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Abstract: Non-destructive, accurate, and timely approach for crop yield prediction at field scale is
vital for precision agriculture. This study aimed to investigate the appropriate wavelengths and
their combinations to explore the new SIs derived from UAV hyperspectral images in predicting
yield during the growing season of spring maize. The best wavelengths and new SIs, including the
difference spectral index, ratio spectral index, and normalized difference spectral index forms, were
obtained by the contour maps constructed by the coefficient of determination (R?) from the linear
regression models between the yield and all possible SIs screening out from the 450-950 nm
wavelengths. The results showed that the most sensitive wavelengths were 640-714 nm at W]Q, 450-
650 nm and 750-950 nm at SKS, and 450-700 nm and 750-950 nm at FJ]. The new Sls established here
were different across the three experimental fields, and their performance on maize yield prediction
were generally better than that of the published SIs. In addition, the new SIs presented different
response to various N fertilization levels. This study demonstrated the potential of exploring new
spectral characteristics from remote sensing technology for predicting field-scale crop yield in
spring maize cropping systems before harvest.
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1. Introduction

Climate change, environmental degradation, and unsuitable farm practices impact the crop yield
and food security all over the world. Maize (Zea mays L.) is one of the most important cereal crops,
and it can be used as food and materials for humans and animals in many regions of the world. Maize
yield data can help the farmers and decision-makers to determine potential yield reductions, food
prices, and optimizing nutrient management [1,2]. However, obtaining accurate and timely yield
prediction at field scale is also a big challenge due to limited ground meteorological observations and
unadvanced technologies [3,4]. Therefore, reliable field-scale maize yield predicting before harvest is
essential for many regions with great significance to food security.

The traditional methods for the determination of crop yield based on measurement surveys are
labor intensive and time consuming [5]. Compared with the traditional methods, remote sensing (RS)
provides a cost-effective and non-destructive way for timely monitoring crop yield at a range of
spatial scales [6,7]. The optical properties of chlorophylls and proteins pave the way for crop yield
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assessment by using RS techniques [8,9]. While the spatial resolution, revisit frequency combined
with cloud generally limits the use of satellite for agricultural applications, because it could not meet
the requirement to investigate site-specific crop yield for precision agriculture [10].

With the rapid development of imaging spectrometers and unmanned aerial vehicles (UAV), a
UAV-based spectral imaging system offers a very attractive alternative: it can be operated
conveniently and provides the images with high spatial, temporal and spectral resolutions [11,12].
For these reasons, many studies were conducted to monitor the crop nitrogen (N)-related properties,
such as LAL chlorophyll content, nitrogen content, N nutrition index (NNI), biomass and yield
through UAV aerial imagery [13-15]. Recently hyperspectral techniques developed rapidly, and the
hyperspectral data generally concentrates on visible to near-infrared (VIS-NIR) spectroscopy, with
high spectral resolution (<10 nm) [16]. It can increase the detection sensitivity of crop N status, by
acquiring a large number of contiguous narrow bands for obtaining subtle variations in spectral
reflectance of the plant canopy [17,18]. The existing spectral indices, such as normalized difference
vegetation index (NDVI), enhanced vegetation index (EVI), soil adjusted vegetation index (SAVI),
normalized difference red edge index (NDRE), red-edge chlorophyll index (Clre), etc., are the most
sensitive predictors for crop yield during the growing season [19,20]. In summary, most spectral
indices were constructed by the difference, ratio, normalization forms and their combinations based
on the VIS-NIR bands to diagnose crop N status and predict crop yield. While each spectral index
only represents part spectral information on crop nutrition status, and it can also be easily affected
by leaf architecture, canopy structure, growth stage, fertilization amounts, and field environment.

As far as we know, most studies adopted the published SIs which were not designed for the
yield assessment to predict crop yield, and the Sls they employed varied across geographic locations,
climatic environment, crops, varieties, and canopy structures. For example, some research tested
several vegetation indices including InRE, MSAVI, GNDVI, NDRE, SCCCI via sub-orbital
multispectral sensor for predicting soybean crop yield and got satisfactory results [21]. Some studies
combined high spatial resolution data and vegetation indices (NDVI, RVI, EVI2, and WDRVI) to
predict the yield of winter wheat, and achieved improved predictive accuracy [22]. However,
revealing the response characteristics of spectral reflectance to crop yield is the basis for establishing
a spectral index and providing reliable yield prediction accordingly. To date, few studies have been
conducted to find the sensitive spectral bands and designed the new SIs with good performance for
crop yield prediction during the crop growing season.

