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Abstract: Advances in early detection of Breast cancer and treatment improvements have significantly
increased survival rates. Traditional screening methods, including mammography, MRI, ultrasound, and
biopsies, while effective, often come with high costs and risks. Recently, thermal imaging has gained attention
due to its minimal risks compared to mammography, although it is not widely adopted as a primary detection
tool since it depends on identifying skin temperature changes and lesions. The advent of machine learning
(ML) and deep learning (DL) has enhanced the effectiveness of breast cancer detection and diagnosis using this
technology. In this study a novel methodology for developing an interpretable computer-aided diagnosis
(CAD) system for breast cancer detection, leveraging explainable Artificial Intelligence (XAI) throughout its
various phases. To achieve these goals, we proposed a new multi-objective optimization approach named
Hybrid Particle Swarm Optimization algorithm (HPSO) and Hybrid spider Monkey Optimization algorithm
(HSMO). These algorithms simultaneously combine the continuous and binary representations of PSO and
SMO to effectively manage trade-offs between Accuracy, feature selection and hyperparameter tuning. We
evaluate several CAD models and investigate the impact of handcrafted methods such as Local Binary Patterns
(LBP), Histogram of Oriented Gradients (HOG), Gabor filters, and edge detection. We further shedding light
on the effect of feature selection and optimization on feature attribution and model decision-making processes
using the SHapley Additive exPlanations (SHAP) framework, with a particular emphasis on cancer
classification using the DMR-IR dataset. The results of our experiments demonstrate in all trials that the
performance of the model is improved. Also with HSMO our models achieved a high accuracy accuracy of
98.27% and F1- score of 98.15% while selecting only 25.78% of the HOG-features. This approach not only boosts
the performance of CAD models but also ensures comprehensive interpretability. This method emerges as a
promising and transparent tool for early breast cancer diagnosis.

Keywords: breast cancer detection; thermography; XAI; HPSO; HSMO; Feature extraction; feature
attribution; multi-objective optimization; continuous; binary; feature selection; hyperparameter
tuning

1. Introduction

Breast cancer is a profoundly distressing disease. Screening programs for early breast disease
detection significantly contribute to the reduction of the mortality rate among women. These
programs save lives by detecting conditions at their initial stages when treatment is more effective
and less costly. Medical imaging modalities are employed for breast cancer diagnosis, as well as the
differentiation of malignant from benign breast tumors, including, Mammography, Magnetic
Resonance Imaging (MRI), Ultrasound, Computed Tomography (CT), Positron Emission
Tomography PET, and thermography. Mammography, while widely used, presents specific
limitations. These include challenges in visualizing smaller tumors [1], inadvisability for use in
younger women and those with dense breast tissues [Error! Reference source not found.],
considerable cost and time requirements [3], and physical discomfort due to breast compression.
Moreover, concerns about the potential carcinogenic effects of cumulative ionizing radiation
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exposure have been raised [Error! Reference source not found.]. The high incidence of false-positive
results further contributes to patient anxiety and unnecessary procedures [Error! Reference source
not found.]. In this context, Infrared Thermography has emerged as a promising and robust screening
tool for early cancer detection [6—Error! Reference source not found.]. Thermography offers distinct
advantages, being painless, non-invasive, non-contact, and cost-effective [Error! Reference source
not found.]. Notably, it is particularly well-suited for screening younger women, patients with dense
breast tissue, and pregnant or nursing women, as it does not involve ionizing radiation exposure
[Error! Reference source not found.].

In health systems, breast cancer diagnostics have benefited from Computer-Aided Diagnosis
(CAD) systems, streamlining the analysis process and minimizing errors. These systems typically
consist of several steps, from image preprocessing to classification, where feature extraction and
selection play vital roles. Extracting pertinent features is essential for capturing subtle patterns
indicative of early-stage breast cancer, whether through meticulously crafted methods or advanced
deep learning approaches [11]. However, the current narrative predominantly emphasizes the
accuracy and automation aspects of these systems, often achieved by training models on extensive
datasets to recognize patterns in medical data. Yet, amid these advancements, there exists a notable
gap in the discourse — the lack of attention to model interpretability [12]. In this paper, we proposed
an interpretable computer-aided diagnosis (CAD), while delving into the relationship between
pattern recognition and machine learning. Understanding this connection is paramount in
addressing the complexity of medical data. Pattern recognition, within its broader domain, is
fundamentally concerned with identifying regularities or inherent patterns within datasets, this field
embraces a wide array of techniques and methods designed to identify patterns across various data
types, spanning images, signals, and sequences. The attainment of pattern recognition can be realized
through two primary approaches: manual and automated. Manual pattern recognition often relies
on human expertise and heuristic approaches [13], depending on the nuanced judgment of experts
to identify patterns, while automated pattern recognition employs computational methods to
autonomously detect and outline patterns embedded within the data [14]. Machine learning, a subset
of artificial intelligence, is exclusively dedicated to developing algorithms and statistical models that
empower computers to learn from data and subsequently make predictions or decisions,
encompassing a vast spectrum of techniques, including supervised learning, unsupervised learning,
reinforcement learning, and hybrid methodologies.

On the other hand, Healthcare professionals need to understand how Al systems arrive at their
recommendations or decisions, especially when these decisions can have significant real-world
impacts. In the context of synergy between pattern recognition and machine learning, Explainable
Artificial Intelligence AI (XAI) can be used to understand the rules that are generated, giving insight
into the expertise of the medical domain. The evolution and role of XAI in the medical decision-
making process have significantly shaped the healthcare industry, offering transparency, trust, and
enhanced clinical support (Figure 1) [15,16].
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Figure 1. The Evolution and Role of XAl in Decision-Making by stakeholders.
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The insights gained by leveraging the integration of machine learning, pattern recognition, and
XAI hold significant potential in the domain of medical image analysis for breast cancer detection
[17]; each of these fields consists of several processes. One approach that enhances this integration is
the use of metaheuristics, which employ techniques inspired by nature to perform abstract
optimization [18]. Although a limited number of studies have explored breast cancer thermogram
diagnosis using optimization algorithms, the review article [19] presents an overview of
advancements in this field. However, many papers often fall short in providing explanations for their
outcomes [20].

The authors of this paper are also aware of the ongoing debate surrounding metaheuristic-based
optimization [21,22]. In order to address some of those concerns while employing these algorithms,
our work stands as a significant contribution to this research area :

1) Our primary goals encompass the comprehensive solution to the challenges of achieving
dynamic optimization problems. The development of Hybrid PSO (HPSO) and Hybrid SMO
(HSMO) methodologies for tackling continuous variable optimization and discrete problems.
The proposed approaches allow the optimization algorithm to ensure effective solutions in a
varied search space.

2) Harnessing the power of multi-objective optimization techniques [23], the proposed optimizers
aim to provide a deeper understanding of model behavior across varying problem formulations.
We used The multi-objective ML approaches to strive to optimize multiple aspects of model
performance simultaneously. These include hyperparameter optimization, prediction
performance, sparseness, and interpretability.

3) Through our research, an automated aspects on finding textures and features through machine
learning based optimization functions that best represent breast cancer classification patterns, by
producing handcrafted features from breast thermograms images using different methods, such
as LBP, HOG, Gabor and canny edge and SVM for classification are employed.

