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Article 
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1  Electrical Engineering and Intelligent Systems, ENSET, University Hassan II, Mohammedia, Morocco 
2  Computer science, Artificial Intelligence and Cyber Security, ENSET, University Hassan II, Mohammedia, 

Morocco 

*  Correspondence: han.dihmani@gmail.com; Tel.: 00212662482883 

Abstract:  Advances  in  early  detection  of  Breast  cancer  and  treatment  improvements  have  significantly 

increased  survival  rates.  Traditional  screening methods,  including mammography, MRI,  ultrasound,  and 

biopsies, while effective, often come with high costs and risks. Recently, thermal imaging has gained attention 

due to its minimal risks compared to mammography, although it is not widely adopted as a primary detection 

tool since  it depends on  identifying skin  temperature changes and  lesions. The advent of machine  learning 

(ML) and deep learning (DL) has enhanced the effectiveness of breast cancer detection and diagnosis using this 

technology.  In  this  study  a novel methodology  for developing  an  interpretable  computer‐aided diagnosis 

(CAD) system for breast cancer detection, leveraging explainable Artificial Intelligence (XAI) throughout its 

various phases. To achieve  these goals, we proposed a new multi‐objective optimization approach named 

Hybrid Particle Swarm Optimization algorithm (HPSO) and Hybrid spider Monkey Optimization algorithm 

(HSMO). These algorithms simultaneously combine  the continuous and binary representations of PSO and 

SMO  to effectively manage  trade‐offs between Accuracy,  feature selection and hyperparameter  tuning. We 

evaluate several CAD models and investigate the impact of handcrafted methods such as Local Binary Patterns 

(LBP), Histogram of Oriented Gradients (HOG), Gabor filters, and edge detection. We further shedding light 

on the effect of feature selection and optimization on feature attribution and model decision‐making processes 

using  the  SHapley  Additive  exPlanations  (SHAP)  framework,  with  a  particular  emphasis  on  cancer 

classification  using  the DMR‐IR dataset. The  results  of  our  experiments demonstrate  in  all  trials  that  the 

performance of the model is improved. Also with HSMO our models achieved a high accuracy accuracy of 

98.27% and F1‐ score of 98.15% while selecting only 25.78% of the HOG‐features. This approach not only boosts 

the performance of CAD models but also ensures comprehensive interpretability. This method emerges as a 

promising and transparent tool for early breast cancer diagnosis. 

Keywords: breast cancer detection; thermography; XAI; HPSO; HSMO; Feature extraction; feature 

attribution; multi‐objective  optimization;  continuous;  binary;  feature  selection;  hyperparameter 

tuning 

 

1. Introduction 

Breast cancer is a profoundly distressing disease. Screening programs for early breast disease 

detection  significantly  contribute  to  the  reduction  of  the  mortality  rate  among  women.  These 

programs save lives by detecting conditions at their initial stages when treatment is more effective 

and less costly. Medical imaging modalities are employed for breast cancer diagnosis, as well as the 

differentiation  of  malignant  from  benign  breast  tumors,  including,  Mammography,  Magnetic 

Resonance  Imaging  (MRI),  Ultrasound,  Computed  Tomography  (CT),  Positron  Emission 

Tomography  PET,  and  thermography.  Mammography,  while  widely  used,  presents  specific 

limitations.  These  include  challenges  in  visualizing  smaller  tumors  [1],  inadvisability  for  use  in 

younger  women  and  those  with  dense  breast  tissues  [Error!  Reference  source  not  found.], 

considerable cost and  time  requirements  [3], and physical discomfort due  to breast compression. 

Moreover,  concerns  about  the  potential  carcinogenic  effects  of  cumulative  ionizing  radiation 
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exposure have been raised [Error! Reference source not found.]. The high incidence of false‐positive 

results further contributes to patient anxiety and unnecessary procedures [Error! Reference source 

not found.]. In this context, Infrared Thermography has emerged as a promising and robust screening 

tool for early cancer detection [6–Error! Reference source not found.]. Thermography offers distinct 

advantages, being painless, non‐invasive, non‐contact, and cost‐effective  [Error! Reference source 

not found.]. Notably, it is particularly well‐suited for screening younger women, patients with dense 

breast  tissue, and pregnant or nursing women, as  it does not  involve  ionizing radiation exposure 

[Error! Reference source not found.].   

In health systems, breast cancer diagnostics have benefited  from Computer‐Aided Diagnosis 

(CAD) systems, streamlining  the analysis process and minimizing errors. These systems  typically 

consist of  several  steps,  from  image preprocessing  to  classification, where  feature  extraction  and 

selection  play  vital  roles.  Extracting  pertinent  features  is  essential  for  capturing  subtle  patterns 

indicative of early‐stage breast cancer, whether through meticulously crafted methods or advanced 

deep  learning  approaches  [11].  However,  the  current  narrative  predominantly  emphasizes  the 

accuracy and automation aspects of these systems, often achieved by training models on extensive 

datasets to recognize patterns in medical data. Yet, amid these advancements, there exists a notable 

gap in the discourse – the lack of attention to model interpretability [12]. In this paper, we proposed 

an  interpretable  computer‐aided  diagnosis  (CAD), while  delving  into  the  relationship  between 

pattern  recognition  and  machine  learning.  Understanding  this  connection  is  paramount  in 

addressing  the  complexity  of  medical  data.  Pattern  recognition,  within  its  broader  domain,  is 

fundamentally concerned with identifying regularities or inherent patterns within datasets, this field 

embraces a wide array of techniques and methods designed to identify patterns across various data 

types, spanning images, signals, and sequences. The attainment of pattern recognition can be realized 

through two primary approaches: manual and automated. Manual pattern recognition often relies 

on human expertise and heuristic approaches [13], depending on the nuanced judgment of experts 

to  identify  patterns,  while  automated  pattern  recognition  employs  computational  methods  to 

autonomously detect and outline patterns embedded within the data [14]. Machine learning, a subset 

of artificial intelligence, is exclusively dedicated to developing algorithms and statistical models that 

empower  computers  to  learn  from  data  and  subsequently  make  predictions  or  decisions, 

encompassing a vast spectrum of techniques, including supervised learning, unsupervised learning, 

reinforcement learning, and hybrid methodologies.   

