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Abstract: The article considers the solution of control problems based on fuzzy logic. This approach allows to build 
decision support systems in various domains. The novelty of the approach is the algorithm for the generation of 
the fuzzy rules for a fuzzy controller based on the machine learning results interpretation to improve the quality 
of control actions in organizational and technical systems. Machine learning methods can find unknown patterns 
that require deep expert knowledge in some domain with a manual rules construction. We consider an example 
of the generation of a set of fuzzy rules based on the analysis of a decision tree model. It is possible to generate a 
set of fuzzy rules for constructing fuzzy inference system (FIS) based on the proposed algorithm. Membership 
functions and labels of linguistic terms are generated automatically for all input and output variables. The quality 
of the machine learning model and FIS were evaluated using the R2 metric. Experimental testing showed what 
the quality of FIS that is based on the generated fuzzy rules is worse by an average of 2 % compared to the original 
model based on the decision tree. The quality of FIS can be improved by tuning the membership functions, but 
this issue is beyond the scope of this article.

Keywords: fuzzy logic; fuzzy rules; fuzzy inference system; machine learning model interpretation
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1. Introduction

Control of the complex technical systems is a task based on the analysis of a large data volumes.
The quality of the results depends on the following factors:

• Control object complexity.
• Control task complexity.
• Volume of data for analysis.
• Time restrictions.
• Decisions urgency.

All these factors require the selection of a suitable class of mathematical models for control
systems. First, we need to analyse the properties of a control object to determine the approach to
solving a control problem.

General control theory defines requirements for the data and signals of the control object. It is
also necessary to consider the data, features, and constraints of the external environment. In previous
works, we show that the choice of a data analysis method and the quality of an analysis result are
depends from a control problem context [1,2].

Fuzzy inference systems (FIS) are used to solve some classes of control problems. FIS allow
to solve the control problem where data and expert knowledge may have some uncertainty. Then
the properties of the control object and/or expert knowledge can be described in linguistic terms.
Adapting a FIS to a specific task requires deep knowledge of the problem area. In some cases, an expert
may not be available and machine learning methods can be used. However, in many problem areas,
the results obtained in the machine learning process must be interpreted to evaluate the correctness.
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Thus, we need to create an approach to generating a set of fuzzy rules for a fuzzy controller based
on the machine learning results interpretation. This approach allows to reduce the complexity of
analysis of a large data volumes and increase the interpretability of the analysis results.

2. Related Works

The management of complex technical systems requires an approach that ensures control stability,
for example, based on the deterministic models. Intelligent components of a control system can
identify behavior patterns of the object model based on analysis of the nonlinear and uncertain data
with machine learning [3]. Component for predictive analytics plays a special role in control systems,
because it allows to reduce the response time to emerging deviations. Quality of a control system is
depends on the quality and volume of data, and form type and hyperparameters of a selected model
as well.

Task of generating of a set of management rules is important and difficult because the quality of
rules is influence to the quality of results of a control system, and an analytic needs to analyse the large
volume of data to get rules with acceptable quality. The key feature of this task is the identification of
features those influence on a quality of a control system result.

Various researchers use a different set of methods to generate a set of rules.
In paper [4] authors describe an approach to features extraction from a data.
In papers [5,6] described approaches for extraction a set of rules on data preparation stage based

on a decision tree. Authors note that the approach based on a fuzzy rule base provides excellent
opportunities for interpreting the results of data analysis. Authors also discusses a comparison of
various methods for generating of a rule base based on a decision tree (ID3 algorithm), fuzzy decision
tree, FUZZYDBD method. The authors propose an approach inspired by fuzzy decision tree approach
based on ID3 algorithm that using information gain and Shannon’s entropy for feature selection criteria
with fuzzification of the dataset.

In [7,8] authors consider the problem of the creation of control systems with fuzzy inference.
Main problem is choosing the type of membership functions. The article also describes the algorithm
for choosing the type of membership functions. The proposed approach is based on an algorithm to
search for parameters of membership functions. Authors solve the problem of membership functions
formation based on the statistical analysis of the features extracted from a training dataset. Researches
focused on the original dataset as a basis for forming a high-quality classifying models.

Other researchers focused on the creation of fuzzy hierarchical systems [18–21]. In [9] consider
the use of clusterisation based on fuzzy decision trees for multi-criteria decision making. Describing
value intervals based on fuzzy sets allows to increase the flexibility of the system.

In the article [13] discussed the problem of constructing fuzzy decision trees, and the problem of
choice of the type of membership functions.

In [10,11] authors describe approaches for creation of a control system based on a fuzzy rule bases
generating with genetic evolutional algorithms. The main idea behind those approaches is finding an
optimal solution to different problems based on analyzing large arrays of data.

Authors of [12,16,22] describe the usage of neuro-fuzzy networks to solve problems of nonlinearity
of features of analysed objects in control tasks, for example, for energy storage systems.

The main problem of creating control systems based on fuzzy knowledge bases is the preparation
of data and rule extraction. It is necessary to have a dataset with informative features to build a control
system with acceptable quality [17]. Some methods require data labeling [14] or data preprocessing [7].

The options for improving the quality of a fuzzy control systems are:

• A high-quality result can be achieved by forming, normalizing, and optimizing a set of rules.
• It is necessary to select optimal membership functions and regulate their parameters to obtain

high-quality results.

Rule mining approach can be based on rule classifier that was trained on existing labeled dataset
[15].
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Thus, existing approaches to the generation of rules for rule-based control systems cannot be
used without deep knowledge of data analysis and statistics. Large amount of analytical work must
be completed for high-quality tuning of hybrid models. Quality of the solution to the problem a rule
generation and control problem itself is depend on expert opinion when need to choose the methods
and their parameters and operating modes.

We define the main problem statement as the development of a method that allow to analyze
the initial data in order to extract rules that have a high generalizing ability to identify patterns and
operating modes of the control system [23]. Also, an approach to interpreting machine learning models
can be used when developing such a method [24].

If non-deep machine learning methods cannot find patterns in the data, then it may be impossible
to create a set of rules to achieve the required level of quality without deep expert knowledge.

3. Material and Methods

In Section 2 we presented an analysis of articles on the problem of generating fuzzy rules for FIS.
That problem can be solved based on the interpretation and explanation of the results of machine
learning models. Machine learning methods can find hidden patterns. Those patterns can be converted
to a set of rules. The classical approach to the formation of a set of rules for a control system requires
deep expert knowledge from an analytic.

In this paper, we propose an approach to generating fuzzy rules based on the analysis of a result
of a machine learning model. The analysed model is created using a supervised learning algorithm
based on decision trees.

3.1. Description of the Dataset

We used the dataset described in [25] to train the decision tree model. In [26], the authors used
this dataset to create and evaluate a FIS-based control system. The dataset contains several tables.
Each table contains measurements of the effect of the input parameters, aluminum oxide (Al2O3)
and titanium dioxide (TiO2) dispersed in distilled water and ethylene glycol with 50:50 volumetric
proportions on the density and viscosity parameters at different temperatures.

