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Abstract: This study identifies different polymers using their fluorescent data under various light 

wavelengths that ranged from 245 nm to 345 nm in 10 nm intervals. The primary goal of this sensor 

proposal is to select optimal wavelengths that can lead to accurate identification of six polymers: 

polyamide 6 (PA6), polymethyl methacrylate (PMMA), polypropylene (PP), polystyrene (PS), high-

density polyethylene (HDPE), and polyethylene terephthalate (PET). By examining the specific 

fluorescence emission patterns of these polymers, the study provides insight into how each material 

responds uniquely to different excitation light sources. The potential approach could streamline 

polymer identification in recycling applications or even in quality control and environmental 

monitoring including microplastics. A lab-on-a-chip device for microplastics identification is 

proposed in this work. This approach could lead to improved accuracy in polymer classification, 

contributing to more efficient material sorting and processing.  

Keywords: optical sensor; fluorescence; polymer; plastic pollution; microplastics 

 

1. Introduction 

The ever-growing applications of polymers has created great advancements in various fields, 

ranging from medicine, to technology, to consumer goods, [1]. Plastics have been used to make 

products that transformed the industry with their versatility, durability, and little cost. Over the 

years, however, the increasing pollution caused by polymers was something that we kept our eyes 

blindfolded to [2]. When thrown away improperly, these residues end up dumped in the oceans and 

soil. This creates contamination in food chains that poses a threat to both the wildlife [3–5] and human 

health [6].  Microplastics are one of the smallest plastic entities that represent a tremendous 

challenge since they are ubiquitous in all sorts of environments-from the busiest cities to the last wild 

ecosystems, such as deep ocean floors and the Arctic [7,8]. This global spread highlights the ability of 

microplastics to disperse and integrate into ecological chains, raising significant concerns about their 

environmental and public health impacts. 

The most common polymers found in our daily lives include polyethylene (PE), used in plastic 

bags and bottles; polypropylene (PP), present in packaging, containers, and utensils; polyethylene 

terephthalate (PET), widely used in beverage bottles and food packaging; polystyrene (PS), found in 

disposable products like cups and plates; and polyvinyl chloride (PVC), used in piping, cable 

coatings, and construction materials.  
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A great portion of polymers released into the environment eventually undergo slow 

photodegradation into smaller pieces as a result of sunlight, microbial activity, and mechanical 

abrasion [9]. The smaller these plastics become, turning into microplastics and even nanoplastics, the 

harder it is to detect and analyze them. The characteristics and properties of smaller particles due to 

their higher surface area to volume ratio become very different from that of larger particles which 

makes their identification very complex. Furthermore, these fragments are much more readily 

transported through the air, water, and soil, which makes it very difficult to remove these substances 

from the environment, thereby causing long-term health and ecological problems and concerns [10]. 

The most popular plastics identification techniques include Fourier-transform infrared 

spectroscopy (FTIR) and Raman spectroscopy [11]. FTIR techniques utilize the absorption of infrared 

radiation to ascertain the chemical makeup of particular plastics. Alternatively, Raman spectroscopy 

gives information regarding the molecular structure of samples by means of light inelastic scattering. 

FTIR is well-suited for most of the chemical identification of microplastics, particularly for the larger 

ones (generally greater than 20 micrometres), as it offers absorption spectra which contains detailed 

information that enables determination of polymer types. However, FTIR is less effective in the 

analysis of smaller particles and has the additional limitation of being unable to report non-organic 

constituents; in other words, clean samples devoid of water contamination are indispensable. [12] 

Raman spectroscopy, on the other hand, is superior in the examination of small microplastics even to 

the order of nanometres and can operate in water without much damage from water. Furthermore, 

Raman detection can be used for organic and inorganic substances. Its drawbacks include 

fluorescence interference which can wedge the spectra, and comparatively low speed compared to 

FTIR in acquiring the data. 

Both Raman spectroscopy and FTIR spectrometry prove invaluable for the compositional 

analysis of microplastics. However, the technique of capturing, filtering, and isolating microplastic 

particles is extremely tedious and difficult, often resulting in contamination from the cleaning process 

or particles being unintentionally removed which leads to inaccurate counts of the quantity of 

particles [13]. This emphasizes the increasing demand for more economical and expedited analysis 

techniques that would improve the efficiency of microplastic detection and measurement. 