On the other hand, Healthcare professionals need to understand how AI systems arrive at their 

recommendations  or  decisions,  especially when  these  decisions  can  have  significant  real‐world 

impacts. In the context of synergy between pattern recognition and machine learning, Explainable 

Artificial Intelligence AI (XAI) can be used to understand the rules that are generated, giving insight 

into  the expertise of  the medical domain. The evolution and  role of XAI  in  the medical decision‐

making process have significantly shaped the healthcare industry, offering transparency, trust, and 

enhanced clinical support (Figure 1) [15,16]. 

 

Figure 1. The Evolution and Role of XAI in Decision‐Making by stakeholders. 
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The insights gained by leveraging the integration of machine learning, pattern recognition, and 

XAI hold significant potential in the domain of medical image analysis for breast cancer detection 

[17]; each of these fields consists of several processes. One approach that enhances this integration is 

the  use  of  metaheuristics,  which  employ  techniques  inspired  by  nature  to  perform  abstract 

optimization [18]. Although a limited number of studies have explored breast cancer thermogram 

diagnosis  using  optimization  algorithms,  the  review  article  [19]  presents  an  overview  of 

advancements in this field. However, many papers often fall short in providing explanations for their 

outcomes [20].   

The authors of this paper are also aware of the ongoing debate surrounding metaheuristic‐based 

optimization [21,22]. In order to address some of those concerns while employing these algorithms, 

our work stands as a significant contribution to this research area :   

1) Our  primary  goals  encompass  the  comprehensive  solution  to  the  challenges  of  achieving 

dynamic optimization problems. The development of Hybrid PSO  (HPSO) and Hybrid SMO 

(HSMO) methodologies  for  tackling  continuous variable optimization and discrete problems. 

The proposed approaches allow  the optimization algorithm  to ensure effective  solutions  in a 

varied search space. 

2) Harnessing the power of multi‐objective optimization techniques [23], the proposed optimizers 

aim to provide a deeper understanding of model behavior across varying problem formulations. 

We used The multi‐objective ML approaches  to  strive  to optimize multiple aspects of model 

performance  simultaneously.  These  include  hyperparameter  optimization,  prediction 

performance, sparseness, and interpretability. 

3) Through our research, an automated aspects on finding textures and features through machine 

learning based optimization functions that best represent breast cancer classification patterns, by 

producing handcrafted features from breast thermograms images using different methods, such 

as LBP, HOG, Gabor and canny edge and SVM for classification are employed.   

4) Using  visual  explanation  techniques  that  generate  interpretable  graphical  representations 

enables  healthcare  practitioners  to  intuitively  grasp  the  rationale  behind  each  classification, 

making complex patterns associated with breast thermograms more comprehensible. 

5) Our  HSMO  and  HPSO  optimizer  incorporate  SHapley  Additive  exPlanations  (SHAP) 

framework  into  the  evaluation process;  the method  ensures  that  the  importance  of different 

features is considered. This adds another layer of complexity and variation to the solutions being 

explored.   

6) The other goal of this paper is to evaluate the convergence behaviors of distinct metaheuristic 

algorithms (HPSO, HSMO, Binary Particle Swarm Optimization algorithm (BPSO), and Binary 

spider Monkey Optimization algorithm (BSMO). to identify similarities and differences in their 

solutions and secondly, to ensure consistent results upon repeated runs. 

The  organization  of  the  paper  is  as  follows:  Section  2  presents  related work.  The  detailed 

methodology in Section 3. Section 4 will outline the experimental setup. Section 5 will present the 

results and related discussions. Finally, Section 6 includes the research conclusion. 

2. Related work 

2.2. XAI for Medical Image 

machine  learning models  and  deep  neural  networks  are  often  characterized  as  ʺblack  boxʺ 

models due to their high complexity, resulting in a lack of readily available explanations for their 

predictions. While  these models  excel  in  accuracy, understanding  the  rationale behind  a  specific 

prediction can be a formidable challenge. The inherent non‐human‐interpretable nature of AI models 
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has  led  to  limited work aimed at developing models  that can effectively elucidate  their decision‐

making processes and actions, as exemplified by the contributions of   Kallianos et al [24–28]. There 

is  a  growing  need  for XAI  in  domains  like  healthcare, where  simply  relying  on AI  for  pattern 

recognition is insufficient. The ability to provide explanations for the decisions made by these models 

becomes paramount in ensuring that experts within these domains can derive meaningful insights 

from AI outputs. This ensures transparency and trustworthiness in AI‐assisted medical diagnoses, 

which  is  essential  for  gaining  acceptance  and  facilitating  collaboration  between AI  systems  and 

medical professionals [29,30]. Several tools have been developed to enhance the interpretability and 

explainability of black‐box machine learning (ML) models, particularly through visual explanations. 

Brunese et al. [31] offer explanations for deep  learning model predictions for Coronavirus disease 

(COVID‐19) detection, employing Class Activation Maps (CAM). Koyyada and Singh [32] extend this 

approach by using Gradient CAM (GradCAM). Barata et al. [33] introduce heatmaps that emphasize 

regions of an image that exerted the most influence on the modelʹs decision. Nigar et al. [34] leverage 

LIME  to  interpret deep  learning models, providing  local  insights  around  specific predictions,  as 

demonstrated in dermatological images. 

