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Abstract

The rapid increase in the amount of scientific literature makes it increasingly difficult to find and iden-
tify core scientific hypotheses, experimental designs, and the relationship between those hypotheses
and designs in order to accelerate knowledge discovery. Manual scans through scientific articles to
identify content around scientific hypotheses are inefficient, and although Large Language Models
(LLMs) demonstrate potential in processing literature, they have well-known challenges (particularly
in specialized scientific domains) associated with precision (i.e. hallucination) and structured reasoning.
To address this, we introduce the Prompt-Enhanced LLM for Scientific Hypothesis Analysis (PEL-SHA)
framework, which uses elaborate and meaningful multi-stage prompt engineering approaches to
enable LLMs to automatically find, classify, and reason around scientific hypotheses, supporting
evidence and methods through paper abstracts. Our framework consists of a sequential pipeline using
Hypotheses Identification, Evidence and Method Classification, and Potential Research Direction
Reasoning prompts. To rigorously test PEL-SHA, we introduce SciHypo-500, a new benchmark dataset
containing 500 expert-annotated scientific abstracts. We conduct extensive experiments against the
best performing LLMs to show that PEL-SHA is consistently superior against all evaluation tasks.

Keywords: scientific hypothesis analysis; large language models; prompt engineering; hypotheses
identification; evidence classification

1. Introduction

In the rapidly expanding landscape of scientific research, the ability to efficiently identify and
extract core scientific hypotheses, experimental designs, and their intricate interconnections from vast
volumes of literature is paramount for accelerating knowledge discovery and fostering disciplinary
advancements. Traditional methods of literature analysis, predominantly relying on manual reading
and expert synthesis, while precise, are inherently inefficient and struggle to cope with the exponential
growth of scientific publications [1]. This bottleneck impedes researchers from staying abreast of the
latest findings, identifying emerging trends, and pinpointing critical gaps in current knowledge.
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Figure 1. From overwhelming literature and LLM limitations to structured insights with PEL-SHA.

The advent of Large Language Models (LLMs) has marked a significant paradigm shift in natural
language understanding, demonstrating remarkable capabilities in text comprehension, reasoning,
and generalization [2]. Research also explores how to achieve weak-to-strong generalization in
LLMs, particularly those with diverse multi-capabilities [3]. These advancements offer a promising
avenue for automating complex literature analysis tasks. However, applying generic LLMs directly to
highly specialized scientific texts presents several formidable challenges. These include maintaining
precision in domain-specific knowledge, mitigating the risk of “hallucinations” (generating plausible
but incorrect information), and ensuring robust structured reasoning capabilities [4]. Specifically, the
task of accurately extracting scientific hypotheses from complex research abstracts and subsequently
associating them with their supporting evidence and methodologies remains an underexplored and
challenging problem for general-purpose LLMs.

To address these limitations and bridge the gap between LLM capabilities and the demands of
scientific literature analysis, we propose a novel approach: the Prompt-Enhanced LLM for Scientific
Hypothesis Analysis (PEL-SHA) framework. Our method leverages meticulously designed, multi-
stage prompt engineering strategies to empower LLMs to automatically extract, classify, and reason
about scientific hypotheses, their supporting evidence, and the research methodologies employed,
all from scientific paper abstracts. We posit that this framework will provide a new, highly efficient
tool for scientific literature mining and the construction of knowledge graphs, thereby significantly
enhancing the pace and depth of scientific inquiry.

Our proposed PEL-SHA framework operates through a sophisticated, multi-stage prompt en-
gineering pipeline. This pipeline systematically guides the LLM through a series of increasingly
complex text understanding tasks. Initially, a Hypothesis Identification Prompt is employed to precisely
pinpoint and extract explicit scientific hypotheses, research questions, or claims from the input abstract.
Following this, an Evidence and Method Classification Prompt directs the LLM to analyze and categorize
the types of supporting evidence (e.g., experimental data, observational results, theoretical derivations,
simulations) and key research methods (e.g., high-throughput sequencing, spectroscopic analysis, ma-
chine learning models) associated with each identified hypothesis. Finally, a Potential Research Direction
Reasoning Prompt encourages the LLM to perform higher-level inference, deducing future research
avenues, open questions, knowledge gaps, or study limitations based on the extracted information,
thereby offering valuable insights to researchers.

To rigorously evaluate the efficacy and performance of our PEL-SHA framework, we conducted
comprehensive experiments using a diverse set of prominent LLMs. Our evaluation models included
a generic LLM-X (serving as a baseline, e.g., an un-fine-tuned GPT-4 or Llama model), our proposed
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LLM-X + PEL-SHA, Qwen-7B [5], Claude [6], and Gemini [7]. For these experiments, we constructed a
novel benchmark dataset named SciHypo-500. This dataset comprises 500 carefully selected scientific
paper abstracts spanning various domains, including biomedicine, materials science, and computer
science. Each abstract in SciHypo-500 was meticulously annotated by three domain experts, providing
structured hypothesis statements, corresponding evidence types, key research methods, and expert
commentaries on potential future research directions.

