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Abstract

A Soft Set is a parameterized family of subsets of a universe, where each parameter selects elements 
relevant under that condition. A ContraSoft Set is a parameterized soft set in which each parameter’s 
values are linked with a contradiction degree, and a threshold mechanism is applied to retain only 
those values that do not exceed a specified level of contradiction with respect to a chosen reference. 
In this paper, we explore two new concepts, namely the Contra-HyperSoft Set and the Contra-
SuperHyperSoft Set, extending the framework of contradiction-aware modeling.
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1. Preliminaries
We collect the basic terminology and notation used in what follows. The definitions in this paper

are assumed to be finite.

1.1. Soft Set

A Soft Set is a parameterized family of subsets selecting universe elements relevant to each
parameter, supporting flexible decision modeling [1–3]. The definitions of the Soft Set are provided
below.

Definition 1 (Soft Set). [1] Let U be a universal set and E a set of parameters. A soft set over U is defined as
an ordered pair (F, E), where F is a mapping from E to the power set P(U):

F : E → P(U).

For each parameter e ∈ E, F(e) ⊆ U represents the set of e-approximate elements in U, with (F, E) forming a
parameterized family of subsets of U.

Example 1 (Soft Set — Hotel Filtering with Parameterized Conditions). Universe and parameters. Let
the universe of candidate hotels be

U = {h1, h2, h3, h4, h5, h6, h7, h8}.

Let the parameter set be

E = {near_station, free_breakfast, onsen, under¥12000, twin_room}.
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Define a soft set (F, E) with F : E → P(U) by

F(near_station) = {h1, h2, h5, h7},

F(free_breakfast) = {h2, h4, h5, h6},

F(onsen) = {h3, h5, h8},

F(under¥12000) = {h1, h4, h5, h7, h8},

F(twin_room) = {h2, h4, h6, h7}.

Concrete queries and explicit computations.

(i) near_station & under¥12000: F(near_station) ∩ F(under¥12000) = {h1, h2, h5, h7} ∩ {h1, h4, h5, h7, h8}
= {h1, h5, h7}, | · | = 3.

(ii) (free_breakfast ∪ onsen) & twin_room:
(

F(free_breakfast) ∪ F(onsen)
)
∩ F(twin_room)

=
(
{h2, h4, h5, h6} ∪ {h3, h5, h8}

)
∩ {h2, h4, h6, h7}

= {h2, h4, h6}, | · | = 3.

(iii) onsen & twin_room: F(onsen) ∩ F(twin_room) = {h3, h5, h8} ∩ {h2, h4, h6, h7} = ∅.

These results illustrate how a soft set supports multi-criterion filtering by standard set operations with exact
outputs.

1.2. ContraSoft Set

A ContraSoft Set is a parameterized soft set where each parameter’s values are associated with
a contradiction degree, and thresholding is used to aggregate only those values that are not too
contradictory with respect to a chosen reference. This allows soft-set modeling to filter or weight
information based on contradiction, rather than uncertainty.

Definition 2 (Contradiction on attribute values). Let V be a nonempty finite set of attribute values. A
contradiction function on V is a map

c : V × V −→ [0, 1]

such that
c(v, v) = 0 (reflexivity), c(v, w) = c(w, v) (symmetry).

The quantity c(v, w) measures the degree of contradiction between v and w (larger means more contradictory).

Example 2 (Contradiction on attribute values — temperature preference). Let V = {cold, mild, hot}.
Define the symmetric contradiction c : V × V → [0, 1] (with c(v, v) = 0) by

c =

cold mild hot
cold 0 0.4 0.9
mild 0.4 0 0.5
hot 0.9 0.5 0

so, e.g., c(cold, hot) = 0.9 expresses a strong contradiction, while c(cold, mild) = 0.4 is moderate.

Definition 3 (ContraSoft structure). Let U be a nonempty universe and E a nonempty set of parameters. For
each e ∈ E fix:

• a nonempty finite value set Ve;
• a contradiction function ce : Ve × Ve → [0, 1] (Definition 2);
• a designated reference value v⋆e ∈ Ve.
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Write V :=
⊔

e∈E({e} × Ve) for the disjoint union of all parameter–value pairs.

Example 3 (ContraSoft structure — hotels by noise and price). Let the universe be U = {h1, h2, h3, h4} and
parameters E = {noise, price}. For each e ∈ E fix a finite value-set Ve, a contradiction ce : Ve × Ve → [0, 1],
and a reference value v⋆e ∈ Ve:

Vnoise = {quiet, moderate, loud}, cnoise =

quiet moderate loud
quiet 0 0.3 0.8

moderate 0.3 0 0.4
loud 0.8 0.4 0

, v⋆noise = quiet.

