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Article

Kinematic Anti-Gravity: A Theoretical Mechanism for
Normal Force Generation via Prescribed Constant
Speed on Curved Surfaces
Shuhao Zhong

Independent Researcher, [China]; persbective@163.com

Abstract: Overcoming pervasive forces like gravity typically requires propulsion or medium interaction
[1–4]. This theoretical study explores an alternative mechanism where apparent anti-gravity effects
emerge from the interplay between prescribed kinematics and curved geometry. We analyze a point
mass’s dynamics normal to a smooth reference surface, subject to a normal force (e.g., gravity) and,
crucially, a kinematically prescribed constant tangential projection speed V. Applying Newtonian
mechanics within an inertial frame, constrained by this constant V condition, rigorous kinematic
differentiation and projection yield the approximate normal acceleration D′′ ≈ V2kn − F/M, where
kn is the normal curvature. This reveals an inherent, geometry-induced inertial term V2kn acting
outwards. When V2kn > F/M, the model predicts net outward acceleration (D′′ > 0), signifying a
theoretical "kinematic anti-gravity" effect. This effect is generally anisotropic but isotropic for spheres
(kn = 1/R). The exact spherical case under gravity recovers circular orbit conditions. A rotating ring
(V = ωr = const) on a sphere illustrates the concept: lift-off against gravity g is predicted if V2/R > g.
While predicated on the acknowledged idealization of prescribed constant velocity, this work presents
a mathematically consistent framework demonstrating how specific kinematic constraints over curved
geometries can, in principle, generate inertial forces capable of opposing gravity within the model’s
defined rules.

Keywords: classical mechanics; differential geometry; kinematic anti-gravity

1. Introduction
Motion relative to curved surfaces is fundamental across scales, from planetary orbits governed

by spacetime geometry [1,7] to terrestrial vehicle dynamics [4] and robotic navigation [3]. While
interactions involving complex forces or constraints on surfaces are well-studied, understanding
motion near surfaces requires disentangling external forces from inertial phenomena arising purely
from movement over the curved background itself. A key challenge in physics and engineering
remains the control or counteraction of pervasive forces like gravity, typically achieved via direct
energy expenditure through propulsion or medium interaction [1–4]. The concept of "anti-gravity" –
locally nullifying gravity without conventional means – remains speculative [5]. This paper explores a
different, theoretical avenue: can gravity-opposing forces emerge intrinsically from the interaction of
inertia, geometry, and specifically prescribed motion?

We investigate this question by constructing a focused theoretical model designed to isolate
the effects of imposed kinematics. We consider a point mass M at position P⃗(t) moving near a
smooth reference surface σ (a geometric tool, not a physical constraint). Its position is related to its
unique orthogonal projection σ⃗(t) onto σ and the outward unit normal N⃗(t) at σ⃗(t) by P⃗(t) = σ⃗(t) +
D(t)N⃗(t), where D(t) is the normal distance. The mass is subject only to an external force directed
normally towards the surface, F⃗(t) = −F(t)N⃗(t). The defining feature, and central idealization,
of our model is the imposition of a kinematic condition: the projection point σ⃗(t) is mandated to
move tangentially along σ with a strictly constant speed || d⃗σ

dt || = ||V⃗σ(t)|| = V = constant. This
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constant V condition deviates from standard Newtonian dynamics. We deliberately impose this
constraint – assuming unspecified external mechanisms hypothetically maintain this speed – in order
to mathematically isolate and analyze the specific dynamic consequences attributable purely to
constant-speed tangential motion over curved geometry. Our goal is not to model fully realistic
motion, but to rigorously understand the outcome of this specific ’what if’ kinematic scenario using
detailed kinematic analysis and Newton’s second law within an inertial frame.

Applying this approach, we derive the approximate governing equation for the normal accelera-
tion D′′: D′′ ≈ V2kn − F(t)/M. This reveals a "kinematic lift acceleration" term +V2kn, emerging as
an inertial consequence of the imposed constant V kinematic constraint interacting with the surface’s
normal curvature kn. When V2kn > F(t)/M, the model predicts D′′ > 0, interpreted as a theoretical
"kinematic anti-gravity" effect.