Due to the complex climate conditions, topography, field managements, smallholder farms are
located in Northeastern China and with high heterogeneity existed in the farmland, even within a
field. At present, crop yield prediction within field-scale is limited and challenging, due to the
difficult accessibility of large numbers of observations both at spatial and temporal scale and the
capacity of processing the big data such as hyperspectral imagery with a large number of spectral
bands. Meanwhile, the most sensitive wavelengths and SIs forms for maize yield prediction were
unclear at different growth stages during the growing season. Therefore, the objectives of this study
are to (i) screen out the narrowband Sls in 450-950 nm spectrum for the maize yield prediction by
using the linear regression method; (ii) compare the performance of new SIs in this study and the
published SIs for the yield prediction across the key growth stages; (iii) investigate the sensitivity of
SIs to the yield of spring maize under different N fertilizer treatments and soil types.

2. Materials and Methods
2.1. Study Area and Field Experiments Design

The field experiments in this study were conducted since 2009 at three sites with different soil
types, alluvial soil for Wang-Jia-Qiao (WJQ), black soil for San-Ke-Shu (SKS) and aeolian sand soil
for Fu-Jia-Jie (F]]), in Lishu County of Jilin Province, Northeast China (Figure 1 & Table 1). Lishu
County (123°45’-124°53'E, 43°02’-43°46’ N) is located in the center of Jilin Province. This region has
cold temperatures and a humid/sub-humid climate. The average annual temperature is 6.5°C, with a
sunlight time of approximately 2541.4 h and 155 frost-free days. Every experimental site was divided
to 15 microplots assigned to 5 treatments with 3 replications for each treatment. The area of each
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microplot was 60 m? (10.0 mx6.0 m), and the furrow between two microplots was 0.6 m. Five N
fertilizer application rates were 0, 168, 240, 270 and 312 kg N ha-1 (designated as NO, N168, N240,
N270 and N312) and one spring maize type (Liangyu 99) was used. Half of the total N fertilizer was
applied as base fertilizer together with phosphorus (72 kg P20s ha' as calcium superphosphate
(Ca(H2POs)2) and potassium (90 kg K20 ha-1 as K2504) before sowing, while the remaining N fertilizer
was applied in the 0-10 cm soil layer at about 15 cm away from the rows at the 12 leaf collar stage
(V12). Spring maize was sown in early May and harvested in middle October, and the planting
density was 65000 plants ha'. The experimental fields were conducted using conventional tillage
methods. All the microplots were not irrigated and no obvious pest and disease stress during the
growing season of spring maize, thus N application rates was the only limiting factor for maize yield.

50°N

(e)

40."N

NO
N 0¥T

Figure 1. Location of the study area (a), UAV hyperspectral images (b)-(d) and the nitrogen
application rates (e) of three experimental fields (W]Q, SKS, and FJ]).

Table 1. Soil properties of the three experimental fields.

Experimental Sand Silt Clay H Organic T(l)\;al Alkali-hydrolyzable Available Available
fields %) (%) (%) P7 matter (g/kg) ks) N (mg/kg) P (mg/kg) K (mg/kg)
WJQ 477 296 227 515 12.2 1.04 91.6 29.1 52
SKS 325 252 423 6.16 253 1.69 128.2 43.9 122
FJJ 736 9.6 108 6.71 13.2 1.01 58.8 13.6 43

2.2. Crop Yield Measurements

Yield surveys were conducted for the three experimental fields in 2019 and 2020. When maize
reached fully maturity, we removed the border areas of each field and harvested the maize in netting
bags for each microplot. Then, the seeds were dried and weighted, and maize yield was calculated in
kilograms per hectare (kg ha).