4) Using visual explanation techniques that generate interpretable graphical representations
enables healthcare practitioners to intuitively grasp the rationale behind each classification,
making complex patterns associated with breast thermograms more comprehensible.

5) Our HSMO and HPSO optimizer incorporate SHapley Additive exPlanations (SHAP)
framework into the evaluation process; the method ensures that the importance of different
features is considered. This adds another layer of complexity and variation to the solutions being
explored.

6) The other goal of this paper is to evaluate the convergence behaviors of distinct metaheuristic
algorithms (HPSO, HSMO, Binary Particle Swarm Optimization algorithm (BPSO), and Binary
spider Monkey Optimization algorithm (BSMO). to identify similarities and differences in their
solutions and secondly, to ensure consistent results upon repeated runs.

The organization of the paper is as follows: Section 2 presents related work. The detailed
methodology in Section 3. Section 4 will outline the experimental setup. Section 5 will present the
results and related discussions. Finally, Section 6 includes the research conclusion.

2. Related work

2.2. XAl for Medical Image

machine learning models and deep neural networks are often characterized as "black box"
models due to their high complexity, resulting in a lack of readily available explanations for their
predictions. While these models excel in accuracy, understanding the rationale behind a specific
prediction can be a formidable challenge. The inherent non-human-interpretable nature of Al models
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has led to limited work aimed at developing models that can effectively elucidate their decision-
making processes and actions, as exemplified by the contributions of Kallianos et al [24-28]. There
is a growing need for XAl in domains like healthcare, where simply relying on Al for pattern
recognition is insufficient. The ability to provide explanations for the decisions made by these models
becomes paramount in ensuring that experts within these domains can derive meaningful insights
from Al outputs. This ensures transparency and trustworthiness in Al-assisted medical diagnoses,
which is essential for gaining acceptance and facilitating collaboration between Al systems and
medical professionals [29,30]. Several tools have been developed to enhance the interpretability and
explainability of black-box machine learning (ML) models, particularly through visual explanations.
Brunese et al. [31] offer explanations for deep learning model predictions for Coronavirus disease
(COVID-19) detection, employing Class Activation Maps (CAM). Koyyada and Singh [32] extend this
approach by using Gradient CAM (GradCAM). Barata et al. [33] introduce heatmaps that emphasize
regions of an image that exerted the most influence on the model's decision. Nigar et al. [34] leverage
LIME to interpret deep learning models, providing local insights around specific predictions, as
demonstrated in dermatological images.

2.3. XAlI- for Breast Thermography

Many papers, such as [35-37], concentrate on the accuracy and automation aspects of using Al
for breast cancer classification using thermal imaging. For example, Abdel-Nasser et al. [35]
introduced a novel learning technique representation called LTR. By utilizing HOG with 4*4 blocks
size and 288 feature vectors, their method achieved an accuracy of 95.80% using an Multi-Layer
Perceptron (MLP) classifier. Nevertheless, there are relatively few papers focusing on methods used
to aid and assist healthcare professionals or lay individuals in understanding the predictions of
machine learning models in breast thermogram images. In a recent study [38,39] authors proposed
an approach based on Bayesian Networks BNs with CNNs. The authors emphasize the utilization of
BN, which is renowned for its probabilistic and graphical data representation to enhance the
interpretability of model predictions. These models extract relevant features from thermography
images, which Bayesian Networks can then interpret to make informed and explainable diagnostic
decisions. In the study by Nicandro et al. [40], the goal was to evaluate the diagnostic capability of
thermographic variables for distinguishing patients suspected of having breast cancer from healthy
individuals. The paper employs Bayesian networks for analysis, chosen for their ability to reveal
interactions between attributes and classes and interactions among attributes themselves. This
unique capability allows for a visual identification of which attributes influence the outcome and how
they are interconnected. The results indicate that, while other models like Multi-Layer Perceptrons
(MLP) and decision trees demonstrate comparable performance, they lack explanation power. The
paper suggests that deep CNN with transfer learning achieves sensitivity levels similar to those of
human experts, even in datasets with a low prevalence of breast cancer. The paper by Dey et al. [41]
suggests that hybrid of deep CNN and edge detectors can achieve sensitivity levels coparable to those
of human experts, even in datasets with a low prevalence of breast cancer. Additionally, they utilized
Class Activation Mapping (CAM) into the model. While the paper doesn't explicitly mention the
integration of external interpretability beyond CAM, CAM itself serves as a form of explainability by
highlighting the regions of interest in the thermograms that contribute to the network's decision-
making process.

Considering the advancements of Al for breast cancer detection using thermography, there
remains a crucial avenue for improvement, where the scope is placed on optimization-based
metaheuristics, a research topic that has garnered significant public attention [42,43]. Furthermore,
the demand for elucidating the distinctive contributions of specific models to predictions is more
critical than ever. This paper undertakes the challenge of addressing these pivotal aspects and aims
to open new research directions by providing an interpretable CAD system capable of handling
complex, evolving problems, human interpretability, and feature attribution.

3. Methodology
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A multi-step methodology is involved in the proposed CAD architecture. While using LBP as a
feature extractor, the complete pipeline is indicated in Figure 2 as follows. The preprocessing of breast
thermograms is followed by feature extraction using various texture analysis methods. Next, the
extracted features and their histograms are visualized to understand the initial feature vector
distribution. Subsequently, the proposed optimization algorithm HPSO and HSMO is employed to
identify the most relevant features contributing significantly to the classification task.

Furthermore, recognizing the importance of optimizing model parameters to enhance
classification performance, we employ an objective function to ensure optimal performance.

ALY " Objective
B 7. Classifier .
Function

-

Include
: i inni ; Not Includ
LBP Option Histogram Binning ot Include Model Parameters

Feature Extraction LBP Histogram Feature Selection Classification Parameters

Figure 2. Pipeline Representation

3.1. Dataset Description

This research used images sourced from the Database for Mastology Research with Infrared
Image (DMR-IR) [44]. This database contains both Static Infrared Thermography (SIT) and Dynamic
Infrared Thermography (DIT) images, with our focus on DIT images. The imaging protocol involves
patients standing with their hands on their heads for five minutes. During this period, an electric fan
cools the breast and armpit regions in a controlled temperature environment ranging from 20°C to
22°C. Following the cooling phase, a FLIR thermal camera (model SC620) captures 20 DIT images,
each with dimensions of 640 x 480 pixels.

This dataset is a comprehensive collection of individual cases designed for breast cancer
detection, with each case linked to a unique ID. It offers diversity in terms of age and demographics,
encompassing a broad spectrum of breast cancer risk factors. Each case comprises multiple images.
The dataset is segregated into two folders "old" cases (Desenvolvimento da Metodologia) and "new"
cases (12 Novos Casos de Testes) as shown in Table 1. Notably, each ID in the dataset is labeled as
either "healthy" or "sick."” Healthy IDs feature images from both the right and left sides of the chest,
whereas sick IDs exclusively contain images of the affected side due to differences in temperature
gradients between healthy and sick breasts. The conventional approach treats the data as a collection
of images split into train/test/validation sets based on predefined ratios [45]. However, this approach
introduces a level of data leakage into trained models since each patient ID can have images in
multiple sets, potentially causing overlap between the test and training sets. To mitigate this data
leakage issue, we propose creating splits based on patient IDs, where each ID's images are associated
with one of the possible data splits. The division into test and train sets is initially performed based
on IDs and subsequently on their associated images. To achieve this with our proposed approach, we
initially gather the IDs and subsequently divide the ID pool into train/test sets, as illustrated in Figure
3. The dataset was split using a 70-30 train-test split ratio. This resulted in 1060 samples allocated for
training and 462 samples allocated for testing.


https://doi.org/10.20944/preprints202408.2279.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2024 doi:10.20944/preprints202408.2279.v1

6
Table 1. Details about dataset classes.
1522 thermogram images (56 subject :37 sick IDs- 19 healthy IDs)
Desenvolvimento da Metodologia 12 Novos Casos de Testes
Total DOENTES SAUDAVEIS Total DOENTES SAUDAVEI
(Sick) (Healthy) (Sick) (Healthy)
1282 640 642 240 120 120

/

[ Patient 1 ] [ Patient 2 ] ..... [ Patient M ] [ Patient M+1 ] .....