Our analysis shows this effect is anisotropic for general surfaces but isotropic for spheres. We
validate the framework by deriving the exact equation for the spherical case under gravity, recovering
circular orbit conditions. A rotating ring on a sphere (V = ωr = const) serves as a primary illustration,
demonstrating how the V2/R kinematic lift can theoretically overcome gravity g. The following
sections detail the step-by-step kinematic derivation under constant V (Part 2), the derivation and
analysis of the governing D′′ equation (Part 3), the spherical case study (Part 4), and a concluding
discussion (Part 5). The entire analysis is performed consistently within a single inertial frame.

2. (Part 2: Detailed Kinematic Derivation Under Prescribed Constant V)
We begin with the fundamental relationship between the position of the mass P⃗(t), its projection

σ⃗(t), the normal distance D(t), and the outward unit normal N⃗(t) at σ⃗(t):

P⃗(t) = σ⃗(t) + D(t)N⃗(t) (1)

Our core kinematic assumption is that the projection σ⃗(t) moves tangentially on the surface σ

with a constant speed V. Let V⃗σ(t) = d⃗σ
dt be the velocity of the projection point. Then ||V⃗σ(t)|| = V =

constant. We define the unit tangent vector in the direction of projection motion as T⃗(t) = V⃗σ(t)/V
(assuming V ̸= 0).

2.1. Derivation of Velocity v⃗P

We differentiate Eq. (1) with respect to time t using the product rule for the DN⃗ term:

v⃗P(t) =
d
dt
[P⃗(t)] =

d
dt
[⃗σ(t)] +

d
dt
[D(t)N⃗(t)] (2)

= V⃗σ(t) +

[
dD
dt

N⃗(t) + D(t)
dN⃗
dt

]
(3)

= V⃗σ(t) + D′(t)N⃗(t) + D(t)
dN⃗
dt

(4)

where D′(t) = dD/dt.
To proceed, we need dN⃗/dt. The change in the normal vector N⃗ as its base point σ⃗ moves on the

surface with velocity V⃗σ is described by the Shape Operator (or Weingarten map) S of the surface σ

at σ⃗. The Shape Operator S{⃗σ} maps tangent vectors at σ⃗ to tangent vectors at σ⃗. The fundamental
relation is [6,7]:

dN⃗
dt

= −S{⃗σ}(V⃗σ(t)) (5)

This equation states that the rate of change of the normal vector is tangential and related to the surface
curvature encoded in S and the velocity V⃗σ.
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Substituting Eq. (5) into Eq. (4):

v⃗P(t) = V⃗σ(t) + D′(t)N⃗(t)− D(t)S(V⃗σ(t)) (6)

This is the velocity vector of the mass M. It has a tangential component V⃗σ − DS(V⃗σ) (relative to the
surface σ at σ⃗) and a normal component D′N⃗.

2.2. Derivation of Acceleration a⃗P (Constant V)

We differentiate the velocity vector v⃗P (Eq. (6)) with respect to time t to find the acceleration a⃗P:

a⃗P(t) =
d
dt
[⃗vP(t)] =

d
dt
[V⃗σ(t)] +

d
dt
[D′(t)N⃗(t)]− d

dt
[D(t)S(V⃗σ(t))] (7)

Let’s evaluate each term separately, explicitly using the condition V=constant:

• Term 1: d
dt [V⃗σ(t)]

Since V⃗σ = VT⃗ and V is constant:

d
dt
[V⃗σ(t)] =

d
dt
[VT⃗(t)] = V

dT⃗
dt

(8)

This term is purely due to the change in the direction of the projection velocity.
• Term 2: d

dt [D
′(t)N⃗(t)]

Using the product rule:
d
dt
[D′(t)N⃗(t)] = D′′(t)N⃗(t) + D′(t)

dN⃗
dt

Substituting dN⃗/dt from Eq. (5):

d
dt
[D′(t)N⃗(t)] = D′′(t)N⃗(t)− D′(t)S(V⃗σ(t)) (9)

• Term 3: − d
dt [D(t)S(V⃗σ(t))]

Using the product rule:

− d
dt
[D(t)S(V⃗σ(t))] = −

[
D′(t)S(V⃗σ(t)) + D(t)

d
dt
(S(V⃗σ(t)))

]
(10)

The term d
dt (S(V⃗σ)) involves the rate of change of the Shape Operator applied to the velocity,

encompassing changes in curvature and path direction.

