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Abstract

This review article discusses the application of quantum computing to financial problems while
presenting current approaches and their future prospects. We also talk about quantum machine
learning and deep learning in finance. In the banking industry (Figure 9), we look at the most recent
developments and the state of the art in quantum computing. Following a quick introduction to
financial derivatives, we go over the key models and techniques for estimating the effects of quantum
computing. The most popular quantum financial algorithms and their quantum adversary are then
described. Lastly, we discuss the main problems that must be solved in order for quantum algorithms
to truly benefit the financial industry.

Keywords: survey; finance; quantum; future of finance

Introduction

Applications in asset management, investment banking, retail banking, wealth management,
payments and merchant banking provide a number of challenging computing issues in the financial
services (Figure 9) sector and quantum computing and its impact on actuarial modeling '. A
completely new approach to computing is provided by quantum computing [1,2]; which solves
intricate calculations by utilizing the inherent quantum mechanical features of materials. The use of
quantum computing to financial issues [3-6] and the proof of quantum advantage in early applications
are ongoing research subjects, as evidenced by the first noisy quantum devices that utilize the principles
of quantum mechanics and are currently accessible to the general public. Quantum computers or
quantum computing and communications [7] are expected to surpass the computing capabilities of
classical computers this decade and transform many industrial sectors, including finance.

Compared to modern classical computers, quantum computing uses essentially different methods
for processing and storing data. Because they are more capable than any conventional computer,
quantum computers are now the most promising method for resolving certain issues. Deep insights
may be gained from the vast amounts of data that are already available thanks to new computational
models, especially in financial institutions that are dealing with less predictability and more complexity.
In order to enhance contemporary financial models or systems, quantum computing provides a means
of delivering new information processing paradigms in quantitative and computational finance [8].
For example, Scriba et al., in their article [4], present an autonomous algorithm that simulates in
parallel an exponential number of asset trajectories without resorting to oracles. Method for obtaining
a distribution of stock prices. Finance is strongly linked to uncertainty [9] over the future behavior
of assets, their prices, and the gains (losses or profits) they may yield. The distribution of returns
determines the risk measure. It measures volatility using the logarithm of the standard deviation of the
rate of change of a set of stock prices over time. Analyzing an asset’s behavior by comparing it with
market data is necessary to reduce risk. By carefully selecting investments in other complementary

1 quantum in actuarial science
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assets with inverse (volume) or irregular returns (diversification), one can reduce the risk [9] of asset
ownership.

In this study, we are interested in the application of quantum computing (Figure 1) [10-13] in
the financial sphere in a very broad way. While previous studies focused on certain applications or
characteristics [3,9,14-48].

Figure 1. Quantum computing.

More specifically, we sought answers to three research questions (RQs):

e RQI: What are the most commonly used methods in quantum finance?
e RQ2: How are the contributions of quantum approaches to finance evaluated?
e RQ3: What are the gaps, challenges, open questions, and future prospects of quantum computing?

To answer these questions, we searched different databases, namely, PubMed, MDPI, SCOPUS,
Nature, ScienceDirect, IEEE Xplore, ACM, and Google Scholar, for the following keyword combinations:
Finance * AND (“Quantum Finance” OR “Quantum Computing”). Articles were selected according
to their publication dates. The search was designed to find research articles reporting the Quantum
finance.

This paper is organized as follows: Section I presents related work. Section II discusses the
fundamentals of financial issues, popular algorithms in quantitative finance, and quantum computing.
Section III reviews financial applications of quantum computing. Section IV introduces deep learning
via quantum machine learning (QML) and quantum adversarial, and scenarios where it might be
applicable to financial issues. Section V concludes and presents the viewpoints.