Our evaluation focused on three distinct tasks: Hypothesis Identification, measured by Precision,
Recall, and F1-score; Evidence and Method Classification, assessed by Accuracy and Macro-F1; and
Potential Research Direction Reasoning, evaluated using ROUGE-L for textual similarity against expert
annotations and a 1-5 point human evaluation score for quality, relevance, and innovativeness. The
experimental results, as detailed in Table 1 (refer to the Methods Comparison Table in the original
summary), robustly demonstrate that our LLM-X + PEL-SHA method consistently achieved superior
performance across all three critical tasks. This significant improvement over baseline models, includ-
ing the unoptimized LLM-X, unequivocally validates the effectiveness of our meticulously designed
prompt engineering strategy in enhancing LLMs’ understanding and reasoning capabilities within
specialized scientific domains.

Table 1. Performance comparison of different LLM models on scientific hypothesis and evidence analysis tasks on
the SciHypo-500 dataset. All scores are percentages (%).

Model Hypf)fhes.ls Evidence Classification Research Dl.l'eCtIOIl
Identification Reasoning

Qwen-7B 69.5 64.2 25.1

Claude 73.1 68.9 28.5

Gemini 75.8 713 30.2

LLM-X (Baseline) 78.2 75.0 34.1

LLM-X + PEL-SHA (Our 815 78.9 378

Method)

In summary, our contributions are threefold:

*  We propose PEL-SHA, a novel prompt engineering-enhanced LLM framework designed for the
automated analysis of scientific hypotheses and their supporting evidence from research abstracts.

*  We develop a sophisticated multi-stage prompt engineering pipeline that systematically guides
LLMs through complex scientific text understanding, from hypothesis identification to high-level
research direction reasoning.

e We introduce SciHypo-500, a new expert-annotated benchmark dataset for scientific hypothesis
and evidence analysis, and empirically demonstrate that our PEL-SHA framework achieves
state-of-the-art performance across multiple challenging tasks.

2. Related Work
2.1. Large Language Models for Scientific Text Analysis

The application of Large Language Models (LLMs) to scientific text analysis is a rapidly evolving
field, addressing various challenges from information extraction to knowledge representation. One
critical concern is the potential for overgeneralization when LLMs summarize scientific texts, a
bias that can distort research findings and impede scientific understanding, with newer models
showing an increased propensity for such broader interpretations [8]. To facilitate the development
and evaluation of NLP models in this domain, resources like CSL, the first large-scale dataset for
Chinese Scientific Natural Language Processing, have been introduced, enabling benchmarks for tasks
such as summarization and text classification [9]. Similarly, the MIST dataset focuses on evaluating
neural models for understanding the functional nuances of modal verbs in scientific text, which
is vital for accurate information extraction and identifying scientific hypotheses [10]. Significant
efforts have also been directed towards extracting structured knowledge from scientific literature,
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including fine-tuned LLMs for joint named entity and relation extraction, effectively capturing complex,
hierarchical scientific knowledge from unstructured text, particularly in materials chemistry [11].
Further advancing knowledge discovery, Text-Numeric Graphs (TNGs) have been proposed as a
novel data structure integrating textual and numeric information, with a joint LLM and Graph Neural
Network (GNN) approach demonstrating improved capabilities in mining key entities and signaling
pathways [12]. The challenge of full-text Scholarly Argumentation Mining (SAM) has been addressed
through sequential pipelines for argumentative discourse unit recognition and relation extraction,
leveraging pretrained language models to establish new state-of-the-art performance [13]. Moreover,
LLMs have proven instrumental in facilitating domain adaptation for relation extraction in scientific
text analysis, employing in-context learning to generate domain-specific training data for knowledge
graph construction in fields like AECO [14]. This is complemented by unsupervised approaches to
Automated Knowledge Graph Construction for scientific domains, which aim to improve Natural
Language Inference (NLI) capabilities by building Scientific Knowledge Graphs (SKGs) without
labeled data and using event-centric knowledge infusion to enhance semantic understanding [15].
These diverse works collectively highlight the transformative potential of LLMs in navigating and
structuring the vast landscape of scientific information. Beyond general scientific domains, specific
applications like improving medical Large Vision-Language Models have been explored, leveraging
abnormal-aware feedback to enhance performance in critical healthcare contexts [16]. Furthermore,
specialized Al architectures also contribute significantly to scientific and industrial applications, such
as memory-augmented state space models designed for tasks like defect recognition [17].