Thus, the input parameters from X are:

• Temperature (temp): 20-70 ◦C
• Al2O3 concentration (al): 0, 0.05, 0.3 vol %.
• TiO2 concentration (ti): 0, 0.05, 0.3 vol %.

Output parameters from Y are:

• Density (density).
• Viscosity (viscosity).

The Appendices A and B present the used datasets. Each dataset is divided into training and test
sets.

3.2. Schema of the Proposed Approach

The Figure 1 shows the schema of the proposed approach to extracting fuzzy rules for constructing
FIS based on the interpretation of decision tree results.

As you can see from the Figure 1, the input data is the training part of a dataset.
The CART algorithm [27] was chosen as the algorithm for training the model for creating a binary

decision tree. The CART algorithm has the following advantages:

• There is no need to calculate and select various parameters to execute the algorithm.
• There is no need to pre-select the variables that will participate in the analysis to apply the

algorithm. The variables are selected during model training based on the Gini index value.
• The algorithm handles outliers well. Separate tree branches are formed for data with outliers.
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Figure 1. Proposed approach schema.

• High model training speed.

The major disadvantage of the CART algorithm is the low quality of the model for data with
many dependencies between features. The solution to this problem is not covered in this article and
will be solved in the future. The quality of the decision tree-based model is evaluated using the R2

metric [27].
The decision tree model is formed after the CART algorithm execution. The decision tree model

is the input data for the proposed approach to the generation of fuzzy rules. A set of fuzzy rules is
generated as a result.

The resulting fuzzy rules are used to build FIS. The fuzzy rule r̃ can be represented as:

r̃ = ⟨Antecedent, Consequent⟩,

where Antecedent = {AtomA
1 ◦ AtomA

2 ◦ . . . ◦ AtomA
n } is the antecedent (condition) of the fuzzy

rule; Consequent = {AtomC
1 ◦ AtomC

2 ◦ . . . ◦ AtomC
m} is the consequent (result) of the fuzzy rule;

AtomA
i , AtomA

j , are the i-th and j-th atoms of the antecedent and consequent, respectively; ◦ =

{or, and} is an operator for connecting the atoms of the rule. or and and operators can be interpreted
as functions of min or max depending on the fuzzy inference algorithm.

The operation of FIS is based on the principles of Zadeh’s fuzzy logic [28]. The operation of FIS
can be described as a sequence of the following steps:

1. Fuzzification of input values. The value of the input variable xi is assigned a set of linguistic
terms of some fuzzy variable x̃i during fuzzification. Each fuzzy variable can be described as:

x̃i = ⟨N, T, U, F⟩,

where N is the variable name: temperature, concentration; T is a set of linguistic terms: high
temperature, medium temperature, low temperature, high concentration, medium concentration,
low concentration; U is an range of values; F is a function for calculating the degree of member-
ship of the input variable value to a certain linguistic term. The set of linguistic terms describes a
subset of values of the fuzzy variable U. In this case, the value of the input variable is related to
all linguistic terms with different membership degrees µt(xi) ∈ [0, 1].

2. Aggregation. Truth degree δA of the rule antecedent is calculated at the aggregation stage:

δA = FA(µt(x1), µt(x2), . . . , µt(xn).)
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Each atom of the antecedent AtomA
i of a fuzzy rule r̃ corresponds to a linguistic term tij of some

fuzzy variable x̃i. Rule atoms are replaced by the values of the membership degree of the input
variable xi to some linguistic term tij during aggregation,. Then the function FA (min or max) is
applied. The implementation of the function FA is determined by the algorithm of fuzzy logical
inference: Mamdani, Sugeno, Tsukamoto, etc.

3. Activation. Truth degree δC of the consequent of the output variable ỹi is calculated at the
activation stage,. In our case, the consequent always consists of one atom and has a weight
coefficient equal to 1. Thus:

δC = δA, µt(ỹi) = δA.

4. Accumulation. The membership function Fỹi is formed for all output variables at the accumu-
lation stage. The membership function is formed based on the max-union of the membership
degrees of all linguistic terms of i-th fuzzy variable ỹi:

Fỹi = max(µt(ỹ1i), µt(ỹ2i), . . . , µt(ỹki)).

5. Defuzzification. Numerical value for the fuzzy output variable ỹi is obtained based on the
membership function Fỹi at the defuzzification stage. In our case, the Centre of Gravity method
is used:

FCrisp(ỹi, Fỹi ) =

∫ ỹmax
i

ỹmin
i

ỹiµ(ỹi)dỹi∫ ỹmax
i

ỹmin
i

µ(ỹi)dỹi

.

The quality of FIS is evaluated on the test part of a dataser using the R2 metric and compared
with the value for the decision tree model.

The primary aim of this study is to confirm the Hypothesis 1.

Hypothesis 1. It is possible to generate a set of fuzzy rules for constructing FIS based on the proposed algorithm.
The quality of FIS must not be much worse in quality compared to the original decision tree model. Membership
functions and labels of linguistic terms are generated automatically for all input and output variables. It is only
necessary to specify the required number of terms: 3 or 5.

3.3. Description of the Approach to Generating Fuzzy Rules

In this section, we will consider the operation of the proposed approach to generating fuzzy rules
using the example of constructing a FIS to determine the value of the output variable density based on
the values of the input variables temp, al, and ti. The data set is presented in the Table A1.

Decision tree dt was created based on the training sample using the CART algorithm. Indicator
R2

dt = 0.9933 was calculated based on the test data set for the decision tree dt. The resulting decision
tree model was saved in a file for further use.

Step 1. Get a set of raw rules from the decision tree

Set of raw rules rraw is extracted from the previously created decision tree dt at the first step of the
proposed approach.

Formally, a rule extracted from a decision tree can be represented as:

rdt = ⟨Antecedentdt, Consequentdt⟩,

where Antecedentdt = {Atomdt
1 , Atomdt

2 , . . . , Atomdt
i , Atomdt

n } is the rule antecedent; Atomdt
i = ⟨x, type, value⟩, type ∈

[≤,>] is the rule antecedent atom that describes the constraint of some input variable x with type type
and value value; Consequentdt is the rule consequent that determines the value of the output variable
yk.

Extraction of a set of raw rules is performed based on the algorithm described in the work [30].
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A raw rule is a rule that is extracted from a decision tree and contains an excessive number of
conditions that may overlap, for example:

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5)

and (ti ≤ 0.025) and (al ≤ 0.025) and (temp > 55.0)

and (temp > 62.5)→ 1.033

A set of raw rules rraw is presented in the Appendix C.
In the rule presented above, several conditions are imposed on the value of the input variables.

These conditions must be simplified by performing normalization of the rules.

Step 2. Normalization of raw rules

Set of normalized rules rnorm is formed from the set of raw rules rraw at the second step of the
proposed approach. It is necessary to remove intersecting conditions from the raw rule rraw

i for all
input variables to obtain a normalized rule rnorm

i . The normalization function can be represented as
the Algorithm 1.