Some research attempts the use of fluorescence with particular dyes for polymer recognition, in 

which case dyes attach to plastic particles and under certain wavelengths emit specific fluorescence. 

This approach has shown potential for improving the sensitivity and precision of microplastics 

detection, particularly in difficult samples. The dyes most frequently used for identification of 

polymers are Nile Red, Rhodamine B, Safranin T, and Eosin B [14]. However, aside from the flaw of 

having to rely on a dye, a more serious problem with this method is that the range of fluorescence 

emission for most dyes lies within 540-640 nm (depending on the dye), where organic matter in the 

sample substrate (or even biofilms that have formed on the surface of the polymer) possess some 

degree of fluorescence.  

This phenomenon can mask the accurate identification of polymers. Also, while applying dyes 

for staining the polymers, some materials give out this signal too weak to be picked for measurement. 

In more complex cases, like fibres, staining can be non-uniform. Many of these dyes are poisonous 

and may aggravate preexisting environmental pollution [14]. 

In oceanic contexts, the natural organic matter fluorescence is greatest in the visible range of 400 

to 500 nm, which encompasses the blue and green wavelengths. This is primary attributed to humic 

substances, which form a large part of dissolved organic matter, along with phytoplanktonic 

biological degradation products. Nonetheless, the application of dyes in fluorescence studies is often 

misleading because most dyes pass through the 400 to 670 nm band which a priori overlaps with the 

natural fluorescence band of organic matter. This overlap can create interference and makes it 

difficult to separate real signals from artificial signals produced from dye sources. 

Beyond the use of dyes, polymers can also exhibit intrinsic fluorescence, allowing their 

identification based on their natural spectral footprint and fluorescence lifetime [15]. By analysing 

these properties without the need for external dyes, it is possible to differentiate polymers through 
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their unique fluorescence emissions and decay times (around 0.5-10 ns), offering a non-invasive and 

potentially faster approach for polymer identification.  

The fluorescence lifetime measurement technique typically requires more sophisticated and 

expensive equipment (since the lifetime is typically in the range of nanoseconds). Fluorescence 

lifetime analysis involves complex instrumentation, and the data processing itself is algorithmically 

challenging. This makes the method less accessible and less practical for large-scale or field 

applications. 

The application of dyes and impurities is less noticeable when it comes to the sensitivity of UV 

fluorescence techniques. This insensitivity comes from the fact that many stains and contaminants do 

not absorb and emit energy in the form of light in the ultraviolet region, which reduces interference 

in the measurements taken. This means that ultrasound scanning with fluorescence can be done with 

more accuracy and reliability in the presence of contaminants, as the effect on the signal is largely 

imperceptible. [16] 

2. Materials and Methods 

Six different plastic types as pellets, PMMA Altuglas GR 7E from ARKEMA, PS from Styrolution 

158 K (crystal clear) from INEOS, HDPE Eraclene MP90 U from VERSALIS, PA6 Badamid B70 from 

BADA AG, PP ISPLEN PP080G2M from REPSOL, PET injection molding grade from SELENIS, were 

used.  

A thermal press was employed to transform the pellets into thin films with a thickness ranging 

from approximately 0.004 to 0.006 mm. The resulting films are transparent. The melting points and 

thermal press temperatures used for each polymer are summarized in Table 1. 

Table 1. Melting Points and Thermal Press Temperatures for Polymer Film Production. 

Polymer Melting Point 
Thermal press plate 

temperature 

PET 260° 280° 

HDPE 130° 245° 

PA6 220° 245° 

PMMA 160° 230° 

PP 160° 230° 

PS 235° 220° 

Fluorescence spectra of the films were analysed within the range of 250 to 480 nm (1 nm 

resolution), with excitation wavelengths spanning from 245 nm to 355 nm (10 nm resolution). These 

measurements were conducted using a Fluorolog 3 spectrofluorometer (Horiba - Jobin Yvon), 

equipped with double monochromators in both excitation and emission. 

3. Results 

The primary aim of this study was to identify optical properties that can differentiate between 

six types of polymers (PMMA, PS, PVC, HDPE, PP, PA6).  

