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Abstract: Non-destructive, accurate, and timely approach for crop yield prediction at field scale is 

vital for precision agriculture. This study aimed to investigate the appropriate wavelengths and 

their combinations to explore the new SIs derived from UAV hyperspectral images in predicting 

yield during the growing season of spring maize. The best wavelengths and new SIs, including the 

difference spectral index, ratio spectral index, and normalized difference spectral index forms, were 

obtained by the contour maps constructed by the coefficient of determination (R2) from the linear 

regression models between the yield and all possible SIs screening out from the 450-950 nm 

wavelengths. The results showed that the most sensitive wavelengths were 640-714 nm at WJQ, 450-

650 nm and 750-950 nm at SKS, and 450-700 nm and 750-950 nm at FJJ. The new SIs established here 

were different across the three experimental fields, and their performance on maize yield prediction 

were generally better than that of the published SIs. In addition, the new SIs presented different 

response to various N fertilization levels. This study demonstrated the potential of exploring new 

spectral characteristics from remote sensing technology for predicting field-scale crop yield in 

spring maize cropping systems before harvest. 

Keywords: unmanned aerial vehicles; hyperspectral imagery; spectral indices; contour map; yield 

 

1. Introduction 

Climate change, environmental degradation, and unsuitable farm practices impact the crop yield 

and food security all over the world. Maize (Zea mays L.) is one of the most important cereal crops, 

and it can be used as food and materials for humans and animals in many regions of the world. Maize 

yield data can help the farmers and decision-makers to determine potential yield reductions, food 

prices, and optimizing nutrient management [1,2]. However, obtaining accurate and timely yield 

prediction at field scale is also a big challenge due to limited ground meteorological observations and 

unadvanced technologies [3,4]. Therefore, reliable field-scale maize yield predicting before harvest is 

essential for many regions with great significance to food security. 

The traditional methods for the determination of crop yield based on measurement surveys are 

labor intensive and time consuming [5]. Compared with the traditional methods, remote sensing (RS) 

provides a cost-effective and non-destructive way for timely monitoring crop yield at a range of 

spatial scales [6,7]. The optical properties of chlorophylls and proteins pave the way for crop yield 
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assessment by using RS techniques [8,9]. While the spatial resolution, revisit frequency combined 

with cloud generally limits the use of satellite for agricultural applications, because it could not meet 

the requirement to investigate site-specific crop yield for precision agriculture [10].  

With the rapid development of imaging spectrometers and unmanned aerial vehicles (UAV), a 

UAV-based spectral imaging system offers a very attractive alternative: it can be operated 

conveniently and provides the images with high spatial, temporal and spectral resolutions [11,12]. 

For these reasons, many studies were conducted to monitor the crop nitrogen (N)-related properties, 

such as LAI, chlorophyll content, nitrogen content, N nutrition index (NNI), biomass and yield 

through UAV aerial imagery [13–15]. Recently hyperspectral techniques developed rapidly, and the 

hyperspectral data generally concentrates on visible to near-infrared (VIS-NIR) spectroscopy, with 

high spectral resolution (<10 nm) [16]. It can increase the detection sensitivity of crop N status, by 

acquiring a large number of contiguous narrow bands for obtaining subtle variations in spectral 

reflectance of the plant canopy [17,18]. The existing spectral indices, such as normalized difference 

vegetation index (NDVI), enhanced vegetation index (EVI), soil adjusted vegetation index (SAVI), 

normalized difference red edge index (NDRE), red-edge chlorophyll index (CIre), etc., are the most 

sensitive predictors for crop yield during the growing season [19,20]. In summary, most spectral 

indices were constructed by the difference, ratio, normalization forms and their combinations based 

on the VIS-NIR bands to diagnose crop N status and predict crop yield. While each spectral index 

only represents part spectral information on crop nutrition status, and it can also be easily affected 

by leaf architecture, canopy structure, growth stage, fertilization amounts, and field environment. 