Algorithm 1 Rules normalization algorithm

function NORMALISE(rraw, X)
rnorm ← new list
for all rraw

i ∈ rraw do
Antecedentnorm

i ← new list
for all xj ∈ X do

Aj ← {Atomraw
ijk ∈ Antecedenti|Atomnorm

ijk .x = xj}
Atom ≤norm

ij ← max
(
{Atomnorm

ijk ∈ Aj|Atomnorm
ijk .type =≤}

)
Atom >norm

ij ← min
(
{Atomnorm

ijk ∈ Aj|Atomnorm
ijk .type =>}

)
Antecedentnorm

i .append(Atom ≤norm
ij , Atom >norm

ij )

end for
rnorm

i ← new Rule⟨Antecedentnorm
i , Consequentraw

i ⟩
rnorm.append(rnorm

i )

end for
return rnorm

end function

As you can see from the description of the Algorithm 1 algorithm, set of atoms Aj is searched in
the antecedent Antecedentraw

i of each raw rule rraw
i ∈ rraw. The set Aj contains the atoms of the rule

antecedent that are associated with the input variable xj. Then, the search for atoms with the ≤ type is
performed and the atom Atom ≤norm

ij with the maximum value of the parameter variable is selected.
Search for the atom Atom >norm

ij with the minimum value of the parameter variable is performed
among the atoms with the > type. The antecedent Antecedentnorm

i of the normalized rule rnorm
i is

formed based on the found atoms Atom ≤norm
ij and Atom >norm

ij . The consequent of the normalized
rule rnorm

i is the consequent of the raw rule Consequentraw
i .
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An example of a normalized rule is shown below:

Raw rule:

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5)

and (ti ≤ 0.025) and (al ≤ 0.025) and (temp > 55.0)

and (temp > 62.5)→ 1.033

Normalized rule:

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5)→ 1.033

The set of normalized rules rnorm is presented in the Appendix D.
The Algorithm 1 forms a set of normalized rules rnorm. Normalized rules may have equivalent

antecedents and different consequents. We call such rules as similar. Similar rules must be reduced to
a single rule.

Step 3. Removing Similar Rules

The third step of the proposed method involves removing similar rules. Similar rules are rules
with equivalent antecedents. Algorithm 2 formally represents the function of removing similar rules.

Algorithm 2 Algorithm for removing similar rules

function GET_SIMILAR_RULES(ri, r)
return {rj ∈ r|rj.Antecedent = ri.Antecedent}

end function

function GROUP_RULES(r)
Antecedent← r[0].Antecedent
Consequent← avg({ri.Consequent ∈ r})
return new Rule⟨Antecedent, Consequent⟩

end function

function DELETE_SIMILAR_RULES(rnorm)
rsim ← new list
for all rnorm

i ∈ rnorm do
rsim.append(get_similar_rules(rnorm

i , rnorm))

end for
r ← {rnorm

i ∈ rnorm|rnorm
i /∈ rsim}

r̂ ← new list
for all rsim

i ∈ rsim do
rules← get_similar_rules(rsim

i , rsim)

r̂.append(create_rule(rules))
end for
return r ∪ r̂

end function

As you can see from the description of the Algorithm 2 algorithm, a list of similar rules rsim is
formed at the first step. The get_similar_rules function is used to determine similar rules. Rules with
equivalent antecedents are similar. Then a list r containing rules for which there are no similar rules in
the original set rnorm is formed. The reduced set r̂ is formed on the basis of the set of similar rules rsim

by grouping the rules by equivalent antecedents. The consequents for the rules of the reduced set r̂ are
calculated as the arithmetic mean of the consequents of the rules grouped by equivalent antecedents.
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The group_rules function is used to group the rules. The result of the algorithm is the union of the sets
r and r̂ (rnorm = r ∪ r̂)

Let’s consider an example of the execution of the Algorithm 2. Before execution of the algorithm
|rnorm| = 34, after execution of the algorithm – |rnorm| = 24. Example of a similar rules removing:

Before similar rules removing:

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (temp ≤ 55.0)→ 1.045

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (temp ≤ 55.0)→ 1.051

After similar rules removing:

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (temp ≤ 55.0)→ 1.048

The set of normalized rules rnorm after removing similar rules is presented in the Appendix E.
Next, it is necessary to move from the intervals of values of the atoms of the rules antecedents to

specific values.

Step 4. Rules simplification

It is necessary to move from intervals in the atoms of the rule antecedents to specific values of
variables after removing similar rules. Rules simplification is allow applying fuzzification to construct
fuzzy rules.

Rules simplification can be represented as an Algorithm 3.

Algorithm 3 Rules simplification algorithm

function DELETE_SIMILAR_RULES(rnorm, data)
rsimp ← new list
for all rnorm

i ∈ rnorm do
antecedent← new list
for all xj ∈ X do

n← {Atomraw
ijk ∈ Antecedenti|Atomnorm

ijk .x = xj, Atomnorm
ijk .type =≤}

m← {Atomraw
ijk ∈ Antecedenti|Atomnorm

ijk .x = xj, Atomnorm
ijk .type =>}

value← 0
if n ̸= ∅ and m ̸= ∅ then

value← avg(n[0].value, m[0].value)
end if
if n ̸= ∅ and m = ∅ then

value← min
(
data[xj]

)
end if
if n = ∅ and m ̸= ∅ then

value← max
(
data[xj]

)
end if
atom← new Atom⟨xj,=, value⟩
antecedent.appned(atom)

end for
rule← new Rule⟨antecedent, Consequenti⟩
rsimp.append(rule)

end for
return rsimp

end function
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As you can see from the description of the 3 algorithm, the left part of the interval n and the right
part of the interval m are searched for each input variable xj in the antecedent atom Antecedenti of the
rule rnorm

i . If the antecedent of the rule Antecedenti contains both parts of the interval, then the average
value of the parameter value of the atoms n and m is specified as the value of the simplified atom atom.
If the antecedent of the rule Antecedenti contains only the left part of the interval n, then the value of
the new atom is set as the minimum value of the variable xj in the data set data. If the antecedent of
the rule Antecedenti contains only the right part of the interval m, then the value of the new atom is set
as the maximum value of the variable xj in the data set data. New antecedent of the rule is formed
based on the the process of atoms simplification, the consequent remains unchanged.

Figure 2 is schematically presented the Algorithm 3.

Figure 2. Rule simplification schema

Let’s look at an example of simplified rules:

Before:

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5)→ 1.033

After:

if (al = 0.0) and (ti = 0.0) and (temp = 70)→ 1.033

Before:

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (temp ≤ 62.5)→ 1.038

After:

if (al = 0.0) and (ti = 0.0) and (temp = 47.5)→ 1.038

The set of simplified rules rsimp is presented in the Appendix F.
It is necessary to form fuzzy sets for the input variables and form a set of fuzzy rules based on

atom fuzzification after simplifying the rules.
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Step 5. Rule fuzzification

It is necessary to form fuzzy sets for the input and output variables to fuzzify the set of rules rsimp:

F f uzz : xi × n→ x̃i, xi ∈ X, x̃i ∈ X̃, (1)

F f uzz : yj × n→ ỹj, yj ∈ Y, ỹj ∈ Ỹ.