Vprice = {cheap, mid, expensive}, cprice =

cheap mid expensive
cheap 0 0.2 0.7
mid 0.2 0 0.3

expensive 0.7 0.3 0

, v⋆price = mid.

These choices realize Definition (ContraSoft structure) by specifying value domains, their contradiction degrees,
and per-parameter references.

Definition 4 (ContraSoft Set). Let U be a finite universe of objects and E a finite set of parameters. A
ContraSoft Set is a quadruple

CS := (U, E, F, c),

where

• F : E → P(U) is the (crisp) soft mapping; F(e) ⊆ U is the set of objects accepted (or classified as
positive) under parameter e;

• c : E × E → [0, 1] is a contradiction degree on parameters, symmetric and reflexive on the diagonal:

c(e, e) = 0, c(e, f ) = c( f , e) (∀ e, f ∈ E).

For x ∈ U and e ∈ E, the atomic lemma “x is accepted by e” is represented by

A(x, e) : x ∈ F(e),

with truth value T if x ∈ F(e) and F otherwise.

Example 4 (ContraSoft Set — Noise-Aware Hotel Selection with Contradiction Thresholding). Uni-
verse, parameters, and soft mapping. Let the same universe U be as above. Consider parameters

E = {quiet, nightlife, coworking, scenic}.

Define F : E → P(U) by

F(quiet) = {h1, h3, h5, h8}, F(nightlife) = {h2, h4, h6},

F(coworking) = {h2, h5, h6, h7}, F(scenic) = {h3, h5, h7, h8}.

Contradiction degrees on parameters. Let c : E × E → [0, 1] be symmetric with

c(·, ·) quiet nightlife coworking scenic
quiet 0 0.9 0.4 0.2

nightlife 0.9 0 0.3 0.5
coworking 0.4 0.3 0 0.4

scenic 0.2 0.5 0.4 0
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(diagonal 0, larger values mean more contradictory).
Reference and thresholded aggregation. Fix the reference parameter e⋆ = quiet and threshold

τ = 0.4. Define the accepted envelope

S(τ)(e⋆) :=
⋃

e∈E: c(e,e⋆)≤τ

F(e).

Eligible parameters are those within the contradiction radius:

c(quiet, quiet) = 0, c(coworking, quiet) = 0.4, c(scenic, quiet) = 0.2, c(nightlife, quiet) = 0.9 > τ.

Hence
S(τ)(quiet) = F(quiet) ∪ F(coworking) ∪ F(scenic)

= {h1, h3, h5, h8} ∪ {h2, h5, h6, h7} ∪ {h3, h5, h7, h8}

= {h1, h2, h3, h5, h6, h7, h8}, |S(τ)| = 7.

Tighter threshold for comparison. With τ′ = 0.2, only quiet and scenic are admitted:

S(τ′)(quiet) = F(quiet) ∪ F(scenic) = {h1, h3, h5, h7, h8}, |S(τ′)| = 5.

Thus S(τ) is monotone in τ, and the contradiction metric controls how widely we aggregate across potentially
conflicting parameters.

1.3. HyperSoft Set and SuperHyperSoft Set

HyperSoft Set maps each multi-attribute tuple from a Cartesian product to a subset of the universe
consistent with those values [4–8]. SuperHyperSoft Set maps tuples of subsets from power-set domains
to universe subsets, generalizing HyperSoft; singletons in each coordinate recover HyperSoft [9,10].

Definition 5 (HyperSoft Set). [4] Let U be a finite universe and let A1,A2, . . . ,Am be m attribute value
domains. Consider the Cartesian product

C = A1 ×A2 × · · · × Am,

so that each parameter γ = (γ1, γ2, . . . , γm) ∈ C chooses a single value γi ∈ Ai for every attribute. A
HyperSoft Set over U is a pair (G, C) where

G : C −→ P(U)

assigns to each multi-attribute parameter γ a subset G(γ) ⊆ U. Equivalently,

(G, C) =
{
(γ, G(γ)) : γ ∈ C

}
.

Example 5 (HyperSoft Set — Multi-Attribute Restaurant Finder). Universe and attributes. Let the
universe of candidate restaurants be

U = {r1, r2, r3, r4, r5, r6, r7, r8, r9}.

Let the attribute domains be

A1 = {jpn, ita, ind}, A2 = {low, mid, high}, A3 = {omn, veg, vgn}.

The parameter space is the Cartesian product C = A1 ×A2 ×A3. A HyperSoft Set is a mapping G : C → P(U)

that assigns a subset of restaurants to each single-valued tuple (cuisine, price, diet).
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Specification (nonempty images).

G(jpn, mid, veg) = {r2, r5}, G(jpn, low, omn) = {r1, r3},

G(ita, mid, veg) = {r4}, G(ind, low, vgn) = {r6, r8},

G(ita, high, omn) = {r7, r9},

and G(γ) = ∅ for all other γ ∈ C.
Concrete queries with exact set calculations.