3.1. Fluorescence Spectra 

Figure 1 represents an Excitation Emission Matrix (EEM) plot. In these plots, the y-axis indicates 

the excitation wavelength, while the x-axis represents the emission wavelength. The intensity of 

fluorescence is depicted by a color gradient from blue to red, where lower intensities of fluorescence 

are lighter blue while higher intensities of fluorescence are warmer colors like green, yellow, and 

orange, as illustrated on the scales in Figure 1.  
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Figure 1. EEM matrices for various polymers. Each subfigure (a–g) represents a different polymer in the 

following order: (a) PS, (b) PA6, (c) PET, (d) PMMA, (e) PP, and (f) HDPE. 

The fluorescence spectra of various polymers, obtained at different excitation wavelengths for 

each polymer, reveal distinct fluorescence peaks for each excitation. These unique spectral features 

vary across different polymers, allowing for their differentiation through spectral analysis.  

In a visual analysis of Figure 1, the polymers PS, PP and HDPE have fluorescence peeks with 

emission in the range 300-350 nm, when excite in the range 260-300 nm, in contrary of PET, PA6 and 

HDPE. The PS excitation wavelength is slightly higher (285 nm) than PP (270 nm). HDPE has higher 

emission wavelength (peak at 350 nm) than the former PS and PP. 

Both PET and PA6 are the only ones that can be excited 330-350 nm, but emission peaks are at 

380-400 nm for PET and 400-430 nm for PA6. PMMA presents the fluorescence emission peak at 350-

400 nm, excited with wavelengths bellow 250 nm. 

a) b) 

c) d) 

f) g) 
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Despite the differences in fluorescence spectrum of these plastics, a device to measure all the 

spectrum as presented in Figure 1 (where emission was measured with 1 nm resolution with high 

sensitivity detectors) would be bulky and expensive. Based on the analysis of Figure 1, the UV LEDs 

and optical filters availability, the excitation wavelengths of 265 nm, 285 n and 355 nm, and emission 

wavelengths of 300 nm, 355 nm, 370 nm, 405 nm and 455 nm were chosen. 

3.2. Device Proposal 

A lab-on-chip device is designed for the fluorescent detection of microplastics as illustrated in 

Figure 2. The sensor configuration includes a lab-on-chip that channels the plastic samples into a 

microfluidic pathway, analogous to flow cytometry. Every plastic fragment is exposed to UV light 

from LEDs of different wavelengths as it moves through the channel. Specific UV excitation induces 

fluorescence which is measured by photodetectors. A non-destructive measurement of fluorescence 

is made possible along with the measurement of different types of plastics with different fluorescent 

signatures.   

The sensor setup (Figure 2) is composed of 5 identical sections. Each section analyses 

fluorescence emission in a selected wavelength (in the range 305 - 455 nm). Each section comprises 

three UV LED (265 nm, 285 nm and 355 nm) positioned in an arc on a support, each directed toward 

the centre of the PDMS-based microfluidic channel. through which water containing plastic 

microparticles flows. The purpose of this configuration is to ensure that the radiation from each LED 

reaches the particles but not the photodetector. The photodetector is positioned in a direction at 90º. 

This alignment allows the photodetectors to capture and analyse the radiation of fluorescence, 

without receiving direct light from the LED. 

 

EACH SECTION INCLUDES: 

1 PHOTODETECTOR 

1 LENS 

3 LEDS 

WATER FLOW 

PHOTODETECTOR 

EXCITATION LEDS 
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Figure 2. Sensor Setup Design, including a lab-on-chip for particle alignment and 5 detection sections. Each 

section includes a photodetector and 3 excitation LEDs: (a) isometric view of complete device; b) cross-sectional 

view of each section; c) lateral view of complete device; d) detailed lateral view of each section. 

3.3. Optical Detection System 

The sensor's optical system is configured to capture and focus the fluorescence emissions 

efficiently. Three LEDs, operating at 265 nm, 285 nm, and 355 nm, provide controlled excitation light 

to the sample. The emitted fluorescence is captured by photodetectors with wavelength filters for five 

nominal channel wavelengths: 305, 355, 370, 405, and 455 nm. These filters dramatically aid in weak 

stray light and background signal detection by helping to isolate only the pertinent spectral bands. 