Now, substitute Eqs. (8), (9), and (10) back into Eq. (7):

a⃗P(t) =

(
V

dT⃗
dt

)
+
(

D′′N⃗ − D′S(V⃗σ)
)
−
(

D′S(V⃗σ) + D
d
dt
(S(V⃗σ))

)

Combine the terms involving D′S(V⃗σ):

a⃗P(t) = V
dT⃗
dt

+ D′′(t)N⃗(t)− 2D′(t)S(V⃗σ(t))− D(t)
d
dt
[S(V⃗σ(t))] (11)

This is the full expression for the acceleration vector of mass M under the constant V condition.

2.3. Derivation of the Normal Component of Acceleration aN (Constant V)

We need the component of a⃗P along the normal direction N⃗, denoted aN = a⃗P · N⃗. We compute
the dot product of each term in Eq. (11) with N⃗:
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• Term 1: (V dT⃗
dt ) · N⃗

Recall V dT⃗
dt = dV⃗σ

dt . We need the normal component of the acceleration of the projection point
σ as it moves at constant speed V. This acceleration is required to keep σ following its path on
the curved surface σ. From differential geometry, the normal component of dV⃗σ/dt is related
to the normal curvature kn in the direction T⃗ = V⃗σ/V. The normal curvature kn can be defined
via the Shape Operator as kn = T⃗ · S(T⃗) [6,7]. Let’s relate ( dV⃗σ

dt ) · N⃗ to kn. Start with the identity
V⃗σ · N⃗ = 0. Differentiate wrt time:

d
dt
(V⃗σ · N⃗) =

(
dV⃗σ

dt

)
· N⃗ + V⃗σ ·

(
dN⃗
dt

)
= 0

So, ( dV⃗σ
dt ) · N⃗ = −V⃗σ · ( dN⃗

dt ). Substitute dN⃗
dt = −S(V⃗σ) (Eq. (5)):(

dV⃗σ

dt

)
· N⃗ = −V⃗σ · [−S(V⃗σ)] = V⃗σ · S(V⃗σ)

Now substitute V⃗σ = VT⃗:(
dV⃗σ

dt

)
· N⃗ = (VT⃗) · S(VT⃗) = V2[T⃗ · S(VT⃗)]

Since S is linear, S(VT⃗) = VS(T⃗).(
dV⃗σ

dt

)
· N⃗ = V2[T⃗ · (VS(T⃗))] = V3[T⃗ · S(T⃗)]

Using the definition kn = T⃗ · S(T⃗): (
dV⃗σ

dt

)
· N⃗ = V2kn

Sign Convention: We adopt the convention that kn represents the non-negative magnitude
of normal curvature (e.g., kn = 1/R for a sphere, R > 0). The physical acceleration dV⃗σ/dt
required to follow a path curving "inwards" (towards the center of normal curvature) must have a
component along −N⃗ (since N⃗ points outwards). Therefore, to align with this physical picture
and the non-negative kn convention, we must write:(

V
dT⃗
dt

)
· N⃗ = −V2kn (12)

• Term 2: (D′′(t)N⃗(t)) · N⃗

D′′(t)(N⃗ · N⃗) = D′′(t)× 1 = D′′(t) (13)

• Term 3: (−2D′(t)S(V⃗σ(t))) · N⃗
Since S(V⃗σ) is a tangent vector, it is orthogonal to N⃗. S(V⃗σ) · N⃗ = 0. Therefore, the contribution is

0 (14)
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• Term 4: (−D(t) d
dt [S(V⃗σ(t))]) · N⃗

This term d
dt [S(V⃗σ)] represents complex effects due to the change in the curvature tensor and path

direction along the motion. Its normal component depends on these geometric variations and is
proportional to D. We denote this contribution as H.O.T.(D) (Higher Order Terms in D).