I. Related Work

Quantitative trading [49] is an integral part of financial markets with high calculation speed
requirements, while no quantum algorithms  ® have been introduced into this field yet. Zhuang et al.,
in [49] propose quantum algorithms for high-frequency statistical arbitrage trading by utilizing variable
time condition number estimation and quantum linear regression. The algorithm complexity has been
reduced from the classical benchmark O(N2d) to O(vdNx02log(1/¢)?)), where N is the length of
trading data, and d is the number of stocks. In their article Arraut et .al, in [50] analyze the patterns of
effective symmetry breaking and the associated vacuum degeneracy for these particular circumstances.
In the same scenario, they analyze the link between information flow and the multiplicity of martingale
states, thus providing powerful tools for analyzing stock market dynamics.

Herman et al., in [45] present a comprehensive overview of quantum computing for financial
applications, focusing on stochastic modeling, optimization, and machine learning. They explain how
these methods, modified for a quantum computer, may be able to assist in resolving financial issues
like fraud detection, risk modeling, portfolio optimization, derivatives pricing, and natural language
understanding. They also show how these algorithms are applicable to a variety of financial use cases
and talk about whether they can be implemented on quantum computers.

Strategic Finance

3 Quantum Finance
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Fintech is at the forefront of new technical applications. The rise of relatively new paradigms
in a number of sciences, including physics (quantum), geometry (fractals), and database systems
(distributed ledger—blockchain), appears to have the potential to further alter the framework of the
financial sector while also posing issues (cyber threats) [51]. Mosteanu et al., in [52] studied of the
reasonable potential impact of these new models (and their underlying technologies) is conducted, in
[52], Mosteanu et al., confirms that the availability of information and the growing interconnection
of cross-applications of each discovery in different scientific fields determine the rapid succession
of revolutions, identified by significant evident changes in economic paradigms. Mosteanu et
al.,, indicate that the quick succession of revolutions, marked by notable and obvious changes in
economic paradigms, is determined by the availability of knowledge and the increasing connectivity
of cross-applications of each discovery in other scientific domains. Pistoia et al., in [53] presents the
state of the art of quantum algorithms for financial applications, focusing specifically on use cases that
can be solved by machine learning.

Griffin et al., in [54] present an implementation of two quantum optimization algorithms applied
to trade finance portfolios. The method used involves mapping the financial risk and returns of a trade
finance portfolio to an optimization function of a quantum algorithm developed in a Qiskit tutorial
[55]. The results show that, although no advantage is observed when using quantum algorithms, their
performance does not suffer any statistically significant degradation. Therefore, it is promising that in
the future, thanks to expected improvements in quantum hardware, the theoretically higher processing
speeds and data volumes offered by quantum computing will also be applicable to trade finance.
Albareti et al., in [14] provide a structured review of quantum computing platforms, algorithms,
methodologies, and use cases for various financial applications.

Coyle et al., in [56], investigate and compare the capabilities of quantum and classical models for
generative modeling in machine learning. They use a real financial dataset consisting of correlated
currency pairs and compare two models for their ability to learn the resulting distribution: a restricted
Boltzmann machine and a quantum circuit Born machine and demonstrates superior performance as
the model evolves. They perform experiments on simulated and physical quantum chips using the
Rigetti QCSTM platform.

Wilkens et al., in [32] analyses requirements and concrete approaches for the application to risk
management in a financial institution. On the examples of Value-at-Risk for market risk and Potential
Future Exposure for counterparty credit risk, the main contribution lies in going beyond textbook
illustrations and instead exploring must-have model features and their quantum implementations.
While conceptual solutions and small-scale circuits are feasible at this stage, the leap needed for real-life
applications is still significant.

Miyamoto et al., in [57] , are interested in derivative pricing based on solving the Black-Scholes
partial differential equation by the finite difference method (FDM). This approach is suitable for certain
types of derivatives, but it suffers from the problem of dimensionality, i.e., an exponential growth in
complexity. They propose a quantum algorithm for pricing multi-asset derivatives by FDM, with an
exponential acceleration of dimensionality compared to classical algorithms. This algorithm uses the
quantum algorithm for solving differential equations, based on quantum linear systems algorithms.