2.3. UAV Hyperspectral Imaging Acquisition and Preprocessing

UAV hyperspectral images were collected on June 23 (jointing), August 1 (silking) and
September 28 (maturity) of 2019 and June 28 (jointing), August 15 (silking) and September 24
(maturity) of 2020, respectively. The UAV campaign was conducted by using a DJI 51000 UAV (5Z
DJI Technology Co., Ltd.,, Guangdong, China) with six propellers as the hyperspectral sensor
platform under cloudless conditions between 10:30 and 14:30. It has a flying speed about 8 m/s, and
a takeoff weight of up to 6-11 kg. The hyperspectral images were acquired by a UHD 185 sensor
(Cubert GmbH Company), which was fitted with fiber optics with a 27° field of view. The sensor was
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operated in 450-950 nm at a sampling interval of 4 nm and 125 channels of better imaging quality.
The flight was designed to ensure 70% overlap both across- and along- track. A digital camera (Sony
RX1R1I, Sony, Tokyo, Japan, with a 4000x3000 pixel detector and a mass of 1000 g) was also employed
along with the UHD 185 sensor. Finally, a total of 1506 hyperspectral images were acquired at an
altitude of 100 m and a spatial resolution of 5 cm.

Then, these images were mosaicked using Agisoft Photoscan Pro software (Agisoft LLC, St.
Petersburg, Russia) through the process of aligning photos, building dense point clouds, building
mesh, building texture, and building othomosaic. After the othomosaic was acquired, it was
conducted atmospheric correction using the Fast Line-of-Site Atmospheric Analysis of Spectral
Hypercubes (FLAASH) module in ENVI 5.5 software (Exelis Visual Information Solutions, America).
And then, geometric correction was applied using 15 ground control points in each field in ArcGIS
10.6 software (ESRI Inc., USA), and the root mean square error (RMSE) was smaller than 0.5 pixels
for each point.

2.4. Spectral Indices Calculations

The spectral index is defined as the combination of some specific band reflectance, and the
determination of the spectral bands refers to a certain physical basis and can help to improve the
estimation sensitivity of target parameter (Zhao et al. 2018). In this paper, several spectral indices
forms including difference spectral index (DSI), ratio spectral index (RSI), and normalized difference
spectral index (NDSI), were selected to construct a variety of spectral indices within a spectral range
of 450-950 nm to explore the sensitive indices for yield prediction of maize. Their formulars were as

the following;:
DSI =Ri-R2 1)
RSI = Ri/R> )
NDSI = (R1-R2)/(R1+Rz) 3)

where Riand Rz were the spectral reflectance of random wavelengths from 450 to 950 nm. Then, all
possible DSI, RSI, and NDSI based on any two random bands from 450 to 950 nm at an interval of 4
nm were regressed with the maize yield by using the linear regression model. The contour map of
coefficients of determination (R?) was plotted and the sensitive ranges of spectral bands were
identified from this map. Meanwhile, the best SIs were selected based on the coefficient of
determination (R?) between the maize yield and different forms of SIs. The above procedures were
conducted in R 4.3.2 software.

In addition, several widely used SIs for crop yield prediction were also considered here to test
and compare with the new Sls for their performance on maize yield prediction across different
growth stages (Table 2). These Sls were selected because they are related to various biophysical
parameters including the pigment, canopy structure, and physiology, and they have the similar forms
with the SIs constructed in this paper, except for DDi, Clr, Maccioni, and mND705.

Table 2. The selected published narrowband SIs for maize yield prediction in this study.

Narrowband VIs Calculation formula in this study Reference
DDi (Desertification difference index) (R749 — R720) — (R701 — Rg72) [23]
VOG (Vogelman red edge index) R740/R720 [24]
Clre (Red-edge chlorophyll index) Rgs0/Ry30 —1 [25]
NDI (Normalized difference index) (Rgso — R710)/(Rgso + Resgo) [26]
NDSI (Normalized difference spectral index) (Rgeo — R720)/(Rggo + R720) [27]
NDRE (Normalized difference red edge index) (R790 = R720)/(R799 + R720) [28]

Maccioni (R780 — R710)/(R7g80 — Rego) [29]
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mND705(750,705,450) (Modified normalized

difference 705) (R750 - R705)/(R750 + R705 - 2R450) [30]