As far as we know, most studies adopted the published SIs which were not designed for the 

yield assessment to predict crop yield, and the SIs they employed varied across geographic locations, 

climatic environment, crops, varieties, and canopy structures. For example, some research tested 

several vegetation indices including lnRE, MSAVI, GNDVI, NDRE, SCCCI via sub-orbital 

multispectral sensor for predicting soybean crop yield and got satisfactory results [21]. Some studies 

combined high spatial resolution data and vegetation indices (NDVI, RVI, EVI2, and WDRVI) to 

predict the yield of winter wheat, and achieved improved predictive accuracy [22]. However, 

revealing the response characteristics of spectral reflectance to crop yield is the basis for establishing 

a spectral index and providing reliable yield prediction accordingly. To date, few studies have been 

conducted to find the sensitive spectral bands and designed the new SIs with good performance for 

crop yield prediction during the crop growing season. 

Due to the complex climate conditions, topography, field managements, smallholder farms are 

located in Northeastern China and with high heterogeneity existed in the farmland, even within a 

field. At present, crop yield prediction within field-scale is limited and challenging, due to the 

difficult accessibility of large numbers of observations both at spatial and temporal scale and the 

capacity of processing the big data such as hyperspectral imagery with a large number of spectral 

bands. Meanwhile, the most sensitive wavelengths and SIs forms for maize yield prediction were 

unclear at different growth stages during the growing season. Therefore, the objectives of this study 

are to (i) screen out the narrowband SIs in 450-950 nm spectrum for the maize yield prediction by 

using the linear regression method; (ii) compare the performance of new SIs in this study and the 

published SIs for the yield prediction across the key growth stages; (iii) investigate the sensitivity of 

SIs to the yield of spring maize under different N fertilizer treatments and soil types. 

2. Materials and Methods 

2.1. Study Area and Field Experiments Design 

The field experiments in this study were conducted since 2009 at three sites with different soil 

types, alluvial soil for Wang-Jia-Qiao (WJQ), black soil for San-Ke-Shu (SKS) and aeolian sand soil 

for Fu-Jia-Jie (FJJ), in Lishu County of Jilin Province, Northeast China (Figure 1 & Table 1). Lishu 

County (123°45’-124°53’E, 43°02’-43°46’ N) is located in the center of Jilin Province. This region has 

cold temperatures and a humid/sub-humid climate. The average annual temperature is 6.5°C, with a 

sunlight time of approximately 2541.4 h and 155 frost-free days. Every experimental site was divided 

to 15 microplots assigned to 5 treatments with 3 replications for each treatment. The area of each 
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microplot was 60 m2 (10.0 m×6.0 m), and the furrow between two microplots was 0.6 m. Five N 

fertilizer application rates were 0, 168, 240, 270 and 312 kg N ha-1 (designated as N0, N168, N240, 

N270 and N312) and one spring maize type (Liangyu 99) was used. Half of the total N fertilizer was 

applied as base fertilizer together with phosphorus (72 kg P2O5 ha-1 as calcium superphosphate 

(Ca(H2PO4)2) and potassium (90 kg K2O ha-1 as K2SO4) before sowing, while the remaining N fertilizer 

was applied in the 0-10 cm soil layer at about 15 cm away from the rows at the 12 leaf collar stage 

(V12). Spring maize was sown in early May and harvested in middle October, and the planting 

density was 65000 plants ha-1. The experimental fields were conducted using conventional tillage 

methods. All the microplots were not irrigated and no obvious pest and disease stress during the 

growing season of spring maize, thus N application rates was the only limiting factor for maize yield.  

 

Figure 1. Location of the study area (a), UAV hyperspectral images (b)-(d) and the nitrogen 

application rates (e) of three experimental fields (WJQ, SKS, and FJJ). 

Table 1. Soil properties of the three experimental fields. 

Experimental 

fields 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 
pH 

Organic 

matter (g/kg) 

Total 

N 

(g/kg) 

Alkali-hydrolyzable 

N (mg/kg) 

Available 

P (mg/kg) 

Available 

K (mg/kg) 

WJQ 47.7 29.6 22.7 5.15 12.2 1.04 91.6 29.1 52 

SKS 32.5 25.2 42.3 6.16 25.3 1.69 128.2 43.9 122 

FJJ 73.6 9.6 10.8 6.71 13.2 1.01 58.8 13.6 43 

2.2. Crop Yield Measurements 

Yield surveys were conducted for the three experimental fields in 2019 and 2020. When maize 

reached fully maturity, we removed the border areas of each field and harvested the maize in netting 

bags for each microplot. Then, the seeds were dried and weighted, and maize yield was calculated in 

kilograms per hectare (kg ha-1). 