The automatic method [32] of generation of fuzzy sets for crisp variables is used as an implemen-
tation of the F f uzz function. Thus, a corresponding fuzzy variable (x̃i ∈ X̃, ỹj ∈ Ỹ) is formed with the
specified number of linguistic terms n for each variable (xi ∈ X, yj ∈ Y).

The Figures 3–6 present the automatically generated fuzzy sets for the variables al, ti, temp and
density, respectively.

Figure 3. Fuzzy variable ãl with three linguistic terms

Figure 4. Fuzzy variable t̃i with three linguistic terms
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Figure 5. Fuzzy variable ˜temp with three linguistic terms

Figure 6. Fuzzy variable ˜density with five linguistic terms

Next, the Algorithm 4 generates a set of fuzzy rules r f uzz based on a set of simplified rules rsimp.

Algorithm 4 Fuzzy rules generation algorithm

function GET_FUZZY_RULES(rsimp)
r f uzz ← new list
for all rsimp

i ∈ rsimp do
Antecedent f uzz ← new list
for all Atomij ∈ Antecedentsimp

i do
m← F f uzz(Atomij.x, Atomij.variable

)
, mi ∈ m, mi = ⟨x̃i, tj, µtj(xi)⟩

Atom f uzz
ij ← mi ∈ m|mi.µtj(xi)→ max

end for
Atom← Consequentsimp[0]
m← F f uzz(Atom.x, Atom.variable)
Consequent f uzz ← mi ∈ m|mi.µtj(xi)→ max
r f uzz

i ← new Rule⟨Antecedent f uzz, Consequent f uzz⟩
r f uzz.append(r f uzz

i )
end for
return r f uzz

end function
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As you can see from the description of the 4 algorithm, fuzzification function F f uzz is executed
for each atom Atomij of the antecedent of the crisp rule rsimp

i . m set is formed after fuzzification. Each
element of the set mi contains the membership degree µtj(Atom.x) of the crisp variable Atom.x to the

linguistic term tj of the fuzzy variable x̃i. An atom of the fuzzy rule Atom f uzz
ij is formed using the

function max based on the set m. Thus, the atom of the fuzzy rule Atom f uzz
ij contains a reference to the

fuzzy variable x̃i, as well as the degree of membership µtj(Atom.x) in the linguistic term tj. Atom of a
consequent is formed similarly to the atoms of an antecedent.

Let’s consider an example of fuzzy rules:

Before:

if (al = 0.0) and (ti = 0.0) and (temp = 70)→ 1.033

After:

if (al is low) and (ti is low) and (temp is high)→ (density is lower)

Rules with similar antecedents and different consequents may be formed after 4 algorithm
executing. Algorithm 2 is used to delete similar fuzzy rules. This algorithm was adapted to work with
fuzzy rules. A special function group_fuzzy_rules (Algortihm 5) was developed to group fuzzy rules.

Algorithm 5 Group fuzzy rules algorithm

function GROUP_FUZZY_RULES(r)
rmin ← ri ∈ r|∑n

j=1 Atomij.µt(x)→ min, Atomij ∈ Antecedenti

return rmin

end function

As you can see from the description of the 5 algorithm, the group_fuzzy_rules function remains
only one of the similar rules rmin ∈ r f uzz in which the antecedent atoms have the minimum total value
of membership degrees ∑n

j=1 Atomij.µt(x)→ min.
The set of simplified rules r f uzz is presented in the Appendix G. The number of rules in the set

before fuzzification rsimp = 24, and after fuzzification
∣∣∣r f uzz

∣∣∣ = 15.
It becomes possible to perform fuzzy inference to get the value of the output variables Y based on

the input variables X after obtaining the set of fuzzy rules.

Step 6. Fuzzy Inference

Fuzzy inference allows to get the value of crisp output variables Y based on crisp input variables
X. Fuzzy rules are used in the inference process to describe an expert knowledge as the functional
dependence F : X → Y.

For example, for input variables al = 0, ti = 0, and temp = 25:

1. Fuzzification:

• µlow(al) = 1.0, µaverage(al) = 0.0, µhigh(al) = 0.0;
• µlow(ti) = 1.0, µaverage(ti) = 0.0, µhigh(ti) = 0.0;
• µlow(temp) = 0.8, µaverage(temp) = 0.2, µhigh(temp) = 0.0.

2. Aggregation and activation:

• For rule:
if (al is low) and (ti is low) and (temp is average)→ (density is lower)
δA

1 = min{1.0, 1.0, 0.2} = 0.2
δC

1 = δA
1 = 0.2;
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• For rule:
if (al is low) and (ti is low) and (temp is low)→ (density is low)

δA
2 = min{1.0, 1.0, 0.8} = 0.8

δC
2 = δA

2 = 0.8;
• For rule:

if (al is high) and (temp is average)→ (density is high)
δA

3 = min{0.0, 0.0, 0.2} = 0.0
δC

3 = δA
3 = 0.0, etc.

3. Accumulation. Figure 7 represents the accumulation result.
4. Defuzzification. density = 1.076, density ∈ Y.

Figure 7. Accumulation result for fuzzy variable ˜density

3.4. Rules Clustering

Rule clustering allows to grouping the rules based on the parameters of the rule antecedent atoms.
The groups of rules allow an expert to evaluate the rules and set the hyperparameters for the proposed
fuzzy rule generation method. The proposed rule clustering algorithm can be used for crisp and fuzzy
rules.

For example, such groups in the A1 data are rows 1–9, 10–15, etc. It is necessary to specify a set of
input variables to combine rules into groups. Atoms of a rule antecedent are selected based on selected
input variables. For example, clustering can be performed in the A1 data set based on atoms with
the al and ti variables. Atoms with the temp variable can be ignored, because the variable value is
repeated in each group of data rows. The set of variables is a hyperparameter of the rule clustering
algorithm. Only atoms that are associated with the variables al or ti (the parameter of the atom x) are
used in this example. The variable temp was excluded.

It is necessary to vectorize the rules to perform clustering. The algorithm for generating a unique
list of atoms is presented in 6.
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Algorithm 6 Algorithm for generating a unique list of atoms

function GET_UNIQUE_ATOMS(rnorm, Xex)
atoms← new set
for all rnorm

i ∈ rnorm do
for all aj ∈ rnorm

i .Antecedent do
if Xex ̸= ∅ and aj.variable ∈ Xex then

break
end if
atoms.insert(aj)

end for
end for
return atoms

end function

As you can see from the description of the Algorithm 6, the result of the algorithm is a set of
unique atoms atoms extracted from the set of rules rnorm. Only atoms with a parameter variable whose
value is not contained in the set of excluded variables Xex are added to the set atoms.

The following set of unique atoms is formed:

atoms = {(al ≤ 0.175), (al > 0.025), (al > 0.175), (ti ≤ 0.175), (ti > 0.025), (ti > 0.175)}.

The atoms set is used in the vectorization process as a binary mask. For example, for the rule
rnorm

1 ∈ rnorm the resulting vector v̄norm
1 is:

rnorm
1 = if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5)→ 1.033

v̄norm
1 = ⟨1, 0, 0, 1, 0, 0⟩.