2.5. Comparison between New Sls and Published Sls for Yield Prediction

The leave-one-out cross-validation process was employed to test the yield prediction
performance. The prediction accuracy of the linear prediction models was assessed by using the
coefficient of determination (R?), and root mean square error (RMSE) [31]. The R? and RMSE values
were calculated as follows:

_ Z?=1(Oi—Pi)2
SiL,(0i-0)2 @

n —P:)2
RMSE = /—Zm(?" a 5)

RZ=1

3.Re

4. Su
where n is the number of samples, P, is the estimated yield from the regression model, 0; is the
observed yield, and O is the average of the observed yields. A 1:1 line was also drawn to test the
model fit degree of the measured vs. predicted yield values.

Results
3.1. Description of Maize Yield Measurement

Table 3 shows the descriptive statistics of the maize yield including minimum, maximum, mean,
median, standard deviation (SD), skewness, and coefficient of variation in 2019 and 2020. A total of
90 yield observations were collected across the three experimental fields in this study. The crop yield
ranged from 447.86 to 12904.03 kg ha! with the CV of 44.48% in 2019, and from 148.70 to 12299.61 kg
ha' with the CV of 58.69 % in 2020. The large data ranges and variations can be used to test the
sensitivity and reliability of the new SIs established for maize yield prediction in the following steps.

Table 3. Descriptive statistics of the yield (kg ha') of spring maize in 2019 and 2020.

Year Min Max Mean Median SD Skewness CV (%)
2019 447.86 12904.03 8155.47 10100.83 3627.79 -0.45 44.48
2020 148.70 12299.61 7106.39 8833.99 4170.78 -0.49 58.69

* Abbreviations: SD, standard deviation; CV, coefficient of variation.

3.2. The Canopy Spectral Characteristics of Maize

Canopy spectral reflectance was affected by leaf nitrogen content, leaf area index (LAI), canopy
architecture, and different growth stages. As shown in Figure 2, the canopy spectra were declined
with increasing level of N treatments in the VIS wavebands (450-750 nm), and raised with increasing
level of N treatments in the NIR wavebands (780-900 nm). The figure also presented that canopy
spectra generally reached the maximum value at silking growth stage, compared with the reflectance
values at the other two growth stages. In addition, the three experimental fields presented some
difference in the spectral reflectance across different growth stages, while the spectra at silking stage
in the three fields always had obvious heterogeneity across the five N application rates. These
characteristics indicated that the maize canopy spectra had the capability to discriminate various N
status and the yield of spring maize accordingly, across different N treatments, growing stages, and
experimental fields.

d0i:10.20944/preprints202408.0804.v1
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Figure 2. Mean canopy reflectance spectra curves of spring maize with different levels of N treatments
across three growth stages in the three experimental fields. (a): WJQ, (b): SKS, (c): FJJ.

3.3. Determination Coefficients (R2) between DSI, RSI, and NDSI and Yield
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All possible spectral indices formed by difference, ratio, and normalization were developed to
regressed with maize yield across the jointing, silking and maturity stages of spring maize in 2019-
2020. The determination coefficient R2 of the regression models were computed and shown in contour
maps, as shown in Figure 3 (WJQ), Figure 4 (SKS), and Figure 5 (FJ]). These figures showed that the
contour maps derived from the silking stage generated higher R? values and broader hot zones than
the contour maps from the jointing and maturity stages, for all the three experimental fields.
Furthermore, the areas of hot zones in the subplots of RSI and NDSI were much more than those in
the subplots of DSIL. RSI and NDSI showed the similar patterns in the contour maps across different
growth stages and experimental fields. Compared with the WJQ experimental field, SKS and FJJ got
more sensitive wavelength ranges at the silking stage for all the DSI, RSI, and NDSI forms. At the
silking stage, the higher R? values derived from RSI and NDSI forms were generally ranged 0.50-0.70
in the hot zones of contour maps at W]Q, 0.60-0.90 in the hot zones of contour maps at SKS, and 0.50-
0.70 in the hot zones of contour maps at FJJ. Accordingly, the wavelengths with the higher R? were
concentrated in 640-714 nm at W]Q, 450-650 nm and 750-950 nm at SKS, and 450-700 nm and 750-950
nm at FJJ.
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Figure 3. The contour maps for linear model between the difference spectral index (DSI), ratio spectral
index (RSI), normalized difference spectral index (NDSI) and maize yield in W]JQ experimental field.
(a)-(c): DSI, RSI, and NDSI forms at the jointing stage; (d)-(f): DSI, RSI, and NDSI forms at the silking
stage; (g)-(i): DSI, RSI, and NDSI forms at the maturity stage, respectively.
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Figure 4. The contour maps for linear model between the difference spectral index (DSI), ratio spectral
index (RSI), normalized difference spectral index (NDSI) and maize yield in SKS experimental field.
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stage; (g)-(i): DSI, RSI, and NDSI forms at the maturity stage, respectively.
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Figure 5. The contour maps for linear model between the difference spectral index (DSI), ratio spectral
index (RSI), normalized difference spectral index (NDSI) and maize yield in FJJ experimental field.
(a)-(c): DSI, RSI, and NDSI forms at the jointing stage; (d)-(f): DSI, RSI, and NDSI forms at the silking
stage; (g)-(i): DSI, RSI, and NDSI forms at the maturity stage, respectively.