2.3. UAV Hyperspectral Imaging Acquisition and Preprocessing 

UAV hyperspectral images were collected on June 23 (jointing), August 1 (silking) and 

September 28 (maturity) of 2019 and June 28 (jointing), August 15 (silking) and September 24 

(maturity) of 2020, respectively. The UAV campaign was conducted by using a DJI S1000 UAV (SZ 

DJI Technology Co., Ltd., Guangdong, China) with six propellers as the hyperspectral sensor 

platform under cloudless conditions between 10:30 and 14:30. It has a flying speed about 8 m/s, and 

a takeoff weight of up to 6-11 kg. The hyperspectral images were acquired by a UHD 185 sensor 

(Cubert GmbH Company), which was fitted with fiber optics with a 27° field of view. The sensor was 
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operated in 450-950 nm at a sampling interval of 4 nm and 125 channels of better imaging quality. 

The flight was designed to ensure 70% overlap both across- and along- track. A digital camera (Sony 

RX1R II, Sony, Tokyo, Japan, with a 4000×3000 pixel detector and a mass of 1000 g) was also employed 

along with the UHD 185 sensor. Finally, a total of 1506 hyperspectral images were acquired at an 

altitude of 100 m and a spatial resolution of 5 cm. 

Then, these images were mosaicked using Agisoft Photoscan Pro software (Agisoft LLC, St. 

Petersburg, Russia) through the process of aligning photos, building dense point clouds, building 

mesh, building texture, and building othomosaic. After the othomosaic was acquired, it was 

conducted atmospheric correction using the Fast Line-of-Site Atmospheric Analysis of Spectral 

Hypercubes (FLAASH) module in ENVI 5.5 software (Exelis Visual Information Solutions, America). 

And then, geometric correction was applied using 15 ground control points in each field in ArcGIS 

10.6 software (ESRI Inc., USA), and the root mean square error (RMSE) was smaller than 0.5 pixels 

for each point. 

2.4. Spectral Indices Calculations 

The spectral index is defined as the combination of some specific band reflectance, and the 

determination of the spectral bands refers to a certain physical basis and can help to improve the 

estimation sensitivity of target parameter (Zhao et al. 2018). In this paper, several spectral indices 

forms including difference spectral index (DSI), ratio spectral index (RSI), and normalized difference 

spectral index (NDSI), were selected to construct a variety of spectral indices within a spectral range 

of 450-950 nm to explore the sensitive indices for yield prediction of maize. Their formulars were as 

the following: 

DSI = R1-R2 (1) 

RSI = R1/R2 (2) 

NDSI = (R1-R2)/(R1+R2) (3) 

where R1 and R2 were the spectral reflectance of random wavelengths from 450 to 950 nm. Then, all 

possible DSI, RSI, and NDSI based on any two random bands from 450 to 950 nm at an interval of 4 

nm were regressed with the maize yield by using the linear regression model. The contour map of 

coefficients of determination (R2) was plotted and the sensitive ranges of spectral bands were 

identified from this map. Meanwhile, the best SIs were selected based on the coefficient of 

determination (R2) between the maize yield and different forms of SIs. The above procedures were 

conducted in R 4.3.2 software.  

In addition, several widely used SIs for crop yield prediction were also considered here to test 

and compare with the new SIs for their performance on maize yield prediction across different 

growth stages (Table 2). These SIs were selected because they are related to various biophysical 

parameters including the pigment, canopy structure, and physiology, and they have the similar forms 

with the SIs constructed in this paper, except for DDi, CIre, Maccioni, and mND705. 

Table 2. The selected published narrowband SIs for maize yield prediction in this study. 