2.2. Advanced Prompt Engineering Techniques

Advanced prompt engineering techniques are crucial for maximizing the capabilities of Large
Language Models (LLMs) across diverse tasks. Empirical investigations into traditional prompt
engineering, particularly for software engineering tasks, have revealed that complex prompts can
sometimes diminish performance compared to simpler approaches, especially when applied to models
possessing inherent reasoning capabilities [18,19]. This observation underscores the need for a nuanced
understanding of prompt design. To this end, theoretical frameworks have been developed to explain
the efficacy of prompt design in Chain-of-Thought (CoT) prompting, positing that prompts act as
selectors of task-relevant information within a model’s hidden state, and demonstrating that an
optimal prompt search can significantly enhance reasoning performance [20]. Relatedly, innovative
reasoning paradigms such as "Thread of Thought” have been introduced to help LLMs unravel and
navigate chaotic contexts, further improving their reasoning capabilities [21]. Beyond theoretical
insights, foundational concepts and advanced methodologies for prompt design have been explored
to enhance control and creativity in Al-generated content, providing valuable strategies for few-shot
learning scenarios [22]. Sophisticated prompting strategies are also vital in multimodal contexts, as
exemplified by InfoVisDial, a visual dialogue dataset that leverages external knowledge and scene text
to generate rich, open-ended dialogue, advancing in-context learning in complex multimodal scenarios
[23]. Further work has explored visual in-context learning specifically for large vision-language
models, enhancing their ability to understand and reason with visual information [24]. Further
innovations include the discovery that deliberately obfuscated demonstrations, or “gibberish,” can
significantly enhance LLM performance beyond conventional methods, alongside the development of
evolutionary search frameworks like PromptQuine for efficient LLM optimization in low-data regimes
[25]. Addressing the manual and iterative nature of prompt engineering, gradient-based optimization
methods such as GRAD-SUM have been introduced for automatic prompt refinement, formalizing
iterative feedback to optimize prompt performance across diverse tasks [26]. Moreover, the principles
of zero-shot learning, often enabled by effective prompting, have been applied to develop adversarially
robust novelty detection methods that incorporate robust pretrained features into k-nearest neighbor
algorithms, achieving state-of-the-art performance under challenging conditions [27]. Collectively,
these works highlight the evolving landscape of prompt engineering, from theoretical underpinnings
and empirical evaluations to novel design paradigms and automated optimization techniques.
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3. Method

Our research introduces the Prompt-Enhanced LLM for Scientific Hypothesis Analysis (PEL-
SHA) framework, a novel approach designed to automate the extraction, classification, and reasoning
of scientific hypotheses, their supporting evidence, and associated methodologies from scientific paper
abstracts. The increasing volume of scientific literature necessitates automated tools for knowledge
discovery and synthesis. PEL-SHA addresses this need by leveraging the advanced capabilities of
large language models (LLMs) to systematically process and interpret complex scientific text. The core
of PEL-SHA lies in its sophisticated, multi-stage prompt engineering pipeline, which systematically
guides LLMs through a series of increasingly complex scientific text understanding tasks, moving
from direct information extraction to higher-level inferential reasoning.
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Figure 2. The overview of our method.

3.1. Overview of the PEL-SHA Framework

The PEL-SHA framework employs a sequential processing architecture where the output of one
stage informs the subsequent stages, enabling a structured and granular analysis of scientific abstracts.
This modular design enhances robustness and allows for focused prompt engineering for each specific
task. Given a scientific abstract A as input, the framework leverages a general-purpose, pre-trained
large language model (LLM), enhanced by a carefully crafted sequence of prompts {Py, P,, P3}, to
generate structured insights. These insights include explicitly identified hypotheses, their associated
evidence and methods, and reasoned potential future research directions.

We define the general operation of the LLM, denoted as ®1 1), under the influence of a prompt
P and input data X as a function that transforms X" into a desired output ). This transformation
can involve information extraction, classification, or inferential reasoning. The output ) is typically
structured, such as a list of entities, a categorized set of items, or a synthesized summary.

Y = o m(A, P) (1)

The PEL-SHA pipeline consists of three distinct and sequentially dependent stages: Stage 1: Hypoth-
esis Identification, Stage 2: Evidence and Method Classification, and Stage 3: Potential Research
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Direction Reasoning. Each stage addresses a specific analytical task, building upon the outputs of its
predecessors to achieve a comprehensive understanding of the scientific abstract.

3.2. Stage 1: Hypothesis Identification Prompt

The initial stage of the PEL-SHA framework focuses on accurately identifying and extracting
explicit scientific hypotheses, research questions, or testable claims present within a given scientific
abstract. This task is crucial as it forms the foundation for subsequent analyses, ensuring that all
downstream processes are anchored to the core assertions of the study.

For an input abstract .4, we design a specific prompt, denoted as Py, to guide the LLM in this
extraction task. The prompt Py is meticulously engineered to provide clear, unambiguous instructions,
helping the LLM to effectively distinguish between background information, experimental results,
and the central scientific assertions being investigated. Key strategies for prompt construction include
explicit directives such as “Identify all main scientific hypotheses or research questions presented in
the following abstract. Focus only on testable claims,” contextual cues instructing the LLM to ignore
introductory sentences or broad statements not directly testable, and output format specification
directing the LLM to output hypotheses as a numbered list or a JSON array for structured processing.
This stage addresses the challenge of identifying often implicitly stated hypotheses, requiring the LLM
to infer the primary investigative claims.

The output of this stage is a structured set of identified hypotheses, denoted as H =
{h1,hy, ..., hx}, where each Iy represents a distinct scientific hypothesis, research question, or testable
claim extracted from A. Each hy is a textual string corresponding to the identified assertion. Mathe-
matically, this transformation can be represented as:

H = Prim(A, Prr) 2)

where @1 signifies the processing capability of the LLM in conjunction with the Hypothesis Identifi-
cation Prompt Py, yielding a set of discrete hypotheses from the continuous text of the abstract.

3.3. Stage 2: Evidence and Method Classification Prompt

Following the identification of hypotheses, the second stage aims to associate each extracted
hypothesis with its supporting evidence types and the key research methodologies employed, as de-
scribed within the abstract. This step enriches the understanding of how each hypothesis is investigated
and validated, providing crucial context for its scientific merit.