2.3. XAI‐ for Breast Thermography 

Many papers, such as [35–37], concentrate on the accuracy and automation aspects of using AI 

for  breast  cancer  classification  using  thermal  imaging.  For  example,  Abdel‐Nasser  et  al.  [35] 

introduced a novel learning technique representation called LTR. By utilizing HOG with 4*4 blocks 

size and 288  feature vectors,  their method achieved an accuracy of 95.80% using an Multi‐Layer 

Perceptron (MLP) classifier. Nevertheless, there are relatively few papers focusing on methods used 

to  aid  and  assist healthcare professionals  or  lay  individuals  in understanding  the predictions  of 

machine learning models in breast thermogram images. In a recent study [38,39] authors proposed 

an approach based on Bayesian Networks BNs with CNNs. The authors emphasize the utilization of 

BN,  which  is  renowned  for  its  probabilistic  and  graphical  data  representation  to  enhance  the 

interpretability of model predictions. These models  extract  relevant  features  from  thermography 

images, which Bayesian Networks can then interpret to make informed and explainable diagnostic 

decisions. In the study by Nicandro et al. [40], the goal was to evaluate the diagnostic capability of 

thermographic variables for distinguishing patients suspected of having breast cancer from healthy 

individuals. The paper employs Bayesian networks  for analysis, chosen  for  their ability  to  reveal 

interactions  between  attributes  and  classes  and  interactions  among  attributes  themselves.  This 

unique capability allows for a visual identification of which attributes influence the outcome and how 

they are interconnected. The results indicate that, while other models like Multi‐Layer Perceptrons 

(MLP) and decision trees demonstrate comparable performance, they lack explanation power. The 

paper suggests that deep CNN with transfer learning achieves sensitivity levels similar to those of 

human experts, even in datasets with a low prevalence of breast cancer. The paper by Dey et al. [41] 

suggests that hybrid of deep CNN and edge detectors can achieve sensitivity levels coparable to those 

of human experts, even in datasets with a low prevalence of breast cancer. Additionally, they utilized 

Class Activation Mapping  (CAM)  into  the model. While  the paper doesnʹt explicitly mention  the 

integration of external interpretability beyond CAM, CAM itself serves as a form of explainability by 

highlighting  the  regions of  interest  in  the  thermograms  that contribute  to  the networkʹs decision‐

making process.   

Considering  the  advancements  of AI  for  breast  cancer detection using  thermography,  there 

remains  a  crucial  avenue  for  improvement,  where  the  scope  is  placed  on  optimization‐based 

metaheuristics, a research topic that has garnered significant public attention [42,43]. Furthermore, 

the demand  for elucidating  the distinctive contributions of specific models  to predictions  is more 

critical than ever. This paper undertakes the challenge of addressing these pivotal aspects and aims 

to open new  research directions by providing an  interpretable CAD  system  capable of handling 

complex, evolving problems, human interpretability, and feature attribution. 

3. Methodology   
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A multi‐step methodology is involved in the proposed CAD architecture. While using LBP as a 

feature extractor, the complete pipeline is indicated in Figure 2 as follows. The preprocessing of breast 

thermograms  is  followed by  feature extraction using various  texture analysis methods. Next,  the 

extracted  features  and  their  histograms  are  visualized  to  understand  the  initial  feature  vector 

distribution. Subsequently, the proposed optimization algorithm HPSO and HSMO is employed to 

identify the most relevant features contributing significantly to the classification task.   

Furthermore,  recognizing  the  importance  of  optimizing  model  parameters  to  enhance 

classification performance, we employ an objective function to ensure optimal performance. 

 

 

Figure 2. Pipeline Representation   

3.1. Dataset Description 

This  research used  images  sourced  from  the Database  for Mastology Research with  Infrared 

Image (DMR‐IR) [44]. This database contains both Static Infrared Thermography (SIT) and Dynamic 

Infrared Thermography (DIT) images, with our focus on DIT images. The imaging protocol involves 

patients standing with their hands on their heads for five minutes. During this period, an electric fan 

cools the breast and armpit regions in a controlled temperature environment ranging from 20°C to 

22°C. Following the cooling phase, a FLIR thermal camera (model SC620) captures 20 DIT images, 

each with dimensions of 640 × 480 pixels. 

This  dataset  is  a  comprehensive  collection  of  individual  cases  designed  for  breast  cancer 

detection, with each case linked to a unique ID. It offers diversity in terms of age and demographics, 

encompassing a broad spectrum of breast cancer risk factors. Each case comprises multiple images. 

The dataset is segregated into two folders ʺoldʺ cases (Desenvolvimento da Metodologia) and ʺnewʺ 

cases (12 Novos Casos de Testes) as shown in Table 1. Notably, each ID in the dataset is labeled as 

either ʺhealthyʺ or ʺsick.ʺ Healthy IDs feature images from both the right and left sides of the chest, 

whereas sick IDs exclusively contain images of the affected side due to differences in temperature 

gradients between healthy and sick breasts. The conventional approach treats the data as a collection 

of images split into train/test/validation sets based on predefined ratios [45]. However, this approach 

introduces  a  level of data  leakage  into  trained models  since  each patient  ID  can have  images  in 

multiple sets, potentially causing overlap between the test and training sets. To mitigate this data 

leakage issue, we propose creating splits based on patient IDs, where each IDʹs images are associated 

with one of the possible data splits. The division into test and train sets is initially performed based 

on IDs and subsequently on their associated images. To achieve this with our proposed approach, we 

initially gather the IDs and subsequently divide the ID pool into train/test sets, as illustrated in Figure 

3. The dataset was split using a 70‐30 train‐test split ratio. This resulted in 1060 samples allocated for 

training and 462 samples allocated for testing. 
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Table 1. Details about dataset classes. 

1522 thermogram images (56 subject :37 sick IDs‐ 19 healthy IDs) 

Desenvolvimento da Metodologia  12 Novos Casos de Testes 

 
Total  DOENTES 

(Sick) 

SAUDAVEIS 

(Healthy) 

Total  DOENTES 

(Sick) 

SAUDAVEI 

(Healthy) 

1282  640  642  240  120  120 

 

 

 

Figure 3. Process of Gathering IDs and Division into Train‐Test Sets in DMR‐IR database. 

3.2. Data Pre‐Processing 

The  pre‐processing  steps  involved  several  stages  to  prepare  the  images  for  analysis  and 

interpretability.  Initially,  the  heat  gradient  files were  converted  into  an  image  format  to  ensure 

consistency and compatibility with standard image processing techniques. Next, experts manually 

segmented  the  full  thermogram  images  into  the  chest  region,  a  step  included with  the  dataset. 