II. Quantum Quantitative Finance
A. Problems in Financial Services

The forward-thinking financial services [52,58-60] sector has always been on the lookout for
ways to use emerging technologies to boost earnings [15,43,61]. For example, companies working on

real-world applications of quantum finance include IBM, Citigroup, Goldman Sachs, JPMorgan Chase,
and QuantFi.
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B. Black-Scholes PDE for Option Pricing

Let r € (0, c0) be the risk-free interest rate, let T € (0, o) be a finite time horizon determining the
maturity, and let d € N be the number of assets. The multiple-asset Black-Scholes PDE is,
ou 1@ 0%u d ou
=4z s e =0, 1
o 2 i; CijXi%i gy, T A Figy, T Y M
,j=1 7 i=1
in [0, T) x R4 Let to a terminal condition u(T,-) = h(-). Here, h : R. — R is the payoff
function, u(t, x) is the option price at time t with price x.

B.1. Geometric Brownian Motion Process

Let (Q), F,P) be a probability space W = (W!,...,W%) : [0,T] x Q@ — R? be a standard
d-dimensional Brownian motion. let 0; := ||0[;2(ga). Let S = (8Y,...,8%) 1 [0,T] x Q — R% be
the stock price process governed by,

. . d )
ds; = Si (rdH— Zaﬁdw{) fori=1,...,d, )
j=1

With for initial price Sy € R‘i. Here S; = (Stl,. .., Sf) are the values of each stocki =1,...,d
attime 0 < t < T. Let R = (Rl,...,Rd) [0, T] x Q) — R? be the log-return process defined
component-wise by Ri = In(Si/S}) fori =1,...,d. It follows from It3’s formula for all t € [0, T] that,

. d .
dR} = (r — 307)dt + Y 0ydW!, fori=1,...,d, (3)
j=1

B.2. Quantum Black-Scholes Equation

let V; := F(t,(¢(X)), F : [0, T] x B(H® IT') — B(H ®T) is the extension [62] to self-adjoint
operators x = {;(X) of the analytic function F(t,x) = Y% a,k(to, x0) (t — tg)" (x — xo)k, where x
and a,, (t, xo) are in C, and for A, u € {0,1,...},

aA-‘r}lF
FAy(t,x) = W(t,x)
oo 71! k' A k—
= ayk(to, x0) (t — to)" " (x — x0)" "
n:AZJ“(:ﬂ (n—A) (k—u)™"
if 1 denotes the identity operator then,
1
ank(to, X0) = an(fo, X0)1 = —z Fui(fo, Xo)
For (tp, x9) = (0,0) we have,
+oo ‘ 400 .
Vi= ¥ k(0,01 5(X) = 1 a,0(0,0)"¢(XF)
n,k=0 n,k=0

(at,be),t € [0, T] is a self -financing trading strategy then the value of the portfolio at time ¢ is
given by Vi=a: X + bt,Bt-

C. Black-Scholes Pricing Formulae

dS = uSdt+oSdw, 4)

Here y represents drift, o variance, and W is a standard Wiener process.
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dB = rBdt, )

B(t) = B(0)e™, where Bj. Let an option on a stock with strike price K and time to maturity
T= T, — t, where T}, is the fixed duration between the issuance of the option and its maturity. The
stochastic differential equation for V (S, t) is, from Itd’s lemma,

oV 9V 028292V 1%

Let a portfolio [63,64] that contains the option, which has been sold, and A shares of the underlying
asset. The value I1 of this portfolio is,

I1=AS—V(S(t),1). @)

According to Itd’s lemma, the stochastic differential equation for I is,
oV | 0?S**V oV
dn_‘(at+2as2)dt+<A_as>d5‘ (8)
oV PPV 9V
For European call options C(S, T),

C(S,0) = max(S — K,0), (10)
C(0,T) =0, (11)
dim C(s,T)=S5S, (12)

For T, > T > 0. the solution to the Black-Scholes equation is,

C(S,T) = SN(d1) — Ke "TN(dy), (13)