Process of automatic selection of clusters number is performed after vectorization. The minimum
value of the clusters number is kmin = 2. The maximum value of the clusters number can be specified
manually by the user or it can be calculated as kmax =

√
|rnorm|+ 1. Automatic selection of clusters

number is based on the value of the silhouette coefficient s [31]:

s =
b− a

max(a, b)
,

where a is the mean intra-cluster distance, b is the distance between a sample and the nearest cluster
that the sample is not a part of. The best value is 1 and the worst value is -1. Values near 0 indicate
overlapping clusters. Negative values indicate that a sample has been assigned to the wrong cluster, as
a different cluster is more similar.

KMeans algorithm is used for clustering. n iterations of the clustering algorithm are sequentially
performed for each ki ∈ Jkmin, kmaxK. Silhouette coefficient si is calculated (see figure 8) for each
iteration ki and the minimum value of the clusters number (ki) with the maximum of the si value is
selected. Thus, the best value of si was obtained at iteration i = 4 when splitting into five clusters.
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Figure 8. Silhouette score diagram

Result of the rules clustering is:

Cluster 1:

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5)→ 1.033

. . .

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp ≤ 32.5)→ 1.062

. . .

Cluster 3:

if (al ≤ 0.175) and (ti ≤ 0.175) and (ti > 0.025) and (temp > 32.5)→ 1.056

. . .

if (al ≤ 0.175) and (ti ≤ 0.175) and (ti > 0.025) and (temp ≤ 32.5)→ 1.091

. . .

Full result of the rules clustering is presented in the Appendix H.

4. Experiments

We develop an application to test the hypothesis 1. The main parameters of the environment for
the developed application include:

1. Programming language: Python.
2. Python interpreter version: 3.12.
3. Libraries:

• Machine learning library (decision tree and KMeans clustering): scikit-learn 1.5.2;
• Data manipulation libraries: numpy 2.1.0 and pandas 2.2.2;
• Fuzzy inference library: scikit-fuzzy 0.5.0;
• Plotting library: matplotlib 3.9.2;
• Additional dependency for the scikit-fuzzy library: networkx 3.4.2.

Decision tree models were created for the output variables density and viscosity based on the
training set of the A1 and A2 datasets. The following variables al, ti, and temp were used as input
variables in both experiments.
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The following R2 metric values were calculated for the resulting decision tree models based on
the test set of the A1 and A2 datasets:

• R2
density = 0.99;

• R2
viscosity = 0.83.

Algorithm was extracted the following raw rules from the resulting decision trees:

•
∣∣∣rraw

density

∣∣∣ = 34;

•
∣∣∣rraw

viscosity

∣∣∣ = 35;

The following rules were obtained after executing the algorithms for normalization and removal
of similar rules:

•
∣∣∣rnorm

density

∣∣∣ = 24;

•
∣∣∣rnorm

viscosity

∣∣∣ = 26;

Then, the proposed algorithm generated the following fuzzy rules:

•
∣∣∣r f uzz

density

∣∣∣ = 15;

•
∣∣∣r f uzz

viscosity

∣∣∣ = 19.

Figures 3–6 represents fuzzy sets for the density output variable.
Figures 3, 4, 9 and 10 represents fuzzy sets for theviscosity output variable.

Figure 9. Fuzzy variable ˜temp with five linguistic terms

Figure 10. Fuzzy variable ˜viscosity with five linguistic terms
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Automf algorithm from the scikit-fuzzy library [32] was used to generate all fuzzy sets. The
number of linguistic terms is a hyperparameter of the proposed approach. We selected its value during
the experiments.

The Table 1 contains the FIS results. The column Real contains real data, and the column Inferred is
a result of fuzzy inference.

Table 1. Experimental results

# temp (◦C) al (%) ti (%) Real Inferred RMSE

density

1 30 0 0 1.056 1.073 0.017
2 55 0 0 1.041 1.047 0.006
3 25 0.05 0 1.084 1.076 0.008
4 30 0.05 0 1.081 1.073 0.007
5 35 0.05 0 1.077 1.069 0.009
6 40 0.05 0 1.074 1.067 0.007
7 60 0.05 0 1.061 1.067 0.007
8 35 0.3 0 1.174 1.172 0.002
9 65 0.3 0 1.148 1.136 0.012

10 45 0 0.05 1.074 1.067 0.007
11 50 0 0.05 1.071 1.067 0.004
12 55 0 0.05 1.067 1.068 0.001
13 20 0 0.3 1.224 1.204 0.020
14 30 0 0.3 1.213 1.202 0.011
15 40 0 0.3 1.202 1.203 0.001
16 60 0 0.3 1.182 1.176 0.007
17 70 0 0.3 1.172 1.172 0.000

Total 0.009

viscosity

1 30 0 0 2.716 3.089 0.374
2 40 0 0 2.073 2.359 0.287
3 60 0 0 1.329 1.465 0.137
4 65 0 0 1.211 1.414 0.204
5 25 0.05 0 4.120 3.188 0.931
6 45 0.05 0 2.217 2.045 0.171
7 65 0.05 0 1.315 1.414 0.100
8 70 0.05 0 1.105 1.408 0.304
9 45 0.3 0 3.111 3.499 0.388

10 50 0.3 0 2.735 3.475 0.740
11 65 0.3 0 1.936 1.812 0.124
12 30 0 0.05 3.587 3.111 0.475
13 55 0 0.05 1.953 2.128 0.176
14 65 0 0.05 1.443 1.414 0.028
15 40 0 0.3 3.990 3.475 0.515
16 50 0 0.3 3.189 3.475 0.286
17 65 0 0.3 2.287 1.812 0.475

Total 0.407
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The following values of the R2 metric were calculated for the FIS based on the test set of the
Appendices A1 and A2 datasets:

• R̃2
density = 0.97;

• R̃2
viscosity = 0.81.

Let’s calculate the difference between the R2 indicators for decision tree models and the FISs:

• ∆density = R2
density − R̃2

density = 0, 014;
• ∆viscosity = R2

viscosity − R̃2
viscosity = 0, 025.

The average difference in the R2 metric is about 2 %. The hypothesis is proven.

5. Conclusions

We consider an approach to solving control problems based on fuzzy logic. This approach allow
to develop decision support systems for various application areas. The article considering the example
of generating a set of fuzzy rules based on the interpretation of a decision tree model. The limitations
of the proposed approach is the ability to work with dataset on which the CART algorithm shows an
acceptable result.

Future work plans include:

• Development of an approach to generating a set of fuzzy rules based on the interpretation of
other machine learning algorithms.

• Development of a method for generating fuzzy sets, considering the specifics of the subject area
to improve the FIS quality.
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Appendix A. Density Dataset

Table A1. The effect of input parameters temp, al and ti on the output parameter density.