Contribution = H.O.T.(D) (15)

Summing the contributions from Eqs. (12), (13), (14), and (15):

aN = a⃗P · N⃗ = −V2kn + D′′(t) + 0 + H.O.T.(D)

aN = D′′(t)− V2kn + H.O.T.(D) (16)

2.4. Approximate Kinematic Normal Acceleration (Constant V)

For scenarios where D is small relative to the radii of curvature, or where the surface geometry
changes slowly along the path, the H.O.T.(D) term can be neglected. This yields the approximate
kinematic normal acceleration under the constant V condition:

aN ≈ D′′(t)− V2kn (17)

This completes the detailed kinematic derivation required for the subsequent dynamic analysis.

3. (Part 3: Detailed Dynamics Derivation and Analysis - Constant V Model)
Having established the kinematic expression for the normal component of acceleration aN under

the prescribed constant V condition, we now incorporate the dynamics dictated by the applied force
using Newton’s Second Law.

3.1. Newton’s Second Law in the Normal Direction

The model assumes the only external force explicitly considered is the normal force F⃗(t) =

−F(t)N⃗(t), where F(t) is the magnitude directed inwards (opposite to N⃗). Newton’s Second Law in
vector form is:

Ma⃗P(t) = F⃗(t) (18)

Ma⃗P(t) = −F(t)N⃗(t) (19)

To isolate the dynamics relevant to the normal motion D(t), we project this vector equation onto the
unit normal vector N⃗(t). This is achieved by taking the dot product of both sides of Eq. (19) with N⃗(t):

N⃗(t) · [Ma⃗P(t)] = N⃗(t) · [−F(t)N⃗(t)]

Since M is a scalar and N⃗ is a unit vector (N⃗ · N⃗ = 1), this simplifies to:

M[⃗aP(t) · N⃗(t)] = −F(t)[N⃗(t) · N⃗(t)]

MaN(t) = −F(t)× 1

Thus, the dynamic requirement imposed by the applied force on the normal component of acceleration
is:

aN(t) = − F(t)
M

(20)

This equation states that the actual normal acceleration experienced by the mass must be exactly that
provided by the applied normal force per unit mass.
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3.2. Deriving the Governing Equation for D′′ (Constant V Model)

We now have two expressions for the normal component of acceleration aN , both derived consis-
tently within the inertial frame:

1. Approximate Kinematic aN (from Part 2, Eq. (17)): Derived from the geometry and the prescribed
constant V kinematics, neglecting higher-order terms in D:

aN ≈ D′′(t)− V2kn

2. Dynamic aN (Eq. (20)): Required by Newton’s Second Law applied to the assumed normal force:

aN = − F(t)
M

Equating these two expressions for aN yields the relationship governing the normal distance dynamics
within the idealized constant V model:

D′′(t)− V2kn ≈ − F(t)
M

(21)

Rearranging this equation to solve explicitly for the second time derivative of the normal distance, D′′:

D′′(t) ≈ V2kn −
F(t)
M

(22)

This ordinary differential equation is the central result of our analysis for the constant V model. It
provides an approximate description of how the normal distance D evolves over time under the
specific interplay of the imposed kinematics and the applied normal force. The approximation stems
from neglecting the H.O.T.(D) term in the kinematic derivation.

3.3. Detailed Analysis of the Governing Equation (22)

Equation (22), D′′(t) ≈ V2kn − F(t)/M, describes the normal acceleration relative to the reference
surface σ as determined by the model’s assumptions. Let’s analyze the terms:

• D′′(t): The second derivative of the normal distance D with respect to time. It represents the
acceleration of the mass M perpendicularly away from (if D′′ > 0) or towards (if D′′ < 0) the
reference surface σ, relative to the projection point σ.

• +V2kn: The Kinematic Lift Acceleration term.

– V2: Proportional to the square of the prescribed constant tangential speed of the projection
σ. Higher imposed speed leads to a larger effect.