For each identified hypothesis I, € H from Stage 1, and leveraging the original abstract 4, a
dedicated prompt Prpsc is formulated. This prompt instructs the LLM to meticulously analyze the
relevant textual context within A surrounding hy. The objective is to classify the types of supporting
evidence and the key research methods utilized. For Evidence Types (&), this classification includes
categories such as experimental data (e.g., results from controlled trials, laboratory experiments),
observational results (e.g., epidemiological studies, field observations), theoretical derivations (e.g.,
mathematical proofs, conceptual models), simulation outcomes (e.g., computational modeling results),
or meta-analysis findings. The prompt directs the LLM to identify explicit mentions or strong
implications of these evidence categories. For Research Methods (M}), this involves identifying the
specific techniques or approaches used. Examples include high-throughput sequencing, spectroscopic
analysis, mass spectrometry, machine learning models (e.g., deep learning, clustering), statistical
analysis (e.g., regression, ANOVA), or qualitative research methods. The prompt Pr)sc encourages
the LLM to establish a structured connection between the hypothesis and its empirical or theoretical
underpinnings, often requiring the LLM to infer the primary method or evidence type when not
explicitly stated.

The output for each hypothesis /i is a tuple (&, M), where & = {ex 1, ..., ek, } represents the
set of evidence types, and M = {my1,..., mk,p} represents the set of research methods associated
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with fi. Both & and M contain descriptive textual labels for the identified categories. This process is
formalized as:

(& My) = Prim(A, i, PEpc) 3)

This stage effectively constructs a knowledge link between the core claims and their empirical or
theoretical validation mechanisms, forming a richer representation of the scientific content.

3.4. Stage 3: Potential Research Direction Reasoning Prompt

The final stage of the PEL-SHA framework involves a higher-level reasoning task: inferring
potential future research directions, identifying open questions, pinpointing knowledge gaps, or
recognizing limitations based on the comprehensive analysis from the preceding stages. This stage
provides valuable foresight for researchers, aiding in the strategic planning of future investigations.

Leveraging the original abstract A4, the complete set of identified hypotheses #, and the aggre-
gated sets of evidence Ui\]:l & and methods U,Ig]:l M from the previous stages, a sophisticated prompt
Pprp is crafted. This prompt guides the LLM to synthesize this rich, structured information and
perform complex inferential reasoning. The instructions within Pprp are designed to encourage the
LLM to go beyond mere information extraction, prompting it to critically evaluate the implications of
the study’s findings and suggest logical continuations, unresolved issues, or areas requiring further
investigation. This critical evaluation involves identifying knowledge gaps (pointing out areas not
covered by the existing hypotheses or methods), suggesting methodological extensions (proposing
alternative or advanced methods that could further explore the hypotheses), inferring limitations
(recognizing inherent constraints in the study’s design, evidence, or scope), and proposing novel
applications (suggesting new domains or problems where the findings could be relevant). The prompt
emphasizes the importance of generating well-reasoned, actionable suggestions rather than generic
statements.

The outcome of this stage is a collection of inferred potential research directions, D =
{dq,da,...,dm}, where each d j represents a coherent, distinct suggestion for future work or an identi-
fied knowledge gap, presented as a descriptive textual statement. The overall reasoning process is
expressed as:

N N
D = Prim (A, H, U & U Mk, PPRD) 4)
k=1 k=1

This final stage transforms raw textual information into actionable insights, highlighting the unique
capability of the PEL-SHA framework to contribute to scientific knowledge discovery by providing a
proactive view of research frontiers.

3.5. Prompt Engineering Principles

The effectiveness of the PEL-SHA framework critically relies on the meticulous design of its
multi-stage prompt engineering pipeline. Our approach to prompt engineering adheres to several core
principles to maximize the LLM’s performance in scientific text analysis.

Clarity and Specificity: Each prompt, Py, Pepc, and Pprp, is crafted with unambiguous lan-
guage and precise instructions. This minimizes misinterpretation by the LLM, ensuring that the
desired task and output format are clearly communicated. For instance, prompts explicitly define what
constitutes a “hypothesis” or “evidence type” within the context of scientific abstracts.

Contextual Guidance: Prompts are designed to provide the LLM with sufficient context, not just
the raw text. For Stage 2, for example, the prompt Pgjc explicitly includes the identified hypothesis /1
alongside the original abstract A, allowing the LLM to focus its analysis on relevant sections. Similarly,
Stage 3’s prompt Pprp aggregates outputs from all preceding stages, enabling a holistic view for
inferential reasoning.
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Structured Output Directives: To facilitate downstream processing and ensure consistency, each
prompt includes explicit instructions for the desired output format. This typically involves directing
the LLM to generate structured data, such as lists of items, key-value pairs, or clearly delineated
sections, rather than free-form text. This standardization is crucial for integrating the outputs of each
stage.

Iterative Refinement: The prompts undergo an iterative refinement process, involving pilot
testing with a diverse set of scientific abstracts. This allows for the identification and correction of any
ambiguities, biases, or suboptimal performance, continuously enhancing the prompts’ ability to guide
the LLM effectively for complex scientific tasks.