(i) Exactly (jpn, mid, veg) : G(jpn, mid, veg) = {r2, r5}, | · | = 2.

(ii) Union of two precise asks: G(jpn, low, omn) ∪ G(ita, high, omn)

= {r1, r3} ∪ {r7, r9} = {r1, r3, r7, r9}, | · | = 4.

(iii) Disjointness of incompatible tuples: G(jpn, low, omn) ∩ G(ind, low, vgn) = {r1, r3} ∩ {r6, r8} = ∅.

The HyperSoft Set captures single-value choices per attribute; each tuple pinpoints a crisp slice of U.

Definition 6 (SuperHyperSoft Set). [9,11] Let U be a finite universe. Let a1, a2, . . . , an be distinct attributes
with finite, pairwise disjoint value-sets A1, A2, . . . , An (i.e., Ai ∩ Aj = ∅ for i ̸= j). Write P(Ai) for the
power set of Ai and form

C = P(A1)×P(A2)× · · · × P(An).

A SuperHyperSoft Set over U is a pair (F, C) with

F : C −→ P(U),

so that for each γ = (α1, α2, . . . , αn) ∈ C (where αi ⊆ Ai) we have a subset F(γ) ⊆ U. Formally,

(F, C) =
{
(γ, F(γ)) : γ ∈ C, F(γ) ⊆ U

}
.

Example 6 (SuperHyperSoft Set — Flexible Restaurant Finder with Set-Valued Coordinates). Universe
and attributes. Use the same U and attribute value-sets A1 = {jpn, ita, ind}, A2 = {low, mid, high},
A3 = {omn, veg, vgn}. In the SuperHyperSoft setting, the parameter space is

C = P(A1)×P(A2)×P(A3),

so each coordinate is a subset of admissible values (a flexible filter).
Mapping (nonempty images). Define F : C → P(U) by

F({jpn, ita}, {low, mid}, {veg}) = {r2, r4, r5},

F({ind}, {low, mid}, {vgn}) = {r6, r8},

F({jpn, ind}, {low}, {omn, veg}) = {r1, r3, r6},

F({ita}, {high}, {omn}) = {r7, r9},

and F(α) = ∅ otherwise.
Reading the parameters. For example, α = ({jpn, ita}, {low, mid}, {veg}) means: cuisine is Japanese

or Italian, price is low or mid, diet is vegetarian. Then F(α) = {r2, r4, r5} is the recommended subset.
Coherence with HyperSoft via singletons. If we restrict to singletons in each coordinate, SuperHyper-

Soft reduces to HyperSoft. Concretely,

F({jpn}, {mid}, {veg}) = {r2, r5} = G(jpn, mid, veg),
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so the singleton tuple reproduces the HyperSoft slice exactly. Moreover,

F({jpn}, {mid}, {veg}) ⊆ F({jpn, ita}, {low, mid}, {veg}) = {r2, r4, r5},

exhibiting the intended flexible expansion when coordinates are broadened from single values to sets of values.
Cardinality checks.

|F({jpn, ita}, {low, mid}, {veg})| = 3, |F({ind}, {low, mid}, {vgn})| = 2.

Thus SuperHyperSoft enables compact specification of multi-value preferences per attribute and directly returns
the filtered subset of U.

2. Main Results
In this section, we present and analyze the principal outcomes of our study.

2.1. Contra-HyperSoft Set

Contra-HyperSoft Set augments HyperSoft with a tuple-wise contradiction metric, reference
selector, and threshold, uniting parameter slices within the admissible radius.

Definition 7 (Coordinatewise contradiction). Let A1, . . . ,Am be nonempty finite sets. For each i ∈
{1, . . . , m} a contradiction function is a map

ci : Ai ×Ai −→ [0, 1] with ci(a, a) = 0, ci(a, b) = ci(b, a).

When needed for exact reductions, we assume the zero-separation property ci(a, b) = 0 ⇒ a = b.

Definition 8 (Tuple-level contradiction). Let C := A1 × · · · × Am and write γ = (γ1, . . . , γm), δ =

(δ1, . . . , δm) ∈ C. Define the aggregated contradiction by

∆(γ, δ) := max
1≤i≤m

ci(γi, δi) ∈ [0, 1].

Then ∆(γ, δ) = ∆(δ, γ) and ∆(γ, γ) = 0. If each ci is zero-separating, then ∆(γ, δ) = 0 ⇐⇒ γ = δ.

Definition 9 (Reference selector). A reference selector is a map ρ : C → C. Two canonical choices are

(self-centered) ρ(γ) = γ, (fixed-reference) ρ(γ) ≡ r for a fixed r ∈ C.