– kn: The non-negative magnitude of the normal curvature of the reference surface σ in the
instantaneous direction of the projection’s velocity V⃗σ/V. Sharper curvature (smaller radius
of normal curvature, 1/kn) leads to a larger effect. If the surface is flat (kn = 0), this term
vanishes.

– Origin and Interpretation: This term arises directly from the inertia of the mass resisting
the change in direction mandated by the constant speed V motion along the curved path
on σ (as shown by the −V2kn component in the kinematic aN derivation, Eq. (12)). In
the equation for the relative acceleration D′′, it appears with a positive sign, signifying an
outward acceleration tendency relative to the surface. It exists solely due to the combination
of inertia, the imposed constant speed V, and the non-zero curvature kn of the geometric
reference.

• −F(t)/M: The Applied Force Acceleration term.
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– F(t): The magnitude of the applied external normal force, directed inwards (towards σ).
This force can vary with time, for instance, through dependence on position D (e.g., gravity
F(D)).

– M: The mass of the point object.
– Interpretation: This term represents the direct inward acceleration caused by the explicitly

included external force F⃗.

3.4. Balance of Effects and the Kinematic Anti-Gravity Condition

The net normal acceleration D′′ is the result of the competition between the outward kinematic
lift V2kn and the inward applied force acceleration F(t)/M.

• Departure / Kinematic Anti-Gravity (D′′ > 0): Condition: V2kn > F(t)/M.
In this case, the outward inertial tendency generated by the prescribed constant V motion over the
curved geometry dominates the inward pull of the applied force F. The model predicts the mass
will accelerate away from the reference surface (in the +N⃗ direction). This is the mathematical
condition defining the theoretical "kinematic anti-gravity" effect within this model.

• Approach (D′′ < 0): Condition: V2kn < F(t)/M.
Here, the inward applied force is stronger than the outward kinematic lift effect. The mass
accelerates towards the reference surface (in the −N⃗ direction).

• Equilibrium (D′′ ≈ 0): Condition: V2kn ≈ F(t)/M.
The outward kinematic lift approximately balances the inward applied force. The net normal
acceleration is near zero. If the initial normal velocity D′(0) is also zero, this suggests the mass
will tend to maintain a constant normal distance D from the surface, representing a state of
dynamic equilibrium relative to the reference surface for the specific prescribed speed V.

3.5. Anisotropy vs. Isotropy

On a general curved surface σ, the normal curvature kn typically varies depending on the direction
T⃗ = V⃗σ/V within the tangent plane (described by Euler’s Theorem involving principal curvatures
k1, k2). Since kn directly influences the kinematic lift term V2kn, the magnitude of this term, and
therefore the resulting normal acceleration D′′ and the condition for departure, will depend on the
direction of the prescribed tangential motion V⃗σ. This leads to anisotropic normal dynamics predicted
by the model.

In contrast, for a sphere of radius R, the normal curvature kn = 1/R is the same in all directions.
Consequently, the kinematic lift term V2/R is independent of the direction of motion on the sphere’s
surface, leading to isotropic normal dynamics.

4. (Part 4: Detailed Case Study - Sphere under Gravity and the Rotating Ring)
We now apply the derived framework (based on prescribed constant V) to the specific case of

a spherical reference surface under central gravity. This serves to validate the model against known
physics (circular orbits) and to provide a clear illustration of the kinematic anti-gravity concept using
the rotating ring thought experiment.

4.1. System Definition

• Reference Geometry: A sphere of radius R. The normal curvature is constant and isotropic:
kn = 1/R. The outward unit normal N⃗ coincides with the radial unit vector r̂.

• Applied Force: Central gravity from a central mass Me. The force on mass M at distance
r = R + D from the center is F⃗ = −(GMe M/r2)r̂. This matches the model’s form F⃗ = −F(D)N⃗
with force magnitude F(D) = GMe M/(R + D)2. The applied inward acceleration is F(D)/M =

GMe/(R + D)2.
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• Prescribed Kinematics: The projection σ⃗ moves tangentially on the sphere surface (radius R) with
prescribed constant speed ||V⃗σ|| = V. This implies a constant angular velocity θ′ = dθ/dt = V/R
relative to the sphere’s center.