Subsequently, previously segmented grayscale images were cropped to eliminate extraneous regions 

along each axis. Before feature extraction, the grayscale version of the input image was resized to a 

standardized dimension of 240×240 pixels to ensure uniformity. Post‐feature extraction, an optional 

normalization,  and  a  rounding  step  are  included,  where  the  features  are  scaled  based  on  a 

precomputed scaler from a training dataset. Finally, the selected features were fed into downstream 

machine learning models for classification. 

3.3. Feature Extraction 

The feature extraction process is a crucial step in our methodology, enabling the transformation 

of raw image data into a structured format suitable for machine learning models. We utilize a range 

of algorithms, namely Histogram of Oriented Gradients (HOG) [46], Local Binary Pattern (LBP) [47], 

Gabor  Filters  [48],  and  Canny  edge  detection  [49].  This  diversified  strategy  aims  to  capture  a 

comprehensive set of features, taking advantage of each algorithmʹs unique characteristics [35]. Local 

Binary Pattern (LBP) encodes the local structure of an image by comparing the intensity of each pixel 

with  its  neighboring  pixels,  providing  a  robust  representation  of  texture  patterns. Gabor  Filters 

analyzes an imageʹs spatial features by capturing the occurrences of pixel patterns with particular 

intensity values at specific orientations and scales, providing valuable information about the imageʹs 

texture and structure. Histogram of Oriented Gradients (HOG) divides an image into small regions, 

computes the gradient and orientation information for each pixel, and then creates a histogram of 

gradient orientations, capturing the underlying structure of objects. Canny Edge Detection employs 

a multi‐stage  algorithm  involving  gradient  computation,  non‐maximum  suppression,  and  edge 

tracking with hysteresis to accurately identify and trace edges in an image.   
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Figure 4. Sample Feature Extract Image and their distributions (a) original cropped image: Top Left 

healthy sample and Bottom Left sick sample ; (b) LBP; (c) Canny Edges; (d) HOG and (e) Gabor Filter. 

Itʹs important to note that the parameters associated with each algorithm are not fixed but are 

subject to optimization. This flexible approach recognizes the complexity of the dataset, allowing for 

the fine‐tuning of parameters to enhance the performance of the feature extraction process.   

Depending on the extractor, the feature vectors are subsequently extracted by dividing all values 

into N histogram bins, translating each image in the dataset to a feature vector of N length, a feature 

length of 128 is constructed where each feature is a bin of values representing the frequency or count 

of a specific pattern  in  the  image. Figure 4 offers sample extractions  from each method and  their 

captured data distribution, visually depicting their differences.   

The most notable aspect in these samples is that each extractor converted the images into unique 

sets of feature distributions as well, where the distinctive patterns of classification became varied. 

This variety was intentional to determine whether the features would align visually when different 

extractors undergo optimization through metaheuristic algorithms. 

3.4. The Proposed Metaheuristic‐ Based Feature and Hyperparameter Optimization   

The metaheuristic algorithms used in our study consist of Spider‐Monkey optimization [50] and 

Particle Swarm [51]. Spider‐monkey Optimization (SMO) is a nature‐inspired algorithm that draws 

inspiration from the cooperative foraging behavior of spider monkeys. SMO leverages the concepts 

of exploration and exploitation  to search  for optimal solutions  in a solution space. The algorithm 

involves the establishment of a population of potential solutions, and through successive iterations, 

it refines and evolves these solutions based on the fitness of each candidate. In its binary version, a 
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boolean  operator  is  used  to  accomplish  this  task  of  transferring  continuous  solutions  in  each 

dimension, which  forces  the monkey  to discretize  their movement,  representing  the presence or 

absence of a certain feature or decision. The Binary SMO (BSMO) was proposed by Singh et al. [52]. 

Particle Swarm Optimization (PSO) is a population‐based optimization algorithm that simulates 

the social behavior of birds or fish. Individuals in the population, referred to as particles, traverse the 

search space, adjusting their positions based on personal experience and the best positions found by 

their peers. PSO is particularly effective for continuous optimization problems, where variables can 

take any real value. This algorithm was adapted  to work  in  the binary search space using Binary 

(BPSO)  [53]. The  algorithm  is  known  for  its  simplicity  and  ability  to  explore  the  solution  space 

efficiently. 

To find a diverse set of optimal solutions for multi‐objective problems, our research employs 

hybrid versions of these algorithms, integrating both their continuous and binary variables within 

each algorithm. This hybrid approach allows for a more flexible and adaptable optimization process, 

addressing the problem of feature selection as well as extractor parameter optimization that involves 

a mix of discrete and continuous decision variables. Incorporating both variable types enhances the 

algorithmsʹ  capability  to handle  a  broader  range  of  optimization  challenges, making  them more 

robust and effective in diverse problem domains. 

The HPSO and HSMO codes are depicted in Algorithm 1 and Algorithm 2, respectively.   

The values of parameters for the considered algorithms are as follows: 

‐ HPSO and BPSO parameters setting: Inertia Weight (w)=0.5, c1 = 2.0, c2 = 2.0, Population = 10.  

‐ HSMO and BSMO parameters setting: – Population = 10, maximum groups (MG) =2, Global 

Leader Limit = 20, Local Leader Limit = 20,   

 
In the proposed HSMO algorithm, change_threshold value is modified to dynamically updated 

at each iteration, the change threshold increment is set to 0.13 and the change threshold initialized to 

0.1 and  incrementing dynamically using  this Equation. The value of  change_thresh  is  typically a 
value between 0 and 1. 

cℎ𝑎𝑛𝑔𝑒_𝑡ℎ𝑟𝑒𝑠ℎ ൅ൌ
𝑐ℎ𝑎𝑛𝑔𝑒_𝑡ℎ𝑟𝑒𝑠ℎ_ 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 

 

 Algorithm 1 : HPSO 

1. Initialize: 

   - Initialize the particle positions and velocities. 

   - Set parameters like inertia weight (w), cognitive parameter (c1), social parameter (c2), and number of particles (n_particles). 

   - Randomly generate initial positions and velocities for particles. 

   - Create a DataFrame to store particle information:ID of particle, objective function value, global best position (g_best) and 

parameters (analogic and continous). 

   - Calculate initial objective function values for particles. 

   - Set the best positions for each particle and global best position. 