N(x) is the cumulative normal distribution function,
i — In(S/K) + (r+ 30%)T
ov/T '
4y In(S/K) + (r— 30%)T ‘
oVT

where, K is the strike price , S is the current stock price , T is the time to expiration, r is the risk-free

(14)

interest rate, o the volatility.
The Greeks’ formula for a European vanilla call and put option on a single asset is then given as

follows:
Calls Puts
Delta, 3 N(dy) N(d) -1
2C N'(d1)
Gamma, 057 ST
Vega, 3¢ SN'(d)V/T —t
ac SN'(dy)o SN'(dy )
Theta, 57 — T v +
rKe " T-ON(dy) rKe " TN (—d,)
Rho, %€ K(T —t)e " T IN(ds) —K(T — t)e "T-ON(—ds)

III. Quantum Finance: Quantum Black-Scholes Model and Pricing

¢p((a+ib)cy) = @(f(t)), where ¢ is a mapping from vectors in a complex Hilbert space [57,65-67]
‘H to Hermitian operators in the quantum field Hilbert space K and c; is the characteristic function of
the interval [0, ]. For any element f of a Hilbert space #, ¢/?(f) is the corresponding Weyl operator,
whose definition is restricted to the interval [0, ],

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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dS = uSdt +cSdW + bSdX (15)
=uSdt+Sde(f(t)). (16)

For arbitrary f, g in a real Hilbert space, the usual canonical commutation (Weyl) relations in a

complex Hilbert space H .
(N ei9(8) — pig(f+8) p3ilm({f.8)) (17)

The operators ¢(f) mutually commute if f € R in H, and likewise for ¢(if);

[o(f), 9(ig)] = i(f.8), (18)

For f,g € R, where the right-hand side is an inner product defined on H.

[9(f), @(ig)] = —iIm((f,ig)), (19)

A. Quantum Hardware

The quantum *

computers [9,68,69] are based on quantum circuits and gates. Google holds
the record for the most qubits in a gate architecture with 72 quantum computing qubits. There are
several physical approaches to induce qubits. Furthermore, the leading manufacturers of consumer
(military) quantum computers are Microsoft (using topological qubits), Xanadu (developing photonic
quantum computing), IonQ (customizing solid ion qubits), Google, IBM, Alibaba, and Rigetti (using

superconducting qubits).

B. Financial Applications of Quantum Computing

In finance [70,71] (potential advantages of quantum mechanics in the financial sector), risk refers
to the uncertainty surrounding the future behavior of an asset, as well as its future prices and returns.
It measures the likelihood that the asset’s actual return will deviate from the expected return, which
was initially projected by the investor. The distribution of returns in this instance determines the risk
measure. This is the definition of volatility, which is the standard deviation of logarithmic returns
used to quantify the degree of variation of a series of stock prices over time. By connecting the asset to
market data, an analysis of its behavior is conducted in order to lower this risk. In order to mitigate
the risk of holding the asset, either with anticorrelated returns (hedging) or with uncorrelated returns
(diversification) [6,72].

Table 1. Quantum Finance.

Quantum Finance References
Transaction Settlement [73]
Quantum Accounting [74]

Predicting Financial Crashes [75]
Quantum (Norm-Sampling) [76-82]
Quantum Money [83-93]
Blockchain [94-96]
Risk Management [97-103]
Fraud Detection [104-106]
Asset Pricing [27,35,57,107-109]
Portfolio Optimization [77,110-121]

C. Optimal Trading

Let’s look at the dynamic portfolio optimization problem. Finding the best course in the portfolio
sector while accounting for transaction costs and market effect is our goal [9,42,54,72,114,122-132].

4 Quantum computing: Tools

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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T
0 =Y (1o — LoTzigi - Agl Mgy + Aol Ajgr), (20)
t=1

with u representing the expected returns, ¢ the holdings, X the expected covariance tensor and -y the
risk aversion. The remaining terms represent the different contributions to transaction costs.