# temp (◦C) al (%) ti (%) density

train dataset

1 20 0 0 1.0625
2 25 0 0 1.05979
3 35 0 0 1.05404
4 40 0 0 1.05103
5 45 0 0 1.04794

Continued on next page
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Table A1 – continued from previous page

# temp (◦C) al (%) ti (%) density
6 50 0 0 1.04477
7 60 0 0 1.03826
8 65 0 0 1.03484
9 70 0 0 1.03182
10 20 0.05 0 1.08755
11 45 0.05 0 1.07105
12 50 0.05 0 1.0676
13 55 0.05 0 1.06409
14 65 0.05 0 1.05691
15 70 0.05 0 1.05291
16 20 0.3 0 1.18861
17 25 0.3 0 1.18389
18 30 0.3 0 1.1792
19 40 0.3 0 1.17017
20 45 0.3 0 1.16572
21 50 0.3 0 1.16138
22 55 0.3 0 1.15668
23 60 0.3 0 1.15233
24 70 0.3 0 1.14414
25 20 0 0.05 1.09098
26 25 0 0.05 1.08775
27 30 0 0.05 1.08443
28 35 0 0.05 1.08108
29 40 0 0.05 1.07768
30 60 0 0.05 1.06362
31 65 0 0.05 1.05999
32 70 0 0.05 1.05601
33 25 0 0.3 1.2186
34 35 0 0.3 1.20776
35 45 0 0.3 1.19759
36 50 0 0.3 1.19268
37 55 0 0.3 1.18746
38 65 0 0.3 1.178

test dataset

1 30 0 0 1.05696
2 55 0 0 1.04158
3 25 0.05 0 1.08438
4 30 0.05 0 1.08112
5 35 0.05 0 1.07781
6 40 0.05 0 1.07446
7 60 0.05 0 1.06053
8 35 0.3 0 1.17459
9 65 0.3 0 1.14812

10 45 0 0.05 1.07424
11 50 0 0.05 1.07075
12 55 0 0.05 1.06721

Continued on next page
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Table A1 – continued from previous page

# temp (◦C) al (%) ti (%) density
13 20 0 0.3 1.22417
14 30 0 0.3 1.2131
15 40 0 0.3 1.20265
16 60 0 0.3 1.18265
17 70 0 0.3 1.17261

Appendix B. Viscosity Dataset

Table A2. Effect of input parameters temp, al and ti on output parameter viscosity.

# temp (◦C) al (%) ti (%) density

train dataset

1 20 0 0 3.707
2 25 0 0 3.18
3 35 0 0 2.361
4 45 0 0 1.832
5 50 0 0 1.629
6 55 0 0 1.465
7 70 0 0 1.194
8 20 0.05 0 4.66
9 30 0.05 0 3.38

10 35 0.05 0 2.874
11 40 0.05 0 2.489
12 50 0.05 0 1.897
13 55 0.05 0 1.709
14 60 0.05 0 1.47
15 20 0,3 0 6.67
16 25 0,3 0 5.594
17 30 0,3 0 4.731
18 35 0,3 0 4.118
19 40 0,3 0 3.565
20 55 0,3 0 2.426
21 60 0,3 0 2.16
22 70 0,3 0 1.728
23 20 0 0.05 4.885
24 25 0 0.05 4.236
25 35 0 0.05 3.121
26 40 0 0.05 2.655
27 45 0 0.05 2.402
28 50 0 0.05 2.109
29 60 0 0.05 1.662
30 70 0 0.05 1.289
31 20 0 0.3 7.132
32 25 0 0.3 5.865
33 30 0 0.3 4.944
34 35 0 0.3 4.354

Continued on next page
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Table A2 – continued from previous page

# temp (◦C) al (%) ti (%) density
35 45 0 0.3 3.561
36 55 0 0.3 2.838
37 60 0 0.3 2.538
38 70 0 0.3 1.9097

test dataset

1 30 0 0 2.716
2 40 0 0 2.073
3 60 0 0 1.329
4 65 0 0 1.211
5 25 0.05 0 4.12
6 45 0.05 0 2.217
7 65 0.05 0 1.315
8 70 0.05 0 1.105
9 45 0.3 0 3.111

10 50 0.3 0 2.735
11 65 0.3 0 1.936
12 30 0 0.05 3.587
13 55 0 0.05 1.953
14 65 0 0.05 1.443
15 40 0 0.3 3.99
16 50 0 0.3 3.189
17 65 0 0.3 2.287

Appendix C. Raw Rules Set rraw

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (ti ≤ 0.025)

and (al ≤ 0.025) and (temp > 55.0) and (temp > 62.5)→ 1.033

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (ti ≤ 0.025)

and (al ≤ 0.025) and (temp > 55.0) and (temp ≤ 62.5)→ 1.038

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (ti ≤ 0.025)

and (al ≤ 0.025) and (temp ≤ 55.0) and (temp > 47.5)→ 1.045

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (ti ≤ 0.025)

and (al ≤ 0.025) and (temp ≤ 55.0) and (temp ≤ 47.5)→ 1.051

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (ti ≤ 0.025)

and (al > 0.025) and (temp > 60.0) and (temp > 67.5)→ 1.053

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (ti > 0.025)

and (temp > 50.0) and (temp > 67.5)→ 1.056
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if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (ti ≤ 0.025)

and (al > 0.025) and (temp > 60.0) and (temp ≤ 67.5)→ 1.057

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp ≤ 32.5) and (ti ≤ 0.025)

and (al ≤ 0.025) and (temp > 22.5)→ 1.06

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (ti > 0.025)

and (temp > 50.0) and (temp ≤ 67.5) and (temp > 62.5)→ 1.06

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp ≤ 32.5) and (ti ≤ 0.025)

and (al ≤ 0.025) and (temp ≤ 22.5)→ 1.062

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (ti > 0.025)

and (temp > 50.0) and (temp ≤ 67.5) and (temp ≤ 62.5)→ 1.064

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (ti ≤ 0.025)

and (al > 0.025) and (temp ≤ 60.0) and (temp > 52.5)→ 1.064

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (ti ≤ 0.025)

and (al > 0.025) and (temp ≤ 60.0) and (temp ≤ 52.5)→ 1.069

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (ti > 0.025)

and (temp ≤ 50.0) and (temp > 37.5)→ 1.078

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (ti > 0.025)

and (temp ≤ 50.0) and (temp ≤ 37.5)→ 1.081

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp ≤ 32.5) and (ti > 0.025)

and (temp > 27.5)→ 1.084

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp ≤ 32.5) and (ti ≤ 0.025)

and (al > 0.025)→ 1.088

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp ≤ 32.5) and (ti > 0.025)

and (temp ≤ 27.5) and (temp > 22.5)→ 1.088

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp ≤ 32.5) and (ti > 0.025)

and (temp ≤ 27.5) and (temp ≤ 22.5)→ 1.091
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if (al > 0.175) and (temp > 35.0) and (temp > 52.5) and (temp > 65.0)→ 1.144

if (al > 0.175) and (temp > 35.0) and (temp > 52.5) and (temp ≤ 65.0)

and (temp > 57.5)→ 1.152

if (al > 0.175) and (temp > 35.0) and (temp > 52.5) and (temp ≤ 65.0)

and (temp ≤ 57.5)→ 1.157

if (al > 0.175) and (temp > 35.0) and (temp ≤ 52.5) and (temp > 42.5)