Further, each filter is combined with a converging lens which captures and focuses from the sample 

onto the photodetector to enhance signal collection, improving detection sensitivity within the 

desired spectral region. The collection optics must be carefully implemented to collect as much signal 

as possible and cut out signal losses, to ensure strong sensitivity and accuracy when identifying 

different plastic material fluorescence. The components proposed to the optical setup are listed in 

Table 2. 

Table 2. Optoelectronic Components for Sensor Development. 

 Characteristics Reference 

Excitation LED 265 nm SU CZHEF1.VC-U1U2-L0-V2 

 285 nm SML-LXF3535UVCC10  

 355 nm NDU1104ESE-365-TR 

Optical Filters 

(12.5 mm) 

300 nm 300nm CWL, 12.5 Dia. Hard Coated OD 4.0 25nm 

Bandpass Filter (Edmund Optics) 

355 nm 350nm CWL, 12.5 Dia. Hard Coated OD 4.0 25nm 

Bandpass Filter (Edmund Optics) 

370 nm 375nm CWL, 12.5 Dia. Hard Coated OD 4.0 25nm 

Bandpass Filter (Edmund Optics) 

405 nm 400nm CWL, 12.5mm Dia. Hard Coated OD 4.0 25nm 

Bandpass Filter (Edmund Optics) 

455 nm 450nm CWL, 12.5mm Dia. Hard Coated OD 4.0 25nm 

Bandpass Filter (Edmund Optics) 

Photodetector 

190 to 1000 nm  

Photosensitive area 𝜙 

0.8 mm 

 

S16586 

(Hamammatsu) 

3.4. Readout Electronics 

The sensor's electronic system is designed to control three LEDs, each emitting at a distinct 

excitation wavelength, and to capture fluorescence responses across five different detection 

wavelengths. A set of photodetectors measures the emitted fluorescence from each sample after LED 

excitation. A transimpedance amplifier is proposed to convert current of the photodetector 

(photodiode) to voltage. The data acquisition is synchronized through microcontroller-based 

electronics, ensuring precise timing and control over the excitation and detection processes. The 

software, developed to process the fluorescence signals, computes intensity ratios from the measured 

data (see Table 3). For each excitation wavelength, the five readouts from the photodetectors are 

compared, calculating the ratio between them. As an example, the first line in Table 3 (whereas 265 

nm excitation was used), shows the ratio of emission intensity measured at 305 nm and 355 nm, for 

the 6 polymers studied. Readouts at wavelengths below the excitation wavelength were not 

considered, fluorescence always occurs at wavelengths above excitation. 
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3.5. Classification Algorithms 

Despite the differences of spectral fluorescence in Figure 1, a device to identify such polymers 

should be based in algorithms to extract such differences. An example of identification algorithms is 

explored, but many alternatives could be implemented, including machine learning approaches.  

Instead of the intensity values presented in Figure 1, the identification algorithm should be based 

on rations between emission intensities. Using ratios of fluorescence intensities offers several 

significant advantages over using raw intensity values alone, in particular, the normalization of 

values and the reduction of variability.  

Raw fluorescence intensity can be affected by variations, such as fluctuations in LED intensity, 

photodiode sensitivity, and alignment. Factors like sample thickness, surface roughness, and 

concentration can influence emission intensity. Temperature changes and ambient light can also 

affect emission intensity. The use of ratios normalizes these variations, reduce the influence of these 

variables providing more consistent and reliable data. 

Table 3. - Fluorescence Emission Ratios for Different Polymers using 265, 285 and 355 nm as excitation and 305, 

355, 370, 405 and 455 nm as emission. 