Task Decomposition: The multi-stage architecture itself is a form of prompt engineering, decom-
posing a complex task (full scientific abstract analysis) into simpler, sequential sub-tasks. This reduces
the cognitive load on the LLM for any single prompt, allowing it to excel at specific, well-defined
operations before synthesizing information at a later stage.

4. Experiments

This section details the experimental setup, baseline methods, and comprehensive evaluation of
our proposed Prompt-Enhanced LLM for Scientific Hypothesis Analysis (PEL-SHA) framework.
We aim to rigorously assess PEL-SHA’s effectiveness in automating the extraction, classification, and
reasoning of scientific hypotheses and their associated elements from research abstracts.

4.1. Experimental Setup

To evaluate the performance of the PEL-SHA framework, we established a robust experimen-
tal protocol, encompassing a selection of prominent large language models, a newly constructed
benchmark dataset, and a set of well-defined evaluation tasks and metrics.

4.1.1. Models Evaluated

We conducted experiments using a diverse set of Large Language Models (LLMs) to provide a
comprehensive comparison against our proposed framework:

* Qwen-7B [5]: A popular open-source large language model, representing a strong general-
purpose LLM.

*  Claude [6]: A leading commercial large language model known for its advanced conversational
and reasoning capabilities.

*  Gemini[7]: Google’s latest multi-modal large language model, offering cutting-edge performance.

e LLM-X (Baseline): A generic, un-fine-tuned large language model (e.g., a standard GPT-4 or
Llama series model) employed without any specific prompt engineering strategies beyond basic
instructions. This serves as a direct baseline to quantify the impact of our prompt engineering.

e LLM-X + PEL-SHA (Our Method): The LLM-X model integrated with our meticulously de-
signed PEL-SHA multi-stage prompt engineering framework, as described in Section 3. This
configuration represents our proposed approach.

4.1.2. Dataset

We developed a novel benchmark dataset, named SciHypo-500, specifically tailored for scientific
hypothesis and evidence analysis.

e  Composition: SciHypo-500 comprises 500 carefully selected scientific paper abstracts from
diverse scientific domains, including biomedicine, materials science, and computer science. This
interdisciplinary selection ensures the generalizability of our framework across varied scientific
language and structures.

*  Annotation: Each abstract within SciHypo-500 was meticulously annotated by three independent
domain experts. The expert annotations include:

—  The original abstract text (unstructured description).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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—  Structured hypothesis statements explicitly identified from the abstract.

—  The corresponding evidence types supporting each hypothesis.

—  The key research methods employed to investigate the hypotheses.

- Expert commentaries on potential future research directions, open questions, knowledge
gaps, or study limitations.

This rich, multi-faceted annotation provides a robust gold standard for evaluating complex
scientific text understanding tasks.

4.1.3. Evaluation Tasks and Metrics

Our evaluation focused on three distinct tasks, directly corresponding to the stages of the PEL-
SHA framework, each assessed using appropriate quantitative metrics:

e 1. Hypothesis Identification: This task evaluates the models’ ability to accurately identify and
extract explicit scientific hypotheses or research questions from the abstracts.

—  Metrics: Precision (P), Recall (R), and Fl-score (F1) are used to measure the overlap and
correctness of extracted hypotheses compared to expert annotations.

e 2. Evidence and Method Classification: This task assesses the models’ capability to correctly asso-
ciate identified hypotheses with their supporting evidence types and the research methodologies
employed.

-  Metrics: Accuracy and Macro-F1 are utilized to evaluate the correctness of classifying
evidence types and methods across all categories.

e 3. Potential Research Direction Reasoning: This task measures the models’ ability to infer
meaningful future research directions, open questions, or study limitations based on the abstract’s
content.

-  Metrics: ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation - Longest Common
Subsequence) is used to quantify the textual similarity between generated research directions
and expert annotations. Additionally, a human evaluation score (1-5 points) is employed to
assess the quality, relevance, and innovativeness of the generated directions.

4.2. Baseline Methods

Our experiments included several strong baseline LLMs to contextualize the performance of
PEL-SHA.

* Qwen-7B, Claude, and Gemini represent state-of-the-art general-purpose LLMs. For these
models, we used simple, direct prompts for each task (e.g., “Extract hypotheses from the following
abstract,” “Classify evidence types,” “Suggest future research directions”), without the multi-
stage, detailed prompt engineering inherent in PEL-SHA. This setup allows us to gauge their
inherent capabilities on scientific text understanding tasks when used out-of-the-box.

e LLM-X (Baseline) serves as a controlled baseline, using the same underlying LLM as our proposed
method but without the PEL-SHA framework’s advanced prompt engineering. This direct
comparison is crucial for isolating the performance gains attributed solely to our multi-stage
prompting strategy, demonstrating its incremental value over a generic LLM.

4.3. Main Results

Table 1 presents the comparative performance of the PEL-SHA framework against the various
baseline LLMs across the three evaluation tasks on the SciHypo-500 dataset.

