNA stemness score were the lowest in cluster 2 in Fig 6. It challenged the
240  above findings which down-regulation of those genes may lead to the occurrence of cancer stem and
241  progenitor cells by DNA hypermethylation. A previous study found that for several tumor types,
242 such as BLCA, LUSC, HNSC, and GBM, there was a negative correlation between DN Ass score with
243  leukocyte fraction and/or lower PD-L1 expression[26]. In the present study, cluster 2 had the highest
244 immune infiltration and high-level expression of CD274 (Fig.4E), but cluster 3 had the lowest DNAss
245 score. This result was the same as the previous work. In present work, we also found the lower RN Ass
246  score was associated with higher immune infiltration and higher-level expression of CD274(Fig 6 and

247  Fig. 4E).

248 TMB was a remarkable difference only between cluster 1 and cluster 2. (Fig. 7 D). It suggested
249  the TMB might be not correlated with methylation level. But the composition of genes of mutations
250  was different among the three subtypes. In Fig. 7. and 58 immune-cell-associated-genes were
251  identified from the highest mutant 30 genes in each subgroup. It meant that there was less overlap
252  among the three subtypes (Fig. 7 A-C). The mutations of ITGA9, ENG, EVI5, ATIC, and FZD2 in
253  cluster 1 were significantly higher than those in other subtypes. These genes are the bio-marker of
254  Mast cell, Plasmacytoid dendritic cell, Type 2 T helper cell, Immature dendritic cell, and
255  Macrophage[15, 16]. The mutations of CTSZ, HOXA1, and KLRF1 in cluster 2 were significantly
256  higher than those in rest subtypes. These genes are the bio-marker of Natural killer cell, CD56 bright
257 natural killer cell, and Gamma delta T cell[15, 16]. The mutations of DLC1, OSBPL1A, RRP12, C3AR],
258  MPZL1, and ITK in cluster 3 were significantly higher than those in rest subtypes. These genes are
259  the bio-marker of Type 2 T helper cell, Eosinophil, Effector memeory CD8 T cell, Activated CD8 T
260  cell, and Activated CD4 T cell[15, 16]. These immune cells with mutant genes among the three
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261  subgroups were different. It is possible to become promising drug targets based on these mutant

262  genes.

263 In figure 7E, CNV data in one subgroup was compared with the rest two subgroups. AKNA
264  with significant copy number gains was in cluster 1 and the gene is the biomarker of Activated B
265  cell[15, 16]. PARVG, SIK1 and UPK3A with significant copy number losses were in cluster 1 and these
266  genes are the biomarker of MDSC,  Effector memeory CD8 T cell, and Monocyte[15, 16]. Figure 7F
267  showed CLTB, GEMING, SIRPA and SIRPG with significant copy number gains. These genes are the
268 biomarker of Immature dendritic cell, Activated CD8 T cell, Plasmacytoid dendritic cell, and Central
269  memory CD4 T cell[15, 16]. DYRK2 with significant copy number losses was in cluster 2 and the gene
270  is the biomarker of CD56 dim natural killer cell[15, 16]. In figure 7G, CSFIR and GUSB with
271  significant copy number gains were in cluster 3 and these genes are the biomarker of T follicular
272 helper cell and Central memory CD8 T cell[15, 16]. CDC7, CHST12, CSE3R and OGT with significant
273  copy number losses were in cluster 3. These genes are the biomarker of Type 2 T helper cell, T
274 follicular helper cell, Immature dendritic cell and Plasmacytoid dendritic cell[15, 16]. These immune
275  cells with mutant genes among the three subgroups were totally different. It also is possible to
276  become promising drug targets based on these CNV genes.

277 In conclusion: The classification was accurate and stable. BC patients could be divided into three
278  subtypes based on the immune cells-associated CpG sites. Specific biological signaling pathways,
279  immune mechanisms, and genomic alterations were various among three subgroups. High-level
280  immune infiltration was a correlation with high-level methylation. The lower RNAss score was
281  associated with higher immune infiltration and higher-level expression of CD274.

282 4. Materials and Methods

283  4.1. Data pre-processing

284 Methylation data from Illumina Human Methylation 450 arrays was obtained from UCSC Xena
285  and had 437 samples (https://xenabrowser.net/datapages/, 2020-07-15). DN A-methylation (DNAss),
286  mRNA stemness (RNAss), RNA-sequencing data from 430 BC samples and clinical data also were
287  downloaded from UCSC Xena website. The Masked Somatic Mutation data (MuTect2. Variant0. Maf)
288  and the CNV data set (Masked Copy Number Segment, affymetrix snp 6.0) were obtained from
289  TCGA website (https://portal.gdc.cancer.gov/repository). The CNV data was comprised of 814
290  samples. Because the databases were the public databases, and our data was obtained directly from
291  these databases. There was no requirement for ethical approval.

292  4.2. Immune cells-associated genes selection

293 Immune cells-associated bio-markers were obtained from previous studies[15, 16]. And their
294  corresponding methylation sites were obtained. The criteria for exclusion probes from the analysis
295  was as followings: 1. If the CpG site data missed more than 70% in the samples, the CpG sites were
296  excluded from the analysis[17]. 2. Cross-reactive genome CpG sites were deleted. 3. Probes on the X
297  and Y chromosomes were moved excluded from the analysis. The remaining sites were imputed with
298  the k-nearest neighbors (KNN) imputation procedure[18].