3.4. Comparison with the Published Sls for Maize Yield Prediction

The results in Section 3.3 indicated that the best period for maize yield prediction before harvest
was the silking stage, so only the contour maps derived from this growth stage were considered to
construct the new Sls for yield prediction across the three experimental fields. Table 4 showed the
new Sls established in this paper and the comparison results with the published Sls for maize yield
prediction in WJQ, SKS, and FJ]J fields. The new Sls constructed here were different across the three
experimental fields, such as NDSI (690,710), RSI(678,710), and DSI(858,794) in W]Q, NDSI (902,546),
RSI(906,546), and DSI(590,462) in SKS, and NDSI (730,758), RSI(706,758), and DSI(698,922) in FJJ,
respectively. The performance of the new SIs on yield prediction was achieved with R2 ranged from
0.463 to 0.773 in W]JQ, R? ranged from 0.851 to 0.892 in SKS, and R? ranged from 0.651 to 0.726 in FJ],
respectively. The performance of the existed SIs on yield prediction was achieved with R? ranged
from 0.008 to 0.254 in WJQ, R? ranged from 0.629 to 0.862 in SKS, and R? ranged from 0.083 to 0.199
in FJ], respectively. All the three SI forms (DSI, RSI, and NDSI) in SKS dataset obtained higher Rz and
lower RMSE than that from the dataset in other two fields, for both the dataset from the new SIs and
published Sls.

Table 4. Accuracy of linear regression models of the new SIs and published SIs for maize yield
prediction in the three experimental fields.

WJQ SKS FJ]
RMSE RMSE RMSE
SIs R? (kg ha-) SIs R? (kg ha-) SIs R? (kg ha-)
NDSI(690,710) 0.773 1842.563  NDSI (902,546) 0.890 1102.623 NDSI (730,758)  0.696 2224.780
NDSI(690,706) 0.738 2065.236  NDSI (902,550) 0.877 1169.254 NDSI (730,798)  0.668 2239.541
NDSI(690,714) 0.719 2154235 NDSI (906,550) 0.871 1174236 NDSI (730,762)  0.654  2298.251
RSI(678,710) 0.689  2203.587 RSI(906,546) 0.892  1095.245 RSI(706,758) 0.651 2230.547

DSI(858,794) 0.463 1326.741 DSI(590,462) 0.851 1503.252 DSI(698,922) 0.726 2169.541

DDi 0.008 2772.250 DDi 0.629  2389.804 DDi 0.083 2562.750
VOG 0.208 2475.841 VOG 0.862  1454.887 VOG 0.170 2438.515
Clre 0.074 2677.032 Clre 0.762  1913.550 Clre 0.116 2517.017
NDI 0.254 2403.923 NDI 0.827  1629.380 NDI 0.096 2544.796
NDSI 0.059 2699.700 NDSI 0.857  1481.413 NDSI 0.199 2395.427
NDRE 0.038 2729.652 NDRE 0.639  2355.802 NDRE 0.101 2538.020
Maccioni 0.086 2660.352 Maccioni 0.766  1902.562 Maccioni 0.198 2397.110
mND705 0.247 2415.400 mND705 0.791  1794.349 mND705 0.170 2437.842

Figure 6 presented the validation results of maize yield prediction model derived from the new
SIs with the best performance in WJQ, SKS, and FJ], respectively. The plots were evenly distributed
near the 1:1 line, which pointed out the better performance of the new SIs for the yield prediction.


https://doi.org/10.20944/preprints202408.0804.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2024 d0i:10.20944/preprints202408.0804.v1

10
16000 16000 12000
(a) . (b) - (c)
14000 14000
o s 10000 4 .