Definition 10 (Contra-HyperSoft Set (CHS)). Let U be a finite universe and let G : C → P(U) be a
HyperSoft mapping. Fix contradiction kernels {ci}m

i=1, a reference selector ρ, and a threshold τ ∈ [0, 1]. The
associated Contra-HyperSoft Set is the tuple

CHS :=
(
U, {Ai, ci}m

i=1, G, ρ, τ
)
,

together with the filtered mapping

G(τ)
ρ : C −→ P(U), G(τ)

ρ (γ) :=
⋃

δ∈C : ∆(δ,ρ(γ))≤τ

G(δ).

Example 7 (Contra-HyperSoft Set — Candidate Shortlisting under Conflicting Signals (self-centered
selector)). Universe and attributes. Let the candidate pool be U = {c1, c2, c3, c4, c5, c6, c7, c8}. Consider
three single-valued attribute domains:

A1 = {junior, mid, senior}, A2 = {onsite, hybrid, remote}, A3 = {backend, frontend, data}.
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The parameter space is C = A1 ×A2 ×A3.
Coordinatewise contradictions. All ci are symmetric with 0 on the diagonal.

c1 =

junior mid senior
junior 0 0.4 0.9
mid 0.4 0 0.4

senior 0.9 0.4 0

,

c2 =

onsite hybrid remote
onsite 0 0.3 0.8
hybrid 0.3 0 0.3
remote 0.8 0.3 0

,

c3 =

backend frontend data
backend 0 0.5 0.4
frontend 0.5 0 0.6

data 0.4 0.6 0

.

Aggregate tuple-contradiction: ∆(γ, δ) := max{c1(γ1, δ1), c2(γ2, δ2), c3(γ3, δ3)}.
HyperSoft mapping G : C → P(U) (nonempty images).

G(junior, remote, frontend) = {c1, c3}, G(mid, hybrid, backend) = {c2, c5},

G(senior, onsite, data) = {c4}, G(mid, remote, data) = {c6},

G(senior, hybrid, backend) = {c7, c8}.

CHS filter. Choose the self-centered selector ρ(γ) = γ and threshold τ = 0.4. Let γ⋆ =

(mid, hybrid, backend). Compute ∆(·, γ⋆) on the above tuples:

δ ∆(δ, γ⋆)

(mid, hybrid, backend) max(0, 0, 0) = 0 (≤ τ)

(senior, hybrid, backend) max(0.4, 0, 0) = 0.4 (≤ τ)

(mid, remote, data) max(0, 0.3, 0.4) = 0.4 (≤ τ)

(senior, onsite, data) max(0.4, 0.3, 0.4) = 0.4 (≤ τ)

(junior, remote, frontend) max(0.4, 0.3, 0.5) = 0.5 (> τ)

Hence
G(τ)

ρ (γ⋆) = {c2, c5} ∪ {c7, c8} ∪ {c6} ∪ {c4} = {c2, c4, c5, c6, c7, c8}, | · | = 6.

With a tighter threshold τ′ = 0.3, only the base slice survives: G(τ′)
ρ (γ⋆) = {c2, c5}, illustrating monotonicity

in τ.

Example 8 (Contra-HyperSoft Set — Travel Package Selection (fixed reference)). Universe and at-
tributes. Let U = {pkg1, . . . , pkg10} be travel packages. Attributes:

A1 = {winter, spring, summer, autumn}, A2 = {ski, beach, culture}, A3 = {solo, couple, family}.

Contradiction matrices (symmetric, 0 on diagonal).

c1 =

winter spring summer autumn
winter 0 0.3 0.8 0.5
spring 0.3 0 0.3 0.5

summer 0.8 0.3 0 0.3
autumn 0.5 0.5 0.3 0

,
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c2 =

ski beach culture
ski 0 0.9 0.4

beach 0.9 0 0.4
culture 0.4 0.4 0

,

c3 =

solo couple family
solo 0 0.2 0.6

couple 0.2 0 0.3
family 0.6 0.3 0

.

Aggregate ∆(γ, δ) := max{c1(γ1, δ1), c2(γ2, δ2), c3(γ3, δ3)}.
HyperSoft mapping (nonempty images).

G(winter, ski, family) = {pkg1, pkg2}, G(summer, beach, couple) = {pkg3, pkg4},

G(spring, culture, solo) = {pkg5}, G(autumn, culture, family) = {pkg6, pkg7},

G(summer, culture, family) = {pkg8}, G(winter, beach, solo) = {pkg9}.