Narrowband VIs Calculation formula in this study Reference 

DDi (Desertification difference index) (R749 − R720) − (R701 − R672) [23] 

VOG (Vogelman red edge index) R740/R720 [24] 

CIre (Red-edge chlorophyll index) R850/R730 −1 [25] 

NDI (Normalized difference index) (R850 − R710)/(R850 + R680) [26] 

NDSI (Normalized difference spectral index) (R860 − R720)/(R860 + R720) [27] 

NDRE (Normalized difference red edge index) (R790 − R720)/(R790 + R720) [28] 

Maccioni (R780 − R710)/(R780 − R680) [29] 
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mND705(750,705,450) (Modified normalized 

difference 705) 
(R750 − R705)/(R750 + R705 − 2R450) [30] 

2.5. Comparison between New SIs and Published SIs for Yield Prediction 

The leave-one-out cross-validation process was employed to test the yield prediction 

performance. The prediction accuracy of the linear prediction models was assessed by using the 

coefficient of determination (R2), and root mean square error (RMSE) [31]. The R2 and RMSE values 

were calculated as follows: 

3. Re 

4. Su 

where n is the number of samples, Pi is the estimated yield from the regression model,  Oi is the 

observed yield, and O is the average of the observed yields. A 1:1 line was also drawn to test the 

model fit degree of the measured vs. predicted yield values. 

Results 

3.1. Description of Maize Yield Measurement 

Table 3 shows the descriptive statistics of the maize yield including minimum, maximum, mean, 

median, standard deviation (SD), skewness, and coefficient of variation in 2019 and 2020. A total of 

90 yield observations were collected across the three experimental fields in this study. The crop yield 

ranged from 447.86 to 12904.03 kg ha-1 with the CV of 44.48% in 2019, and from 148.70 to 12299.61 kg 

ha-1 with the CV of 58.69 % in 2020. The large data ranges and variations can be used to test the 

sensitivity and reliability of the new SIs established for maize yield prediction in the following steps. 

Table 3. Descriptive statistics of the yield (kg ha-1) of spring maize in 2019 and 2020. 

Year Min Max Mean Median SD Skewness CV (%) 

2019 447.86  12904.03  8155.47  10100.83  3627.79  -0.45  44.48 

2020 148.70  12299.61  7106.39  8833.99  4170.78  -0.49  58.69 

* Abbreviations: SD, standard deviation; CV, coefficient of variation. 

3.2. The Canopy Spectral Characteristics of Maize 

Canopy spectral reflectance was affected by leaf nitrogen content, leaf area index (LAI), canopy 

architecture, and different growth stages. As shown in Figure 2, the canopy spectra were declined 

with increasing level of N treatments in the VIS wavebands (450-750 nm), and raised with increasing 

level of N treatments in the NIR wavebands (780-900 nm). The figure also presented that canopy 

spectra generally reached the maximum value at silking growth stage, compared with the reflectance 

values at the other two growth stages. In addition, the three experimental fields presented some 

difference in the spectral reflectance across different growth stages, while the spectra at silking stage 

in the three fields always had obvious heterogeneity across the five N application rates. These 

characteristics indicated that the maize canopy spectra had the capability to discriminate various N 

status and the yield of spring maize accordingly, across different N treatments, growing stages, and 

experimental fields. 

R2 = 1 −
∑ (Oi−Pi)

2n
i=1

∑ (Oi−O)
2n

i=1
  (4) 

RMSE = √
∑ (Oi−Pi)

2n
i=1

n
  (5) 
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Figure 2. Mean canopy reflectance spectra curves of spring maize with different levels of N treatments 

across three growth stages in the three experimental fields. (a): WJQ, (b): SKS, (c): FJJ. 

3.3. Determination Coefficients (R2) between DSI, RSI, and NDSI and Yield 
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All possible spectral indices formed by difference, ratio, and normalization were developed to 

regressed with maize yield across the jointing, silking and maturity stages of spring maize in 2019-

2020. The determination coefficient R2 of the regression models were computed and shown in contour 

maps, as shown in Figure 3 (WJQ), Figure 4 (SKS), and Figure 5 (FJJ). These figures showed that the 

contour maps derived from the silking stage generated higher R2 values and broader hot zones than 

the contour maps from the jointing and maturity stages, for all the three experimental fields. 