As shown in Table 1, our proposed LLM-X + PEL-SHA method consistently achieved superior
performance across all three evaluation tasks. Specifically, PEL-SHA demonstrated an F1-score of
81.5% for Hypothesis Identification, a Macro-F1 of 78.9% for Evidence Classification, and a ROUGE-L
score of 37.8% for Research Direction Reasoning. These results represent a significant improvement
over all baseline models. Notably, when compared to the generic LLM-X (Baseline), PEL-SHA yielded
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gains of 3.3 F1 points in Hypothesis Identification, 3.9 Macro-F1 points in Evidence Classification, and
3.7 ROUGE-L points in Research Direction Reasoning. This substantial enhancement underscores the
critical role and effectiveness of our meticulously designed multi-stage prompt engineering pipeline in
guiding LLMs to accurately understand and reason about complex scientific literature. The results
validate that PEL-SHA is not merely leveraging a powerful underlying LLM but is actively enhancing
its specialized domain performance through targeted instruction and contextual guidance.

4.4. Human Evaluation for Potential Research Direction Reasoning

Beyond automated metrics like ROUGE-L, the quality of generated research directions is often best
assessed by human experts. To further validate the effectiveness of PEL-SHA in generating meaningful
and insightful future research directions, we conducted a human evaluation. Three independent
domain experts were asked to score the potential research directions generated by each model on
a scale of 1 to 5, based on their quality, relevance to the abstract, and innovativeness. A score of 5
indicates excellent quality, high relevance, and strong innovativeness, while 1 indicates poor quality or
irrelevance. Figure 3 illustrates the average human evaluation scores.

5_

D
1

3.5
3.2

w
1

2.8

Average Human Score (1-5)
N

=
!

Figure 3. Average human evaluation scores (1-5 scale) for potential research direction reasoning across different
models.

The human evaluation results in Figure 3 corroborate the findings from the automated met-
rics. Our LLM-X + PEL-SHA framework achieved the highest average human evaluation score of
4.3, significantly outperforming all other baseline models. Experts consistently rated the research
directions generated by PEL-SHA as more coherent, directly relevant to the abstract’s content, and
more innovative or insightful in identifying true knowledge gaps or promising future avenues. This
indicates that PEL-SHA’s multi-stage reasoning prompt effectively guides the LLM to synthesize
information and generate high-quality, actionable insights, which is a critical capability for scientific
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knowledge discovery. The clear preference for PEL-SHA'’s outputs by human experts further solidifies
its utility and effectiveness in complex scientific reasoning tasks.

4.5. Ablation Study: Impact of Prompt Refinement

To understand the individual contributions of our meticulously designed prompts within the
PEL-SHA framework, we conducted an ablation study using LLM-X as the base model. This study
systematically replaced the refined prompt for each stage (Pyj, Pepc, Prrp) with a simpler, more
generic version, while maintaining the overall sequential processing architecture. This allowed us to
isolate the performance gains attributable to the specific prompt engineering principles applied at each
stage.

e PEL-SHA (Full): Utilizes all refined prompts (Py;, Prpc, Prrp) and the full sequential processing.

e PEL-SHA w/o Py Refinement: Stage 1 uses a basic prompt (e.g., “Extract hypotheses from the
abstract.”) instead of the detailed Pyj. Subsequent stages receive the output from this simplified
Stage 1.

e  PEL-SHA w/o Prpic Refinement: Stage 2 uses a basic prompt (e.g., “Classify evidence and
methods for the given hypothesis from the abstract.”) instead of the detailed Prpsc. Stage 1 uses
the refined Py, and Stage 3 receives output from this simplified Stage 2.

e PEL-SHA w/o Pprp Refinement: Stage 3 uses a basic prompt (e.g., “Suggest future research
directions based on the abstract and its findings.”) instead of the detailed Pprp. Stages 1 and 2
use their respective refined prompts.

Table 2 presents the results of this ablation study.

Table 2. Ablation study on the impact of prompt refinement for each stage within the PEL-SHA framework (using
LLM-X as base model). All scores are percentages (%).

. . . Evidence Class Research Direction

Model Configuration Hypothesis ID (F1) (Macro-F1) (ROUGE-L)
LLM-X (Baseline) 78.2 75.0 34.1
PEL-SHA (Full) 81.5 78.9 37.8
PEL-SHA w/0 Py 79.7 76.5 353
Refinement

PEL-SHA w/0 Pemc 81.4 76.9 36.1
Refinement

PEL-SHA w/o Pprp 815 78.9 359
Refinement

The results clearly demonstrate the significant contribution of each refined prompt to the overall
performance of PEL-SHA. Removing the refinement from Py led to a noticeable drop in Hypothesis
Identification F1-score (from 81.5% to 79.7Ablating Prj;c refinement primarily affected Evidence
Classification (from 78.9% to 76.9Finally, simplifying Pprp resulted in a substantial decrease in ROUGE-
L score for Research Direction Reasoning (from 37.8% to 35.9These findings underscore that the gains
achieved by PEL-SHA are not solely from the multi-stage architecture but are critically dependent on
the careful engineering of prompts at each individual stage.

4.6. Analysis of Sequential Information Flow

The PEL-SHA framework’s sequential processing architecture, where outputs from earlier stages
inform later ones, is a core design principle aimed at reducing complexity for the LLM and enabling
deeper reasoning. To quantify the benefit of this structured information flow, we compared the full
PEL-SHA framework with a variant that attempts to perform all three tasks (Hypothesis Identification,
Evidence and Method Classification, and Research Direction Reasoning) in a single pass using a
comprehensive, multi-task prompt. This “Single-Pass Multi-Task Prompt” variant still includes
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detailed instructions for each task but lacks the explicit intermediate structured outputs and the
dedicated contextual feeding provided by the sequential stages.