~ 12000 - = "t ~ 12000 - o =
2 Pt 2 SO £ a0
210000 Y] 2100004 '-"b‘.‘ 2 -
3 - 3 L k] " .
£ 000 .- " " £ 000 : £ 60004 e
3 - 3 . 3 R
S 6000 S 6000+ -m ot "
K] =7 . 3 .. 5 4000 . ® .
5 ] . 5 ] & . e ow

4000 L 4000 = . .

. 20001 "
2000 R?=0.854 20007 . R?=0.949 R?=0.845
RMSE=1696 63Tkg/ um RMSE=1073.313kg/ RMSE=1411.487kgl
0+ 0+= T
0 2000 4000 G000 8000 10000 12000 14000 0 2000 4000 G000 8OO0 10000 12000 14000 0 2000 4000 6000 G000 10000
Measured yield(kg/ha) Measured yield(kg/ha) Measured yield(kg/ha)

Figure 6. Scatter plots of the measured yield (kg/ha) versus predicted yield (kg/ha) by the new SIs: (a)
NDSI (690,710) in WJQ, (b) RSI(906,546) in SKS, and (c) DSI(698,922) in FJ], respectively.

3.5. New Sls Response to Different N Treatments

The response of maize yield to different N fertilization treatments across the three experimental
fields was shown in Figure 7. The FJ]J field with aeolian sand soil type had the lowest yield, while the
WJQ field with alluvial soil type had the highest yield. When N application rates was less than 168
kg ha, the yield improved with the increasing N application rates; when N application rates was
more than 168 kg ha, the yield did not increase with the increasing N application rates. This was
consistent among the three experimental fields with different soil types.
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Figure 7. The response of maize yield to different N application rates at the three experimental
fields.

At the silking stage, the response of the new Sls (DSI, RSI, and NDSI) to different N fertilizer
treatments in the three experimental fields (W]JQ, SKS, and FJJ) was presented in Figure 8. Since the
interval range of N treatments was not the same and the optimal N fertilizer amounts was 168 kg/ha,
the new Sls did not show the linear increased or decreased trend with the increase of N fertilization
levels obviously. Compared with WJQ and FJJ fields, the new Sls in SKS showed distinct response to
the five N fertilization levels obviously. For example, NDSI(902,546) reached the maximum value at
the N168 level and the minimum value at the NO level, and decreased slightly from N240 to N312
levels. RSI and DSI forms had better performance in discriminate different N fertilization levels
compared with the NDSI form in the three experimental fields. For example, the medium fit line of
the RSI(678,710) and DSI(858,794) in W]JQ were between 0.41-0.46, and -40-210 respectively, while the
NDSI(690,706) had the medium values all around -0.30 across the five N fertilization levels.
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Figure 8. The response of new SIs to different N treatments in the three experimental fields. (a)-(c):
DSI, RSI, and NDSI forms in WJQ, (d)-(f): DSL, RSI, and NDSI forms in SKS, and (g)-(i): DSI, RSL, and
NDSI forms in FJJ, respectively.

4. Discussion
4.1. Screening out the Sensitive Wavelengths and Sls

Development of new technologies and devices has led to the inventions for various agricultural
management by using remote sensing data. The new approaches, such as UAV, are capable of
detecting crop growth status and predict the yield, especially at the field scale. However, the spectral
information collected form UAV platform, particularly the canopy reflectance of crops, is impacted
by many factors such as crop nutrition status, crop types, canopy structure, and growth stages. Based
on this background, the sensitive wavelengths and SIs need to be investigated and designed for the
accurate prediction of crop yield at field scale, and the relevant studies were limited to our
knowledge. According to earlier and present studies [32], NIR bands (>780 nm) were more efficient
in describing crop N status than visible light band generally, and this was also validated in this study
(Figure 2). However, it was not always this situation in this study. The performance of visible light
and NIR bands on N levels were different across the three fields with different soil types. For
example, visible light band was more efficient in describing N levels than red edge and NIR bands in
FJ] with aeolian sand soil type, especially at jointing and silking stage. It would also affect the
selection of sensitive wavelengths and SIs for crop yield prediction in the three experimental fields
in this study.