Furthermore, the areas of hot zones in the subplots of RSI and NDSI were much more than those in 

the subplots of DSI. RSI and NDSI showed the similar patterns in the contour maps across different 

growth stages and experimental fields. Compared with the WJQ experimental field, SKS and FJJ got 

more sensitive wavelength ranges at the silking stage for all the DSI, RSI, and NDSI forms. At the 

silking stage, the higher R2 values derived from RSI and NDSI forms were generally ranged 0.50-0.70 

in the hot zones of contour maps at WJQ, 0.60-0.90 in the hot zones of contour maps at SKS, and 0.50-

0.70 in the hot zones of contour maps at FJJ. Accordingly, the wavelengths with the higher R2 were 

concentrated in 640-714 nm at WJQ, 450-650 nm and 750-950 nm at SKS, and 450-700 nm and 750-950 

nm at FJJ. 

   

 
  

 
  

Figure 3. The contour maps for linear model between the difference spectral index (DSI), ratio spectral 

index (RSI), normalized difference spectral index (NDSI) and maize yield in WJQ experimental field. 

(a)-(c): DSI, RSI, and NDSI forms at the jointing stage; (d)-(f): DSI, RSI, and NDSI forms at the silking 

stage; (g)-(i): DSI, RSI, and NDSI forms at the maturity stage, respectively. 
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Figure 4. The contour maps for linear model between the difference spectral index (DSI), ratio spectral 

index (RSI), normalized difference spectral index (NDSI) and maize yield in SKS experimental field. 

(a)-(c): DSI, RSI, and NDSI forms at the jointing stage; (d)-(f): DSI, RSI, and NDSI forms at the silking 

stage; (g)-(i): DSI, RSI, and NDSI forms at the maturity stage, respectively. 
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Figure 5. The contour maps for linear model between the difference spectral index (DSI), ratio spectral 

index (RSI), normalized difference spectral index (NDSI) and maize yield in FJJ experimental field. 

(a)-(c): DSI, RSI, and NDSI forms at the jointing stage; (d)-(f): DSI, RSI, and NDSI forms at the silking 

stage; (g)-(i): DSI, RSI, and NDSI forms at the maturity stage, respectively. 

3.4. Comparison with the Published SIs for Maize Yield Prediction 

The results in Section 3.3 indicated that the best period for maize yield prediction before harvest 

was the silking stage, so only the contour maps derived from this growth stage were considered to 

construct the new SIs for yield prediction across the three experimental fields. Table 4 showed the 

new SIs established in this paper and the comparison results with the published SIs for maize yield 

prediction in WJQ, SKS, and FJJ fields. The new SIs constructed here were different across the three 

experimental fields, such as NDSI (690,710), RSI(678,710), and DSI(858,794) in WJQ, NDSI (902,546), 

RSI(906,546), and DSI(590,462) in SKS, and NDSI (730,758), RSI(706,758), and DSI(698,922) in FJJ, 

respectively. The performance of the new SIs on yield prediction was achieved with R2 ranged from 

0.463 to 0.773 in WJQ, R2 ranged from 0.851 to 0.892 in SKS, and R2 ranged from 0.651 to 0.726 in FJJ, 

respectively. The performance of the existed SIs on yield prediction was achieved with R2 ranged 

from 0.008 to 0.254 in WJQ, R2 ranged from 0.629 to 0.862 in SKS, and R2 ranged from 0.083 to 0.199 

in FJJ, respectively. All the three SI forms (DSI, RSI, and NDSI) in SKS dataset obtained higher R2 and 

lower RMSE than that from the dataset in other two fields, for both the dataset from the new SIs and 

published SIs. 

Table 4. Accuracy of linear regression models of the new SIs and published SIs for maize yield 

prediction in the three experimental fields. 

WJQ SKS FJJ 

SIs R2 
RMSE 

(kg ha-1) 
SIs R2 

RMSE 

(kg ha-1) 
SIs R2 

RMSE 

(kg ha-1) 