Image 1-1 Image 2-1 Image N-1
Image 1-2 Image 2-2 Image N-2
Image 1-3 s esssssscecscscsccciisicsccssssssarass Image N-3
Image 1-4 : Image N-4

Figure 3. Process of Gathering IDs and Division into Train-Test Sets in DMR-IR database.

3.2. Data Pre-Processing

The pre-processing steps involved several stages to prepare the images for analysis and
interpretability. Initially, the heat gradient files were converted into an image format to ensure
consistency and compatibility with standard image processing techniques. Next, experts manually
segmented the full thermogram images into the chest region, a step included with the dataset.
Subsequently, previously segmented grayscale images were cropped to eliminate extraneous regions
along each axis. Before feature extraction, the grayscale version of the input image was resized to a
standardized dimension of 240x240 pixels to ensure uniformity. Post-feature extraction, an optional
normalization, and a rounding step are included, where the features are scaled based on a
precomputed scaler from a training dataset. Finally, the selected features were fed into downstream
machine learning models for classification.

3.3. Feature Extraction

The feature extraction process is a crucial step in our methodology, enabling the transformation
of raw image data into a structured format suitable for machine learning models. We utilize a range
of algorithms, namely Histogram of Oriented Gradients (HOG) [46], Local Binary Pattern (LBP) [47],
Gabor Filters [48], and Canny edge detection [49]. This diversified strategy aims to capture a
comprehensive set of features, taking advantage of each algorithm's unique characteristics [35]. Local
Binary Pattern (LBP) encodes the local structure of an image by comparing the intensity of each pixel
with its neighboring pixels, providing a robust representation of texture patterns. Gabor Filters
analyzes an image's spatial features by capturing the occurrences of pixel patterns with particular
intensity values at specific orientations and scales, providing valuable information about the image's
texture and structure. Histogram of Oriented Gradients (HOG) divides an image into small regions,
computes the gradient and orientation information for each pixel, and then creates a histogram of
gradient orientations, capturing the underlying structure of objects. Canny Edge Detection employs
a multi-stage algorithm involving gradient computation, non-maximum suppression, and edge
tracking with hysteresis to accurately identify and trace edges in an image.
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Figure 4. Sample Feature Extract Image and their distributions (a) original cropped image: Top Left
healthy sample and Bottom Left sick sample ; (b) LBP; (c) Canny Edges; (d) HOG and (e) Gabor Filter.

It's important to note that the parameters associated with each algorithm are not fixed but are
subject to optimization. This flexible approach recognizes the complexity of the dataset, allowing for
the fine-tuning of parameters to enhance the performance of the feature extraction process.

Depending on the extractor, the feature vectors are subsequently extracted by dividing all values
into N histogram bins, translating each image in the dataset to a feature vector of N length, a feature
length of 128 is constructed where each feature is a bin of values representing the frequency or count
of a specific pattern in the image. Figure 4 offers sample extractions from each method and their
captured data distribution, visually depicting their differences.

The most notable aspect in these samples is that each extractor converted the images into unique
sets of feature distributions as well, where the distinctive patterns of classification became varied.
This variety was intentional to determine whether the features would align visually when different
extractors undergo optimization through metaheuristic algorithms.

3.4. The Proposed Metaheuristic- Based Feature and Hyperparameter Optimization

The metaheuristic algorithms used in our study consist of Spider-Monkey optimization [50] and
Particle Swarm [51]. Spider-monkey Optimization (SMO) is a nature-inspired algorithm that draws
inspiration from the cooperative foraging behavior of spider monkeys. SMO leverages the concepts
of exploration and exploitation to search for optimal solutions in a solution space. The algorithm
involves the establishment of a population of potential solutions, and through successive iterations,
it refines and evolves these solutions based on the fitness of each candidate. In its binary version, a
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boolean operator is used to accomplish this task of transferring continuous solutions in each
dimension, which forces the monkey to discretize their movement, representing the presence or
absence of a certain feature or decision. The Binary SMO (BSMO) was proposed by Singh et al. [52].

Particle Swarm Optimization (PSO) is a population-based optimization algorithm that simulates
the social behavior of birds or fish. Individuals in the population, referred to as particles, traverse the
search space, adjusting their positions based on personal experience and the best positions found by
their peers. PSO is particularly effective for continuous optimization problems, where variables can
take any real value. This algorithm was adapted to work in the binary search space using Binary
(BPSO) [53]. The algorithm is known for its simplicity and ability to explore the solution space
efficiently.

To find a diverse set of optimal solutions for multi-objective problems, our research employs
hybrid versions of these algorithms, integrating both their continuous and binary variables within
each algorithm. This hybrid approach allows for a more flexible and adaptable optimization process,
addressing the problem of feature selection as well as extractor parameter optimization that involves
a mix of discrete and continuous decision variables. Incorporating both variable types enhances the
algorithms' capability to handle a broader range of optimization challenges, making them more
robust and effective in diverse problem domains.

The HPSO and HSMO codes are depicted in Algorithm 1 and Algorithm 2, respectively.

The values of parameters for the considered algorithms are as follows:

- HPSO and BPSO parameters setting: Inertia Weight (w)=0.5, c1 =2.0, ¢2 = 2.0, Population = 10.
- HSMO and BSMO parameters setting: — Population = 10, maximum groups (MG) =2, Global
Leader Limit = 20, Local Leader Limit = 20,

In the proposed HSMO algorithm, change_threshold value is modified to dynamically updated
at each iteration, the change threshold increment is set to 0.13 and the change threshold initialized to
0.1 and incrementing dynamically using this Equation. The value of change_thresh is typically a
value between 0 and 1.

change_thresh_increment
current iteration

change_thresh +=

Algorithm 1 : HPSO

1. Initialize:
- Initialize the particle positions and velocities.
- Set parameters like inertia weight (w), cognitive parameter (c1), social parameter (c2), and number of particles (n_particles).
- Randomly generate initial positions and velocities for particles.
- Create a DataFrame to store particle information:ID of particle, objective function value, global best position (g_best) and
parameters (analogic and continous).
- Calculate initial objective function values for particles.
- Set the best positions for each particle and global best position.
2. Iterative Optimization:
- For a specified number of iterations or until a iteration is met:
a. Update Velocities:
- Calculate new velocities for each particle using the formula:
v(ttl) =w * v(t) + ¢l *rl * (p_best - p(t)) + c2 * 12 * (g_best - p(t))
- rl and r2 are random values, p_best is the best position of the particle, and g_best is the global best position.

b. Update Positions:
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- Update the positions of particles using the new velocities.
- For continuous parameters, add the velocity to the position.
- For binary parameters, use a sigmoid function to determine whether to flip the bit based on the velocity.
c. Evaluate Objective Function:
- Calculate the objective function values for the updated positions of the particles.
- Update the DataFrame with the new positions and objective function values.
- Update the best positions for each particle if the new position is better.
d. Update Global Best:
- Determine if any particle's current position is better than the global best position.
- Update the global best position if necessary.
3. Final Output:

- Return the best solution found and its corresponding objective function value.