This study identified the most sensitive wavelengths and SIs to predict maize yield by screening
out the determination coefficient (R?) through the contour mapping approach. All the three types of
SI forms (DSI, RSI, and NDSI) used here indicated that the sensitive bands found in the three
experimental fields were different, such as 640-714 nm at WJQ, 450-650 nm and 750-950 nm at SKS,
and 450-700 nm and 750-950 nm at FJ]. It revealed that the spectral characteristics of crop is also
affected by soil types, even with the same crop type, crop variety and N fertilization levels. However,
the red edge region was screened out in all the three fields, because the red edge was proved to be
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closed related to plant biomass and N levels in previous studies [33,34]. Among the above sensitive
wavelength regions, new SlIs for maize yield prediction were constructed by using the linear
regression models between the yield and SIs with the best performance. It generally indicated that
the normalized difference indices and ratio indices showed great potential for predicting maize yield
compared with the difference indices in this study, except for the DVI(698,922) in FJ] field. The result
was consistent with the previous studies (Wu et al. 2021), in which the NDSIs also outperformed
other indices forms in crop yield predictions. It was because that NDSI and RSI can avoid the effects
of atmospheric and soil background on the canopy spectral reflectance due to their formular forms.

4.2. Comparison between the New SIs vs. Published Sls

Most of the published spectral indices for yield prediction were not originally designed to
estimate crop yield, the present study selected some Sls widely used for crop yield prediction from
previous studies. By using the same experimental N fertilization treatments in the three fields
respectively, the performance of the eight published Sls presented large differences in maize yield
prediction, with the determination coefficient (R?) ranged from 0.008 to 0.862. At the same time, the
published Sls did not always achieve the ideal performance on the yield prediction across the three
experimental fields. Moreover, the performance of the published Sls for yield prediction were
different in the previous studies [3,7]. This is because these existed SIs were mostly pigment,
structure, and physiology-related indicators, which were designed to estimate plant nitrogen content,
crop N uptake and biomass, not for the crop yield. While the new SIs with the best performance for
yield prediction were obtained from this study, with the validation results R2=0.854 and
RMSE=1696.637 kg/ha by NDSI(690,710) in W]Q, R2=0.949 and RMSE=1073.313 kg/ha by RSI(906,546)
in SKS, and R?=0.845 and RMSE=1141.487 kg/ha by DSI(698,922) in FJ], respectively. Many researchers
have contributed to find universal spectral indices to monitor crop N status, biomass, and yield, but
it is so difficult to achieve it due to the complex interactions of crop biochemical characteristics,
spectral information, soil properties, and farm management practices [9,15,34]. The results in this
study proved that sensitive SIs need to be designed for crop yield prediction, rather than using the
exited indices to get the poor performance and unreliable yield prediction results. In addition, the
complex form of spectral indices would not always get good performance on crop yield prediction.
Just as the existed SIs (e.g., NDI, Maccioni, mND?705) selected in this paper also did not get ideal
prediction results, although they had more wavelengths or more complex index structures than the
difference, ratio, and normalization forms.

Crop yield is an important end-of-season trait, however, which needs to be predicted before
harvest, and it combines the cumulative impact of crop growth status during the growing season.
Which growth stage is the most optimal period to predict crop yield is vital for the farm management
and food security. The best growing period determined in this study is the silking stage of spring
maize across all the three experimental fields. Since maize canopy is usually sparse at jointing stage
and during this period the variations in plant height, biomass, LAl may weak crop growth status
reflected in canopy reflectance, so the jointing stage would not be the ideal prediction period. In
addition, N is the vital element for the yield and it was stored in vegetative organs to promote the
crop growing at vegetative stage, and then N is transported from these vegetative organs to
reproductive organs during reproductive growth stage. The silking stage is just attributed to the later
period of the vegetative stage and crop N status can also be monitored by the spectrum, while the
maturity stage is attributed to the reproductive stage and most N had transported to the seeds, so the
silking stage is the best period for maize yield prediction.