D. Optimal Arbitrage

The concept of arbitrage [32,49,133-135] is to take advantage of price differences of the same asset
in different markets. In general, the conversion rates are not symmetric, i.e.: Cij #* Cji, i represent the
assets and transaction costs are assumed to be included in the variable. The optimization problem can

be solved by,
w = Z Xij 10g Cij
(ij)eE
2
- al|l X x— ) %
i€d \j,(ij)€E j,(ji)€E

— )(22 E xl-]- Z xl-]-—l . (21)

iegj(ij)eE jij)€E

E represents the edges, ¢ the vertices of the graph and the third term constrains x;; to be equal to
0 or 1, so that cycles can only pass through a given asset once, where x; and )x» are adjustable penalty
parameters [6,42,123,136].

E. Risk Analysis

The VaR function, which establishes the distribution of losses throughout the portfolio, is one
quantitative method for risk assessment [9,100,103]. Conditional Value at Risk (CVaR) is another useful
risk assessment technique for a certain probability distribution. When a portfolio exceeds the VaR, it
calculates the expected loss. In quantitative finance, VaR and CVaR are commonly calculated from
related probability distributions using Monte Carlo sampling [97,137,138].

IV. Quantum Machine Learning

The field of machine learning [36,139-161] broadly amounts to the design and implementation
of algorithms that can be trained to perform a variety of tasks. These include pattern recognition,
data classification, and many others. The field of classical machine learning °, has grown enormously,
mainly due to hardware and algorithmic developments (allowing, for instance, to train deep learning
networks). The basic principles of machine learning are at the root of a number of vastly successful
fields, the most prominent of which is probably neural networks, which includes deep learning,
recurrent networks, generative neural networks and generative adversarial network (Figures 2 and 3)

[163-166].
22

Figure 2. Quantum diffusion adversarial using ART framework.

5 Quantum machine learning,emmanoulopoulos2022quantum
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Figure 3. Quantum diffusion adversarial attaks (ART-IBM).

Quantum diffusion models adversarial attaks

AQuantum = (Xz ylfﬂ: Qw)
where X € [0,1]",
Ye{l,.. .k}
Q. = QuantumN oiseGenerator(q = n)

n = number of qubits.
Quantum N oise Injection (Figure 4 and Figure 5) ,

Ny = Qu(x)
= reshape(Q’'(q = n), (1,1) + shape(x)).
RER(,c, 1) = Prycy[3% € Be(x) | h(x) # c(x')].

Under e-perturbation, the Error-Region (ER) adversarial risk is the likelihood of selecting a
sample whose e-neighborhood coincides with the error area.

REC(h, ) = Prycy[3x' € Be(x) | h(x) # h(x)],

Under e-perturbation, the Prediction-Change (PC) adversarial risk is the likelihood of selecting
a sample whose e-neighborhood includes a sample with a different label; equivalently,

REC(h, 1) = Procy [)r(pei%{d(x’,x) | h(x") £h(x)} < e].

There’s less risk for a specific , the quantum classifier — is perturbed by e. h has more
robustness.
Quantum Boundary Attack,

xadv _ dlipy, (xbase 1y Nq)
X0 = argmin |V L(fo(x'), y)]|2
Ny = Qu(x € [0,1]")
Quantum Basic Iterative Method Attack,
X1 = dlipyg (¢ + asign(gh))
85 = VL(fo(x"),y) + why
Nj = Qu(x €[0,1]")

Quantum NewtonFool Attack,
2
H(x) _ a £(f9(x),y)
8(x) = VL(fo(x),y) + wNj
xk+1 — xk _ ﬂ(H_lg)k
Quantum HopSkipJump Attack,
2 = o+ Bysign(gh)
8= VL(fo(x"),y) + 0Ny
B = min(Bmax, Po + KAP).

s). Distributed under a Creative Commons CC BY license.
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Algorithm 1 Quantum Circuit Decoder