CHS filter (fixed reference). Choose the fixed reference r = (summer, beach, family) and threshold
τ = 0.5. Evaluate ∆(·, r):

γ ∆(γ, r)
(winter, ski, family) max(0.8, 0.9, 0) = 0.9 (> τ)

(summer, beach, couple) max(0, 0, 0.3) = 0.3 (≤ τ)

(spring, culture, solo) max(0.3, 0.4, 0.6) = 0.6 (> τ)

(autumn, culture, family) max(0.3, 0.4, 0) = 0.4 (≤ τ)

(summer, culture, family) max(0, 0.4, 0) = 0.4 (≤ τ)

(winter, beach, solo) max(0.8, 0, 0.6) = 0.8 (> τ)

Thus the accepted tuples are the 2nd, 4th, and 5th. The CHS envelope at r is

G(τ)
ρ≡r(r) = {pkg3, pkg4} ∪ {pkg6, pkg7} ∪ {pkg8} = {pkg3, pkg4, pkg6, pkg7, pkg8},

with cardinality 5. If we tighten to τ′ = 0.3, only the 2nd tuple remains, so G(τ′)
ρ≡r(r) = {pkg3, pkg4},

demonstrating the control afforded by the contradiction threshold.

Proposition 1 (Basic properties). For fixed (U, {Ai, ci}, G, ρ) the family {G(τ)
ρ }τ∈[0,1] is monotone in τ: if

0 ≤ τ1 ≤ τ2 ≤ 1 then G(τ1)
ρ (γ) ⊆ G(τ2)

ρ (γ) for all γ ∈ C. Moreover G(1)
ρ (γ) =

⋃
δ∈C G(δ) for all γ.

Proof. If τ1 ≤ τ2 then {δ : ∆(δ, ρ(γ)) ≤ τ1} ⊆ {δ : ∆(δ, ρ(γ)) ≤ τ2}, hence the unions are nested. For
τ = 1 the constraint is vacuous since ∆ ∈ [0, 1].

Theorem 1 (CHS generalizes the HyperSoft Set). Assume each ci is zero-separating and take the self-centered
selector ρ(γ) = γ. Then for τ = 0 one has

G(0)
ρ (γ) = G(γ) (∀ γ ∈ C).

Proof. By definition, G(0)
ρ (γ) =

⋃
δ: ∆(δ,γ)≤0 G(δ). Since ∆(δ, γ) ≥ 0 always, the inequality forces

∆(δ, γ) = 0. Zero-separation gives δ = γ, thus the union is G(γ).
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Definition 11 (Neighborhood-based ContraSoft on a single attribute). Let V be a finite set with contra-
diction c : V × V → [0, 1], and let F : V → P(U). For τ ∈ [0, 1], the neighborhood-based ContraSoft
transform is

F(τ)(v) :=
⋃

w∈V: c(w,v)≤τ

F(w) (v ∈ V).

Fixing v⋆ ∈ V yields the fixed-reference variant F(τ;v⋆)(v) :=
⋃

w: c(w,v⋆)≤τ F(w).

Example 9 (Neighborhood-based ContraSoft — Destination Selection by Climate Preference). Universe
and attribute. Let the universe of candidate destinations be

U = {u1 = Reykjavik, u2 = Zurich, u3 = Lisbon, u4 = Dubai, u5 = Helsinki, u6 = Vancouver}.

Consider a single attribute “preferred climate” with value set

V = {cold, mild, warm, hot}.

Contradiction on V. Let c : V × V → [0, 1] be symmetric with c(v, v) = 0:

c =

cold mild warm hot
cold 0 0.3 0.6 0.9
mild 0.3 0 0.3 0.7

warm 0.6 0.3 0 0.3
hot 0.9 0.7 0.3 0

Baseline soft mapping. Define F : V → P(U) by

F(cold) = {u1, u5}, F(mild) = {u2, u6}, F(warm) = {u3}, F(hot) = {u4}.

Neighborhood-based ContraSoft transform. For threshold τ ∈ [0, 1] and center v ∈ V,

F(τ)(v) =
⋃

w∈V: c(w,v)≤τ

F(w).

Case 1 (moderate neighborhood). Let v = mild and τ = 0.35. Eligible neighbors satisfy c(w, mild) ≤
0.35:

c(cold, mild) = 0.3 (✓), c(mild, mild) = 0 (✓), c(warm, mild) = 0.3 (✓), c(hot, mild) = 0.7 (×).

Therefore
F(0.35)(mild) = F(cold) ∪ F(mild) ∪ F(warm)

= {u1, u5} ∪ {u2, u6} ∪ {u3} = {u1, u2, u3, u5, u6}, | · | = 5.

Case 2 (tight neighborhood). Let τ = 0.20. Only w = mild satisfies c(w, mild) ≤ 0.20, hence

F(0.20)(mild) = F(mild) = {u2, u6}, | · | = 2.