4.2. Exact Governing Equation for D′′ (Spherical Case, Constant V Model)

Due to the high symmetry, we can derive an exact equation without neglecting H.O.T.(D). We
use Newtonian mechanics in polar coordinates (r, θ) within an inertial frame, imposing the model’s
kinematic constraint. The radial coordinate is r(t) = R + D(t), so ṙ = D′ and r̈ = D′′. The radial
component of acceleration is ar = r̈ − r(θ̇)2. Newton’s Second Law in the radial direction states
Mar = Fr, where Fr = −F(D) = −GMe M/(R + D)2.

M[r̈ − r(θ̇)2] = −GMe M
r2

Substitute r = R + D and r̈ = D′′:

M[D′′ − (R + D)(θ̇)2] = − GMe M
(R + D)2

Now, crucially, substitute the kinematically prescribed constant angular velocity from our model,
θ̇ = V/R:

M

[
D′′ − (R + D)

(
V
R

)2
]
= − GMe M

(R + D)2

Dividing by M and rearranging gives the exact differential equation for D(t) under the constant V
prescription on a sphere:

D′′(t) =
V2(R + D)

R2 − GMe

(R + D)2 (23)

4.3. Detailed Analysis of the Exact Spherical Equation (23)

• Structure: The equation explicitly shows D′′ as the sum of two terms:

– +V2(R+D)
R2 : The outward kinematic lift acceleration term, derived exactly for the sphere

under the constant θ̇ = V/R condition.
– − GMe

(R+D)2 : The inward gravitational acceleration.

• Consistency Check: For D ≪ R, R + D ≈ R. Eq. (23) becomes D′′ ≈ V2R
R2 − GMe

R2 = V2

R − g, where
g = GMe/R2 is the surface gravity. This perfectly matches the general approximate formula
Eq. (22) applied to the sphere (kn = 1/R, F/M = g). This confirms the validity of the general
approximation in this limit and the structural correctness of the exact result.

• Equilibrium - Circular Orbit Condition (D′′ = 0): Setting D′′ = 0 requires the prescribed speed
V to satisfy the balance:

V2(R + D)

R2 =
GMe

(R + D)2

Solving for V yields the specific constant projection speed required on the radius R surface to
maintain equilibrium (a circular orbit) at altitude D:

Veq(D) = R

√
GMe

(R + D)3 (24)

– Physical Consistency: We can verify this connects to standard physics. The actual or-
bital speed required for a circular orbit at radius r = R + D is vorbit =

√
GMe/r =

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 April 2025 doi:10.20944/preprints202504.2217.v1

https://doi.org/10.20944/preprints202504.2217.v1


9 of 10

√
GMe/(R + D). The angular velocity is θ̇orbit = vorbit/r =

√
GMe/r3 =

√
GMe/(R + D)3.

The corresponding projection speed onto radius R would be Vproj = Rθ̇orbit = R
√

GMe/(R + D)3.
This exactly matches our Veq(D). Thus, the equilibrium condition derived from our con-
stant V model precisely corresponds to the condition for a physically realistic circular orbit,
validating the model in this specific (constant actual speed) regime.

• Surface Equilibrium (D = 0): Setting D = 0 in Eq. (24) gives Veq(0) = R
√

GMe/R3 =
√

GMe/R,
which is the first cosmic velocity V1.

4.4. Thought Experiment: The Rotating Ring - Demonstrating Kinematic Anti-Gravity

This experiment provides a direct illustration where the constant V condition is met by definition.

• Setup: A thin ring (radius r, mass Mring) rotates flat on the spherical surface (radius R, surface
gravity g = GMe/R2) with prescribed constant angular velocity ω. Gravity dF = g dM acts
normally inwards on each element dM.

• Constant V Fulfilled: Each element dM has a tangential speed relative to the underlying sphere
V = ωr, which is constant due to the prescribed constant ω.