Excitation 

(nm) 

Emission  

(nm) 

Ratio PS HDPE PA6 PMMA PET PP 

265 305 355 I(305)/I(355) 0.798 0.990 0.253 0.917 0.050 2.121 

265 305 370 I(305)/I(370) 1.401 1.138 0.166 0.789 0.033 2.933 

265 305 405 I(305)/I(405) 6.727 2.921 0.088 0.812 0.047 8.908 

265 305 455 I(305)/I(455) 23.020 7.472 0.106 1.155 0.210 22.068 

265 355 370 I(355)/I(370) 1.757 1.150 0.655 0.860 0.667 1.383 

265 355 405 I(355)/I(405) 8.434 2.950 0.346 0.885 0.949 4.200 

265 405 370 I(405)/I(370) 0.208 0.390 1.896 0.972 0.702 0.329 

265 455 355 I(455)/I(355) 0.035 0.133 2.389 0.794 0.238 0.096 

265 455 370 I(455)/I(370) 0.061 0.152 1.565 0.683 0.159 0.133 

265 455 405 I(455)/I(405) 0.292 0.391 0.826 0.702 0.226 0.404 

285 305 355 I(305)/I(355) 2.159 0.226 0.366 0.333 0.038 1.122 

285 305 370 I(305)/I(370) 3.158 0.329 0.254 0.300 0.025 1.886 

285 305 405 I(305)/I(405) 9.727 0.930 0.166 0.376 0.035 6.161 

285 305 455 I(305)/I(455) 37.806 1.848 0.235 0.623 0.151 12.151 

285 355 370 I(355)/I(370) 1.463 1.453 0.693 0.900 0.667 1.681 

285 355 405 I(355)/I(405) 4.505 4.110 0.452 1.129 0.930 5.492 

285 405 370 I(405)/I(370) 0.325 0.353 1.535 0.798 0.717 0.306 

285 455 355 I(455)/I(355) 0.057 0.122 1.560 0.535 0.249 0.092 

285 455 370 I(455)/I(370) 0.084 0.178 1.082 0.482 0.166 0.155 

285 455 405 I(455)/I(405) 0.257 0.503 0.705 0.604 0.232 0.507 

355 405 370 I(405)/I(370) 2.096 3.952 5.091 2.521 1.141 3.519 

355 455 370 I(455)/I(370) 1.451 3.183 4.173 1.721 0.343 2.492 

355 455 405 I(455)/I(405) 0.692 0.806 0.820 0.683 0.301 0.708 

Classification problems often rely on distance-based methods to determine if a data point is 

unusual or belongs to a specific class. Two of the most common distance measures used are Euclidean 

distance and Mahalanobis distance. 

Euclidean distance is widely used for distance measurement in classification problems and 

algorithms such as k-Nearest Neighbors (k-NN) and clustering. It measures the “straight-line” 

distance between two places in space which is useful in scenarios when the geographic closeness of 

the data points is significant. The distance separating two points X and Y is determined using 

equation (1). 
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𝐷𝐸(𝑋, 𝑌) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (1) 

Mahalanobis Distance is a statistic for the distance between a point and a distribution (often the 

mean of a dataset). In contrast with Euclidean distance which assumes invariance of all features, 

Mahalanobis distance uses set variables as weights determining the importance of a set of features 

with respect to each other and the distribution of the data. This is useful in determining the location 

of the specific data point in relation to the center of the distribution defined in terms of the data’s 

covariance. For the two points X and Y in a n-dimensional space the Mahalanobis distance 𝐷𝑀(𝑋, 𝑌) 

is defined by equation (2). 

𝐷𝑀(𝑋, 𝑌) = √(𝑋 − 𝜇)𝑇𝑆−1(𝑋 − 𝜇) (2) 

Where µ is the mean of the data (the centroid), 𝑆−1 is the inverse of the covariant matrix of the dataset 

and (𝑋 − 𝜇)𝑇 is the transpose of the difference between the point and the mean. 

Euclidean distance is simple and works well for independent features, but it doesn't account for 

correlations and feature scale differences. Mahalanobis distance is more powerful for complex, high-

dimensional data with correlated features and varying variances, as it adjusts for the covariance 

between features. Euclidean distance will be used, since the use of ratios instead of intensity raw 

values normalize scales and minimizes the correlation of variables, and only sample of each plastic 

was analysed as presented in Figure 1. 

A similar method to Euclidean distance is implemented, however each distance is normalized, 

since each ratio can have very different values (3). 

𝐷𝐸(𝑋, 𝑌) = √∑(
𝑥𝑖 − 𝑦𝑖

𝑦𝑖

)2

𝑛

𝑖=1

 (3) 

where 𝑥𝑖 is the value obtained for each ratio in an unknown plastic sample and 𝑦𝑖  is a reference 

ratio from Table 3, the index I is the line number of Table 3. 