These computations show how increasing τ expands the accepted neighborhood in V and unions the
corresponding destination sets in U.

Theorem 2 (CHS generalizes ContraSoft). Suppose m = 1, so C = A1 =: V, and let c1 = c. Identify
G : V → P(U) with F. Then:
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(a) With the self-centered selector ρ(v) = v, one has

G(τ)
ρ (v) =

⋃
w: c(w,v)≤τ

G(w) = F(τ)(v), ∀v ∈ V.

(b) With the fixed-reference selector ρ(v) ≡ v⋆, one has

G(τ)
ρ (v) =

⋃
w: c(w,v⋆)≤τ

G(w) = F(τ;v⋆)(v), ∀v ∈ V.

Hence, for m = 1 the CHS construction recovers both standard ContraSoft variants.

Proof. When m = 1, ∆(w, ρ(v)) = c(w, ρ(v)). Substituting ρ(v) = v gives (a); substituting ρ(v) ≡ v⋆

gives (b). The set-theoretic unions agree by definition in both cases.

2.2. Contra-SuperHyperSoft Set

Contra-SuperHyperSoft Set extends to set-valued coordinates, using lifted subset contradictions
and aggregate radius; selector-threshold filtering unions nearby SuperHyperSoft slices effectively.

Definition 12 (Base and lifted contradictions). Let A1, . . . , Am be nonempty finite sets of attribute values
and let ci : Ai × Ai → [0, 1] be contradiction functions (symmetric and reflexive: ci(a, a) = 0 = ci(a, a),
ci(a, b) = ci(b, a)). Assume the zero-separation property ci(a, b) = 0 ⇒ a = b. For subsets S, T ⊆ Ai define
the lifted contradiction

ĉi(S, T) :=


max

{
max
a∈S

min
b∈T

ci(a, b), max
b∈T

min
a∈S

ci(a, b)
}

, S, T ̸= ∅,

0, S = T = ∅,

1, otherwise.

(With finiteness, the max / min are attained.)

Lemma 1 (Symmetry, reflexivity, and zero-separation on subsets). For each i and S, T ⊆ Ai:

(a) ĉi(S, T) = ĉi(T, S) and ĉi(S, S) = 0.
(b) If ci is zero-separating, then ĉi(S, T) = 0 implies S = T.

Proof. (a) Symmetry follows by exchanging the two max terms; reflexivity is immediate. (b) If
ĉi(S, T) = 0 with S, T ̸= ∅, then maxa∈S minb∈T ci(a, b) = 0 and maxb∈T mina∈S ci(a, b) = 0. Thus, for
each a ∈ S there is b ∈ T with ci(a, b) = 0, hence a = b by zero-separation, so S ⊆ T. The second
equality gives T ⊆ S. The cases with empties are by definition.

Definition 13 (Product parameter space and aggregate contradiction). Let C := P(A1)× · · · × P(Am)

and write α = (α1, . . . , αm), β = (β1, . . . , βm) ∈ C. Define the tuple-level contradiction by

∆(α, β) := max
1≤i≤m

ĉi(αi, βi) ∈ [0, 1].

Then ∆(α, β) = ∆(β, α) and ∆(α, α) = 0; if each ci is zero-separating, then by Lemma 1 we have ∆(α, β) =

0 ⇐⇒ α = β.

Definition 14 (Reference selector). A reference selector is any map ρ : C → C. Two common choices are the
self-centered selector ρ(α) = α and a fixed-reference selector ρ(α) ≡ r for a fixed r ∈ C.
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Definition 15 (Contra-SuperHyperSoft Set (CSHS)). Let U be a finite universe and let F : C → P(U) be a
SuperHyperSoft mapping. Fix contradiction kernels {ci}, their lifts {ĉi}, an aggregate ∆, a selector ρ, and a
threshold τ ∈ [0, 1]. The associated Contra-SuperHyperSoft Set is the tuple

CSHS :=
(
U, {Ai, ci}m

i=1, F, ρ, τ
)
,

together with the filtered mapping

F(τ)
ρ : C −→ P(U), F(τ)

ρ (α) :=
⋃

β∈C : ∆(β,ρ(α))≤τ

F(β).

Example 10 (CSHS in E-commerce Fraud Review (self-centered selector)). Setup. Let the universe of
orders be U = {o1, o2, o3, o4, o5, o6, o7, o8}. Take two attribute domains:

A1 = {card, crypto}, A2 = {verified, partial, missing}.

Base contradictions c1, c2 : [·] → [0, 1] (symmetric, 0 on the diagonal):

c1 =

card crypto
card 0 0.8

crypto 0.8 0
, c2 =

verified partial missing
verified 0 0.3 0.9
partial 0.3 0 0.6

missing 0.9 0.6 0

.