NDSI(690,710) 0.773 1842.563 NDSI (902,546) 0.890 1102.623 NDSI (730,758) 0.696 2224.780 

NDSI(690,706) 0.738 2065.236 NDSI (902,550) 0.877 1169.254 NDSI (730,798) 0.668 2239.541 

NDSI(690,714) 0.719 2154.235 NDSI (906,550) 0.871 1174.236 NDSI (730,762) 0.654 2298.251 

RSI(678,710) 0.689 2203.587 RSI(906,546) 0.892 1095.245 RSI(706,758) 0.651 2230.547 

DSI(858,794) 0.463 1326.741 DSI(590,462) 0.851 1503.252 DSI(698,922) 0.726 2169.541 

DDi 0.008 2772.250 DDi 0.629 2389.804 DDi 0.083 2562.750 

VOG 0.208 2475.841 VOG 0.862 1454.887 VOG 0.170 2438.515 

CIre 0.074 2677.032 CIre 0.762 1913.550 CIre 0.116 2517.017 

NDI 0.254 2403.923 NDI 0.827 1629.380 NDI 0.096 2544.796 

NDSI 0.059 2699.700 NDSI 0.857 1481.413 NDSI 0.199 2395.427 

NDRE 0.038 2729.652 NDRE 0.639 2355.802 NDRE 0.101 2538.020 

Maccioni 0.086 2660.352 Maccioni 0.766 1902.562 Maccioni 0.198 2397.110 

mND705 0.247 2415.400 mND705 0.791 1794.349 mND705 0.170 2437.842 

Figure 6 presented the validation results of maize yield prediction model derived from the new 

SIs with the best performance in WJQ, SKS, and FJJ, respectively. The plots were evenly distributed 

near the 1:1 line, which pointed out the better performance of the new SIs for the yield prediction.   
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Figure 6. Scatter plots of the measured yield (kg/ha) versus predicted yield (kg/ha) by the new SIs: (a) 

NDSI (690,710) in WJQ, (b) RSI(906,546) in SKS, and (c) DSI(698,922) in FJJ, respectively. 

3.5. New SIs Response to Different N Treatments 

The response of maize yield to different N fertilization treatments across the three experimental 

fields was shown in Figure 7. The FJJ field with aeolian sand soil type had the lowest yield, while the 

WJQ field with alluvial soil type had the highest yield. When N application rates was less than 168 

kg ha-1, the yield improved with the increasing N application rates; when N application rates was 

more than 168 kg ha-1, the yield did not increase with the increasing N application rates. This was 

consistent among the three experimental fields with different soil types.  

 

Figure 7. The response of maize yield to different N application rates at the three experimental 

fields. 

At the silking stage, the response of the new SIs (DSI, RSI, and NDSI) to different N fertilizer 

treatments in the three experimental fields (WJQ, SKS, and FJJ) was presented in Figure 8. Since the 

interval range of N treatments was not the same and the optimal N fertilizer amounts was 168 kg/ha, 

the new SIs did not show the linear increased or decreased trend with the increase of N fertilization 

levels obviously. Compared with WJQ and FJJ fields, the new SIs in SKS showed distinct response to 

the five N fertilization levels obviously. For example, NDSI(902,546) reached the maximum value at 

the N168 level and the minimum value at the N0 level, and decreased slightly from N240 to N312 

levels. RSI and DSI forms had better performance in discriminate different N fertilization levels 

compared with the NDSI form in the three experimental fields. For example, the medium fit line of 

the RSI(678,710) and DSI(858,794) in WJQ were between 0.41-0.46, and -40-210 respectively, while the 

NDSI(690,706) had the medium values all around -0.30 across the five N fertilization levels. 
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Figure 8. The response of new SIs to different N treatments in the three experimental fields. (a)-(c): 

DSI, RSI, and NDSI forms in WJQ, (d)-(f): DSI, RSI, and NDSI forms in SKS, and (g)-(i): DSI, RSI, and 

NDSI forms in FJJ, respectively. 

4. Discussion 

4.1. Screening out the Sensitive Wavelengths and SIs  

Development of new technologies and devices has led to the inventions for various agricultural 

management by using remote sensing data. The new approaches, such as UAV, are capable of 

detecting crop growth status and predict the yield, especially at the field scale. However, the spectral 

information collected form UAV platform, particularly the canopy reflectance of crops, is impacted 

by many factors such as crop nutrition status, crop types, canopy structure, and growth stages. Based 

on this background, the sensitive wavelengths and SIs need to be investigated and designed for the 

accurate prediction of crop yield at field scale, and the relevant studies were limited to our 

knowledge. According to earlier and present studies [32], NIR bands (>780 nm) were more efficient 

in describing crop N status than visible light band generally, and this was also validated in this study 

(Figure 2). However, it was not always this situation in this study. The performance of visible light 

and NIR bands on N levels were different across the three fields with different soil types. For 

example, visible light band was more efficient in describing N levels than red edge and NIR bands in 

FJJ with aeolian sand soil type, especially at jointing and silking stage. It would also affect the 

selection of sensitive wavelengths and SIs for crop yield prediction in the three experimental fields 

in this study. 