The algorithm implements the following steps: 

1. For an unknown sample, read the intensity of each photodetector, for each excitation. 

2. Calculate the 23 ratios between emission intensities as in Table 3. 

3. Calculate the 6 distances between the unknown sample and each of the 6 references of Table 3, 

using equation 3. 

4. The smallest distance corresponds to the identified plastic. 

4. Discussion 

The reliability of the classification algorithm was tested by introducing random variations into 

the fluorescence spectra. For each polymer, errors were introduced randomly, simulating real-world 

deviations in spectral data. These errors were generated by applying random variations in 

fluorescence intensity ratios, with error factors of 1.5, 2, 3, 4, and 6. Each error factor corresponds to 

a percentage variation in each ratio, as shown in Table 4. 

Table 4. Ranges of random error introduced in each ratio for robustness analysis. 

Error factor Maximum decrease  Maximum increase 

1.5 -33% +50% 

2 -50% +100% 

3 -67% +200% 

4 -75% +300% 
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6 -83% +500% 

For each polymer type and error factor, 20 spectra were generated, resulting in a total of 600 

simulated spectra. These were fed into the classification algorithm, and the resulting classifications 

were compared against the expected polymer types to evaluate accuracy. Figure 3 summarizes the 

robustness of the classification algorithm. 

 

Figure 3. Probability of correct classification of polymers, with error introduced. a) Correct classification 

probability of a PS polymer and probabilities of false identifications. b) Correct classification probability of all 

tested polymers. 

Figure 3 summarizes the robustness of the classification algorithm. In Figure 3a, the probability 

of correctly classifying PS is plotted against the error factor, with false identification probabilities for 

other polymers. Figure 3b presents the overall classification accuracy for all tested polymers. For error 

factors below 2, corresponding to intensity rations variations in the range -50% to +100%, all 

classifications were 100% correct. Even with an error factor of 6, where variations in ratios ranged 

from -83% to +500%, the probability of correct classification remained above 50%, demonstrating the 

robustness of the approach. 

5. Conclusions 

This study highlights the effectiveness of a fluorescence-based lab-on-a-chip sensor for polymer 

identification offering a compact, low-cost, and efficient alternative to traditional spectroscopy 

techniques.  The suggested system can identify six polymers through the analysis of fluorescence 

emission patterns under controlled UV excitation making it highly relevant for applications in 

recycling, quality control, and environmental monitoring, particularly for microplastic detection. 

A lab-on-a-chip device for microplastics detection is proposed using UV LEDs at 265 nm, 285 

nm and 355 nm and five photodetectors with optical filters from 305 to 455 nm. While passing 

through the channel, each plastic particle is exposed to UV light which causes fluorescence. The 

subsequent fluorescence is then captured and quantified by the photodetectors. 

Experimental studies show that the ratios of fluorescence intensities are a robust method for 

polymer differentiation. The classification algorithm guarantees high accuracy despite changes in the 

spectral data. The sensor design permits real time identification and can be used in automated sorting 

and monitoring systems. 

Although the method has been proven to work, it has to overcome problems like fluctuations in 

polymer composition, environmental aging, and additive masking. Further studies should mitigate 

these problems by broadening the reference database, improving the detection algorithms, and 

utilizing sophisticated data processing methods like Principal Component Analysis (PCA) and 

machine learning for better classification.  

Overall, the research undertaken represents an essential milestone toward practical and wide-

ranging fluorescence-based polymer identification systems. As this technology undergoes further 
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refinement and verification, it stands to improve the efficiency of material separation, advance 

recycling efforts, and bolster environmental oversight in relation to plastic pollution. 

In future undertakings, the authors intend to deploy the system and validate it against a wide 

array of polymer samples. 
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Abbreviations 

The following abbreviations are used in this manuscript: 
EEM Excitation-Emission Matrix 

HDPE High-Density Polyethylene 

LED Light-Emitting Diode 

PA6 Polyamide 6 

PDMS Polydimethylsiloxane 

PET Polyethylene Terephthalate 

PMMA Polymethyl Methacrylate 

PP Polypropylene 

PS Polystyrene 

UV Ultraviolet 
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