Require: & € Rb*QxD
Ensure: C € Q

1: Q — @

2: forl =1to L do

3: forg=1toQdo

4 X &y,

5: 6 <+ PARAMPREDICTOR(X)
6 G < GUAPPLYGATE(6)

7 end for

8: end for

9: return C

Algorithm 2 Monte Carlo Sampling for Quantum Circuit

Require: 6: Temperature
Require: k: Top-k sampling
Require: p: Top-p probability
Require: 7n,: Number of samples
Require: ¢: Prompt encoding
Ensure: C: Generated quantum circuits
1: fori=1to ng do
2. £ < model(¢)

3 0« 1/6
4: if k # @ then
5: ¢ + top-k-filter (¢, k)
6: end if
7: if p # @ then
8 ¢ < top-p-filter(¢, p)
9: end if
10:  p; < softmax(¢/6)
11:  ¢; ~ multinomial(p;)
12: C+ CUg
13: end for
return C

> Temperature scaling

> generated circuits

Algorithm 3 Quantum Noise Process

Require: H: Hilbert space of dimension 2"
Ensure: z ~ N(0,I): Noise vector

1: Quantum register q € H

2: Apply forward diffusion process F(q)

3 fort=T,T—1,...,1do

4 Sample z; ~ N(0,1)
5: Compute ay =1 — B¢/+/1 = Bo
6:  Apply reverse diffusion step R(q, at, z¢)
7. end for
8: Return noise vector z

To consider a diffusion process (Algorithm 3) , represented (Algorithm 1) by a Markov chain
(Algorithm 2), q(x¢ | x;—1), with t € {1,...T} (Algorithm 5, the simulation code is available on

ART-IBM ©).

q(xe | x—1) = N(Xt/' v1i- .tht—lrﬁt1>

6  ART-IBM

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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where B4, -+, Br is a variance.

Xt(X(),e) = \/U_(_tX() + /1 — €
e~ N(0,1)

with & = TT._; (1 - Bs).
po(xi—1 | xt) = N(Xt—l;ﬂo(xt/t)fatzl)

Generated Quantum Circuit
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Figure 4. Quantum N oise Injection.
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Figure 5. Quantum N oise diffusion steps propagation.

A. Generative Neural Networks and Generative Adversarial Network

Deep neural networks [45,148,149,167-171] have proven extremely effective in predicting markets
and analyzing credit risk. The key to this success lies in their ability to learn from the training data
provided to them in order to tackle tasks requiring intuitive judgment and to draw conclusions even
from incomplete data sets. While machine learning algorithms are generally extremely efficient,
their training can be computationally expensive, but neural networks also have weaknesses such
as generative adversarial networks (Figure 3) [164,172-174] 7 8 [175-193] and quantum poisoning

7
8
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[194-197] which can create vulnerabilities ? [198,199] (Quantum N oise Injection (Figure 4) at the very
heart of deep learning models or machine learning applied to financial quantum computing [200] or
general quantum computing.

B. Quantum Economics and Finance in Stock Markets

An option in the financial industry (Table 1) is a contract between a buyer and a seller that,
depending on the underlying financial securities, like stocks or indexes, guarantees the buyer a future
return after expiration. In recent years, numerical methods have rapidly evolved to solve quantitative
finance problems using quantum computers. Quantum economics and finance [9,45,57,65,201-205]
have thus emerged to interpret the erratic behavior of stock markets using quantum mechanical
concepts [206-208]. The financial market is an intricate dynamic system that is not linear. The
introduction of derivative instruments aims to lower the risks involved in its operations. These
financial instruments, like futures and options, are traded similarly to stocks, bonds, and other assets.
To reduce financial risk, financial options are the most frequently utilized of them. These financial
trading tactics entail figuring out how much financial instruments like bonds, options, and interest-rate
derivatives are worth. Usually, stochastic differential equations derived from a Black-Scholes model
[209,210] control these computations. The Monte Carlo ' ' method [107,211-216], B, [35,64,217-221]
is a technique used to estimate the properties of a system stochastically by statistically sampling.