2. Iterative Optimization: 

   - For a specified number of iterations or until a iteration is met: 

     a. Update Velocities: 

        - Calculate new velocities for each particle using the formula: 

          v(t+1) = w * v(t) + c1 * r1 * (p_best - p(t)) + c2 * r2 * (g_best - p(t)) 

        - r1 and r2 are random values, p_best is the best position of the particle, and g_best is the global best position. 

     b. Update Positions: 
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        - Update the positions of particles using the new velocities. 

        - For continuous parameters, add the velocity to the position. 

        - For binary parameters, use a sigmoid function to determine whether to flip the bit based on the velocity. 

     c. Evaluate Objective Function: 

        - Calculate the objective function values for the updated positions of the particles. 

        - Update the DataFrame with the new positions and objective function values. 

        - Update the best positions for each particle if the new position is better. 

     d. Update Global Best: 

        - Determine if any particle's current position is better than the global best position. 

        - Update the global best position if necessary. 

3. Final Output: 

   - Return the best solution found and its corresponding objective function value. 

 
Algorithm : HSMO 

1. Initialize: 

   - Set parameters like population, parameters (analogic and continous), groups, max_groups, change_threshold, 

acc_err_delta_threshold, global_lim_thresh, local_lim_thresh, target_value, debug_mode, change_thresh_increment 

   - Initialize spider monkeys' positions and IDs 

   - Initialize DataFrame to store positions, fitness, probabilities, etc. 

   - Calculate initial objective function values and fitness values 

   - Assign initial probabilities 

   - Create initial groups 

   - Identify local leaders and global leader 

2. Iterative Optimization: 

   - For each iteration: 

     a. Local Leader Phase: 

        - Randomly select spider monkeys based on change_threshold 

        - Randomly select group members for value update 

        - Update positions using local leader and selected group members 

        - Update fitness values 

        - Swap positions if fitness improves 

     b. Global Leader Phase: 

        - Identify the global leader 

        - For each group, update positions using global leader and selected group members 

        - Update fitness values 

        - Swap positions if fitness improves 

     c. Local Decision Phase: 

        - Check if local leader performance improves 

        - Increment limit count if no improvement 

        - Reset group if limit count exceeds threshold 

     d. Global Decision Phase: 
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        - Check if global leader performance improves 

        - Increment global limit count if no improvement 

        - Increase number of groups or reset groups if limit count exceeds threshold 

     e. Update change_threshold 

  3. Final Output: 

   - Return the best solution found and its corresponding objective function value 

3.5. XAI Models through Metaheuristic Optimization 

The XAI model under consideration hinges on the interpretation of features that have undergone 

a metaheuristic‐based optimization process. This optimization ensures that the selected features are 

not  only  relevant  but  also  contribute  significantly  to  the modelʹs  overall  performance.  Feature 

interpretation within our framework is a two‐pronged approach aimed at enhancing both robustness 

and  interpretability.  First,  we  utilize  Shapley  additive  explanations  (SHAP)  to  quantify  the 

importance of individual features. This provides a metric for assessing the robustness of the selected 

features in influencing model outcomes. Second, we implement a visual interpretation strategy by 

mapping the selected features back onto the original images. This visual mapping facilitates a more 

intuitive  understanding  of  the  role  played  by  specific  features  in  the modelʹs  decision‐making 

process. By juxtaposing selected features against their corresponding images, this method provides 

a tangible link between abstract mathematical representations and real‐world visual elements. The 

combination  of  these  two  approaches  –  quantitative  assessment  through  SHAP  and  qualitative 

understanding through visual mapping – not only fortifies the robustness of the XAI model but also 

introduces  a  layer  of  interpretability. Observing  and  comprehending  the  features  that  underpin 

model  decisions  is  paramount  for  building  trust  and  facilitating  informed  decision‐making  in 

applications, especially ones related to diagnostic systems such as breast cancer detection for which 

this study is undertaken. 

The Figures below illustrate the feature interpretation process. Figure 5.b shows the canny edge 

and    LBP  extraction  for given  sample  images.  figure  5.c portrays  the  same  features post  feature 

selection,  effectively  mapped  back  for  interpretation.  This  juxtaposition  allows  for  a  direct 

comparison, showcasing the impact of the feature selection process on the extracted features. It serves 

as  a  visual  narrative  of  how  the model  prioritizes  and  refines  features,  shedding  light  on  the 

interpretability of the chosen features. 
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Figure 5. (a) original cropped image ; (b) Feature Extract Image: Top using Canny Edges, Middle LBP 

extractor and Bottom using HOG;    (c): Selected Features mapped back to Extracted Features. 

Figure 6 and    Figure 7 show the quantifiable aspects of feature in the image data. The upper 

part of Figure 6 presents a chart depicting the extracted features. Complementing this, the lower part 

of  the  figure  exhibits  the  feature  graph  of  the  selected  features  after  the  metaheuristic‐based 

optimization process. This clear differentiation between the extracted and selected features allows for 

a look into the modelʹs preference for certain features over others. Within both figures, the blue bars 

represent features of the sample healthy image, while red bars are for a different sample image of 

sick category. 

 

 

Figure 6. Example feature selection; Top: Extracted Features using LBP extractor; Bottom: Selected 

Features using HSMO. 

The  integration of    SHAP values  into  the optimization process  allows  for  a more  informed 

selection of features based on the importance of individual features as determined for distinguishing 

between classes. Figure 7 is an example of a Feature Impact Visualization, using a SHAP dependency 

plot. 

 

 

Figure 7. Example of explaining prediction using SHAP plot: The  left  side after applying HSMO 

optimization;  the right side without optimization, both using a HOG  feature extractor. The X‐axis 

represents the value of Feature 4, and the Y‐axis shows its SHAP value, indicating its contribution to 

the modelʹs prediction. The color gradient represents secondary features (Feature 27 in the left plot 

and Feature 54 in the right plot), showing their interaction with Feature 4. The optimized model (left) 

displays a clearer and more structured relationship between features. 