and (temp > 47.5)→ 1.161

if (al > 0.175) and (temp > 35.0) and (temp ≤ 52.5) and (temp > 42.5)

and (temp ≤ 47.5)→ 1.166

if (al > 0.175) and (temp > 35.0) and (temp ≤ 52.5) and (temp ≤ 42.5)→ 1.17

if (al ≤ 0.175) and (ti > 0.175) and (temp > 40.0) and (temp > 60.0)→ 1.178

if (al > 0.175) and (temp ≤ 35.0) and (temp > 22.5) and (temp > 27.5)→ 1.179

if (al > 0.175) and (temp ≤ 35.0) and (temp > 22.5) and (temp ≤ 27.5)→ 1.184

if (al ≤ 0.175) and (ti > 0.175) and (temp > 40.0) and (temp ≤ 60.0)

and (temp > 52.5)→ 1.187

if (al > 0.175) and (temp ≤ 35.0) and (temp ≤ 22.5)→ 1.189

if (al ≤ 0.175) and (ti > 0.175) and (temp > 40.0) and (temp ≤ 60.0)

and (temp ≤ 52.5) and (temp > 47.5)→ 1.193

if (al ≤ 0.175) and (ti > 0.175) and (temp > 40.0) and (temp ≤ 60.0)

and (temp ≤ 52.5) and (temp ≤ 47.5)→ 1.198

if (al ≤ 0.175) and (ti > 0.175) and (temp ≤ 40.0) and (temp > 30.0)→ 1.208

if (al ≤ 0.175) and (ti > 0.175) and (temp ≤ 40.0) and (temp ≤ 30.0)→ 1.219
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Appendix D. Set of normalized rules rnorm

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5)→ 1.033

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (temp ≤ 62.5)→ 1.038

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (temp ≤ 55.0)→ 1.045

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (temp ≤ 55.0)→ 1.051

if (al ≤ 0.175) and (al > 0.025) and (ti ≤ 0.175) and (temp > 32.5)→ 1.053

if (al ≤ 0.175) and (ti ≤ 0.175) and (ti > 0.025) and (temp > 32.5)→ 1.056

if (al ≤ 0.175) and (al > 0.025) and (ti ≤ 0.175) and (temp > 32.5)

and (temp ≤ 67.5)→ 1.057

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp ≤ 32.5) and (temp > 22.5)→ 1.06

if (al ≤ 0.175) and (ti ≤ 0.175) and (ti > 0.025) and (temp > 32.5)

and (temp ≤ 67.5)→ 1.06

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp ≤ 32.5)→ 1.062

if (al ≤ 0.175) and (ti ≤ 0.175) and (ti > 0.025) and (temp > 32.5)

and (temp ≤ 67.5)→ 1.064

if (al ≤ 0.175) and (al > 0.025) and (ti ≤ 0.175) and (temp > 32.5)

and (temp ≤ 60.0)→ 1.064

if (al ≤ 0.175) and (al > 0.025) and (ti ≤ 0.175) and (temp > 32.5)

and (temp ≤ 60.0)→ 1.069

if (al ≤ 0.175) and (ti ≤ 0.175) and (ti > 0.025) and (temp > 32.5)

and (temp ≤ 50.0)→ 1.078

if (al ≤ 0.175) and (ti ≤ 0.175) and (ti > 0.025) and (temp > 32.5)

and (temp ≤ 50.0)→ 1.081
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if (al ≤ 0.175) and (ti ≤ 0.175) and (ti > 0.025) and (temp ≤ 32.5)

and (temp > 27.5)→ 1.084

if (al ≤ 0.175) and (al > 0.025) and (ti ≤ 0.175) and (temp ≤ 32.5)→ 1.088

if (al ≤ 0.175) and (ti ≤ 0.175) and (ti > 0.025) and (temp ≤ 32.5)

and (temp > 22.5)→ 1.088

if (al ≤ 0.175) and (ti ≤ 0.175) and (ti > 0.025) and (temp ≤ 32.5)→ 1.091

if (al > 0.175) and (temp > 35.0)→ 1.144

if (al > 0.175) and (temp > 35.0) and (temp ≤ 65.0)→ 1.152

if (al > 0.175) and (temp > 35.0) and (temp ≤ 65.0)→ 1.157

if (al > 0.175) and (temp > 35.0) and (temp ≤ 52.5)→ 1.161

if (al > 0.175) and (temp > 35.0) and (temp ≤ 52.5)→ 1.166

if (al > 0.175) and (temp > 35.0) and (temp ≤ 52.5)→ 1.17

if (al ≤ 0.175) and (ti > 0.175) and (temp > 40.0)→ 1.178

if (al > 0.175) and (temp ≤ 35.0) and (temp > 22.5)→ 1.179

if (al > 0.175) and (temp ≤ 35.0) and (temp > 22.5)→ 1.184

if (al ≤ 0.175) and (ti > 0.175) and (temp > 40.0) and (temp ≤ 60.0)→ 1.187

if (al > 0.175) and (temp ≤ 35.0)→ 1.189

if (al ≤ 0.175) and (ti > 0.175) and (temp > 40.0) and (temp ≤ 60.0)→ 1.193

if (al ≤ 0.175) and (ti > 0.175) and (temp > 40.0) and (temp ≤ 60.0)→ 1.198

if (al ≤ 0.175) and (ti > 0.175) and (temp ≤ 40.0) and (temp > 30.0)→ 1.208
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if (al ≤ 0.175) and (ti > 0.175) and (temp ≤ 40.0)→ 1.219

Appendix E. Set of normalized rules rnorm after removing similar rules

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5)→ 1.033

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (temp ≤ 62.5)→ 1.038

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (temp ≤ 55.0)→ 1.048

if (al ≤ 0.175) and (al > 0.025) and (ti ≤ 0.175) and (temp > 32.5)→ 1.053

if (al ≤ 0.175) and (ti ≤ 0.175) and (ti > 0.025) and (temp > 32.5)→ 1.056

if (al ≤ 0.175) and (al > 0.025) and (ti ≤ 0.175) and (temp > 32.5)

and (temp ≤ 67.5)→ 1.057

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp ≤ 32.5) and (temp > 22.5)→ 1.06