Lift ĉi to subsets by Definition (lifted contradiction) and aggregate

∆
(
(S1, S2), (T1, T2)

)
:= max{ĉ1(S1, T1), ĉ2(S2, T2)}.

The SuperHyperSoft mapping F : P(A1)×P(A2) → P(U) is specified by

F({crypto}, {missing}) = {o1, o2}, F({crypto}, {partial}) = {o3},

F({card}, {missing}) = {o4}, F({card}, {partial}) = {o5, o6},

F({card, crypto}, {partial, missing}) = {o7}, all other pairs map to ∅.

Choose the self-centered selector ρ(α) = α and threshold τ = 0.6.

Filtering at α0 = ({crypto}, {missing}).
To avoid overfull lines, we list the computations in an aligned display:

∆
(
({crypto}, {missing}), α0

)
= max

(
0, 0

)
= 0 ≤ τ,

∆
(
({crypto}, {partial}), α0

)
= max

(
0, c2(partial, missing)

)
= max(0, 0.6) = 0.6 ≤ τ,

∆
(
({card}, {missing}), α0

)
= max

(
0.8, 0

)
= 0.8 > τ,

∆
(
({card}, {partial}), α0

)
= max

(
0.8, 0.6

)
= 0.8 > τ,

∆
(
({card, crypto}, {partial, missing}), α0

)
= max

(
ĉ1({card, crypto}, {crypto}), ĉ2({partial, missing}, {missing})

)
= max(0.8, 0.6) = 0.8 > τ.

Hence
F(τ)

ρ (α0) = {o1, o2} ∪ {o3} = {o1, o2, o3}, |F(τ)
ρ (α0)| = 3.
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Filtering at α1 = ({card}, {partial}).

β ∆(β, α1)

({card}, {partial}) 0 ≤ τ

({card}, {missing}) max(0, 0.6) = 0.6 ≤ τ

({crypto}, {partial}) max(0.8, 0) = 0.8 > τ

({crypto}, {missing}) max(0.8, 0.6) = 0.8 > τ

({card, crypto}, {partial, missing}) max(0.8, 0.6) = 0.8 > τ

Therefore
F(τ)

ρ (α1) = {o5, o6} ∪ {o4} = {o4, o5, o6}, |F(τ)
ρ (α1)| = 3.

This illustrates how the CSHS envelope aggregates nearby subset-parameters under the contradiction metric.

Example 11 (CSHS in Cloud Deployment Recommendation (self-centered selector)). Setup. Let the
universe of candidate nodes be U = {n1, n2, n3, n4, n5, n6, n7}. Attributes:

A1 = {us-east, us-west, eu}, A2 = {cpu, gpu, memory}.

Base contradictions (0 on the diagonal, symmetric):

c1 =

us-east us-west eu
us-east 0 0.4 0.7
us-west 0.4 0 0.8

eu 0.7 0.8 0

, c2 =

cpu gpu memory
cpu 0 0.5 0.3
gpu 0.5 0 0.7

memory 0.3 0.7 0

.

Lift to subsets by ĉi and aggregate by ∆
(
(S1, S2), (T1, T2)

)
= max{ĉ1(S1, T1), ĉ2(S2, T2)}.

SuperHyperSoft mapping F (nonempty images shown):

F({us-east}, {cpu}) = {n1, n2}, F({us-east}, {gpu}) = {n3},

F({us-west}, {cpu}) = {n4}, F({eu}, {cpu}) = {n5},

F({us-east, us-west}, {cpu}) = {n6},

F({us-east}, {cpu, gpu}) = {n7}.

Choose the self-centered selector ρ(α) = α and threshold τ = 0.5.
Filtering at α⋆ = ({us-east}, {cpu}). For each β with F(β) ̸= ∅, compute ∆(β, α⋆):

β ∆(β, α⋆)

({us-east}, {cpu}) max(0, 0) = 0 ≤ τ

({us-east}, {gpu}) max(0, c2(gpu, cpu) = 0.5) = 0.5 ≤ τ

({us-west}, {cpu}) max(c1(us-west, us-east) = 0.4, 0) = 0.4 ≤ τ

({eu}, {cpu}) max(0.7, 0) = 0.7 > τ

({us-east, us-west}, {cpu}) max(ĉ1({us-east, us-west}, {us-east}) = 0.4, 0) = 0.4 ≤ τ

({us-east}, {cpu, gpu}) max(0, ĉ2({cpu, gpu}, {cpu}) = 0.5) = 0.5 ≤ τ

Hence
F(τ)

ρ (α⋆) = {n1, n2} ∪ {n3} ∪ {n4} ∪ {n6} ∪ {n7} = {n1, n2, n3, n4, n6, n7},

with |F(τ)
ρ (α⋆)| = 6. Nodes requiring a European region are excluded by the contradiction bound.