4. Experimental Setup   
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The  experimental  setup  consists  of multiple  parts  each with  respective  configurations  and 

settings.  Data  loading,  dataset  split  approaches  and  feature  extractors  have  previously  been 

discussed in earlier sections. The extracted features are then fed into an optimization pipeline; which 

consists of feature selection, feature classification through machine learning using SVM polynomial 

kernel and objective function for optimization purpose . 

 
Figure 8. Optimization Process Flow 

For each experiment, the optimization algorithms consist of the HSMO, HPSO, BPSO and BSMO. 

This section includes discussion and details of each of the remaining experiment components. The 

process  illustrated  in  Figure  8  includes  the  remaining  experimental  setup  block  of  the  XAI 

framework. This framework takes parameters from each stage as indicated in order to provide the 

two‐pronged interpretability functions. The classification stage XAI inputs correspond to utilization 

of SHAP to calculate feature importance, while the feature selection and extraction stage XAI inputs 

correspond to backwards mapped selection of features to make the decision more interpretable. The 

optimization flow pipeline indicates one iteration of the complete process. In effect, as metaheuristic 

algorithms are designed, the optimization process of both continuous and binary variables is carried 

out  in multiple  iterations  so  that  the process  improves  iteratively  (see Figure  9). Visualizing  the 

process itself over each stage can be thought of as modifying values of all optimization variables over 

the iterations.   
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Figure 9. Optimized Feature Selection and Hyperparameter process 

The  following  Table  2  describes  the  parameters  where  boolean  variables  switch  between 

True/False states and continuous variables get adjusted over their ranges. 

Table 2. Details about method used in different stages with arguments and hyperparameters range. 

CAD Steps  Methods  Feature Variables 
Vaiables/ or 

constraints   

Feature 

Extraction 

 

LBP   

 

 

Radius  8; [2,24]:2 

Points  60; [100,550]:10 

HOG 

 

Orientations  9, [9,18]:1 

Pixels per cell  8, [2,16]:1 

Cells per block  4, [2,5]:1 

Gabor Filter 

 

K‐size: Size of the Gabor kernel. 

Larger values capture more spatial 

frequencies but also increase 

computational complexity 

80; [20, 190] :20 

 

Sigma: Standard deviation of the 

Gaussian envelope. It controls the 

spread of the filter. 

2.5, [0.10, 7]:0.10 

Theta: Orientation of the normal to 

the parallel stripes of a Gabor 

function. It determines the 

orientation of the features to be 

detected. 

40, [0.1, 46]:2 

 

lamda: Wavelength of the 

sinusoidal factor. It affects the 

frequency of the feature to be 

detected 

1.6; [0.2, 8]:0.5 

 

Gamma: Spatial aspect ratio. It 

controls the ellipticity of the filter 

90, [8, 250]:0.5 

 

Canny Edge 

 

Aperture size: the size of the Sobel 

kernel used for gradient 

computation 

4; [7,80]:1 

Aperture transition: represents the 
transition range for adjusting the 

lower threshold during edge 

detection 

2;[2,10]:2 

Aperture transition steps: This 
parameter specifies the number of 

steps or iterations used for 

adjusting the aperture transition 

range. It determines the granularity 

of the optimization process for the 

aperture transition 

60;[10,120]:1 

Feature   

Selection 

The number of 

selected features 

by optimizer 
128 Binary variables   

True for included / 

False for not‐included 

feature 
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C: Regularization parameter. 

Controls the trade‐off between 

training error and margin. 

100; [10,7500]:10 

 Coef0: Independent term in the 

kernel function 
4; [1e‐06, 4]:0.5 

Tolerance: determines the 

convergence criterion for the model 

training 

 

1e‐6; [1e‐6, 4e‐2]: 9e‐4 

 

Degree: represents the degree of the 

polynomial function used in the 

kernel 

3; [2, 10]:1 

* The format of range is : Defalut Value; [min Value, max Value]: step size. 

Following the extraction of features, they undergo a feature selection stage where each feature 

is treated as a boolean variable. Depending on whether the value is True or False, the corresponding 

feature  is  either  retained or discarded. These boolean variables are  collectively optimized by  the 

optimization algorithms as well. The retained features are then used for training of classifiers and 

subsequent testing based on dataset splits. The resulting accuracy and other metrics such as F1 score, 

precision,  recall  are  then  fed  into  an  objective  function,  that  includes  the  number  of  selected 

parameters into computing a final resulting metric that is used by optimizers. 

The objective function is designed to equally prioritize both high accuracy and a lower number 

of selected features through the use of the geometric mean, detailed as follows: 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑆𝑐𝑜𝑟𝑒 ൌ 1 െ √𝐴𝑐𝑐 ൈ √𝐹𝐿  (1)

𝐹𝐿 ൌ 1 െ
𝑆𝐹
𝑇𝐹

 

In this formulation, the fitness score represents the assessment of a specific solution set offered 

by  the proposed optimization algorithm. The multi‐objective  function  in Equation  (1) denotes  the 

geometric mean  𝐺𝑀   of  two  components:  accuracy  𝐴𝑐𝑐   and  feature  loss  𝐹𝐿   .  𝐹𝐿   quantifies  the 
proportion of features that are not retained for the classification task. It is calculated by subtracting 1 

from the ratio of the number of selected features  𝑆𝐹  to the total number of features  𝑇𝐹. To align with 

the convention in optimization problems, where the objective is typically aimed towards zero, the 

fitness score is subtracted from 1. This approach yields a better potential solution in our optimization 

problem, achieving a desirable trade‐off between accuracy and feature selection simultaneously. 

5. Results and Discussion 

The presentation of our  research  findings  is  structured  into  two distinct parts, both offering 

valuable  insights  into  the  performance  and  characteristics  of  the  applied  methodologies  and 

conducted experiments. In the first segment, we explore the effectiveness of metaheuristic algorithms 

with a novel hybrid approach HSMO, HPSO coupled with the feature extraction methods. The aim 

was  to  evaluate  the  consistency  of  results  across  diverse  optimization  strategies.  Multiple 

experiments were tested on the DMR‐IR dataset. The positive class represents instances of sick breasts 

(red color). Therefore, to optimize the balance between computational resources and the desired level 

of performance,  it was deemed sufficient  to  limit  the optimization process  to 60  iterations, as  the 

incremental benefits beyond this point were deemed negligible. The experiment was conducted using 

Google Colab, powered by a Tesla4 GPU accelerator. 