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp ≤ 32.5)→ 1.062

if (al ≤ 0.175) and (ti ≤ 0.175) and (ti > 0.025) and (temp > 32.5)

and (temp ≤ 67.5)→ 1.062

if (al ≤ 0.175) and (al > 0.025) and (ti ≤ 0.175) and (temp > 32.5)

and (temp ≤ 60.0)→ 1.067

if (al ≤ 0.175) and (ti ≤ 0.175) and (ti > 0.025) and (temp > 32.5)

and (temp ≤ 50.0)→ 1.079

if (al ≤ 0.175) and (ti ≤ 0.175) and (ti > 0.025) and (temp ≤ 32.5)

and (temp > 27.5)→ 1.084

if (al ≤ 0.175) and (al > 0.025) and (ti ≤ 0.175) and (temp ≤ 32.5)→ 1.088

if (al ≤ 0.175) and (ti ≤ 0.175) and (ti > 0.025) and (temp ≤ 32.5)

and (temp > 22.5)→ 1.088

if (al ≤ 0.175) and (ti ≤ 0.175) and (ti > 0.025) and (temp ≤ 32.5)→ 1.091
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if (al > 0.175) and (temp > 35.0)→ 1.144

if (al > 0.175) and (temp > 35.0) and (temp ≤ 65.0)→ 1.155

if (al > 0.175) and (temp > 35.0) and (temp ≤ 52.5)→ 1.166

if (al ≤ 0.175) and (ti > 0.175) and (temp > 40.0)→ 1.178

if (al > 0.175) and (temp ≤ 35.0) and (temp > 22.5)→ 1.182

if (al > 0.175) and (temp ≤ 35.0)→ 1.189

if (al ≤ 0.175) and (ti > 0.175) and (temp > 40.0) and (temp ≤ 60.0)→ 1.193

if (al ≤ 0.175) and (ti > 0.175) and (temp ≤ 40.0) and (temp > 30.0)→ 1.208

if (al ≤ 0.175) and (ti > 0.175) and (temp ≤ 40.0)→ 1.219

Appendix F. A set of simplified rules rsimp

if (al = 0.0) and (ti = 0.0) and (temp = 70)→ 1.033

if (al = 0.0) and (ti = 0.0) and (temp = 47.5)→ 1.038

if (al = 0.0) and (ti = 0.0) and (temp = 43.75)→ 1.048

if (al = 0.0) and (ti = 0.0) and (temp = 27.5)→ 1.06

if (al = 0.0) and (ti = 0.0) and (temp = 20)→ 1.062

if (al = 0.3) and (temp = 70)→ 1.144

if (al = 0.3) and (temp = 50.0)→ 1.155

if (al = 0.3) and (temp = 43.75)→ 1.166

if (al = 0.3) and (temp = 28.75)→ 1.182

if (al = 0.3) and (temp = 20)→ 1.189
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if (al = 0.0) and (ti = 0.1) and (temp = 70)→ 1.056

if (al = 0.0) and (ti = 0.1) and (temp = 50.0)→ 1.062

if (al = 0.0) and (ti = 0.1) and (temp = 41.25)→ 1.079

if (al = 0.0) and (ti = 0.1) and (temp = 30.0)→ 1.084

if (al = 0.0) and (ti = 0.1) and (temp = 27.5)→ 1.088

if (al = 0.0) and (ti = 0.1) and (temp = 20)→ 1.091

if (al = 0.0) and (ti = 0.3) and (temp = 70)→ 1.178

if (al = 0.0) and (ti = 0.3) and (temp = 50.0)→ 1.193

if (al = 0.0) and (ti = 0.3) and (temp = 35.0)→ 1.208

if (al = 0.0) and (ti = 0.3) and (temp = 20)→ 1.219

if (al = 0.1) and (ti = 0.0) and (temp = 70)→ 1.053

if (al = 0.1) and (ti = 0.0) and (temp = 50.0)→ 1.057

if (al = 0.1) and (ti = 0.0) and (temp = 46.25)→ 1.067

if (al = 0.1) and (ti = 0.0) and (temp = 20)→ 1.088,

Appendix G. The set of fuzzy rules r f uzz

if (al is low) and (ti is low) and (temp is high)→ (density is lower)

if (al is low) and (ti is low) and (temp is average)→ (density is lower)

if (al is low) and (ti is low) and (temp is low)→ (density is low)

if (al is high) and (temp is high)→ (density is average)

if (al is high) and (temp is average)→ (density is high)
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if (al is high) and (temp is low)→ (density is high)

if (al is low) and (ti is average) and (temp is high)→ (density is low)

if (al is low) and (ti is average) and (temp is average)→ (density is low)

if (al is low) and (ti is average) and (temp is low)→ (density is low)

if (al is low) and (ti is high) and (temp is high)→ (density is high)

if (al is low) and (ti is high) and (temp is average)→ (density is higher)

if (al is low) and (ti is high) and (temp is low)→ (density is higher)

if (al is average) and (ti is low) and (temp is high)→ (density is lower)

if (al is average) and (ti is low) and (temp is average)→ (density is low)

if (al is average) and (ti is low) and (temp is low)→ (density is low)

Appendix H. Result of grouped rules

Cluster 1:

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5)→ 1.033

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (temp ≤ 62.5)→ 1.038

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp > 32.5) and (temp ≤ 55.0)→ 1.048

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp ≤ 32.5) and (temp > 22.5)→ 1.06

if (al ≤ 0.175) and (ti ≤ 0.175) and (temp ≤ 32.5)→ 1.062

Cluster 2:

if (al > 0.175) and (temp > 35.0)→ 1.144

if (al > 0.175) and (temp > 35.0) and (temp ≤ 65.0)→ 1.155

if (al > 0.175) and (temp > 35.0) and (temp ≤ 52.5)→ 1.166

if (al > 0.175) and (temp ≤ 35.0) and (temp > 22.5)→ 1.182

if (al > 0.175) and (temp ≤ 35.0)→ 1.189
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Cluster 3:

if (al ≤ 0.175) and (ti ≤ 0.175) and (ti > 0.025) and (temp > 32.5)→ 1.056

if (al ≤ 0.175) and (ti ≤ 0.175) and (ti > 0.025) and (temp > 32.5)

and (temp ≤ 67.5)→ 1.062

if (al ≤ 0.175) and (ti ≤ 0.175) and (ti > 0.025) and (temp > 32.5)

and (temp ≤ 50.0)→ 1.079

if (al ≤ 0.175) and (ti ≤ 0.175) and (ti > 0.025) and (temp ≤ 32.5)

and (temp > 27.5)→ 1.084

if (al ≤ 0.175) and (ti ≤ 0.175) and (ti > 0.025) and (temp ≤ 32.5)

and (temp > 22.5)→ 1.088

if (al ≤ 0.175) and (ti ≤ 0.175) and (ti > 0.025) and (temp ≤ 32.5)→ 1.091

Cluster 4:

if (al ≤ 0.175) and (ti > 0.175) and (temp > 40.0)→ 1.178

if (al ≤ 0.175) and (ti > 0.175) and (temp > 40.0) and (temp ≤ 60.0)→ 1.193

if (al ≤ 0.175) and (ti > 0.175) and (temp ≤ 40.0) and (temp > 30.0)→ 1.208

if (al ≤ 0.175) and (ti > 0.175) and (temp ≤ 40.0)→ 1.219

Cluster 5:

if (al ≤ 0.175) and (al > 0.025) and (ti ≤ 0.175) and (temp > 32.5)→ 1.053

if (al ≤ 0.175) and (al > 0.025) and (ti ≤ 0.175) and (temp > 32.5)

and (temp ≤ 67.5)→ 1.057

if (al ≤ 0.175) and (al > 0.025) and (ti ≤ 0.175) and (temp > 32.5)

and (temp ≤ 60.0)→ 1.067

if (al ≤ 0.175) and (al > 0.025) and (ti ≤ 0.175) and (temp ≤ 32.5)→ 1.088
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