Algorithm : HSMO

1. Initialize:
- Set parameters like population, parameters (analogic and continous), groups, max groups, change threshold,
acc_err_delta threshold, global lim_thresh, local lim_thresh, target value, debug_mode, change thresh increment
- Initialize spider monkeys' positions and IDs
- Initialize DataFrame to store positions, fitness, probabilities, etc.
- Calculate initial objective function values and fitness values
- Assign initial probabilities
- Create initial groups
- Identify local leaders and global leader
2. Iterative Optimization:
- For each iteration:
a. Local Leader Phase:
- Randomly select spider monkeys based on change threshold
- Randomly select group members for value update
- Update positions using local leader and selected group members
- Update fitness values
- Swap positions if fitness improves
b. Global Leader Phase:
- Identify the global leader
- For each group, update positions using global leader and selected group members
- Update fitness values
- Swap positions if fitness improves
c. Local Decision Phase:
- Check if local leader performance improves
- Increment limit count if no improvement
- Reset group if limit count exceeds threshold

d. Global Decision Phase:
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- Check if global leader performance improves
- Increment global limit count if no improvement
- Increase number of groups or reset groups if limit count exceeds threshold
e. Update change_threshold
3. Final Output:

- Return the best solution found and its corresponding objective function value

3.5. XAI Models through Metaheuristic Optimization

The XAl model under consideration hinges on the interpretation of features that have undergone
a metaheuristic-based optimization process. This optimization ensures that the selected features are
not only relevant but also contribute significantly to the model's overall performance. Feature
interpretation within our framework is a two-pronged approach aimed at enhancing both robustness
and interpretability. First, we utilize Shapley additive explanations (SHAP) to quantify the
importance of individual features. This provides a metric for assessing the robustness of the selected
features in influencing model outcomes. Second, we implement a visual interpretation strategy by
mapping the selected features back onto the original images. This visual mapping facilitates a more
intuitive understanding of the role played by specific features in the model's decision-making
process. By juxtaposing selected features against their corresponding images, this method provides
a tangible link between abstract mathematical representations and real-world visual elements. The
combination of these two approaches — quantitative assessment through SHAP and qualitative
understanding through visual mapping — not only fortifies the robustness of the XAI model but also
introduces a layer of interpretability. Observing and comprehending the features that underpin
model decisions is paramount for building trust and facilitating informed decision-making in
applications, especially ones related to diagnostic systems such as breast cancer detection for which
this study is undertaken.

The Figures below illustrate the feature interpretation process. Figure 5.b shows the canny edge
and LBP extraction for given sample images. figure 5.c portrays the same features post feature
selection, effectively mapped back for interpretation. This juxtaposition allows for a direct
comparison, showcasing the impact of the feature selection process on the extracted features. It serves
as a visual narrative of how the model prioritizes and refines features, shedding light on the
interpretability of the chosen features.

Mapping of
Optimized
Features
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Figure 5. (a) original cropped image ; (b) Feature Extract Image: Top using Canny Edges, Middle LBP
extractor and Bottom using HOG; (c): Selected Features mapped back to Extracted Features.

Figure 6 and Figure 7 show the quantifiable aspects of feature in the image data. The upper
part of Figure 6 presents a chart depicting the extracted features. Complementing this, the lower part
of the figure exhibits the feature graph of the selected features after the metaheuristic-based
optimization process. This clear differentiation between the extracted and selected features allows for
a look into the model's preference for certain features over others. Within both figures, the blue bars
represent features of the sample healthy image, while red bars are for a different sample image of
sick category.
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Figure 6. Example feature selection; Top: Extracted Features using LBP extractor; Bottom: Selected
Features using HSMO.

The integration of SHAP values into the optimization process allows for a more informed
selection of features based on the importance of individual features as determined for distinguishing
between classes. Figure 7 is an example of a Feature Impact Visualization, using a SHAP dependency
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i | 0.15 i
024 . 0.15 4 : -0.10
o -
b 3 0.10 5
on s v 0.10 4 e
o1 ;. . 0.05
. o ol 3o . ER
5 oS Bedtln d - 0.05 5
e AR 8 ©T oosd Jer sy b
2¢ o0 " ¢ 3¢ 3T 000 o
S2 o Y -0.00 3 =2 .'__-.:vx e 2
%E _ﬂﬁ 2 $8 000 ) L b2 A 3
» 0.14 H2 <o i n ~ 4 s, - ~0.05
- ,q& 4, - -0.05 b e
R -0.05 { '-5‘,‘!'-":"’- .
. K% . *
0.2 4 :.' - -0.10 Tas. - =010
i, -0.10 4 1
-0.2 -0.1 0.0 0.1 0.2 0.2 0.1 0.0 01 0.2
Feature 4 Feature 4

Figure 7. Example of explaining prediction using SHAP plot: The left side after applying HSMO
optimization; the right side without optimization, both using a HOG feature extractor. The X-axis
represents the value of Feature 4, and the Y-axis shows its SHAP value, indicating its contribution to
the model's prediction. The color gradient represents secondary features (Feature 27 in the left plot
and Feature 54 in the right plot), showing their interaction with Feature 4. The optimized model (left)
displays a clearer and more structured relationship between features.

4. Experimental Setup
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The experimental setup consists of multiple parts each with respective configurations and
settings. Data loading, dataset split approaches and feature extractors have previously been
discussed in earlier sections. The extracted features are then fed into an optimization pipeline; which
consists of feature selection, feature classification through machine learning using SVM polynomial
kernel and objective function for optimization purpose .
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~" Hybrid Optimization ™, Dataset
H Scheme H
 EGRGETEEEEEREEEEEEEEEL R :
: - Continuous Vanabie
i i_...Optimzation

Extractor Feature Extraction
Parameters Stage

" Boolean Variable '
i....Qptimzation i : :

. Feature Retain/Drop Feature Selection
s Variables Stage

: H XAl '
e . " Framework '
/" Continuous Variable " H H
{____Optimzation { !
Classifier
' Par Classification Stage :
: '
. s H
Objective Function to Maximize Classification
Accuracy with least parameters Accuracy

Figure 8. Optimization Process Flow

For each experiment, the optimization algorithms consist of the HSMO, HPSO, BPSO and BSMO.
This section includes discussion and details of each of the remaining experiment components. The
process illustrated in Figure 8 includes the remaining experimental setup block of the XAI
framework. This framework takes parameters from each stage as indicated in order to provide the
two-pronged interpretability functions. The classification stage XAI inputs correspond to utilization
of SHAP to calculate feature importance, while the feature selection and extraction stage XAl inputs
correspond to backwards mapped selection of features to make the decision more interpretable. The
optimization flow pipeline indicates one iteration of the complete process. In effect, as metaheuristic
algorithms are designed, the optimization process of both continuous and binary variables is carried
out in multiple iterations so that the process improves iteratively (see Figure 9). Visualizing the
process itself over each stage can be thought of as modifying values of all optimization variables over
the iterations.