299  4.3. Unsupervised hierarchical cluster analysis

300 The methylation sites corresponding toimmune cells-associated genes were acquired.
301 Differentially methylation sites (DMSs) were identified between normal samples and bladder cancer
302  samples with adjusted P-value < 0.05 and |deltabetal > 0.2. Unsupervised hierarchical clustering was
303  performed based on immune cell-associated methylation data to identify subtypes of BC with
304  “sparcl” R software package. The overall survival (OS) curve of BC subsets was gotten with Kaplan—
305  Meier method and with “survival” package in R software. Principal component analysis (PCA) was
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306  performed to validate the classification. A barplot showed the relationship between clinical traits and
307  the biological characteristics of subtypes.

308  4.4. Single sample gene set enrichment analysis (ssGSEA) based on immune cells bio-marker

309 Single sample gene set enrichment analysis was performed to quantify the infiltration of
310  immune cells. The ssGSEA ranked the genes based on their absolute expression in a sample with
311  “GSEABase” and “GSVA” R package. The enrichment score is calculated by integrating the
312  differences between the empirical cumulative distribution functions of the gene ranks[19, 20].
313 Activated B cell, activated CD8 T cell, effector memeory CD8 T cell, central memory CD8 T cell,
314  activated CD4 T cell, effector memeory CD4 T cell, central memory CD4 T cell, regulatory T cell,
315  gamma delta T cell, immature B cell, memory B cell, type 17 T helper cell, T follicular helper cell, type
316 1T helper cell, and type 2 T helper cell are adaptive immune cells. CD56 dim natural killer cell, CD56
317  bright natural killer cell, Eosinophil, Activated dendritic cell, Immature dendritic cell, MDSC,
318  Macrophage, Monocyte, Mast cell, Plasmacytoid dendritic cell, Natural killer cell, Natural killer T
319  cell, and Neutrophil are innate immune cells.

320 Immune checkpoints were a selected from previous studies[21, 22] to be compared among the
321  subtypes. Kruskal-Wallis. Test was performed.

322  4.5. Tumor microenvironment (TME)

323 ESTIMATE algorithm was obtained from the public source website (https://sourceforge.net/
324 projects/estimateproject/) to estimate the scores of stromal and immune cells based on gene
325  expression signature in tumor samples. Then, we calculated stromal scores, immune scores, tumor
326  purity, and ESTIMATE scores for each sample. Stromal scores, immune scores, tumor purity, and
327  ESTIMATE scores were compared among subtypes.

328  4.6. Single sample gene set enrichment analysis (ssGSEA)

329 The bio-marker of APC_co_inhibition, APC_co_stimulation, Endothelial cells, Fibroblasts, HLA,
330 Inflammation-promoting, MHC _class_I, Type_I_IFN_Reponse and Type_II_IFN_Reponse were
331  selected from studies[19, 20]. Single sample gene set enrichment analysis was performed to rank the
332  genes based on their absolute expression in a sample.

333 4.7. DNA-methylation (DNAss) and mRNA stemness (RN Ass) among subgroups

334 During cancer progression, a differentiated phenotype was lost, and progenitor and stem-cell-
335  like characteristics were acquired[23]. The DNA hypermethylation of those genes suppressed gene
336  expression, which in turn benefited cancer cells. Therefore, down-regulation of those genes may lead
337  to the occurrence of cancer stem and progenitor cells by DNA hypermethylation[24, 25]. RNA
338 stemness score based on mRNA expression (RNAss) and DNA stemness score based on DNA
339  methylation pattern (DNAss) were utilized to measure tumor stemness[26]. The rang of scores was
340  from O to 1. Zero means high differentiation, and 1 means undifferentiation[26]. DNA-methylation
341  (DNAss) and mRNA (RNAss) among three subgroups were analyzed.

342  4.8. Analysis of mutations and CNVs among subgroups.

343 The ‘maftools’ software package was utilized to analyze and visualize immune cell biomarker-
344 associated mutation data[27]. Immune cell biomarker-associated mutation data was compared
345  between one group with the rest groups with Chi-square Test. The P-value is less than 0.05. TMB is
346  called the density of tumor genes mutation[27]. TMB (tumor mutation burden) was compared among
347  subtypes based on immune cell biomarker-associated mutation data.

348 Then, immune cell biomarker-associated CNV data was analyzed. Genomic identification of
349  significant targets in cancer (GISTIC) algorithm was utilized to classify the copy number variant
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genes with remarkable gains and losses[28, 29]. Parameter thresholds were set to 0.2 and -0.2 for
genomic gains and losses, respectively[28, 29]. Immune cell biomarker-associated copy number
variant data was compared between one group with the rest groups with a Chi-square Test and P-
value < 0.01.

5. Conclusions

The classification was accurate and stable. BC patients could be divided into three subtypes
based on the immune cells-associated CpG sites. Specific biological signaling pathways, immune
mechanisms, and genomic alterations were various among three subgroups. High-level immune
infiltration was a correlation with high-level methylation. The lower RNAss score was associated
with higher immune infiltration and higher-level expression of CD274.
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