Figure 10 shows a chart indicating the resulting reduction in samples, as well as what the 

reduction translates to in terms of visual interpretation of the LBP, HOG, Gabor, and edge 
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features. It can be seen that the histogram of feature importance distribution using HSMO 

and HPSO show similar shapes. in the case of HOG extractor , the feature counts ranging 

between 0 and 0.27. The highest peaks occur within bins 13 to 25 for both healthy and sick 

instances. For HSMO, the majority of counts fall within the lower end of this range, 

indicating that HSMO tends to favor a sparse selection of features by focusing on those that 

significantly contribute to the model's prediction. The HSMO optimizer demonstrates a more 

defined feature density distribution, due to its inherent properties to balance exploration and 

exploitation. On the other hand, HPSO demonstrates a more active exploration approach.The 

presence of higher counts beyond the primary peak range reflects HPSO’s tendency toward 

broader exploration, driven by its selection pressure mechanisms.  
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Figure 10. Resulting of Feature Histograms and Optimized Feature Mapping for LBP, HOG, Edge 

Extractors and Gabor. 

The  aggregated  results  across  60  optimizer  runs  for  each  extractor,  as  illustrate  in  Table  3, 

indicate that HSMO achieves leading performance in accuracy while maintaining a similar reduction 

in  features compared  to HPSO. Notably,  the HSMO based HOG achieved a maximum geometric 

mean of 85.40%, an accuracy of 98.27% and F1‐  score of 98.15%, with only 25.78% of  features.  In 

comparison, HPSO achieved a slightly lower    accuracy of 95.02% and F1‐score of 94.71%. 

Although HPSO provides a balanced outcome, but tends to a more aggressive feature reduction 

and still achieves competitive accuracy, for example, 95.89% for LBP with only 23.44% of features. 

The lower accuracy observed with BPSO and BSMO compared to the proposed hybrid approach 

HPSO and HSMO stems from the fact that these methods are restricted to their fixed search space 

and limited dynamic capability, which results in suboptimal solutions, limited exploration and an 

inability to handle continuous variables effectively. For instance, the best accuracy ahieved for LBP‐

BSMO  is  93.94% with  a  higher  feature  retention  of  28.91%.  This  result  underscores  that  binary 

optimization  methods  lacks  the  flexibility  needed  to  adapt  continuously  and  refine  solutions 

effectively. 
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Table 3. Results of optimization process using diverse feature extraction methods. 

Feature 

Extractor 

 

Optimizer 

aproach 

Hyperparameter tuning 
Remaining 

Features 

(%) 

 

Accuracy 

(%) 

F1‐Score 

(%) 
Geometric Mean 

C  degree 

 

Coef0 

 

Tolerance 

 

Feature parameter   

LBP 

BSMO  Default parameter  28.91  93.94 93.33  0.8172022148770768 

BPSO  Default parameter  24.22  92.42 91.65  0.836874399178275 

HSMO  4050.0  4.0  3.0  0.012 
Radius: 14.0 

Point: 240.0 
26.56  97.62  97.49  0.7169212799999999 

HPSO  3880.0  7.0  3.0 

 

0.002 

 

Radius: 14.0 

Point: 330.0 
23.44  95.89  95.67  0.73413384 

Gabor 

Filters 

BSMO  Default parameter  35.16  64.94  64.63  0.6488998073662836 

BPSO  Default parameter  32.81  63.64  0.63  0.6539091374189535 

 

HSMO 
1820.0  6.0  1.4 

 

0.0004 

 

size: 180.0 

sigma: 6.9 

theta: 2.0 

lamda: 8.0 

gamma: 249.0 

39.06 
 

85.5 
83.78  0.7218289271011518 

HPSO  7110.0  6.0  1.5 

 

0.011 

 

size: 40.0 

sigma: 5.2 

theta: 2.0     

lamda: 4.5 

gamma: 348.5 

 

33.59  83.33  81.97  0.7439049199998613 

 

 

 HOG 

BSMO  Default parameter  31.25  93.29  92.91  0.8008550118467137 

BPSO 

 
Default parameter  32.81  91.34  90.99  0.7833986596873905 

HSMO 

 
410.0  5.0  2.0  0.022 

Orientations: 12.0 

Pixels per cell: 2.0   

Cells per block: 3.0   

25.78  98.27  98.15  0.8540257256078414 

HPSO 

 
730.0  13.0  1.5  0.033 

Orientations: 14.0 

Pixels per cell: 3.0 

Cells per block: 5.0 

25.78  95.02  94.71  0.8397847581374646 

  BSMO  Default parameter  32.03  88.31 88.31  0.7747535543642249 
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Canny 

Edge 

BPSO 

 
Default parameter  39.06  89.39 89.28  0.7380668397916275 

 

HSMO 

 

2380.0  6.0  1.5  0.009 

Aperture size: 37.0     

Aperture 

transition: 2.0     

Aperture transition 

steps:10.0 

37.5 

 

91.99  

 

91.04  0.7582463320056353 

HPSO  1770.0  4.0  4.5  0.006 

Aperture size:16.0 

Aperture 

transition: 4.0     

Aperture 

  transition steps: 

12.0 

32.03  85.71  83.33  0.7632633031922863 
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Additionally, in order to include another layer of explainability at this stage, SHAP was used to 

analyze distribution of feature importance of selected features across the dataset. This step allowed 

to assess whether the use of metaheuristic algorithms had an impact on importance distribution of 

selected features. Figure 11 indicates the respective feature importance charts of LBP features using 

BSMO, BPSO, HSMO and HPSO optimizer . 

 

 

 

Figure 11. Top: without Optimization; left Full features; middle BSMO and right BPSO ; Bottom: with 

Optimization; left Full features; middle HSMO and right HPSO features. 