• Initial Normal Acceleration (D = 0): We apply the exact spherical equation (Eq. (23)) at the initial
instant D = 0 for each element dM. The gravitational acceleration is g.

D′′(0) =
V2(R + 0)

R2 − GMe

(R + 0)2

D′′(0) =
V2

R
− g

Substitute the ring’s speed V = ωr:

D′′(0) =
(ωr)2

R
− g (25)

• Interpretation - Kinematic Lift vs. Gravity:

– The term (ωr)2

R = V2

R is the outward kinematic lift acceleration.
– −g is the inward gravitational acceleration.
– The initial normal acceleration D′′(0) of every ring element is the direct sum of these two

competing effects.

• Kinematic Anti-Gravity Lift-off Condition:

– If (ωr)2

R > g, then D′′(0) > 0.
– The outward kinematic lift generated by the prescribed constant rotation V exceeds the

inward pull of gravity g. Since this applies uniformly to all parts of the ring, the entire ring
experiences an initial upward acceleration. The model predicts lift-off against gravity.

– This occurs if the ring’s tangential speed V = ωr exceeds the first cosmic velocity
√

gR (since
g = GMe/R2,

√
gR =

√
GMe/R).

– This result vividly demonstrates the theoretical "kinematic anti-gravity" effect predicted by the
equation D′′ ≈ V2kn − F/M in a scenario perfectly matching the model’s constant V assumption.

5. (Part 5: Synthesis, Discussion, and Conclusion)
5.1. Synthesis: The Kinematic Anti-Gravity Condition

Analyzing dynamics normal to a surface σ under the idealized condition of prescribed constant
tangential projection speed V and a normal force F, we derived D′′(t) ≈ V2kn − F(t)/M. Key
findings within this framework:
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1. An outward kinematic lift acceleration +V2kn emerges from the imposed constant V kinematics
interacting with curvature kn.

2. A theoretical "kinematic anti-gravity" effect (departure, D′′ > 0) occurs if V2kn > F(t)/M.
3. The effect is generally anisotropic but isotropic for spheres.
4. Consistency with circular orbit physics is established (V = Veq(D) yields D′′ = 0).
5. The rotating ring (V = ωr = const) provides a direct illustration: lift-off against gravity g is

predicted if the kinematic lift V2/R exceeds g.

5.2. Discussion

The "kinematic anti-gravity" described is an inertial effect, a consequence of the imposed constant
V kinematic constraint interacting with geometry, rigorously derived within an inertial frame using
Newton’s laws. It is not a modification of gravity. The term V2kn quantifies the inertial reaction to this
imposed motion.

The central limitation remains the constant V idealization. This is non-physical for uncon-
strained motion determined solely by forces like gravity. Unspecified external mechanisms are
implicitly assumed to maintain V. This model explores the consequences of this ’what if’ scenario,
not its physical achievability. Therefore, dynamics requiring naturally varying speeds (like elliptical
orbits) are outside the scope of the equations derived here.

Despite this, the model offers value by isolating the V2kn effect. The mathematical derivation is
sound given the premise, consistency with circular orbits is shown, and the ring example provides a
clear conceptual illustration. It highlights how specifically engineered or constrained motion patterns
relative to geometry can lead to significant, potentially counter-intuitive, dynamic effects.

5.3. Conclusion

This work demonstrates mathematically that under the idealization of prescribed constant
tangential projection speed V, motion over a curved geometry (curvature kn) can theoretically
generate a normal "kinematic lift" acceleration V2kn. When this term exceeds the applied normal force
acceleration F(t)/M, the model predicts net outward acceleration (D′′ > 0), representing a theoretical
"kinematic anti-gravity" effect. The rotating ring thought experiment, where V2/R can exceed g,
exemplifies this prediction. While emphasizing that the constant V assumption is non-physical for
unconstrained systems and limits the model’s scope (excluding phenomena like elliptical orbits), this
study provides a rigorous theoretical analysis of the specific dynamic consequences of such a kinematic
constraint, offering a distinct perspective on the interplay between inertia, geometry, and prescribed
motion near curved surfaces.
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