Teranions
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Figure 9. Optimized Feature Selection and Hyperparameter process

The following Table 2 describes the parameters where boolean variables switch between

True/False states and continuous variables get adjusted over their ranges.

Table 2. Details about method used in different stages with arguments and hyperparameters range.

CAD Steps

Methods

Feature Variables

Vaiables/ or
constraints

Feature
Extraction

LBP

Radius

8; [2,24]:2

Points

60; [100,550]:10

HOG

Orientations

9, [9,18]:1

Pixels per cell

8, [2,16]:1

Cells per block

4,[2,5]:1

Gabor Filter

K-size: Size of the Gabor kernel.
Larger values capture more spatial
frequencies but also increase
computational complexity

80; [20, 190] :20

Sigma: Standard deviation of the
Gaussian envelope. It controls the
spread of the filter.

2.5,[0.10, 7]:0.10

Theta: Orientation of the normal to
the parallel stripes of a Gabor
function. It determines the
orientation of the features to be
detected.

40, [0.1, 46]:2

lamda: Wavelength of the
sinusoidal factor. It affects the
frequency of the feature to be
detected

1.6;[0.2, 8]:0.5

Gamma: Spatial aspect ratio. It
controls the ellipticity of the filter

90, [8, 2501:0.5

Canny Edge

Aperture size: the size of the Sobel
kernel used for gradient
computation

4;[7,80]:1

Aperture transition: represents the
transition range for adjusting the
lower threshold during edge
detection

2;[2,10]:2

Aperture transition steps: This
parameter specifies the number of
steps or iterations used for
adjusting the aperture transition
range. It determines the granularity
of the optimization process for the
aperture transition

60;[10,120]:1

Feature
Selection

The number of
selected features
by optimizer

128 Binary variables

True for included /

False for not-included

feature
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C: Regularization parameter.

Controls the trade-off between 100; [10,7500]:10

training error and margin.

Coef0: Independent term in the

kernel function 4 [1e-06, 4]:0.5

Tolerance: determines the

Classification
SVM

convergence criterion for the model | le-6; [le-6, 4e-2]: 9e-4
training

Degree: represents the degree of the
polynomial function used in the 3;[2, 10]:1

kernel

* The format of range is : Defalut Value; [min Value, max Value]: step size.

Following the extraction of features, they undergo a feature selection stage where each feature
is treated as a boolean variable. Depending on whether the value is True or False, the corresponding
feature is either retained or discarded. These boolean variables are collectively optimized by the
optimization algorithms as well. The retained features are then used for training of classifiers and
subsequent testing based on dataset splits. The resulting accuracy and other metrics such as F1 score,
precision, recall are then fed into an objective function, that includes the number of selected
parameters into computing a final resulting metric that is used by optimizers.

The objective function is designed to equally prioritize both high accuracy and a lower number
of selected features through the use of the geometric mean, detailed as follows:

Fitness Score = 1 —VAcc X VFL (1)
FL=1 SF
T TF

In this formulation, the fitness score represents the assessment of a specific solution set offered
by the proposed optimization algorithm. The multi-objective function in Equation (1) denotes the
geometric mean GM of two components: accuracy Acc and feature loss FL . FL quantifies the
proportion of features that are not retained for the classification task. It is calculated by subtracting 1
from the ratio of the number of selected features SF to the total number of features TF. To align with
the convention in optimization problems, where the objective is typically aimed towards zero, the
fitness score is subtracted from 1. This approach yields a better potential solution in our optimization
problem, achieving a desirable trade-off between accuracy and feature selection simultaneously.

5. Results and Discussion

The presentation of our research findings is structured into two distinct parts, both offering
valuable insights into the performance and characteristics of the applied methodologies and
conducted experiments. In the first segment, we explore the effectiveness of metaheuristic algorithms
with a novel hybrid approach HSMO, HPSO coupled with the feature extraction methods. The aim
was to evaluate the consistency of results across diverse optimization strategies. Multiple
experiments were tested on the DMR-IR dataset. The positive class represents instances of sick breasts
(red color). Therefore, to optimize the balance between computational resources and the desired level
of performance, it was deemed sufficient to limit the optimization process to 60 iterations, as the
incremental benefits beyond this point were deemed negligible. The experiment was conducted using
Google Colab, powered by a Tesla4 GPU accelerator.

Figure 10 shows a chart indicating the resulting reduction in samples, as well as what the
reduction translates to in terms of visual interpretation of the LBP, HOG, Gabor, and edge
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features. It can be seen that the histogram of feature importance distribution using HSMO
and HPSO show similar shapes. in the case of HOG extractor , the feature counts ranging
between 0 and 0.27. The highest peaks occur within bins 13 to 25 for both healthy and sick
instances. For HSMO, the majority of counts fall within the lower end of this range,
indicating that HSMO tends to favor a sparse selection of features by focusing on those that
significantly contribute to the model's prediction. The HSMO optimizer demonstrates a more
defined feature density distribution, due to its inherent properties to balance exploration and
exploitation. On the other hand, HPSO demonstrates a more active exploration approach.The
presence of higher counts beyond the primary peak range reflects HPSO’s tendency toward
broader exploration, driven by its selection pressure mechanisms.

HOG Features Histogram Healthy Spatial Features  Sick Spatial Features

o

LBP Features Histogram Healthy Spatial Features Sick Spatial Features

. e pe—— i T
Extractor: : o8 2 3 e
W Healthy ; - S0 PP
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Gabor Features Histogram Healthy Spatial Features  Sick Spatial Features

Edge Feature Histograms Healthy Spatial Features Sick Spatial Features

HSMO

Figure 10. Resulting of Feature Histograms and Optimized Feature Mapping for LBP, HOG, Edge
Extractors and Gabor.

The aggregated results across 60 optimizer runs for each extractor, as illustrate in Table 3,
indicate that HSMO achieves leading performance in accuracy while maintaining a similar reduction
in features compared to HPSO. Notably, the HSMO based HOG achieved a maximum geometric
mean of 85.40%, an accuracy of 98.27% and F1- score of 98.15%, with only 25.78% of features. In
comparison, HPSO achieved a slightly lower accuracy of 95.02% and F1-score of 94.71%.

Although HPSO provides a balanced outcome, but tends to a more aggressive feature reduction
and still achieves competitive accuracy, for example, 95.89% for LBP with only 23.44% of features.

The lower accuracy observed with BPSO and BSMO compared to the proposed hybrid approach
HPSO and HSMO stems from the fact that these methods are restricted to their fixed search space
and limited dynamic capability, which results in suboptimal solutions, limited exploration and an
inability to handle continuous variables effectively. For instance, the best accuracy ahieved for LBP-
BSMO is 93.94% with a higher feature retention of 28.91%. This result underscores that binary
optimization methods lacks the flexibility needed to adapt continuously and refine solutions
effectively.


https://doi.org/10.20944/preprints202408.2279.v1

Table 3. Results of optimization process using diverse feature extraction methods.