This study identified the most sensitive wavelengths and SIs to predict maize yield by screening 

out the determination coefficient (R2) through the contour mapping approach. All the three types of 

SI forms (DSI, RSI, and NDSI) used here indicated that the sensitive bands found in the three 

experimental fields were different, such as 640-714 nm at WJQ, 450-650 nm and 750-950 nm at SKS, 

and 450-700 nm and 750-950 nm at FJJ. It revealed that the spectral characteristics of crop is also 

affected by soil types, even with the same crop type, crop variety and N fertilization levels. However, 

the red edge region was screened out in all the three fields, because the red edge was proved to be 
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closed related to plant biomass and N levels in previous studies [33,34]. Among the above sensitive 

wavelength regions, new SIs for maize yield prediction were constructed by using the linear 

regression models between the yield and SIs with the best performance. It generally indicated that 

the normalized difference indices and ratio indices showed great potential for predicting maize yield 

compared with the difference indices in this study, except for the DVI(698,922) in FJJ field. The result 

was consistent with the previous studies (Wu et al. 2021), in which the NDSIs also outperformed 

other indices forms in crop yield predictions. It was because that NDSI and RSI can avoid the effects 

of atmospheric and soil background on the canopy spectral reflectance due to their formular forms.  

4.2. Comparison between the New SIs vs. Published SIs 

Most of the published spectral indices for yield prediction were not originally designed to 

estimate crop yield, the present study selected some SIs widely used for crop yield prediction from 

previous studies. By using the same experimental N fertilization treatments in the three fields 

respectively, the performance of the eight published SIs presented large differences in maize yield 

prediction, with the determination coefficient (R2) ranged from 0.008 to 0.862. At the same time, the 

published SIs did not always achieve the ideal performance on the yield prediction across the three 

experimental fields. Moreover, the performance of the published SIs for yield prediction were 

different in the previous studies [3,7]. This is because these existed SIs were mostly pigment, 

structure, and physiology-related indicators, which were designed to estimate plant nitrogen content, 

crop N uptake and biomass, not for the crop yield. While the new SIs with the best performance for 

yield prediction were obtained from this study, with the validation results R2=0.854 and 

RMSE=1696.637 kg/ha by NDSI(690,710) in WJQ, R2=0.949 and RMSE=1073.313 kg/ha by RSI(906,546) 

in SKS, and R2=0.845 and RMSE=1141.487 kg/ha by DSI(698,922) in FJJ, respectively. Many researchers 

have contributed to find universal spectral indices to monitor crop N status, biomass, and yield, but 

it is so difficult to achieve it due to the complex interactions of crop biochemical characteristics, 

spectral information, soil properties, and farm management practices [9,15,34]. The results in this 

study proved that sensitive SIs need to be designed for crop yield prediction, rather than using the 

exited indices to get the poor performance and unreliable yield prediction results. In addition, the 

complex form of spectral indices would not always get good performance on crop yield prediction. 

Just as the existed SIs (e.g., NDI, Maccioni, mND705) selected in this paper also did not get ideal 

prediction results, although they had more wavelengths or more complex index structures than the 

difference, ratio, and normalization forms. 

Crop yield is an important end-of-season trait, however, which needs to be predicted before 

harvest, and it combines the cumulative impact of crop growth status during the growing season. 

Which growth stage is the most optimal period to predict crop yield is vital for the farm management 

and food security. The best growing period determined in this study is the silking stage of spring 

maize across all the three experimental fields. Since maize canopy is usually sparse at jointing stage 

and during this period the variations in plant height, biomass, LAI may weak crop growth status 

reflected in canopy reflectance, so the jointing stage would not be the ideal prediction period. In 

addition, N is the vital element for the yield and it was stored in vegetative organs to promote the 

crop growing at vegetative stage, and then N is transported from these vegetative organs to 

reproductive organs during reproductive growth stage. The silking stage is just attributed to the later 

period of the vegetative stage and crop N status can also be monitored by the spectrum, while the 

maturity stage is attributed to the reproductive stage and most N had transported to the seeds, so the 

silking stage is the best period for maize yield prediction.  