A  visible  difference  can  be  seen,  where  the  distribution  of  remaining  features  in  each 

metaheuristic  algorithm  tends  to move  towards  greater  importance  scores. Most notable  change 

occurs for HSMO and HPSO optimizes. These results also re‐establish the fact that importance scores 

alone can’t be used as a metric for feature selection, as evident from the above figure in which almost 

none of the most important deemed features of full feature set were selected during optimization by 

all the optimization algorithms. Though the distribution of importance scores still holds an effective 

role to assess how well the selection process performed for each algorithm comparatively.   

Moving  on  to  the  second  part  of  our  results, we  focused  on  the  application  of  the  leading 

optimization  algorithm,  HSMO,  with  various  feature  extractors.  As  the  features  still  remain 

numerous even after being optimized, in order to gain this insight, SHAP was once again used to 

distinctly map  the per  instance ranked distribution of  impact score  from each  top  feature of each 

extractor as indicated in Figure 12 for Edge Filters, Gabor Filters, HOG, and LBP respectively. The 

feature importance illustrations are presented in the form of heatmaps, with their placement being 

controlled through SHAP in a logical way in order to highlight any arising patterns. The bars on the 

right of each heatmap indicate the individual impact of the listed feature in classification as a whole. 

Since  the  feature distribution becomes unique  for each  extractor,  therefore  in order  to assess  the 

impact  of  optimization,  each  of  the  heatmaps  is  shown  in  pairs where  right  heatmap  indicates 

heatmap of all features and left indicates the heatmap of optimized features.   
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Figure 12. Feature Heatmap using HSMO optimizer: a) Canny Edge Detector, b) Gabor Filters, c) LBP; 

d) HOG – Full and Optimized Feature Heatmaps in Right and Left respectively. 

As  can  be  seen  in  Figure  12‐a,  the most  distinctive  features were  extracted  through  edge 

detection. Optimization of these extracted features resulted in selection of key features, which can be 

seen from the top few optimized features being almost as important as all the low ranked features.   
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Gabor Filters fared the worst out of these, perhaps due to limited search space (Figure 12‐b), as 

their ability to gauge textures requires a much larger explorative search. Another reason can be that 

the extractor is being applied on thermal gradient rather than images themselves. The full feature set 

heatmap  indicates  the  scattered  impact  across  features  with  no  specific  descriptors  arising. 

Optimization of these features improves the situation nonetheless by shedding features that might 

have been serving as noise to features that held valuable information and impact.   

In Figures 12‐c and 12‐d,  the HOG and LBP extractors enable  the model  to capture  the most 

significant  features,  leading  to  clear  and  decisive  predictions.  The  structure  of  their  full  feature 

heatmaps reflects this, particularly in the confidence function at the top of the heatmaps, which show 

a transitions from instances classified as healthy to those classified as sick in a much more defined 

way. The transition is especially sharp in the HOG heatmap, where the most distinctive features were 

extracted, which allowed for evident increase in accuracy. The optimization process further refined 

these  features, selecting key ones  that contribute significantly  to  the model’s performance. This  is 

evident as the top optimized features hold nearly as much importance as all the low‐ranked features 

combined. As a result, the model’s confidence transition becomes steeper as it crosses the boundary 

where  instance change class,  indicating a well‐learned, generalizable pattern. This consistent and 

precise decision boundary is crucial in a CAD system, as it enhances the trust medical professionals 

place in the system’s outputs, ultimately improving the system’s reliability in clinical settings. 

6. Conclusion 

In  conclusion,  this  research has  resulted  in  insights  into  the  synergy between metaheuristic 

algorithms  and  eXplainable Artificial  Intelligence  (XAI)  for  addressing multiobjective  problems 

involving both continuous and boolean variables. The key findings and their implications underscore 

the  importance  of  thoughtful  algorithm  selection,  feature  extraction,  and  interpretability, while 

maintaining transparency in use of metaheuristics. 

The metaheuristic  algorithm  comparison  revealed  that  the proposed Hybrid Particle Swarm 

Optimization  (HPSO),  and  the  proposed Hybrid  Spider‐Monkey Optimization  (HSMO), HSMO 

consistently  outperformed  others  in  diverse  problem  scenarios.  This  superiority  was  further 

validated through XAI, particularly by employing SHAP to analyze feature importance distributions. 

Notably, optimizing through metaheuristics surpassed the direct use of SHAP‐importance values, 

emphasizing the relationship between optimization and interpretability. 

The impact of feature extractors (Local Binary Pattern, Histogram of Oriented Gradients, Edge 

Filters, Gabor  Filters) was  investigated, with Gabor  Filters  performing  the  least  favorably, Edge 

Filters  offering  distinctive  features,  and  LBP/HOG  providing  comprehensive  sets  of  features. 

Corroborated  by  SHAP  analysis,  manifested  through  importance  heatmaps,  substantiating  the 

significance of feature selection and extraction. 

Furthermore,  the  study  reinforces  the  contribution of  feature  extraction and optimization  in 

tandem with metaheuristics, consistently improving model performance. These collective findings 

underscore  the  important  ties  between  algorithmic  choices,  interpretability,  and  feature 

representation in addressing complex problems. 

In  terms of contributions  to  the  field of Explainable AI,  this research not only showcases  the 

efficacy  of HSMO  but  also  emphasizes  the  integration  of  XAI methodologies,  enhancing  result 

interpretability,  alongside  of  metaheuristics.  These  contributions  extend  beyond  algorithmic 

performance alone, enriching the understanding of model decisions and facilitating broader adoption 

in practical applications. 

For future work, this study can be expanded to multiple datasets beyond breast cancer detection 

to ensure the robustness of the proposed approach. Additionally, incorporating domain experts in 

the  interpretability  loop analysis can  result  invaluable  insights  to  the decision making process of 

experts and learning acquired by ML models. Exploring additional extractors or their combinations, 

collectively optimized, also holds promise for further enhancing the proposed frameworkʹs efficacy. 

In  summary,  this  research  not  only  advances  understanding  of  the  relationship  between 

metaheuristic  algorithms  and  XAI  but  also  lays  a  foundation  for  continued  exploration  in  the 
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collective domains Explainable AI, metaheuristics, and medical image analysis. The insights garnered 

contribute to the ongoing efforts to make computational models and metaheuristic algorithms more 

transparent, interpretable, and applicable in real‐world contexts. 
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