Hyperparameter tuning
Remaining
Feature F1-Score
Optimizer Features Accuracy . Geometric Mean
Extractor aproach C degree Coef0  Tolerance  Feature parameter (o) (%) .
BSMO Default parameter 2891 93.94 93.33 0.8172022148770768
BPSO Default parameter 24.22 92.42 91.65 0.836874399178275
Radius: 14.0
LBP HSMO 40500 4.0 3.0 0.012 acius 26.56 97.62 97.49 0.7169212799999999
Point: 240.0
Radius: 14.
HPSO 3880.0 7.0 3.0 0.002 a. ius: 14.0 23.44 95.89 95.67 0.73413384
Point: 330.0
BSMO Default parameter 35.16 64.94 64.63 0.6488998073662836
BPSO Default parameter 32.81 63.64 0.63 0.6539091374189535
size: 180.0
sigma: 6.9
HSMO 1820.0 6.0 14 0.0004 theta: 2.0 39.06 85.5 83.78 0.7218289271011518
Gabor lamda: 8.0
Filters gamma: 249.0
size: 40.0
sigma: 5.2
theta: 2.0
HPSO 7110.0 6.0 1.5 0.011 33.59 83.33 81.97 0.7439049199998613
lamda: 4.5
gamma: 348.5
BSMO Default parameter 31.25 93.29 92.91 0.8008550118467137
BPSO
Default parameter 32.81 91.34 90.99 0.7833986596873905
HSMO Orientations: 12.0
410.0 5.0 2.0 0.022 Pixels per cell: 2.0 25.78 98.27 98.15 0.8540257256078414
HOG Cells per block: 3.0
HPSO Orientations: 14.0
730.0 13.0 15 0.033 Pixels per cell: 3.0 25.78 95.02 94.71 0.8397847581374646
Cells per block: 5.0
BSMO Default parameter 32.03 88.31 88.31 0.7747535543642249
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Canny
Edge

BPSO

Default parameter

39.06

89.39

89.28

0.7380668397916275

HSMO

2380.0

6.0

1.5 0.009

Aperture size: 37.0
Aperture
transition: 2.0
Aperture transition
steps:10.0

37.5

91.99

91.04

0.7582463320056353

HPSO

1770.0

4.0

4.5 0.006

Aperture size:16.0
Aperture
transition: 4.0
Aperture

transition steps:
12.0

32.03

85.71

83.33

0.7632633031922863
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Additionally, in order to include another layer of explainability at this stage, SHAP was used to
analyze distribution of feature importance of selected features across the dataset. This step allowed
to assess whether the use of metaheuristic algorithms had an impact on importance distribution of
selected features. Figure 11 indicates the respective feature importance charts of LBP features using
BSMO, BPSO, HSMO and HPSO optimizer .
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Figure 11. Top: without Optimization; left Full features; middle BSMO and right BPSO ; Bottom: with
Optimization; left Full features; middle HSMO and right HPSO features.

A visible difference can be seen, where the distribution of remaining features in each
metaheuristic algorithm tends to move towards greater importance scores. Most notable change
occurs for HSMO and HPSO optimizes. These results also re-establish the fact that importance scores
alone can’t be used as a metric for feature selection, as evident from the above figure in which almost
none of the most important deemed features of full feature set were selected during optimization by
all the optimization algorithms. Though the distribution of importance scores still holds an effective
role to assess how well the selection process performed for each algorithm comparatively.

Moving on to the second part of our results, we focused on the application of the leading
optimization algorithm, HSMO, with various feature extractors. As the features still remain
numerous even after being optimized, in order to gain this insight, SHAP was once again used to
distinctly map the per instance ranked distribution of impact score from each top feature of each
extractor as indicated in Figure 12 for Edge Filters, Gabor Filters, HOG, and LBP respectively. The
feature importance illustrations are presented in the form of heatmaps, with their placement being
controlled through SHAP in a logical way in order to highlight any arising patterns. The bars on the
right of each heatmap indicate the individual impact of the listed feature in classification as a whole.
Since the feature distribution becomes unique for each extractor, therefore in order to assess the
impact of optimization, each of the heatmaps is shown in pairs where right heatmap indicates

heatmap of all features and left indicates the heatmap of optimized features.
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Figure 12. Feature Heatmap using HSMO optimizer: a) Canny Edge Detector, b) Gabor Filters, c) LBP;
d) HOG - Full and Optimized Feature Heatmaps in Right and Left respectively.

As can be seen in Figure 12-a, the most distinctive features were extracted through edge
detection. Optimization of these extracted features resulted in selection of key features, which can be
seen from the top few optimized features being almost as important as all the low ranked features.
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Gabor Filters fared the worst out of these, perhaps due to limited search space (Figure 12-b), as
their ability to gauge textures requires a much larger explorative search. Another reason can be that
the extractor is being applied on thermal gradient rather than images themselves. The full feature set
heatmap indicates the scattered impact across features with no specific descriptors arising.
Optimization of these features improves the situation nonetheless by shedding features that might
have been serving as noise to features that held valuable information and impact.

In Figures 12-c and 12-d, the HOG and LBP extractors enable the model to capture the most
significant features, leading to clear and decisive predictions. The structure of their full feature
heatmaps reflects this, particularly in the confidence function at the top of the heatmaps, which show
a transitions from instances classified as healthy to those classified as sick in a much more defined
way. The transition is especially sharp in the HOG heatmap, where the most distinctive features were
extracted, which allowed for evident increase in accuracy. The optimization process further refined
these features, selecting key ones that contribute significantly to the model’s performance. This is
evident as the top optimized features hold nearly as much importance as all the low-ranked features
combined. As a result, the model’s confidence transition becomes steeper as it crosses the boundary
where instance change class, indicating a well-learned, generalizable pattern. This consistent and
precise decision boundary is crucial in a CAD system, as it enhances the trust medical professionals
place in the system’s outputs, ultimately improving the system’s reliability in clinical settings.

6. Conclusion

In conclusion, this research has resulted in insights into the synergy between metaheuristic
algorithms and eXplainable Artificial Intelligence (XAI) for addressing multiobjective problems
involving both continuous and boolean variables. The key findings and their implications underscore
the importance of thoughtful algorithm selection, feature extraction, and interpretability, while
maintaining transparency in use of metaheuristics.

The metaheuristic algorithm comparison revealed that the proposed Hybrid Particle Swarm
Optimization (HPSO), and the proposed Hybrid Spider-Monkey Optimization (HSMO), HSMO
consistently outperformed others in diverse problem scenarios. This superiority was further
validated through XAI, particularly by employing SHAP to analyze feature importance distributions.
Notably, optimizing through metaheuristics surpassed the direct use of SHAP-importance values,
emphasizing the relationship between optimization and interpretability.

The impact of feature extractors (Local Binary Pattern, Histogram of Oriented Gradients, Edge
Filters, Gabor Filters) was investigated, with Gabor Filters performing the least favorably, Edge
Filters offering distinctive features, and LBP/HOG providing comprehensive sets of features.
Corroborated by SHAP analysis, manifested through importance heatmaps, substantiating the
significance of feature selection and extraction.

Furthermore, the study reinforces the contribution of feature extraction and optimization in
tandem with metaheuristics, consistently improving model performance. These collective findings
underscore the important ties between algorithmic choices, interpretability, and feature
representation in addressing complex problems.