Although the new Sls showed good performance on the calibration and validation results, the
index calculation methods here included the three basal forms (difference, ratio, and normalization)
only, and other combination structures and more spectral bands were required to be involved for
crop yield prediction in the next step. In addition, only the linear relationship between maize yield
and SIs were investigated, future work would also be concentrated on the non-linear relationships
between them. Due to the limitation of the validation data in this study, future work is planned to
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test the reliability of the new spectral indices for crop yield prediction across different climatic
regions, crop types, and farm management practices.

4.3. New Sls Response to Different N Levels and Soil Types

The important effect of N fertilizer on the crop N content, NNI, biomass, and yield have been
widely reported [35-37], and the relationship between maize yield and N fertilization levels here
showed that the yield did not increase with the increasing N fertilization amounts when the amounts
reached 168 kg ha'. It means that if N fertilizer amounts is lower than 168 kg ha-! the yield would
reach the lower values with N deficiency, while if N fertilizer amounts is higher than 168 kg ha'! the
yield would reach the higher values with optimized or excessive N supply. In this paper, the response
of new SIs to different N fertilization levels were investigated aimed to analyze the sensitivity of new
Sls to the deficient and excessive N fertilizer levels and the relevant yield accordingly. The yield for
spring maize varied from 148.70 to 12904.03 kg ha', which were significantly affected by the N
fertilizer amounts, soil types, and the climatic conditions in 2019-2020. The above-mentioned linear
regression models between the yield and new SIs showed a highly satisfactory performance at the
silking stage of spring maize in the three experimental fields. It indicated that the new indices
constructed in this paper have the ability to reflect the large variations in the yields.

The sensitivity of Sls in different N fertilizer amounts is also a key aspect to diagnose the
performance of Sls for crop yield prediction. Figure 8 showed that all the three SI forms (DSI, RSI,
and NDSI) had the ability to discriminate different N fertilization levels in WJQ and SKS field,
although the new Sls in FJ] had the poor response. That is because that the soil types of W]JQ and SKS
is alluvial soil and black soil respectively, with higher soil fertility and quality than the aeolian sand
soil in FJJ. Accordingly, the crops planted in fertile soil would present obvious response to different
N fertilization amounts, while the crops planted in infertile soil would show unapparent response to
different N fertilization levels. Therefore, the soil property is also required to be considered for the
establishment of sensitive indices for crop yield prediction, more than the spectral response to crops
to different fertilization conditions. Sometimes DSI and RSI had better performance and larger
response ranges than NDSI in this study, and it was indicated that different index structures and
forms need to be investigated to obtain the optimal and robust SIs for crop yield prediction.

5. Conclusions

This study investigated the potential of UAV canopy hyperspectral images and explore new
spectral indices designed for predicting maize yield during the growing season in three experimental
fields with different soil types. The most sensitive wavelengths and SIs were identified by screening
out the determination coefficient (R?) of linear model between the yield and all possible SIs with the
wavelengths ranged from 450 to 950 nm. The best growth period for the yield prediction was the
silking stage of spring maize. Different sensitive wavelengths and SIs were recommended as the best
indicators to assess maize yield across the three experimental fields. It revealed that the best indices
determined for the yield prediction were not only affected by the crop spectral characteristics, but
also be influenced by soil properties of farm fields. From the eight published Sls and fifteen new
indices, NDSI(690,710), RSI(906,546), and DSI(698,922) outperformed the existing indices and
achieved the best performance for the yield prediction with the determination coefficients 0.773,
0.892, and 0.726 respectively. It can be used to establish the optimal spectral indices applicable to
predict crop yield in other fields. The new Sls also presented distinct different response to various N
fertilization levels across the three SI forms (DSI, RSI, and NDSI), except for FJJ field. This
augmentation will subsequently improve the accuracy and reliability for predicting crop yield across
various growth stages, N fertilization levels, and soil properties.
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