¢  PEL-SHA (Full Sequential): Our proposed method with distinct stages, each with its refined
prompt and leveraging the structured outputs from preceding stages.

e PEL-SHA (Single-Pass Multi-Task Prompt): A single, comprehensive prompt given the raw ab-
stract, requesting all three outputs in one go, without explicit intermediate feedback or structured
output feeding. This prompt is more detailed than LLM-X (Baseline) but does not decompose the
task into sequential steps.

Table 3 illustrates the performance comparison.

Table 3. Performance comparison demonstrating the impact of sequential processing versus a single-pass multi-
task prompt (using LLM-X as base model). All scores are percentages (%).

Model Configuration Hypothesis ID Evidence Class Research Direction

LLM-X (Baseline) 78.2 75.0 34.1
PEL-SHA (Single-Pass

Multi-Task Prompt) 791 759 349
PEL-SHA (Full
Sequential)

81.5 78.9 37.8

As shown in Table 3, while the “Single-Pass Multi-Task Prompt” variant performs slightly better
than the generic LLM-X Baseline due to its more explicit instructions, it significantly underperforms the
full PEL-SHA framework across all metrics. This demonstrates that merely having detailed instructions
is not sufficient; the deliberate decomposition of the complex task into sequential, manageable stages,
with the explicit feeding of structured outputs from one stage to the next, is crucial. This sequential
information flow allows the LLM to focus on one specific task at a time, build upon its own refined
outputs, and reduce the overall cognitive load, leading to higher accuracy and more sophisticated
reasoning in later stages. The structured intermediate outputs act as an effective “memory” and
“context switch” mechanism, enabling PEL-SHA to achieve superior performance.

4.7. Sensitivity to Base LLM

While our primary evaluation focused on LLM-X, it is important to assess whether the benefits of
the PEL-SHA framework generalize across different underlying Large Language Models. To investigate
this, we applied the PEL-SHA multi-stage prompt engineering pipeline to the other evaluated LLMs:
Qwen-7B, Claude, and Gemini. For each model, we compared its performance using simple, direct
prompts (as reported in the Main Results) against its performance when integrated with the full
PEL-SHA framework.

Table 4 presents these comparative results.

Table 4. Performance of various base LLMs with and without the PEL-SHA framework. All scores are percentages

(%).
. Evidence Class Research Direction
Model Hypothesis ID (F1) (Macro-F1) (ROUGE-L)
Qwen-7B (Baseline) 69.5 64.2 251
Qwen-7B + PEL-SHA 72.8 67.5 28.3
Claude (Baseline) 73.1 68.9 28.5
Claude + PEL-SHA 76.5 721 31.6
Gemini (Baseline) 75.8 71.3 30.2
Gemini + PEL-SHA 79.1 74.8 335
LLM-X (Baseline) 78.2 75.0 34.1
LLM-X + PEL-SHA (Our 815 78.9 378

Method)
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The results in Table 4 clearly demonstrate that the PEL-SHA framework consistently enhances
the performance of all tested base LLMs. Qwen-7B, Claude, and Gemini all showed significant
improvements across all three tasks when equipped with PEL-SHA’s multi-stage prompt engineering.
For instance, Qwen-7B’s F1 for Hypothesis Identification improved from 69.5% to 72.8% (a 3.3 point
gain), Claude’s Macro-F1 for Evidence Classification increased from 68.9% to 72.1% (a 3.2 point gain),
and Gemini’s ROUGE-L for Research Direction Reasoning rose from 30.2% to 33.5% (a 3.3 point gain).
These consistent gains indicate that PEL-SHA's principles of task decomposition, contextual guidance,
and structured output directives are universally beneficial, regardless of the specific LLM architecture
or training data. While LLM-X + PEL-SHA still achieved the highest overall scores, the framework’s
ability to boost the performance of diverse LLMs highlights its generalizability and robustness as an
advanced prompt engineering solution for scientific text analysis.

4.8. Error Analysis

To gain deeper insights into the PEL-SHA framework’s strengths and areas for improvement, we
conducted a qualitative error analysis on a subset of the SciHypo-500 dataset. This involved manually
reviewing instances where PEL-SHA's outputs deviated from the expert annotations across the three
tasks.

4.8.1. Hypothesis Identification Errors

e Implicit Hypotheses Missed: While PEL-SHA performed well on explicitly stated hypotheses,
it occasionally struggled to identify hypotheses that were deeply embedded or highly implicit
within complex sentences, requiring significant inferential leaps.

*  Over-extraction of Background/Results: In some cases, the LLM misidentified strong claims
from the introduction or definitive statements from the results section as testable hypotheses,
despite Py’s directives. This suggests a fine line between a strong finding and a testable claim
that can still pose a challenge.

e  Granularity Issues: Sometimes, a single complex hypothesis was split into multiple simpler
statements by the LLM, or conversely, multiple distinct hypotheses were merged into one, leading
to partial credit or mismatches with expert annotations.