In terms of contributions to the field of Explainable Al, this research not only showcases the
efficacy of HSMO but also emphasizes the integration of XAI methodologies, enhancing result
interpretability, alongside of metaheuristics. These contributions extend beyond algorithmic
performance alone, enriching the understanding of model decisions and facilitating broader adoption
in practical applications.

For future work, this study can be expanded to multiple datasets beyond breast cancer detection
to ensure the robustness of the proposed approach. Additionally, incorporating domain experts in
the interpretability loop analysis can result invaluable insights to the decision making process of
experts and learning acquired by ML models. Exploring additional extractors or their combinations,
collectively optimized, also holds promise for further enhancing the proposed framework's efficacy.

In summary, this research not only advances understanding of the relationship between
metaheuristic algorithms and XAI but also lays a foundation for continued exploration in the
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collective domains Explainable AI, metaheuristics, and medical image analysis. The insights garnered
contribute to the ongoing efforts to make computational models and metaheuristic algorithms more
transparent, interpretable, and applicable in real-world contexts.

References

1.  Ciatto S, Rosselli Del Turco M, Zappa M. The detectability of breast cancer by screening mammography.
Br | Cancer. 1995;71(2):337-339. doi:10.1038/bjc.1995.67

2. Foxcroft LM, Evans EB, Joshua HK, Hirst C. BREAST CANCERS INVISIBLE ON MAMMOGRAPHY. ANZ
J Surg. 2000;70(3):162-167. doi:10.1046/j.1440-1622.2000.01763.x

3. Pataky R, Phillips N, Peacock S, Coldman AJ. Cost-effectiveness of population-based mammography
screening strategies by age range and frequency. Journal of Cancer Policy. 2014;2(4):97-102.
doi:10.1016/j.jcpo.2014.09.001

4. Pauwels EK], Foray N, Bourguignon MH. Breast Cancer Induced by X-Ray Mammography Screening? A
Review Based on Recent Understanding of Low-Dose Radiobiology. Med Princ Pract. 2015;25(2):101-109.
doi:10.1159/000442442

5. Dabbous FM, Dolecek TA, Berbaum ML, et al. Impact of a False-Positive Screening Mammogram on
Subsequent Screening Behavior and Stage at Breast Cancer Diagnosis. Cancer Epidemiol Biomarkers Prev.
2017;26(3):397-403. doi:10.1158/1055-9965.EPI-16-0524

6. Bansal R, Collison S, Krishnan L, et al. A prospective evaluation of breast thermography enhanced by a
novel machine learning technique for screening breast abnormalities in a general population of women
presenting to a secondary care hospital. Frontiers in Artificial Intelligence. 2023;5. Accessed February 25, 2023.
https://www.frontiersin.org/articles/10.3389/frai.2022.1050803

7. Da Luz TGR, Coninck JC, Ulbricht L. Comparison of the Sensitivity and Specificity Between
Mammography and Thermography in Breast Cancer Detection. In: Bastos-Filho TF, de Oliveira Caldeira
EM, Frizera-Neto A, eds. XXVII Brazilian Congress on Biomedical Engineering. IFMBE Proceedings. Springer
International Publishing; 2022:2163-2168. doi:10.1007/978-3-030-70601-2_316

8.  Arora N, Martins D, Ruggerio D, et al. Effectiveness of a noninvasive digital infrared thermal imaging
system in the detection of breast cancer. Am | Surg. 2008;196(4):523-526. doi:10.1016/j.amjsurg.2008.06.015

9. Head JF, Elliott RL. Infrared imaging: making progress in fulfilling its medical promise. IEEE Engineering
in Medicine and Biology Magazine. 2002;21(6):80-85. doi:10.1109/MEMB.2002.1175142

10. Sarigoz T, Ertan T, Topuz O, Sevim Y, Cihan Y. Role of Digital Infrared Thermal Imaging in the Diagnosis
of Breast Mass: A Pilot Study. Infrared Physics & Technology. 2018;91. doi:10.1016/j.infrared.2018.04.019

11.  Guetari R, Ayari H, Sakly H. Computer-aided diagnosis systems: a comparative study of classical machine
learning versus deep learning-based approaches. Know! Inf Syst. 2023;65(10):3881-3921. doi:10.1007/s10115-
023-01894-7

12.  Retson TA, Eghtedari M. Expanding Horizons: The Realities of CAD, the Promise of Artificial Intelligence,
and Machine Learning’s Role in Breast Imaging beyond Screening Mammography. Diagnostics.
2023;13(13):2133. d0i:10.3390/diagnostics13132133

13. Skjong R, Wentworth BH. Expert Judgment And Risk Perception. In: OnePetro; 2001. Accessed November
11, 2023. https://dx.doi.org/

14. Park H, Megahed A, Yin P, Ong Y, Mahajan P, Guo P. Incorporating Experts” Judgment into Machine
Learning Models. Expert Systems with Applications. 2023,228:120118. doi:10.1016/j.eswa.2023.120118

15. Barredo Arrieta A, Diaz-Rodriguez N, Del Ser J, et al. Explainable Artificial Intelligence (XAI): Concepts,
taxonomies, opportunities and challenges toward responsible Al Information Fusion. 2020;58:82-115.
doi:10.1016/j.inffus.2019.12.012

16. Yang G, Ye Q, Xia J. Unbox the black-box for the medical explainable Al via multi-modal and multi-centre
data fusion: A mini-review, two showcases and beyond. Information Fusion. 2022;77:29-52.
doi:10.1016/j.inffus.2021.07.016

17.  Koh DM, Papanikolaou N, Bick U, et al. Artificial intelligence and machine learning in cancer imaging.
Commun Med. 2022;2(1):1-14. doi:10.1038/s43856-022-00199-0

18. Tsai CW, Chiang MC, Ksentini A, Chen M. Metaheuristic Algorithms for Healthcare: Open Issues and
Challenges. Computers & Electrical Engineering. 2016;53:421-434. d0i:10.1016/j.compeleceng.2016.03.005

19. Dihmani H, Bousselham A, Bouattane O. A Review of Feature Selection and HyperparameterOptimization
Techniques for Breast Cancer Detection on thermograms Images. In: 2023 IEEE 6th International Conference
on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech). ; 2023:01-08.
doi:10.1109/CloudTech58737.2023.10366143

20. Ezenkwu CP, Akpan Ul, Stephen BUA. A class-specific metaheuristic technique for explainable relevant
feature selection. Machine Learning with Applications. 2021;6:100142. doi:10.1016/j.mlwa.2021.100142

21. Aranha C, Camacho Villalén CL, Campelo F, et al. Metaphor-based metaheuristics, a call for action: the
elephant in the room. Swarm Intell. 2022;16(1):1-6. doi:10.1007/s11721-021-00202-9


https://doi.org/10.20944/preprints202408.2279.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2024 doi:10.20944/preprints202408.2279.v1

23

22. Del Ser ], Osaba E, Molina D, et al. Bio-inspired computation: Where we stand and what’s next. Swarm and
Evolutionary Computation. 2019;48:220-250. doi:10.1016/j.swevo0.2019.04.008

23.  Deb K. Multi-Objective Optimization Using Evolutionary Algorithms: An Introduction.

24. London A]. Artificial Intelligence and Black-Box Medical Decisions: Accuracy versus Explainability. Hastings
Center Report. 2019;49(1):15-21. doi:10.1002/hast.973