Although the new SIs showed good performance on the calibration and validation results, the 

index calculation methods here included the three basal forms (difference, ratio, and normalization) 

only, and other combination structures and more spectral bands were required to be involved for 

crop yield prediction in the next step. In addition, only the linear relationship between maize yield 

and SIs were investigated, future work would also be concentrated on the non-linear relationships 

between them. Due to the limitation of the validation data in this study, future work is planned to 
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test the reliability of the new spectral indices for crop yield prediction across different climatic 

regions, crop types, and farm management practices. 

4.3. New SIs Response to Different N Levels and Soil Types 

The important effect of N fertilizer on the crop N content, NNI, biomass, and yield have been 

widely reported [35–37], and the relationship between maize yield and N fertilization levels here 

showed that the yield did not increase with the increasing N fertilization amounts when the amounts 

reached 168 kg ha-1. It means that if N fertilizer amounts is lower than 168 kg ha-1 the yield would 

reach the lower values with N deficiency, while if N fertilizer amounts is higher than 168 kg ha-1 the 

yield would reach the higher values with optimized or excessive N supply. In this paper, the response 

of new SIs to different N fertilization levels were investigated aimed to analyze the sensitivity of new 

SIs to the deficient and excessive N fertilizer levels and the relevant yield accordingly. The yield for 

spring maize varied from 148.70 to 12904.03 kg ha-1, which were significantly affected by the N 

fertilizer amounts, soil types, and the climatic conditions in 2019-2020. The above-mentioned linear 

regression models between the yield and new SIs showed a highly satisfactory performance at the 

silking stage of spring maize in the three experimental fields. It indicated that the new indices 

constructed in this paper have the ability to reflect the large variations in the yields.  

The sensitivity of SIs in different N fertilizer amounts is also a key aspect to diagnose the 

performance of SIs for crop yield prediction. Figure 8 showed that all the three SI forms (DSI, RSI, 

and NDSI) had the ability to discriminate different N fertilization levels in WJQ and SKS field, 

although the new SIs in FJJ had the poor response. That is because that the soil types of WJQ and SKS 

is alluvial soil and black soil respectively, with higher soil fertility and quality than the aeolian sand 

soil in FJJ. Accordingly, the crops planted in fertile soil would present obvious response to different 

N fertilization amounts, while the crops planted in infertile soil would show unapparent response to 

different N fertilization levels. Therefore, the soil property is also required to be considered for the 

establishment of sensitive indices for crop yield prediction, more than the spectral response to crops 

to different fertilization conditions. Sometimes DSI and RSI had better performance and larger 

response ranges than NDSI in this study, and it was indicated that different index structures and 

forms need to be investigated to obtain the optimal and robust SIs for crop yield prediction. 

5. Conclusions 

This study investigated the potential of UAV canopy hyperspectral images and explore new 

spectral indices designed for predicting maize yield during the growing season in three experimental 

fields with different soil types. The most sensitive wavelengths and SIs were identified by screening 

out the determination coefficient (R2) of linear model between the yield and all possible SIs with the 

wavelengths ranged from 450 to 950 nm. The best growth period for the yield prediction was the 

silking stage of spring maize. Different sensitive wavelengths and SIs were recommended as the best 

indicators to assess maize yield across the three experimental fields. It revealed that the best indices 

determined for the yield prediction were not only affected by the crop spectral characteristics, but 

also be influenced by soil properties of farm fields. From the eight published SIs and fifteen new 

indices, NDSI(690,710), RSI(906,546), and DSI(698,922) outperformed the existing indices and 

achieved the best performance for the yield prediction with the determination coefficients 0.773, 

0.892, and 0.726 respectively. It can be used to establish the optimal spectral indices applicable to 

predict crop yield in other fields. The new SIs also presented distinct different response to various N 

fertilization levels across the three SI forms (DSI, RSI, and NDSI), except for FJJ field. This 

augmentation will subsequently improve the accuracy and reliability for predicting crop yield across 

various growth stages, N fertilization levels, and soil properties. 
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