Proposition 2 (Monotonicity in the threshold). If 0 ≤ τ1 ≤ τ2 ≤ 1, then F(τ1)
ρ (α) ⊆ F(τ2)

ρ (α) for all α ∈ C.

Moreover, F(1)
ρ (α) =

⋃
β∈C F(β) for all α.
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Proof. The index sets {β : ∆(β, ρ(α)) ≤ τ} are nested as τ grows, hence so are the unions. For τ = 1
the constraint is vacuous since ∆ ∈ [0, 1].

Theorem 3 (CSHS generalizes SuperHyperSoft). Assume zero-separation for each ci and take the self-
centered selector ρ(α) = α. Then for τ = 0 we have

F(0)
ρ (α) = F(α) (∀ α ∈ C).

Proof. By definition, F(0)
ρ (α) =

⋃
β: ∆(β,α)≤0 F(β). Since ∆ ≥ 0, the inequality forces ∆(β, α) = 0. By

Definition 13 and Lemma 1, this occurs iff β = α. Hence the union collapses to F(α).

Definition 16 (Singleton embedding of HyperSoft into SuperHyperSoft). Let ι : A1 × · · · × Am −→ C
be

ι(γ1, . . . , γm) := ({γ1}, . . . , {γm}).

We say F : C → P(U) is singleton-supported for G : A1 × · · · × Am → P(U) if F(ι(γ)) = G(γ) for all
γ and F(α) = ∅ whenever some αi is not a singleton.

Lemma 2 (Compatibility of contradictions on singletons). For any a, b ∈ Ai we have ĉi({a}, {b}) =

ci(a, b). Consequently, for γ, δ ∈ A1 × · · · × Am,

∆
(
ι(γ), ι(δ)

)
= max

1≤i≤m
ci(γi, δi).

Proof. From Definition 12 with singletons, max{min ci(a, b), min ci(b, a)} = ci(a, b) by symmetry, and
the product case follows.

Theorem 4 (CSHS generalizes Contra-HyperSoft). Let G : A1 × · · · × Am → P(U) be a HyperSoft set
and F be a singleton-supported extension (Definition 16). Let ρH be a selector on A1 × · · · × Am and define ρS

on C by ρS
(
ι(γ)

)
:= ι

(
ρH(γ)

)
, with arbitrary values elsewhere. Then for every γ and τ ∈ [0, 1],

F(τ)
ρS

(
ι(γ)

)
=

⋃
δ: maxi ci(δi ,ρH(γ)i)≤τ

G(δ) =: G(τ)
ρH (γ),

i.e. the CSHS filtered mapping restricted to singleton parameters coincides with the Contra-HyperSoft mapping
for G built from {ci} and the same threshold.

Proof. By Definition 15,
F(τ)

ρS

(
ι(γ)

)
=

⋃
β: ∆(β,ρS(ι(γ)))≤τ

F(β).

Since F is singleton-supported, only β of the form ι(δ) contribute. By Lemma 2 and the definition
of ρS, ∆(ι(δ), ρS(ι(γ))) = maxi ci(δi, ρH(γ)i). Substitute and use F(ι(δ)) = G(δ) to obtain the stated
equality.

Theorem 5 (CSHS generalizes ContraSoft). Let m = 1 with base set A1 =: V and contradiction c := c1.
Let F : P(V) → P(U) be singleton-supported for some F0 : V → P(U) via F({v}) = F0(v) and F(S) = ∅
if |S| ̸= 1. Then, with the self-centered selector, for all v ∈ V and τ ∈ [0, 1],

F(τ)
id ({v}) =

⋃
w: c(w,v)≤τ

F0(w),

which is exactly the neighborhood-based ContraSoft transform on (V, c). With a fixed reference v⋆ ∈ V, the
same construction yields the fixed-reference ContraSoft variant.
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Proof. Specialize Theorem 4 to m = 1 with G ≡ F0 and observe that ∆({w}, {v}) = ĉ1({w}, {v}) =
c(w, v). Singleton support reduces the union to singletons, yielding the stated form.

3. Conclusion
In this paper, we examined the concepts of the ContraSoft Set, the Contra-HyperSoft Set, and the

Contra-SuperHyperSoft Set.
Future work will focus on extending these ideas by integrating them with richer frame-

works, including Neutrosophic Sets[12,13], Plithogenic Sets[14–16], Rough Sets[17,18], and TreeSoft
Sets[19,20]. Moreover, we anticipate the development of generalized structures that apply these
contra-based approaches to Graphs[21,22], HyperGraphs[23–25], SuperHyperGraphs[26–28], and
broader HyperStructures[29–31]. Such investigations are expected to open new directions in handling
contradiction-aware representations across diverse domains.
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