25. Kallianos K, Mongan ], Antani S, et al. How far have we come? Artificial intelligence for chest radiograph
interpretation. Clinical Radiology. 2019;74(5):338-345. d0i:10.1016/j.crad.2018.12.015

26. Zucco C, Liang H, Fatta GD, Cannataro M. Explainable Sentiment Analysis with Applications in Medicine.
In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). ; 2018:1740-1747.
doi:10.1109/BIBM.2018.8621359

27. Hu S, Gao Y, Niu Z, et al. Weakly Supervised Deep Learning for COVID-19 Infection Detection and
Classification From CT Images. IEEE Access. 2020;8:118869-118883. doi:10.1109/ACCESS.2020.3005510

28. Langlotz CP, Allen B, Erickson BJ, et al. A Roadmap for Foundational Research on Artificial Intelligence in
Medical Imaging: From the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology. 2019;291(3):781-791.
doi:10.1148/radiol.2019190613

29. Ali S, Abuhmed T, El-Sappagh S, et al. Explainable Artificial Intelligence (XAI): What we know and what
is left to attain Trustworthy Artificial Intelligence. Information Fusion. 2023;99:101805.
doi:10.1016/j.inffus.2023.101805

30. Hasan MdK, Ahamad MdA, Yap CH, Yang G. A survey, review, and future trends of skin lesion
segmentation and classification. = Computers in  Biology and  Medicine.  2023;155:106624.
doi:10.1016/j.compbiomed.2023.106624

31. Brunese L, Mercaldo F, Reginelli A, Santone A. Explainable Deep Learning for Pulmonary Disease and
Coronavirus COVID-19 Detection from X-rays. Computer Methods and Programs in Biomedicine.
2020;196:105608. doi:10.1016/j.cmpb.2020.105608

32. Koyyada SP, Singh TP. An explainable artificial intelligence model for identifying local indicators and
detecting lung disease from chest X-ray images. Healthcare Analytics. 2023;4:100206.
doi:10.1016/j.health.2023.100206

33. Barata C, Celebi ME, Marques JS. Explainable skin lesion diagnosis using taxonomies. Pattern Recognition.
2021;110:107413. doi:10.1016/j.patcog.2020.107413

34. Nigar N, Umar M, Shahzad MK, Islam S, Abalo D. A Deep Learning Approach Based on Explainable
Artificial Intelligence for Skin Lesion Classification. I[EEE  Access. 2022;10:113715-113725.
doi:10.1109/ACCESS.2022.3217217

35. Abdel-Nasser M, Moreno A, Puig D. Breast Cancer Detection in Thermal Infrared Images Using
Representation ~ Learning and  Texture  Analysis  Methods.  Electronics. ~ 2019;8(1):100.
doi:10.3390/electronics8010100

36. Aidossov N, Mashekova A, Zhao Y, Zarikas V, Ng E, Mukhmetov O. Intelligent Diagnosis of Breast Cancer
with Thermograms using Convolutional Neural Networks: In: Proceedings of the 14th International Conference
on Agents and Artificial Intelligence. SCITEPRESS - Science and Technology Publications; 2022:598-604.
doi:10.5220/0010920700003116

37. Kiymet S, Aslankaya MY, Taskiran M, Bolat B. Breast Cancer Detection From Thermography Based on
Deep Neural Networks. In: 2019 Innovations in Intelligent Systems and Applications Conference (ASYU). IEEE;
2019:1-5. d0i:10.1109/ASYU48272.2019.8946367

38. Aidossov N, Zarikas V, Zhao Y, et al. An Integrated Intelligent System for Breast Cancer Detection at Early
Stages Using IR Images and Machine Learning Methods with Explainability. SN COMPUT SCI.
2023;4(2):184. d0i:10.1007/s42979-022-01536-9

39. Aidossov N, Zarikas V, Mashekova A, et al. Evaluation of Integrated CNN, Transfer Learning, and BN
with Thermography for Breast Cancer Detection. Applied Sciences. 2023;13(1):600. doi:10.3390/app13010600

40. Nicandro CR, Efrén MM, Maria Yaneli AA, et al. Evaluation of the Diagnostic Power of Thermography in
Breast Cancer Using Bayesian Network Classifiers. Computational and Mathematical Methods in Medicine.
2013;2013:1-10. doi:10.1155/2013/264246

41. Dey S, Roychoudhury R, Malakar S, Sarkar R. Screening of breast cancer from thermogram images by edge
detection aided deep transfer learning model. Multimed Tools Appl. Published online January 8, 2022.
doi:10.1007/s11042-021-11477-9

42. Gongalves CB, Souza JR, Fernandes H. CNN architecture optimization using bio-inspired algorithms for
breast cancer detection in infrared images. Computers in Biology and Medicine. 2022;142:105205.
doi:10.1016/j.compbiomed.2021.105205

43. Pramanik R, Pramanik P, Sarkar R. Breast cancer detection in thermograms using a hybrid of GA and GWO
based deep feature selection method. Expert Systems with Applications. 2023;219:119643.
doi:10.1016/j.eswa.2023.119643

44. Silva L, Saade D, Sequeiros Olivera G, et al. A New Database for Breast Research with Infrared Image.
Journal of Medical Imaging and Health Informatics. 2014;4:92-100. d0i:10.1166/jmihi.2014.1226


https://doi.org/10.20944/preprints202408.2279.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2024 doi:10.20944/preprints202408.2279.v1

24

45.  Zuluaga-Gomez ], Masry ZA, Benaggoune K, Meraghni S, Zerhouni N. A CNN-based methodology for
breast cancer diagnosis using thermal images. Computer Methods in Biomechanics and Biomedical Engineering:
Imaging & Visualization,. Published online 2020:16.

46. Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05). Vol 1. ; 2005:886-893 vol. 1.
doi:10.1109/CVPR.2005.177

47. OjalaT, Pietikdinen M, Harwood D. A comparative study of texture measures with classification based on
featured distributions. Pattern Recognition. 1996;29(1):51-59. doi:10.1016/0031-3203(95)00067-4

48. Daugman JG. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by
two-dimensional visual cortical filters. ] Opt Soc Am A, JOSAA. 1985;2(7):1160-1169.
doi:10.1364/JOSAA.2.001160

49. Canny J. A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 1986,P AMI-8(6):679-698. doi:10.1109/TPAMI.1986.4767851

50. Bansal JC, Sharma H, Jadon SS, Clerc M. Spider Monkey Optimization algorithm for numerical
optimization. Memetic Comp. 2014;6(1):31-47. d0i:10.1007/s12293-013-0128-0

51. Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on
Neural Networks. Vol 4. ; 1995:1942-1948 vol.4. doi:10.1109/ICNN.1995.488968

52. Singh U, Salgotra R, Rattan M. A Novel Binary Spider Monkey Optimization Algorithm for Thinning of
Concentric ~ Circular =~ Antenna  Arrays. IETE  Journal of  Research.  2016;62(6):736-744.
doi:10.1080/03772063.2015.1135086

53. Kennedy ], Eberhart RC. A discrete binary version of the particle swarm algorithm. In: Computational
Cybernetics and Simulation 1997 IEEE International Conference on Systems, Man, and Cybernetics. Vol 5. ;
1997:4104-4108 vol.5. doi:10.1109/ICSMC.1997.637339

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202408.2279.v1