2
5 o
Pr(|fi—ul >¢€) < et

(22)

=

where € is the error and fi is the approximation to y obtained from k samples.

‘ Feature ‘ Monte Carlo ‘ QAE ‘ Computational Speedup ‘

Linear O(1/¢2), where | _ Quadratic O(L/e) | g o er of )
mear ¢ speedup over classical fower samples
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Eﬁngn?m en derivatives

Figure 6. Comparing Quantum Amplitude Estimation (QAE) for Option Pricing with Classical Monte Carlo.

C. Financial Quantum Approach in Option Pricing

With the assumption of transaction costs, a variable risk-free interest rate, or stochastic asset price
volatility, Black-Scholes models [50,222-224] are frequently employed in the literature (Table 1). These
models are regarded more accurate for option pricing (Figure 6) since these assumptions are more
likely to reflect actual market conditions. However, the risk of model data poisoning (DP) has emerged
with the use of artificial intelligence (AI) models in the financial industry [225]. The financial quantum
approach is starting to emerge as a substitute strategy for the stock market as a result. This section will
examine option pricing models [27,67,97] that are based on the Black-Scholes equation (Figure 7) in a
quantum setting using Reinforcement Learning [142,167,226-229].

D. Reinforcement Learning

A typical reinforcement learning (Figure 8) [228-234] setting is based on Markov decision
processes. A Markov decision process is defined as follows: {S, Ay pij(a), Tiay V. i, ] €S8 € Ay }.S
denotes the set of the states, A ;) denotes the set of actions corresponding to state i, p;;(a) denotes the
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Figure 7. Market reality against the Black-Scholes model’s presumptions.

probability of transitioning from state i to j when action a is executed, r; ;) denotes the reward of
executing action 4 in state 7, V is the value function that the agent tries to maximize. Reward function
is defined from T to (—o0, +-00), where I' = {(i, a):i€S,a€ A }.7‘[ denotes the policy that the agent

tries to learn and it is defined from S x Ujes A(j) to [0, 1]. The value function is defined as the following:

VI =E[rii1 +9r42+... | st =s,71] =
E[ri1 + Vi
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| st = s,rc} =
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where t denotes a timestep and 1 is the discount factor in the range [0,1]. p%, = P[s;11 =’ | s = s,a; = a],
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Optimal policy: 7* = argmax_ V.
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Figure 8. Benefits and Difficulties of RL and Quantum in Financial Trading.

V. Challenges for Quantum Computing

One of the most important problems in quantum computing (Figure 9) [68,235,235-240] is
decoherence, i.e., uncontrolled interactions between the system and its environment. This leads
to a loss of quantum behavior in the quantum processor. The decoherence time therefore imposes a
strict limit on the number of operations. Designing higher-fidelity qubits is a major hardware challenge.
Nevertheless, decoherence can be fixed via error-correction techniques. The fact that a single qubit
may need thousands of physical qubits is a significant barrier. Numerous researchers have resorted to
algorithms for so-called Noisy Intermediate-Scale Quantum’(NISQ)” quantum processors in response
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to these challenges [241-244]. Despite decoherence, these are made to function well on malfunctioning
quantum computers.
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Figure 9. Quantum Computing in Financial System.

Conclusions

This article looked at how quantum computing might be used in the financial industry. Partly
because of conceptual advancements that promise large speedups for broadly applicable algorithms
[245], and in part because of experimental breakthroughs in quantum hardware that surpass all
expectations, this field is expanding quickly. However, it will take more experimental work before a
universal quantum processor that can outperform existing supercomputers can be constructed. Using
quantum parallelism, the solution is roughly calculated:

n

V(S,t) ~ Y cii(S)e T,

i=1
Nelson-Siegel-Svensson model [246]:

1—et/m 1—et/m

r(t) = Bo+ P1 y + B2

T t/m
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