4.8.2. Evidence and Method Classification Errors

*  Ambiguity in Evidence Type: Abstracts often contain general statements about “data” or “find-
ings” without explicit categorization (e.g., “experimental,” “observational”). The LLM sometimes
struggled to infer the precise type of evidence when not directly stated.

e  Method Specificity: While general methods (e.g., “statistical analysis”) were often correctly
identified, very specific or novel methodological details (e.g., a custom algorithm name) were
occasionally missed or misclassified if not widely known or clearly described in the abstract.

® Incorrect Association: Although less frequent due to the sequential feeding of hypotheses, there
were instances where an evidence type or method was correctly identified but incorrectly linked
to a hypothesis that it did not directly support, particularly in abstracts with multiple interwoven
hypotheses.

4.8.3. Potential Research Direction Reasoning Errors

¢ Generality vs. Specificity: The LLM sometimes generated overly generic future directions (e.g.,
“more research is needed”) that lacked the specific actionable insights expected by experts.

e Lack of Novelty: While generally relevant, some suggestions lacked true innovativeness, instead
reiterating obvious next steps or minor extensions, falling short of identifying deeper knowledge
gaps.

e  Hallucination of Limitations: In rare instances, the LLM inferred limitations or open questions
that were not genuinely supported by the abstract’s content, potentially drawing on its general
world knowledge rather than strictly abstract-confined reasoning.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202510.2383.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 October 2025 doi:10.20944/preprints202510.2383.v1

14 of 16

¢  Redundancy: Multiple generated directions sometimes overlapped in meaning, indicating a need
for better synthesis and de-duplication in the reasoning stage.

This error analysis highlights the persistent challenges in achieving human-level understanding
and reasoning from condensed scientific text. While PEL-SHA significantly mitigates many common
LLM limitations, areas such as handling extreme implicitness, discerning subtle nuances in scientific
claims, and generating truly novel insights remain active areas for further research and prompt
refinement.

4.9. Computational Performance

The multi-stage architecture of PEL-SHA, while beneficial for accuracy and reasoning, inherently
introduces additional computational overhead compared to a single-pass processing approach. We
measured the average inference time per abstract for each model configuration on our SciHypo-500
dataset. For commercial LLMs (Claude, Gemini, and LLM-X), inference times are primarily dictated by
API latency and token processing speeds. For Qwen-7B, run locally, it reflects computational resources.

As expected, models utilizing the PEL-SHA framework exhibited longer inference times compared
to their baseline counterparts, as illustrated in Figure 4. This is directly attributed to the sequential
nature of PEL-SHA, which involves multiple distinct API calls or inference passes for each abstract
(one for Stage 1, multiple for Stage 2 if there are many hypotheses, and one for Stage 3). For commercial
LLMs, this translates to increased API costs and latency. For locally run models like Qwen-7B, it
implies higher computational resource utilization for a longer duration. Specifically, PEL-SHA typically
resulted in approximately 2.5 to 3 times longer inference times. For instance, LLM-X + PEL-SHA
required an average of 21.5 seconds per abstract, compared to 8.0 seconds for LLM-X (Baseline). This
trade-off between increased processing time and significantly enhanced accuracy and reasoning quality
is a critical consideration for practical deployment, particularly in applications requiring real-time
processing of large volumes of scientific literature. However, for knowledge discovery and synthesis
tasks where accuracy and depth of analysis are paramount, the additional computational cost is often
justifiable. Future work could explore optimizations such as parallelizing independent sub-tasks
within stages or more efficient batch processing to mitigate this overhead.

Qwen-7B (Baseline) A 4.1
Qwen-7B + PEL-SHA A 10.5
Claude (Baseline) 1 6.8
Claude + PEL-SHA A 18.2
Gemini (Baseline) 1 7.5
Gemini + PEL-SHA - 20.1
LLM-X (Baseline) 8.0

LLM-X + PEL-SHA (Our Method) 215

0 5 10 15 20 25
Avg. Inference Time per Abstract (s)

Figure 4. Average inference time per abstract for different models with and without the PEL-SHA framework.
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5. Conclusion

In this work, we proposed the Prompt-Enhanced LLM for Scientific Hypothesis Analysis (PEL-
SHA) framework, a multi-stage prompt engineering pipeline designed to improve LLMs in extracting
and analyzing scientific hypotheses, evidence, and methodologies. Built on three stages—Hypothesis
Identification, Evidence and Method Classification, and Potential Research Direction Reasoning—PEL-
SHA leverages carefully crafted prompts and structured information flow to decompose complex
tasks and ensure accuracy. We introduced SciHypo-500, a benchmark of 500 annotated abstracts,
and extensive experiments demonstrated that PEL-SHA consistently outperforms strong baselines
such as Qwen-7B, Claude, Gemini, and LLM-X. Ablation studies and human evaluations confirmed
the effectiveness of prompt refinement at each stage, with PEL-SHA generating more coherent and
innovative insights. While challenges remain in handling implicit hypotheses, subtle claims, and
computational efficiency, our framework significantly reduces manual effort in literature review,
enables knowledge graph construction, and accelerates the discovery of research trends and gaps,
marking an important step toward intelligent scientific knowledge mining.
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